Sample records for water saturation fluid

  1. Effects of fluid properties and initial gas saturation on oil recovery by water flooding 

    E-Print Network [OSTI]

    Arnold, Marion Denson

    1959-01-01T23:59:59.000Z

    EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

  2. Effects of fluid properties and initial gas saturation on oil recovery by water flooding

    E-Print Network [OSTI]

    Arnold, Marion Denson

    1959-01-01T23:59:59.000Z

    EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

  3. Correlation of the electrical resistivity of fluid-saturated cores with water saturation and shaliness

    E-Print Network [OSTI]

    Desai, Bhupendra Chhotabhai

    1966-01-01T23:59:59.000Z

    solids and interstitial water as a slurry of conductive particles in an electrolyte and arrived at the relation- ship 2 (Rf' 'V'w S RfR Rt - (N+Rf) (N+R )R L' f w 'ts f osj 0 R N ts where: Rf = the bulk resistivity of the conductive solids in ohm...

  4. Fluid distribution effect on sonic attenuation in partially saturated limestones

    SciTech Connect (OSTI)

    Cadoret, T. [Elf Exploration Production, Pau (France). Dept. Sismique] [Elf Exploration Production, Pau (France). Dept. Sismique; Mavko, G. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States); Zinszner, B. [Inst. Francais du Petrole, Rueil Malmaison (France). Lab. de Physique des Roches] [Inst. Francais du Petrole, Rueil Malmaison (France). Lab. de Physique des Roches

    1998-01-01T23:59:59.000Z

    Extensional and torsional wave-attenuation measurements are obtained at a sonic frequency around 1 kHz on partially saturated limestones using large resonant bars, 1 m long. To study the influence of the fluid distribution, the authors use two different saturation methods: drying and depressurization. When water saturation (S{sub w}) is higher than 70%, the extensional wave attenuation is found to depend on whether the resonant bar is jacketed. This can be interpreted as the Biot-Gardner-White effect. The experimental results obtained on jacketed samples show that, during a drying experiment, extensional wave attenuation is influenced strongly by the fluid content when S{sub w} is between approximately 70% and 100%. This sensitivity to fluid saturation vanishes when saturation is obtained through depressurization. Using a computer-assisted tomographic (CT) scan, the authors found that, during depressurization, the fluid distribution is homogeneous at the millimetric scale at all saturations. In contrast, during drying, heterogeneous saturation was observed at high water-saturation levels. Thus, the authors interpret the dependence of the extensional wave attenuation upon the saturation method as principally caused by a fluid distribution effect. Torsional attenuation shows no sensitivity to fluid saturation for S{sub w} between 5% and 100%.

  5. Reaction of Water-Saturated Supercritical CO2 with Forsterite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for...

  6. Fayalite Dissolution and Siderite Formation in Water-Saturated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2. Abstract:...

  7. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  8. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01T23:59:59.000Z

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  9. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect (OSTI)

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01T23:59:59.000Z

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  10. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30T23:59:59.000Z

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  11. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22T23:59:59.000Z

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  12. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12T23:59:59.000Z

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  13. The environment of a geomaterial (soil, rock, concrete) determines its susceptibility to failure: grain size distribution and mineralogy, fluid-saturation, pore fluid chemistry, current state of stress, history, the

    E-Print Network [OSTI]

    Borja, Ronaldo I.

    to failure: grain size distribution and mineralogy, fluid-saturation, pore fluid chemistry, current state

  14. Effect of Pressure Gradient and InitialWater Saturation on

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    saturation upon depth. In the Prudhoe Bay reservoirs, residual oil saturation to waterflood decreases-Wet Fractured Porous Media Guo-Qing Tang,*SPE. and Abbas Firoozabadi,SPE, Reservoir Engineering Research Inst matrix of the North Sea fractured chalk reservoirs.) Water- injection tests were conducted at different

  15. Effective viscoelastic medium from fractured fluid-saturated ...

    E-Print Network [OSTI]

    2013-02-27T23:59:59.000Z

    ... to Comput. Methods Appl. Mech. Engrg. 27 February 2013 ... where ? is the fluid viscosity and k the absolute permeability. S is known as the structure or ...

  16. Annual Logging Symposium, June 1620, 2012 IMPROVED ASSESSMENT OF IN-SITU FLUID SATURATION WITH

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    -bedded gas formations of the Wamsutter basin invaded with water-base mud, wherein residual hydrocarbon with water but in which gas saturation is still higher than residual saturation. It was also found are mobile or residual. In some instances, high vertical heterogeneity of rock properties (e.g. across thinly

  17. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA)

    2001-01-01T23:59:59.000Z

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  18. Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation

    E-Print Network [OSTI]

    Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation Robert C slip-weakening behavior is specified, and the off-fault material is described using an elastic-plastic poroelastoplastic materials with and without plastic dilation. During nondilatant undrained response near

  19. Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1

    E-Print Network [OSTI]

    , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities sands.We model the viscoelastic properties of a heavy- oil-saturated rock sample using CPA and a measured frequency- dependent complex shear modulus of the heavy oil. Comparison of modeled results

  20. The effect of undrained heating on a fluid-saturated hardened cement paste

    E-Print Network [OSTI]

    Ghabezloo, Siavash; Saint-Marc, Jérémie

    2008-01-01T23:59:59.000Z

    The effect of undrained heating on volume change and induced pore pressure increase is an important point to properly understand the behaviour and evaluate the integrity of an oil well cement sheath submitted to rapid temperature changes. This thermal pressurization of the pore fluid is due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. The equations governing the undrained thermo-hydro-mechanical response of a porous material are presented and the effect of undrained heating is studied experimentally for a saturated hardened cement paste. The measured value of the thermal pressurization coefficient is equal to 0.6MPa/'C. The drained and undrained thermal expansion coefficients of the hardened cement paste are also measured in the heating tests. The anomalous thermal behaviour of cement pore fluid is back analysed from the results of the undrained heating test.

  1. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

    2005-09-06T23:59:59.000Z

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  2. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14T23:59:59.000Z

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  3. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20T23:59:59.000Z

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  4. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    FLUID INCLUSION GAS ANALYSES Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID...

  5. Cementation factor and water saturation exponent in low porosity sandstones

    E-Print Network [OSTI]

    Owen, Stephen Douglas

    1984-01-01T23:59:59.000Z

    and cementation factor when porosity was below 0. 15, and a linear relationship was found between cementa- tion factor and clay content. No relationship was found between porosity and water saturat1on exponent, or cementation factor and water saturat1on... granular formations in the absence of laboratory analysis. In 1977, Bush and Jenkins~~ suggested a simple method for deter- mining clay content, which was used in this study. 103 102 z 0 M 0 10 2 3 4 5678910 2 3 4 5 6 7 8 1p2 POROSITY Fig. I...

  6. ' low-frequency seismic waves in 'fluid-saturated layered rocks

    E-Print Network [OSTI]

    papers report that reflection of low—frequency seismic. ' waves at a boundary between two ?uid-saturated rocks is not significantly modified by 'the presence of

  7. Effect of GOR, Temperature, and Initial Water Saturation on Solution-Gas Drive in

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Effect of GOR, Temperature, and Initial Water Saturation on Solution-Gas Drive in Heavy-Oil have carried out an extensive set of tests on solution-gas drive for a heavy oil to study the effects was approximately 16% and higher. Introduction Solution-gas drive from some heavy oil reservoirs in Canada, Ven

  8. Connate Water Saturation -Irreducible or Not: the Key to Reliable Hydraulic Rock Typing in Reservoirs Straddling Multiple Capillary Windows

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of flow capacity. High in-situ capillary pressure causes connate water saturation in reservoir rocks petrophysical analysis based solely on conventional logs, including gamma ray, neutron porosity, bulk densitySPE 166082 Connate Water Saturation - Irreducible or Not: the Key to Reliable Hydraulic Rock Typing

  9. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01T23:59:59.000Z

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  10. Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere -- in the Metric System

    E-Print Network [OSTI]

    Eihle, W. O.; Powers, R. J.; Clark, R.A.

    TR-16 1968 Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere?in the Metric System W.O. Eihle R.J. Powers R.A. Clark...

  11. Liquid water: A very complex fluid H EUGENE STANLEY

    E-Print Network [OSTI]

    Stanley, H. Eugene

    Liquid water: A very complex fluid H EUGENE STANLEY Center for Polymer Studies and Department, M Canpolat, M Meyer, O Mishima, R Sadr-Lahijany, A Scala and F W Starr. It is also based on earlier

  12. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    SciTech Connect (OSTI)

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.; Ilton, Eugene S.; Arey, Bruce W.; Tucek, Jiri; Felmy, Andrew R.

    2012-11-25T23:59:59.000Z

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending up to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.

  13. Dissolution characteristics of mixed UO{sub 2} powders in J-13 water under saturated conditions

    SciTech Connect (OSTI)

    Veleckis, E.; Hoh, J.C.

    1991-03-01T23:59:59.000Z

    The Yucca Mountain Project/Spent Fuel program at Argonne National Laboratory is designed to determine radionuclide release rates by exposing high-level waste to repository-relevant groundwater. To gain experience for the tests with spent fuel, a scoping experiment was conducted at room temperature to determine the uranium release rate from an unirradiated UO{sub 2} powder mixture (14.3 wt % enrichment in {sup 235}U) to J-13 water under saturated conditions. Another goal set for the experiment was to develop a method for utilizing isotope dilution techniques to determine whether the dissolution rate of UO{sub 2} matrix is in accordance with an existing kinetic model. Results of these analyses revealed unequal uranium dissolution rates from the enriched and depleted portions of the powder mixture because of undisclosed differences between them. Although the presence of this inhomogeneity has precluded the application of the kinetic model, it also provided an opportunity to elaborate on the utilization of isotope dilution data in recognizing and quantifying such conditions. Detailed listings of uranium release and solution chemistry data are presented. Other problems commonly associated with spent fuel, such as the effectiveness of filtering media, the existence of uranium concentration peaks during early stages of the leach tests, the need for concentration corrections due to water replenishments of sample volumes, and experience derived from isotope dilution data are discussed in the context of the present results. 10 refs., 5 figs., 7 tabs.

  14. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect (OSTI)

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2012-02-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  15. The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate

    E-Print Network [OSTI]

    Dandona, Anil Kumar

    1971-01-01T23:59:59.000Z

    through 19. These 4. 0 FIGURE I ATER -OIL CAPILLARY PRESSURE CURVE W CA 0 I IJJ IK Pn 2. 0 CA UJ lL CL K o IO 0 . 20 . 40 . 60 . 80 I. O WATER SATURATION - FRACTION OF PORE VOLUME IO 0 . 20 . 40 . 60 . 80 I. O GAS SATURATION - FRACTION... injection of 0. 25 pore volumes of water. Except for the very low rates, all gas present in the system is trapped. At high water 0 u H 0 0 0 4J g 0 I-I I-1 M 0 z 0 0 Ql QJ 0 3 0 4J cd Q 'O QJ Q Ql 4J cd Q cc V Id 0 0 4J 0 cd O ca Ql...

  16. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

    2012-04-25T23:59:59.000Z

    In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO3 • 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  17. PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS ABOVE THE

    E-Print Network [OSTI]

    Aubertin, Michel

    ), the degree of saturation Sr varies between 90 to 99 % at the tailings surface, covered by a sand protection gas migration control. This physical process is used for instance in the case of covers with capillary is a promising concept that uses the tailings capillary properties to inhibit O2 diffusion and control AMD

  18. Estimating Water Saturation at The Geysers Based on Historical Pressure and Temperature Production

    E-Print Network [OSTI]

    Stanford University

    Production Data Jericho L.P. Reyes June 2003 Financial support was provided through the Stanford Geothermal Program under California Energy Commission PIER grant PIR-00-004, and by the Department of Petroleum................................................................................................................. 1 2. Estimation of In-situ Saturation using Production Data

  19. Densities and viscosities of ternary ammonia/water fluids

    SciTech Connect (OSTI)

    Reiner, R.H.; Zaltash, A.

    1993-03-01T23:59:59.000Z

    The densities, viscosities, and boiling points (at barometric pressure) of solutions formed by inorganic salts dissolved in an ammonia/water (NH{sub 3}/H{sub 2}O) solvent have been measured. These ternary solutions of ammonia/water/dissolved salt are being investigated to reduce rectification requirements and to expand the temperature range of ammonia/water in advanced absorption cycles. Densities and viscosities of these fluids were measured over the temperature range of 283.15 to 343.15 K (10.0 to 70.0{degrees}C). Observed densities and viscosities were expressed as empirical functions of temperature by means of the least-squares method. The dynamic viscosities of ternary fluids were found to be three to seven times greater than those of the binary system of NH{sub 3}/H{sub 2}O, which implies that a substantial decrease in the film heat and mass transfer coefficient is possible. However, because this quantitative linkage is not well understood, direct measurements of heat and mass transfer rates in a minisorber are recommended and planned.

  20. Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff

    SciTech Connect (OSTI)

    Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

    1990-02-01T23:59:59.000Z

    Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs.

  1. Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids

    SciTech Connect (OSTI)

    Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

    2013-07-01T23:59:59.000Z

    Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 ?m) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.

  2. Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor

    E-Print Network [OSTI]

    L. A. Bulavin; S. V. Khrapatiy; V. N. Makhlaichuk

    2015-03-13T23:59:59.000Z

    Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherland potential.Theoretical values of the dimerization constant for the heavy water vapor at different temperatures are compared to those for normal water.We see the exceeding of the values for the heavy water at all temperatures.This fact is in good agreement with all experimental data that is available.The excess is related to the differences in the character of the heat excitations of the dimers of normal and heavy water,their rotational constants and energy of their vibrational excitations.Significant role is also played by the monomer-dimer and dimer-dimer interactions.

  3. Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor

    E-Print Network [OSTI]

    Bulavin, L A; Makhlaichuk, V N

    2015-01-01T23:59:59.000Z

    Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherlan...

  4. Dutch gas plant uses polymer process to treat aromatic-saturated water

    SciTech Connect (OSTI)

    NONE

    1998-11-02T23:59:59.000Z

    A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

  5. Fate of Alpha-Amylase Used to Degrade Starch in Water-Based Drilling Fluids 

    E-Print Network [OSTI]

    Zhang, Jeffrey Z

    2014-12-11T23:59:59.000Z

    -based drilling fluids, fluid loss control in imparted by starch, low-shear viscosity is imparted by xanthan gum and bridging is provided by sized calcium carbonate or salt particulates (Hanssen et al. 1999; Simonides et al. 2002). The separation of roles... FATE OF ALPHA-AMYLASE USED TO DEGRADE STARCH IN WATER- BASED DRILLING FLUIDS A Thesis by JEFFREY ZEYUAN ZHANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment...

  6. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19T23:59:59.000Z

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  7. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.; Bourg, A.C.M.

    2008-08-15T23:59:59.000Z

    Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of {sup 22}Na{sup +} in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (D{sub a}) of Na{sup +}, whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers.

  8. Growth and dissipation of wind-forced, deep water waves Journal: Journal of Fluid Mechanics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Growth and dissipation of wind-forced, deep water waves Journal: Journal of Fluid Mechanics AND DISSIPATION OF WIND-FORCED, DEEP WATER WAVES Laurent Grare1, , William L. Peirson2 , Hubert Branger1 , James W to the interface with corresponding form drag measurements above wind-forced freely-propagating waves. The drag

  9. Analysis of Water Based Fracture Fluid Flowback to Determine Fluid/Shale Chemical Interaction

    E-Print Network [OSTI]

    Agim, Kelechi N

    2014-12-18T23:59:59.000Z

    Concerns about the substantial amounts of water and chemicals pumped into the subsurface during hydraulic fracturing are valid because long term effects of these stimulation actions are unknown at the present time. Although less than 1...

  10. The effect on oil recovery of water flooding at pressures above and below the bubble point

    E-Print Network [OSTI]

    Bass, Daniel Materson

    1955-01-01T23:59:59.000Z

    ). Dykstra, H. ~ and Parsons, R. L. , "The Predict ion of Oil Recovery by Water Flooding", Secondar Recovery of Oil in the United States, API, (1950), Second Edition. (4}. Bzeston, J. N. , "A Survey of Injection of Natural Gas Before and During Water... Pictures of Equipment 4. Physical Characteristics of Fluid A Physical Characteristics of Fluid B P V behavior of Natural Gas Effect of Flooding Pressure on Oil Recovery, Fluid A Effect of Initial Gas Saturation on Residual Oil Saturation After Flood...

  11. Removal of Filter Cake Generated by Manganese Tetraoxide Water-based Drilling Fluids

    E-Print Network [OSTI]

    Al Mojil, Abdullah Mohammed A.

    2011-10-21T23:59:59.000Z

    Three effective solutions to dissolve the filter cake created by water-based drilling fluids weighted with Mn3O4 particles were developed. Hydrochloric acid at concentration lower than 5 wt% can dissolve most of Mn3O4-based filter cake. Dissolving...

  12. J. Fluid Mech. (in press) 1 Shallow-water sloshing in vessels undergoing

    E-Print Network [OSTI]

    Bridges, Tom

    J. Fluid Mech. (in press) 1 Shallow-water sloshing in vessels undergoing prescribed rigid the predominant types of solution are the standing wave and travelling hydraulic jump. But in 3D shallow-dimensional hydraulic jumps and analytical methods are very effective for identifying parameter regimes for these basic

  13. Hamiltonian fluid closures of the Vlasov-Amp{è}re equations: from water-bags to N moment models

    E-Print Network [OSTI]

    M. Perin; Cristel Chandre; P. J. Morrison; E. Tassi

    2015-07-02T23:59:59.000Z

    Moment closures of the Vlasov-Amp{\\`e}re system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.

  14. Aligned fractures modeled as boundary conditions within saturated ...

    E-Print Network [OSTI]

    2015-03-30T23:59:59.000Z

    e di Geofisica Sperimentale, OGS. SUMMARY. Fractures in a fluid-saturated poroelastic -Biot- medium are very thin, compliant and highly permeable layers.

  15. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10T23:59:59.000Z

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  16. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09T23:59:59.000Z

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  17. CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation

    SciTech Connect (OSTI)

    Sprunt, E.S.; Davis, R.M.; Muegge, E.L. (Mobil R and D Corp. (US)); Desai, K.P. (Saudi Aramco (SA))

    1991-06-01T23:59:59.000Z

    This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure {le}4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples.

  18. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect (OSTI)

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01T23:59:59.000Z

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  19. Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography

    E-Print Network [OSTI]

    , at shutdown, may freeze under subzero tem- peratures and makes cold start of a PEM fuel cell difficult conditions. MRI is used to visualize the transport of liquid water across a polymer electrolyte membrane opportunities for imaging pore-scale flow and multiphase transport in porous me- dia. In recent years, X

  20. Effects of Compaction and Temperature on Sorption and Diffusion of Cs and HTO in Compacted Bentonite Saturated with Saline Water

    SciTech Connect (OSTI)

    Satoru Suzuki; Masashi Haginuma; Kazunori Suzuki [Nuclear Chemistry and Chemical Engineering Center, Institute of Research and Innovation, 1201 Takada, Kashiwa, 277-0861 (Japan)

    2007-07-01T23:59:59.000Z

    The sorption and diffusion of Cs and tritiated water (HTO) in compacted bentonite was investigated at temperatures from 30 to 60 deg. C. The apparent (D{sub a}) and effective (D{sub e}) diffusion coefficients were determined by in-diffusion and through-diffusion experiments with a constant boundary concentration maintained. The temperature dependence of De and Da obeyed an Arrhenius-type equation, allowing determination of the activation energy for diffusion of Cs and HTO. The D{sub e} value of Cs was three times the D{sub e} of HTO, which is considered to be a result of surface-excess diffusion. Cs may be concentrated near the surface of the negatively charged clay, thus giving a large diffusive flux. The activation energies for Cs diffusion were 21.4{+-}2.8 kJ/mol and 37.3{+-}1.5 kJ/mol as determined based on D{sub e} and D{sub a}, respectively. This difference was due to the temperature dependence of the distribution coefficient K{sub d} of Cs. (authors)

  1. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

    1994-01-01T23:59:59.000Z

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  2. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23T23:59:59.000Z

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  3. Static Deformation of Fluid-Saturated Rocks

    E-Print Network [OSTI]

    Coyner, Karl

    1984-01-01T23:59:59.000Z

    The static strain response of porous solids to combinations of confining stress and pore pressure is explained both theoretically and experimentally. The theoretical analysis is a synopsis of linear elasticity principles ...

  4. Scaling fluid content-pressure relations of different fluid systems in porous media

    SciTech Connect (OSTI)

    Lenhard, R.J.

    1994-04-01T23:59:59.000Z

    Two-fluid-phase relations among fluid saturations (S) and pressures (P) have historically been used to predict S-P relations for three-fluid-phase systems consisting of a gas, nonaqueous phase liquid (NAPL), and water, because measurements of three-phase S-P relations are complex. Two-phase S-P relations of air-NAPL systems are generally used to predict the behavior between total-liquid saturations of three-phase systems and air-NAPL capillary pressures. Two-phase S-P relations of NAPL-water systems are generally used to predict the behavior between water saturations of three-phase systems and NAPL-water capillary pressures. Because S-P measurements are very time-consuming, investigators have attempted to scale S-P relations so that fewer measurements would be required. A S-P scaling technique is discussed in this paper, and methods to predict the scaling factors are evaluated.

  5. Fluid Hegemony: A Political Ecology of Water, Market Rule, and Insurgence at Bangalore's Frontier

    E-Print Network [OSTI]

    Ranganathan, Malini

    2010-01-01T23:59:59.000Z

    a system of local water harvesting that had evolved togethergrey water and freshwater) taps, and harvesting rainwater.of water sources. Already, supported by rainwater harvesting

  6. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    E-Print Network [OSTI]

    Seol, Yongkoo

    2010-01-01T23:59:59.000Z

    water saturation and residual water saturation) would bepath blockages caused by residual water or hydrate formed at

  7. Hydraulic properties of adsorbed water films in unsaturated porous media

    E-Print Network [OSTI]

    Tokunaga, Tetsu K.

    2009-01-01T23:59:59.000Z

    strongly influence residual water saturations and hydraulicdetermine conditions for residual water saturation in porousresidual saturation” and “irreducible saturation”. In recent years, some progress has been made on understanding water

  8. Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions

    E-Print Network [OSTI]

    Ravi, Ashwin

    2012-10-19T23:59:59.000Z

    Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations...

  9. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks

    SciTech Connect (OSTI)

    Mavko, G.; Nolen-Hoeksema, R. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-02-01T23:59:59.000Z

    Seismic velocities in rocks at ultrasonic frequencies depend not only on the degree of saturation but also on the distribution of the fluid phase at various scales within the pore space. Two scales of saturation heterogeneity are important: (1) saturation differences between thin compliant pores and larger stiffer pores, and (2) differences between saturated patches and undersaturated patches at a scale much larger than any pore. The authors propose a formalism for predicting the range of velocities in partially saturated rocks that avoids assuming idealized pore shapes by using measured dry rock velocity versus pressure and dry rock porosity versus pressure. The pressure dependence contains all of the necessary information about the distribution of pore compliance for estimating effects of saturation at the finest scales where small amounts of fluid in the thinnest, most compliant parts of the pore space stiffen the rock in both compression and shear (increasing both P- and S-wave velocities) in approximately the same way that confining pressure stiffens the rock by closing the compliant pores. Large-scale saturation patches tend to increase only the high-frequency bulk modulus by amounts roughly proportional to the saturation. The pore-scale effects will be most important at laboratory and logging frequencies when pore-scale pore pressure gradients are unrelaxed. The patchy-saturation effects can persist even at seismic field frequencies if the patch sizes are sufficiently large and the diffusivities are sufficiently low for the larger-scale pressure gradients to be unrelaxed.

  10. Effects of Prudhoe Bay reserve pit fluids on water quality and macroinvertebrates of arctic tundra ponds in Alaska

    SciTech Connect (OSTI)

    West, R.L.; Snyder-Conn, E.

    1987-09-01T23:59:59.000Z

    The report summarizes results from the authors` 1983 field study. Although the report should be useful in assessing impacts from reserve pit fluids under Arctic conditions and in evaluating possible management strategies, it was neither intended as an exhaustive study, nor can the results be wholly extrapolated to present-day oil field practices. Since 1983, state regulations concerning reserve pit fluid discharges have become increasingly stringent. Also, some industry practices have changed. For example, chrome lignosulfonate drill muds have been partly replaced by non-chrome lignosulfonates, and diesel oil has been largely replaced with less toxic mineral oil in drilling operations. From 1985 to 1987, the Fish and Wildlife Service began additional studies on Prudhoe Bay reserve pit fluids to examine impacts to tundra pond water, sediment, and biota; to evaluate acute and chronic toxicity through bioassays; and to examine bio-uptake of metals and hygrocarbons by resident species--including invertebrates, sedges, fish, and birds. Reports on these investigations have not yet been prepared, but should also be consulted by the interested reader when they become available.

  11. Correlation of dynamic relative permeability frontal advance concepts and laboratory data for a system of water displacing oil from a multifluid saturated sand

    E-Print Network [OSTI]

    Mills, George Ernest

    1959-01-01T23:59:59.000Z

    THE CALCULATED VALUES HOWEVERS AT THE Hl GH GAS SATURAT ION RANGE & AS SEEN IN FIGURE 8& THE USE OF TH I S ASSUMPTION TO CALCULATE BREAKTHROUGH TIME DID NOT YIELD RESULTS AS WELL AS THE ASSUMPTION THAT THE GAS PRESENT AFFECTS NE I THER OIL OR WATER... AS WELL AS METHOD 2 WHERE IT WAS AS- SUMED THAT THE GAS PRESENT HAD NO AFFECT ON E I THER OIL OR WATER RELATIVE PERMEAB IL I T I ES, F I GORE 9 I S A TYP I CAL CURVE SHOW I NG THE VAR I AT I ON I N PRODUCING WATER ? OIL RATIO WITH CUMULATIVE RECOVERY...

  12. Analytical model for flux saturation in sediment transport

    E-Print Network [OSTI]

    Pähtz, T; Kok, J F; Herrmann, H J

    2014-01-01T23:59:59.000Z

    The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment and for a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out-of-equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrain...

  13. On the Existence of Two-Phase Fluid in Good Communication with Liquid Water

    SciTech Connect (OSTI)

    Grant, Malcolm A.

    1980-12-16T23:59:59.000Z

    It has been argued that wells of high discharge enthalpy (two-phase wells) at Baca must be isolated from communication with an extensive liquid reservoir. It is shown that such communication has existed, and been maintained, during the history of Wairakei and Broadlands fields. Interpretation of downhole measurements in two-phase fields, and the nature of the two-phase reservoir fluid, is also treated.

  14. A study of some of the factors influencing the laboratory determination of the relative permeability-saturation relationship for large diameter limestone cores

    E-Print Network [OSTI]

    Young, Roy M

    1955-01-01T23:59:59.000Z

    are several relative permeability curves for porous media. Although much experimental work has been done on the flow of heterogeneous fluids through porous med. ia there is insuffici. ent, data to allow the prediction of the relative permeabi11ty-saturation... med. ia. His experiments were made w1th water flowing through horizontal sand filter bed, s and resulted. in his formulation that the rate of flow of a fluid. through a porous medium is proportional to the pressure or hydraulic gradient...

  15. Analytical methods for estimating saturated hydraulic conductivity in a tile-drained field

    E-Print Network [OSTI]

    Selker, John

    Analytical methods for estimating saturated hydraulic conductivity in a tile-drained field David E; Saturated hydraulic conductivity; Field scale; Tile drains; Water table 1. Introduction The use of spatially

  16. Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge

    SciTech Connect (OSTI)

    Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1990-01-01T23:59:59.000Z

    The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

  17. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1983-03-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil- water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in 2 parts. The first was to investigate changes in residual oil saturation with temperature where the cores were 100% saturated with oil at the start of the waterflood. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in residual oil saturation was observed with temperature. A study on viscous instabilities also was performed. This verified the existence of viscous fingers during waterflooding. It also was observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  18. Computational Fluid Dynamics Simulation of Green Water Around a Two-dimensional Platform

    E-Print Network [OSTI]

    Zhao, Yucheng

    2010-07-14T23:59:59.000Z

    An interface-preserving level set method is incorporated into the Reynolds-Averaged Navier-Stokes (RANS) numerical method to simulate the application of the green water phenomena around a platform and the breaking wave above the deck. In the present...

  19. Development of an equivalent homogenous fluid model for pseudo-two-phase (air plus water) flow through fractured rock

    SciTech Connect (OSTI)

    Price, J.; Indraratna, B. [University of Wollongong, Wollongong, NSW (Australia). School of Civil Engineering

    2005-07-01T23:59:59.000Z

    Fracture flow of two-phase mixtures is particularly applicable to the coal mining and coal bed methane projects in Australia. A one-dimensional steady-state pseudo-two-phase flow model is proposed for fractured rock. The model considers free flow of a compressible mixture of air and water in an inclined planar fracture and is based upon the conservation of momentum and the 'cubic' law. The flow model is coupled to changes in the stress environment through the fracture normal stiffness, which is related to changes in fracture aperture. The model represents the individual air and water phases as a single equivalent homogenous fluid. Laboratory testing was performed using the two-phase high-pressure triaxial apparatus on 54 mm diameter (approximately 2: 1 height: diameter) borehole cores intersected by induced near-axial fractures. The samples were of Triassic arenaceous fine-medium grained sandstone (known as the Eckersley Formation) that is found locally in the Southern Coalfield of New South Wales. The sample fracture roughness was assessed using a technique based upon Fourier series analysis to objectively attribute a joint roughness coefficient. The proposed two-phase flow model was verified using the recorded laboratory data obtained over a range of triaxial confining pressures (i.e., fracture normal stresses).

  20. Saturation of elliptic flow and shear viscosity

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-10-08T23:59:59.000Z

    Effect of shear viscosity on elliptic flow is studied in causal dissipative hydrodynamics in 2+1 dimensions. Elliptic flow is reduced in viscous dynamics. Causal evolution of minimally viscous fluid ($\\eta/s$=0.08), can explain the PHENIX data on elliptic flow in 16-23% Au+Au collisions up to $p_T\\approx$3.6 GeV. In contrast, ideal hydrodynamics, can explain the same data only up to $p_T\\approx$1.5 GeV. $p_T$ spectra of identified particles are also better explained in minimally viscous fluid than in ideal dynamics. However, saturation of elliptic flow at large $p_T$ is not reproduced.

  1. Derivation of Soil Moisture Retention Characteristics from Saturated Hydraulic Conductivity

    E-Print Network [OSTI]

    Kumar, C.P.

    systems require knowledge of the relationships between soil moisture content (), soil water pressure (h, and evapotranspiration. The soil factors include soil matric potential and water content relationship, saturated content of soil. The relation between matric potential and volumetric water content in a soil is termed

  2. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07T23:59:59.000Z

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  3. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect (OSTI)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01T23:59:59.000Z

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  4. The effect of an initial gas saturation on the performance of a waterflood

    SciTech Connect (OSTI)

    Dykstra, H.

    1995-12-31T23:59:59.000Z

    The behavior of a waterflood is affected, among other factors, by the initial gas saturation at the start of injection. To illustrate this effect on oil rate and on the water-oil ratio (WOR), calculations were made with the Dykstra-Parsons layered system model. Two cases were chosen, one for a high gravity oil with a low mobility ratio, and one for a low gravity oil with a relatively high mobility ratio. The factors that effect the recovery of oil are described. The ideal situation for calculating a waterflood performance, would be that the values of all of the parameters to be used in the model correctly define the reservoir and fluid properties and the displacement process. The more closely the parameters define the system, the greater will be the confidence in the predicted results. If production history is available, a history match can be made. Certain parameters can then be adjusted to obtain a better match with actual performance before predictions are made of future performance. Examples are given for two waterfloods. The results of the study show a substantial decrease in maximum oil rate and a substantial rise in the level of the WOR-recovery curve with increase in initial gas saturation. These types of results, showing the effect of an initial gas saturation, have not heretofore been published.

  5. A Study of the Dielectric Properties of Dry and Saturated Green River Oil Shale

    SciTech Connect (OSTI)

    Sweeney, J; Roberts, J; Harben, P

    2007-02-07T23:59:59.000Z

    We measured dielectric permittivity of dry and fluid-saturated Green River oil shale samples over a frequency range of 1 MHz to 1.8 GHz. Dry sample measurements were carried out between room temperature and 146 C, saturated sample measurements were carried out at room temperature. Samples obtained from the Green River formation of Wyoming and from the Anvil Points Mine in Colorado were cored both parallel and perpendicular to layering. The samples, which all had organic richness in the range of 10-45 gal/ton, showed small variations between samples and a relatively small level of anisotropy of the dielectric properties when dry. The real and imaginary part of the relative dielectric permittivity of dry rock was nearly constant over the frequency range observed, with low values for the imaginary part (loss factor). Saturation with de-ionized water and brine greatly increased the values of the real and imaginary parts of the relative permittivity, especially at the lower frequencies. Temperature effects were relatively small, with initial increases in permittivity to about 60 C, followed by slight decreases in permittivity that diminished as temperature increased. Implications of these observations for the in situ electromagnetic, or radio frequency (RF) heating of oil shale to produce oil and gas are discussed.

  6. Testing Oil Saturation Distribution in Migration Paths Using MRI1 Jianzhao Yan 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Testing Oil Saturation Distribution in Migration Paths Using MRI1 Jianzhao Yan 1 , Xiaorong media, and to measure oil and water saturation. Although this technique has great advantages compared14. Using15 MRI, the oil secondary migration paths are scanned to measure the saturation distribution during

  7. Time-lapse seismic monitoring of subsurface fluid flow

    E-Print Network [OSTI]

    Yuh, Sung H.

    2004-09-30T23:59:59.000Z

    Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

  8. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect (OSTI)

    Zhang, Z. Fred

    2014-01-01T23:59:59.000Z

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  9. Local entropy generation for saturated two-phase flow Remi Revellin a,*, Stephane Lips a

    E-Print Network [OSTI]

    Khandekar, Sameer

    the porous medium approach based on extended Darcy equation for fluid flow, and two-equation model for heat Keywords: Entropy generation Two-phase flow Saturated flow boiling Clapeyron equation a b s t r a c] has proposed equations for enhanced heat transfer surfaces to include the effect of fluid temperature

  10. Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia/water and ammonia/water/LiBr absorption fluids

    SciTech Connect (OSTI)

    Zaltash, A.; Grossman, G.

    1996-03-01T23:59:59.000Z

    The generator-absorber heat exchange (GAX) and branched GAX cycles are generally considered with NH{sub 3}/H{sub 2}O as their working fluid. The potential consequences of using a ternary mixture of NH{sub 3}/H{sub 2}O/LiBr (advanced fluids) in the GAX and Branched GAX (advanced cycles) are discussed in this study. A modular steady state absorption simulation model(ABSIM) was used to investigate the potential of combining the above advanced cycles with the advanced fluids. ABSIM is capable of modeling varying cycle configurations with different working fluids. Performance parameters of the cycles, including coefficient of performance (COP) and heat duties, were investigated as functions of different operating parameters in the cooling mode for both the NH {sub 3}/H{sub 2}O binary and the NH{sub 3}/H{sub 2}O/LiBr ternary mixtures. High performance potential of GAX and branched GAX cycles using the NH{sub 3}/H{sub 2}O/LiBr ternary fluid mixture was achieved especially at the high range of firing temperatures exceeding 400{degrees}F. The cooling COP`s have been improved by approximately 21% over the COP achieved with the NH{sub 3}/H{sub 2}O binary mixtures. These results show the potential of using advanced cycles with advanced fluid mixtures (ternary or quaternary fluid mixtures).

  11. Effects of pore fluids in the subsurface on ultrasonic wave propagation

    SciTech Connect (OSTI)

    Seifert, P.K.

    1998-05-01T23:59:59.000Z

    This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.

  12. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect (OSTI)

    Korneev, Valeri

    2008-01-08T23:59:59.000Z

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  13. Estimation of interstitial water in porous medium by capillary pressure measurements at various temperatures

    E-Print Network [OSTI]

    Gupta, Mahesh Chander

    1968-01-01T23:59:59.000Z

    water to remove the salt. Ten pore volumes of distilled water were flushed through each core and diaphragm. They were then dried in the oven overnight and oooled. Finally they were saturated with kerosene. Run V was made at 75 F with the cores... saturated with kerosene. In this run kerosene was the wetting fluid instead of brine. A standard Du Nouy Tensiometer was used to measure surface tension of the brine solution at 75'F, 150'F and 200'F. Surface tension of kerosene, and brine solution...

  14. SPREADSHEET DESCRIPTION DOCUMENT FOR SATURATION TEMPERATURE CALCULATION

    SciTech Connect (OSTI)

    JO J

    2008-08-29T23:59:59.000Z

    This document describes the methodology for determining the saturation temperature in waste tanks. The saturation temperature is used to calculate neutral buoyancy ratio.

  15. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect (OSTI)

    Richard Schultz

    2010-08-01T23:59:59.000Z

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  16. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12T23:59:59.000Z

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  17. Squirt flow in fully saturated rocks

    SciTech Connect (OSTI)

    Dvorkin, J.; Mavko, G.; Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics

    1995-01-01T23:59:59.000Z

    The authors estimate velocity/frequency dispersion and attenuation in fully saturated rocks by employing the squirt-flow mechanism of solid-fluid interaction. In this model, pore fluid is squeezed from thin soft cracks into the surrounding large pores. Information about the compliance of these soft cracks at low confining pressures is extracted from high-pressure velocity data. The frequency dependence of squirt-induced pressure in the soft cracks is linked with the porosity and permeability of the soft pore space, and the characteristic squirt-flow length. These unknown parameters are combined into one expression that is assumed to be a fundamental rock property that does not depend on frequency. The appropriate value of this expression for a given rock can be found by matching the authors theoretical predictions with the experimental measurements of attenuation or velocity. The low-frequency velocity limits, as given by their model, are identical to those predicted by Gassmann`s formula. The high-frequency limits may significant exceed those given by the Biot theory: the high-frequency frame bulk modulus is close to that measured at high confining pressure. They have applied their model to D`Euville Limestone, Navajo Sandstone, and Westerly Granite. The model realistically predicts the observed velocity/frequency dispersion, and attenuation.

  18. Quantitative comparison of processes of oil-and water-based mud-filtrate invasion and corresponding effects on borehole resistivity measurements

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    resistivity from the simulated radial distri- butions of water saturation and salt concentration and compare of OBM invasion compared with those of WBM invasion. INTRODUCTION During the process of drilling wells for hydrocarbon exploration and production, drilling fluids sustain a pressure higher than that of formation

  19. Accurate Identification, Imaging and Monitoring of Fluid-Saturated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACMEAccountableUnderground

  20. Saturable absorption and 'slow light'

    E-Print Network [OSTI]

    Adrian C Selden

    2006-03-25T23:59:59.000Z

    Quantitative evaluation of some recent 'slow light' experiments based on coherent population oscillations (CPO) shows that they can be more simply interpreted as saturable absorption phenomena. Therefore they do not provide an unambiguous demonstration of 'slow light'. Indeed a limiting condition on the spectral bandwidth is not generally satisfied, such that the requirements for burning a narrow spectral hole in the homogeneously broadened absorption line are not met. Some definitive tests of 'slow light' phenomena are suggested, derived from analysis of phase shift and pulse delay for a saturable absorber

  1. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01T23:59:59.000Z

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  2. The influence of pore fluids on the frictional properties of quartzose sandstone

    E-Print Network [OSTI]

    Blackwell, Michael Lloyd

    1973-01-01T23:59:59.000Z

    the influence of pore fluids on the frictional properties of Tennessee and Coconino Sandstones, a series of triaxial compression tests have been performed. Specimens tested have been dry or they have contained kerosene, distilled water, or solutions of FeC1... Sandstone at different effective confining pressure. 19 Stress-shortening curves of four experiments performed with Tennessee Sandstone at 1 kb effective pressure: dry, saturated with kerosene, water, or 5x10 4 FeC13 solution. 21 Stress-shortening curves...

  3. A study of air flow through saturated porous media and its applications to in-situ air sparging

    E-Print Network [OSTI]

    Marulanda, Catalina, 1971-

    2001-01-01T23:59:59.000Z

    The efficiency of an in situ air sparging system is controlled by the extent of contact between injected air and contaminated soil and pore fluid. Characterizing the mechanisms governing air propagation through saturated ...

  4. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries

    E-Print Network [OSTI]

    Gardner, Alan T.

    An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry ...

  5. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    SciTech Connect (OSTI)

    Silva, M.K.

    1996-08-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  6. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  7. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27T23:59:59.000Z

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  8. An FDTD Method for Analysis of Scattering from Rough FluidFluid Interfaces

    E-Print Network [OSTI]

    Schneider, John B.

    results are presented for fluid­fluid cases modeling water­sediment inter­ faces. Two different roughness speeds in shallow­water sediment bottoms are relatively slow, a fluid­ fluid model is a reasonable to the interface, and a correc­ tion for the numerical dispersion inherent to the FDTD algorithm. Numeri­ cal

  9. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    SciTech Connect (OSTI)

    Liou, T.S.

    1999-12-01T23:59:59.000Z

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important than the spatial correlation of asperity contacts. A faster breakthrough was observed in fractures subjected to higher normal stress, accompanied with a nonlinearly decreasing trend of the effective permeability. Interestingly, seepage dispersion is generally higher in fractures with intermediate fraction of asperity contacts; but it is lower for small or large fractions of asperity contacts. However, it may become higher if the ponding becomes significant. Transport simulations indicate that tracers bypass dead-end pores and travel along flow paths that have less flow resistance. Accordingly, tracer breakthrough curves generally show more spreading than breakthrough curves for water. Further analyses suggest that the log-normal time model generally fails to fit the breakthrough curves for water, but it is a good approximation for breakthrough curves for the tracer.

  10. Universal penetration test apparatus with fluid penetration sensor

    DOE Patents [OSTI]

    Johnson, Phillip W. (Rochester, MN); Stampfer, Joseph F. (Santa Fe, NM); Bradley, Orvil D. (Santa Fe, NM)

    1999-01-01T23:59:59.000Z

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  11. Fluid system for controlling fluid losses during hydrocarbon recovery operations

    SciTech Connect (OSTI)

    Johnson, M.H.; Smejkal, K.D.

    1993-07-20T23:59:59.000Z

    A fluid system is described for controlling fluid losses during hydrocarbon recovery operations, comprising: water; a distribution of graded calcium carbonate particle sizes; and at least one modified lignosulfonate, which is a lignosulfonate modified by polymerizing it at least to an extent effective to reduce its water solubility.

  12. Saturating the holographic entropy bound

    SciTech Connect (OSTI)

    Bousso, Raphael [Center for Theoretical Physics, Department of Physics University of California, Berkeley, California 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States); Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8568 (Japan); Freivogel, Ben; Leichenauer, Stefan [Center for Theoretical Physics, Department of Physics University of California, Berkeley, California 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States)

    2010-10-15T23:59:59.000Z

    The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.

  13. Gamma irradiation in a saturated tuff environment

    SciTech Connect (OSTI)

    Bates, J.K.; Oversby, V.M.

    1984-12-31T23:59:59.000Z

    The influence of gamma irradiation on the reaction of actinide doped SRL 165 and PNL 76-68 glasses in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The reaction, and subsequent actinide release, of both glasses depends on the dynamic interaction between radiolysis effects which cause the solution pH to become more acidic and glass reaction which drives the pH more basic. The use of large gamma irradiation dose rates to accelerate reactions that would occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons are made between the present results and data obtained by reacting the same or similar glasses using MCC-1 and NNWSI rock cup procedures. 11 references, 3 figures.

  14. New fluid makes untapped geothermal energy cleaner | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid makes untapped geothermal energy cleaner New fluid makes untapped geothermal energy cleaner Released: April 17, 2015 Nontoxic solution could cut water use for enhanced...

  15. TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactive Geochemical Transport in Variably Saturated GeologicMedia

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-12-07T23:59:59.000Z

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.

  16. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01T23:59:59.000Z

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  17. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    SciTech Connect (OSTI)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01T23:59:59.000Z

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  18. Geomechanical Simulation of Fluid-Driven Fractures

    SciTech Connect (OSTI)

    Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

    2012-11-30T23:59:59.000Z

    The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

  19. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-04-01T23:59:59.000Z

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  20. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01T23:59:59.000Z

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  1. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1982-01-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil-water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation (S/sub or/) and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in two parts. The first was to investigate changes in S/sub or/ with temperature where the cores were 100% saturated with oil at the start of the waterflood. Runs were terminated when the water-cut exceeded 99.8%. For these experiments, S/sub or/ decreased from 0.31 at 70/sup 0/F to 0.09 at 250/sup 0/F. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in S/sub or/ was observed with temperature; (0.11 at 70/sup 0/F and 0.085 at 186/sup 0/F). Temperature effects on irreducible water saturations were studied. A small increase in irreducibile water saturation was observed upon increasing the temperature. However, the same magnitude of change was observed by changing the flowrate. Upon increasing the oil flowrate, immediate water production was observed from the core indicating a change in the capillary end effect. By comparing the change in irreducible water saturation with rate and temperature, it was determined that the change was caused mainly by a change in the viscous force across the core. A study on viscous instabilities was also performed. This verified the existence of viscous fingers during waterflooding. It was also observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  2. Self isolating high frequency saturable reactor

    DOE Patents [OSTI]

    Moore, James A. (Powell, TN)

    1998-06-23T23:59:59.000Z

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  3. Effective forces in saturated clays 

    E-Print Network [OSTI]

    Teetes, George Ray

    1993-01-01T23:59:59.000Z

    This paper is the culmination of a five-phase research effort investigating overpressured soil and rock formations. These formations, found all over the world, at varying depths, contain pore water confined at pressures ...

  4. Effective forces in saturated clays

    E-Print Network [OSTI]

    Teetes, George Ray

    1993-01-01T23:59:59.000Z

    This paper is the culmination of a five-phase research effort investigating overpressured soil and rock formations. These formations, found all over the world, at varying depths, contain pore water confined at pressures greater than the hydrostatic...

  5. Imbibition flooding with CO?-enriched water 

    E-Print Network [OSTI]

    Grape, Steven George

    1990-01-01T23:59:59.000Z

    performance for a typical Austin Chalk field. METHODOLOGY Imbibition flood testing in core samples is a "saturate and soak" process. Core samples are first dried, then saturated with water. After weighing, the sample is saturated with oil down to minimum... carbonated water. Any changes in saturation or permeability are noted. The procedure is then repeated using carbonated water. Two types of experiments were performed on core samples during this project. Field Core testing on 4" diameter cores...

  6. Graduate Studies Environmental Fluid Mechanics

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    and bridge scour · Wastewater dispersion in coastal waters · Cohesive sediment resuspension · Flood, and modeling research; and develop new technologies and tools that benefit engineering practice in fluid · Atmospheric, surface, and subsurface models · Flood/drought forecasting and management · Decision support

  7. A study of capillary pressure in a partly saturated feldspar powder

    E-Print Network [OSTI]

    Turner, Dennis Marshall

    1965-01-01T23:59:59.000Z

    solution from a squirt bottle and rinsing in like manner. An alternate procedure for saturating the housing is to first fill the housing with deaired water and then thread it on the Circle Seal valve from which water is constantly flowing. However... Diagram of Deairing Apparatus 35 36 39 40 Figure 5-10 Carhoy Filled with Water and Inflated Balloon. Page 41 7-1 Capillary Pressure versus Time for Different Degrees of Saturation 56 7-2 Time Lag in Capillary Pressure with an Increase...

  8. Analysis of a Darcy flow model with a dynamic pressure saturation relation \\Lambda

    E-Print Network [OSTI]

    Hulshof, Joost

    equations modelling the flow. In the standard approach for two phase flows, such as oil­water or air­water mixtures, one combines the mass conservation equations and Darcy's law for the separate phasesAnalysis of a Darcy flow model with a dynamic pressure saturation relation \\Lambda Josephus Hulshof

  9. Scintillation probe with photomultiplier tube saturation indicator

    DOE Patents [OSTI]

    Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

    1996-01-01T23:59:59.000Z

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  10. Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance 

    E-Print Network [OSTI]

    Hervas Ordonez, Rafael Alejandro

    1994-01-01T23:59:59.000Z

    -iicro-fracture system. Nuclear Magnetic Resonance (NNM) sets of longitudinal and transverse profiles and images were recorded to visualize and quantify changes in fluid saturation inside the rock samples during the imbibition displacement tests. NMR oil saturation...

  11. Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance

    E-Print Network [OSTI]

    Hervas Ordonez, Rafael Alejandro

    1994-01-01T23:59:59.000Z

    -iicro-fracture system. Nuclear Magnetic Resonance (NNM) sets of longitudinal and transverse profiles and images were recorded to visualize and quantify changes in fluid saturation inside the rock samples during the imbibition displacement tests. NMR oil saturation...

  12. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28T23:59:59.000Z

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  13. Fluid juggling

    E-Print Network [OSTI]

    Soto, Enrique

    2013-01-01T23:59:59.000Z

    This fluid dynamics video is an entry for the Gallery of Fluid Motion for the 66th Annual Meeting of the Fluid Dynamics Division of the American Physical Society. We show the curious behaviour of a light ball interacting with a liquid jet. For certain conditions, a ball can be suspended into a slightly inclined liquid jet. We studied this phenomenon using a high speed camera. The visualizations show that the object can be `juggled' for a variety of flow conditions. A simple calculation showed that the ball remains at a stable position due to a Bernoulli-like effect. The phenomenon is very stable and easy to reproduce.

  14. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-05-24T23:59:59.000Z

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater tests at proposed nuclear waste disposal site at Yucca Mountain (Nevada), Sonnenthal and Spycher (2000) and Spycher et al. (2003) enhanced TOUGHREACT on (1) high temperature geochemistry, (2) mineral reactive surface area calculations, and (3) porosity and permeability changes due to mineral alteration. On the other hand, Pruess et al. (1999) updated the TOUGH2 simulator to TOUGH2 V2. The present version of TOUGHREACT was developed by introducing the work of Sonnenthal and Spycher (2000) to the original work of Xu and Pruess (1998), and by replacing TOUGH2 (Pruess, 1991) by TOUGH2 V2 (Pruess et al, 1999). The TOUGHREACT program makes use of ''self-documenting'' features. It is distributed with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as self-teaching tutorial in the use of TOUGHREACT, and they provide templates to help jump-start new applications. The fluid and heat flow part of TOUGHREACT is derived from TOUGH2 V2, so in addition to the current manual, users must have manual of the TOUGH2 V2 (Pruess et al., 1999). The present version of TOUGHREACT provides the following different TOUGH2 fluid property or ''EOS'' (equation-of-state) modules: (1) EOS1 for water, or two waters with typical applications to hydrothermal problems, (2) EOS2 for multiphase mixtures of water and CO{sub 2} also with typical applications to hydrothermal problems, (3) EOS3 for multiphase mixtures of water and air with typical applications to vadose zone and nuclear waste disposal problems, (4) EOS4 that has the same capabilities as EOS3 but with vapor pressure lowering effects due to capillary pressure, (5) EOS9 for single phase water (Richards. equation) with typical applications to ambient reactive geochemical transport problems, (6) ECO2 for multiphase mixtures of water, CO{sub 2} and NaCl with typical applications to CO{sub 2} disposal in deep brine aquifers.

  15. SATURATED ZONE IN-SITU TESTING

    SciTech Connect (OSTI)

    P.W. REIMUS

    2004-11-08T23:59:59.000Z

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  16. Saturable inductor and transformer structures for magnetic pulse compression

    DOE Patents [OSTI]

    Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

    1990-01-01T23:59:59.000Z

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  17. An automated tool for three types of saturated hydraulic conductivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automated tool for three types of saturated hydraulic conductivity laboratory measurements. An automated tool for three types of saturated hydraulic conductivity laboratory...

  18. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect (OSTI)

    Acomb, L.J. [Geosphere, Inc., Anchorage, AK (United States); McKay, D.; Currier, P. [Army Corps of Engineers, Hanover, NH (United States). Cold Regions Research Engineering Lab.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V. [Federal Aviation Administration, Anchorage, AK (United States). Airway Facilities Div.

    1995-12-31T23:59:59.000Z

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  19. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01T23:59:59.000Z

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  20. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    E-Print Network [OSTI]

    Gostick, J. T.

    2013-01-01T23:59:59.000Z

    show a small amount of residual water remaining at the mostdifferences between residual water saturations in these twoof water penetration, lateral spreading or residual phase

  1. 6. Fluid mechanics: fluid statics; fluid dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Figure Pressure (a scalar!) is defined as surface force / area, for example pb = Fb / (d·w) = p @ z = z1 Picture: KJ05 Fluid volume h·d·w with density and mass m = h·d·w· z = z1 In engineering forces Fn+ Fs = 0 or - py·h·w + py·h·w = 0 py = 0 Similarly Fw+ Fe= 0 gives px = 0, There are three

  2. It's The Fluids SEG Honorary Lecture

    E-Print Network [OSTI]

    .7 A #12;Water + Ions (usually NaCl) ClNa Dickerson et al., 1970 #12;Heavy Oil Water Wet silicaSilica Heavy information please visit: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil Gas TYPES of PORE FLUIDS = Porosity = Density sat = 0 (1- ) + f Density: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil

  3. REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS

    SciTech Connect (OSTI)

    Ronald C. Surdam

    2003-12-29T23:59:59.000Z

    An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide Basins (RMLB) described in this work determine the potential for significant, relatively unconventional, so-called ''basin-center'' hydrocarbon accumulations. If such accumulations occur, they will be characterized by the following critical attributes: (1) Location beneath a regional velocity inversion surface that typically is associated with low-permeability lithologies; (2) Anomalous pressure, both over- and underpressure, and when, less commonly, they appear to be normally pressured, they are not in contact with the meteoric water system; (3) A significant gas component in the regional multiphase fluid-flow system (water-gas-oil) that occurs beneath the regional velocity inversion surface; (4) Domains of intense gas charge (i.e., high gas saturation) within the regional multiphase fluid-flow system; (5) Compartmentalization of the rock/fluid system to a far greater extent beneath the regional velocity inversion surface than above it (i.e., convection of fluids across the regional velocity inversion surface is reduced or eliminated depending on the nature of the capillary properties of the low-permeability rocks associated with the inversion surface); (6) Commercial gas accumulations occurring at the intersection of reservoir intervals characterized by enhanced porosity and permeability and gas-charged domains; (7) Productive intersections of reservoir intervals and gas-charged domains, which are controlled by the structural, stratigraphic, and diagenetic elements affecting the rock/fluid system; and (8) No apparent meteoric water connection with the gas accumulations and gas columns up to several thousand feet in height. Because some of these critical attributes are not associated with conventional hydrocarbon accumulations, a new set of diagnostic tools are required in order to explore for and exploit these types of gas prospects efficiently and effectively. Some of these new diagnostic tools have been discussed in this report; other have been described elsewhere. In order to maximize risk reduction, it is recommended when exploring for these types of gas accu

  4. New barrier fluids for subsurface containment of contaminants

    SciTech Connect (OSTI)

    Moridis, G.J.; Persoff, P.; Holman, H.Y.; Muller, S.J.; Pruess, K.; Radke, C.J.

    1993-10-01T23:59:59.000Z

    In some situations, containment of contaminants in the subsurface may be preferable to removal or treatment in situ. In these cases, it maybe possible to form barriers by injecting fluids (grouts) that set in place and reduce the formation permeability. This paper reports laboratory work to develop two types of fluids for this application: colloidal silica (CS) and polysiloxane (PSX). Falling-head permeameter tests of grouted Hanford sand, lasting 50 days, showed hydraulic conductivities of order 10{sup -7} cm/sec for these two materials. Low initial viscosity of the grout is necessary to permit injection without causing fracturing or surface uplift. Experiments with crosslinked polysiloxanes showed that they could be diluted to achieve adequately low viscosity without losing their ability to cure. Control of the gel time is important for grout emplacement. Gel time of CS grouts increased with increasing pH (above 6.5) and with decreasing ionic strength. Salt solutions were added to the colloid-to increase the ionic strength and control gel time. When injected into Hanford sand, the CS grout gelled much more quickly than the same formula without sand. This effect results from salinity that is present in pore water and from multi-valent ions that are desorbed from clays and ion-exchanged for mono-valent ions in the grout. Ion-exchange experiments showed that most of the multi-valent ions could be removed-by flushing the sand with 15 PV of 4% NaCl and sand treated in this manner did not accelerate the gelling of the grout. When grout is injected into unsaturated soil it slumps, leaving the soil only partially saturated and achieving less permeability reduction upon gelling. Multiple injections of CS grout in 1-D sand columns demonstrated that by accumulating the residual gelled grout saturations from several injections, low permeability can be achieved.

  5. Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol, Yongkoo; Freifeld, Barry; Taylor, Charles E.; Gupta, Arvind

    2005-03-01T23:59:59.000Z

    We performed a sequence of tests on a partially water-saturated sand sample contained in an x-ray transparent aluminum pressure vessel that is conducive to x-ray computed tomography (CT) observation. These tests were performed to gather data for estimation of thermal properties of the sand/water/gas system and the sand/hydrate/water/gas systems, as well as data to evaluate the kinetic nature of hydrate dissociation. The tests included mild thermal perturbations for the estimation of the thermal properties of the sand/water/gas system, hydrate formation, thermal perturbations with hydrate in the stability zone, hydrate dissociation through thermal stimulation, additional hydrate formation, and hydrate dissociation through depressurization with thermal stimulation. Density changes throughout the sample were observed as a result of hydrate formation and dissociation, and these processes induced capillary pressure changes that altered local water saturation.

  6. Saturation of the R-mode Instability

    E-Print Network [OSTI]

    Phil Arras; Eanna E. Flanagan; Sharon M. Morsink; A. Katrin Schenk; Saul A. Teukolsky; Ira Wasserman

    2003-02-11T23:59:59.000Z

    Rossby waves (r-modes) in rapidly rotating neutron stars are unstable because of the emission of gravitational radiation. We study saturation of this instability by nonlinear transfer of energy to stellar "inertial" oscillation modes. We present detailed calculations of stellar inertial modes in the WKB limit, their linear damping by bulk and shear viscosity, and the nonlinear coupling forces among these modes. The saturation amplitude is derived in the extreme limits of strong or weak driving by radiation reaction, as compared to the damping rate of low order inertial modes. We find the saturation energy is {\\it extremely small}, at least four orders of magnitude smaller than that found by previous investigators. We discuss the consequences of this result for spin evolution of young neutron stars, and neutron stars being spun up by accretion in Low Mass X-ray Binaries.We also discuss the detection of these gravitational waves by LIGO.

  7. Model Discrepancy in the Saturated Path Hydrology Model: Initial Analysis

    E-Print Network [OSTI]

    Oakley, Jeremy

    Model Discrepancy in the Saturated Path Hydrology Model: Initial Analysis Tom Fricker University discrepancy in the Saturated Path Hydrology Model (logSPM, Kuczera et al., 2006). The purpose). 1 #12;3 The Saturated Path Hydrology Model We consider the Saturated Path Hydrology Model (log

  8. Wave motions in unbounded poroelastic solids infused with compressible fluids

    E-Print Network [OSTI]

    Quiligotti, S; dell'Isola, F

    2010-01-01T23:59:59.000Z

    Looking at rational solid-fluid mixture theories in the context of their biomechanical perspectives, this work aims at proposing a two-scale constitutive theory of a poroelastic solid infused with an inviscid compressible fluid. The propagation of steady-state harmonic plane waves in unbounded media is investigated in both cases of unconstrained solid-fluid mixtures and fluid-saturated poroelastic solids. Relevant effects on the resulting characteristic speed of longitudinal and transverse elastic waves, due to the constitutive parameters introduced, are finally highlighted and discussed.

  9. Seismic signatures of multiphase reservoir fluid distributions: Application to reservoir monitoring

    SciTech Connect (OSTI)

    Packwood, J.L.; Mavko, G.M.

    1995-12-31T23:59:59.000Z

    We present an investigation of the effect of multi-phase pore fluid distributions on the seismic velocity of saturated rock as a function of temperature and pressure. The purpose is to show how different fluid distributions might result in different seismic signatures. This is the rock physics link between reservoir simulation and seismic monitoring of hydrocarbon; (1) Uniform effective fluid, (2) Fluid in patches, and (3) Laminated fluid. The latter two models have heterogeneous distributions, and demonstrate that they have the same velocity characteristics. We used Beaver sandstone with a porosity of 6.4% and 5 MPa confining pressure as the rock matrix for our calculations. The uniform fluid model shows poor sensitivity to fluid saturation, with a variation in velocity of less than 1% when gas saturation exceeds 2%. The heterogeneous models show a fairly linear dependence of velocity on saturation with a variation of 7%. We also investigate the effect of oil distillation on seismic velocities during steam flooding. Comparisons velocities calculated using the patches model at temperature of 20{degrees}C and 150{degrees}C, the choice of hydrocarbon components is more critical at high values of oil saturation than at low values of oil saturation. In regions of high oil saturation, there is less than 0.5% variation in velocity using these components. The velocity variation using the effective fluid model at the same conditions is less than 0.5% over the entire range of gas saturation greater than 2%, indicating that the choice of hydrocarbons is not as critical as in the patches model.

  10. Simulating Fluids Exhibiting Microstructure

    E-Print Network [OSTI]

    Title: Simulating Fluids Exhibiting Microstructure Speaker: Noel J. Walkington, ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial ...

  11. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    SciTech Connect (OSTI)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.; Kang, Oinjun; Oostrom, Martinus

    2014-11-01T23:59:59.000Z

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. This model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.

  12. Dilatational and Compacting Behavior around a Cylindrical Cavern Leached Out in a SolidFluid Elastic Rock Salt

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ­Fluid Elastic Rock Salt Giulio Sciarra1 ; Francesco dell'Isola2 ; and Kolumban Hutter3 Abstract: A fluid-filled cylindrical cavern of circular cross section in a homogeneous infinite fluid-saturated polycristalline salt the cavern center and show that, depending on the relative stress levels, the salt formation experiences

  13. Acoustic properties of air-saturated porous materials containing dead-end porosity , P. Leclaire2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    cooled down, the sample is cut and plunged in water to dissolve the sodium chloride. Then the sample while that of the sodium chloride (NaCl) is 801°C. Melted aluminum can therefore fill the interstitial propagation in rigid-frame open-cell porous media saturated by air.2 The model used in the exposed work

  14. Seismic signatures of reservoir transport properties and pore fluid distribution

    SciTech Connect (OSTI)

    Akbar, N. (Saudi Aramco, Dhahran (Saudi Arabia)); Mavko, G.; Nur, A.; Dvorkin, J. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-08-01T23:59:59.000Z

    The authors investigate the effects of permeability, frequency, and fluid distribution on the viscoelastic behavior of rock. The viscoelastic response of rock to seismic waves depends on the relative motion of pore fluid with respect to the solid phase. They consider wave-induced squirt fluid flow at two scales: (1) local microscopic flow at the smallest scale of saturation heterogeneity (e.g., within a single pore) and (2) macroscopic flow at a larger scale of fluid-saturated and dry patches. They explore the circumstances under which each of these mechanisms prevails. They examine such flows under the conditions of uniform confining (bulk) compression and obtain the effective dynamic bulk modulus of rock. The solutions are formulated in terms of generalized frequencies that depend on frequency, saturation, fluid and gas properties, and on the macroscopic properties of rock such as permeability, porosity, and dry bulk modulus. The study includes the whole range of saturation and frequency; therefore, the authors provide the missing link between the low-frequency limit and the high-frequency limit given by Mavko and Jizba. Further, they compare their model with Biot's theory and introduce a geometrical factor whose numeric value gives an indication as to whether local fluid squirt or global mechanisms dominate the viscoelastic properties of porous materials. The important results of their theoretical modeling are: (1) a hysteresis of acoustic velocity versus saturation resulting from variations in fluid distributions, and (2) two peaks of acoustic wave attenuation--one at low frequency and another at higher frequency (caused by local flow). Both theoretical results are compared with experimental data.

  15. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  16. Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E.; Gupta, Arvind

    2005-11-03T23:59:59.000Z

    We performed a sequence of tests on a partiallywater-saturated sand sample contained in an x-ray transparent aluminumpressure vessel that is conducive to x-ray computed tomography (CT)observation. These tests were performed to gather data for estimation ofthermal properties of the sand/water/gas system and thesand/hydrate/water/gas systems, as well as data to evaluate the kineticnature of hydrate dissociation. The tests included mild thermalperturbations for the estimation of the thermal properties of thesand/water/gas system, hydrate formation, thermal perturbations withhydrate in the stability zone, hydrate dissociation through thermalstimulation, additional hydrate formation, and hydrate dissociationthrough depressurization with thermal stimulation. Density changesthroughout the sample were observed as a result of hydrate formation anddissociation, and these processes induced capillary pressure changes thataltered local water saturation.

  17. Saturated Zone In-Situ Testing

    SciTech Connect (OSTI)

    P. W. Reimus; M. J. Umari

    2003-12-23T23:59:59.000Z

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from both the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from NC-EWDP-19D1 (one of the wells at the ATC) so that a comparison of laboratory- and field-derived sorption parameters can be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  18. Oxidative weathering chemical migration under variably saturated conditions and supergene copper enrichment

    SciTech Connect (OSTI)

    Xu, Tianfu; Pruess, K.; Brimhall, G.

    1999-04-01T23:59:59.000Z

    Transport of oxygen gas from the land surface through an unsaturated zone has a strong influence on oxidative weathering processes. Oxidation of sulfide minerals such as pyrite (FeS{sub 2}), one of the most common naturally occurring minerals, is the primary source of acid drainage from mines and waste rock piles. Here we present a detailed numerical model of supergene copper enrichment that involves the oxidative weathering of pyrite (FeS{sub 2}) and chalcopyrite (CuFeS{sub 2}), and acidification that causes mobilization of metals in the unsaturated zone, with subsequent formation of enriched ore deposits of chalcocite (CuS) and covellite (Cu{sub 2}S) in the reducing conditions below the water table. We examine and identify some significant conceptual and computational issues regarding the oxidative weathering processes through the modeling tool. The dissolution of gaseous oxygen induced by the oxidation reduces oxygen partial pressure, as well as the total pressure of the gas phase. As a result, the gas flow is modified, then the liquid phase flow. Results indicate that this reaction effect on the fluid flow may not be important under ambient conditions, and gas diffusion can be a more important mechanism for oxygen supply than gas or liquid advection. Acidification, mobilization of metals, and alteration of primary minerals mostly take place in unsaturated zone (oxidizing), while precipitation of secondary minerals mainly occurs in saturated zone (reducing). The water table may be considered as an interface between oxidizing and reducing zones. Moving water table due to change of infiltration results in moving oxidizing zone and redistributing aqueous chemical constitutes and secondary mineral deposits. The oxidative weathering processes are difficult to model numerically, because concentrations of redox sensitive chemical species such as O{sub 2}(aq), SO{sub 4}{sup 2-} and HS{sup -} may change over tens of orders of magnitude between oxidizing and reducing conditions. In order to simulate substantial reaction progress over geologic time, one can benefit from the quasi-stationary state (QSS) approximation. A significant saving of computing time using QSS is demonstrated through the example. In addition, changes in porosity and permeability due to mineral dissolution and precipitation are also addressed in some degree. Even though oxidative weathering is sensitive to many factors, this work demonstrates that our model provides a comprehensive suite of process modeling capabilities, which could serve as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications.

  19. Thermodynamic $R$-diagrams reveal solid-like fluid states

    E-Print Network [OSTI]

    George Ruppeiner; Peter Mausbach; Helge-Otmar May

    2014-11-11T23:59:59.000Z

    We evaluate the thermodynamic curvature $R$ for fluid argon, hydrogen, carbon dioxide, and water. For these fluids, $R$ is mostly negative, but we also find significant regimes of positive $R$, which we interpret as indicating solid-like fluid properties. Regimes of positive $R$ are present in all four fluids at very high pressure. Water has, in addition, a narrow slab of positive $R$ in the stable liquid phase near its triple point. Also, water is the only fluid we found having $R$ decrease on cooling into the metastable liquid phase, consistent with a possible second critical point.

  20. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  1. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  2. Effect of oil and gas well drilling fluids on shallow groundwater in western North Dakota

    SciTech Connect (OSTI)

    Murphy, E.C.; Kehew, A.E.

    1984-01-01T23:59:59.000Z

    Upon completion of an oil and gas well in North Dakota, the drilling fluid is buried in the reserve pit at the site. Reclamation of the drill site is expedited by digging a series of trenches which radiate out from the reserve pit. The majority of buried drilling fluid is ultimately contained within these 5-7-metre deep trenches. These fluids are commonly salt-based, i.e., they contain a concentration of 300,000 +- 20,000 ppM NaCl. In addition, these drilling fluids also contain additives including toxic trace-metal compounds. Four reclaimed oil and gas well sites were chosen for study in western North Dakota. The ages of these sites ranged from 2 to 23 years. A total of 31 piezometers and 22 soil water samplers were installed in and around the drill sites, and quarterly groundwater samples were obtained from these instruments. The local groundwater flow conditions were also determined at these sites. Results of both the water analyses and earth resistivity surveys indicate that leachate is being generated at all of the study sites. Water obtained from the unsaturated zone beneath the buried drilling fluid at all of the four study sites exceeds some of the recommended concentration limits and maximum permissible concentration limits for trace elements and major ions (As, Cl/sup -/, Pb, Se, and NO/sub 3//sup -/). These values are greatly reduced in the unsaturated zone as the depth from the buried drilling fluid increases. This reduction is assumed to be the result of attenuation of these ions by cation exchange on Na montmorillonitic clays. Two of these study sites represent the typical geohydrologic setting for the majority of oil and gas well sites in this area. At these sites the saturated zone was not monitored. The reduction in ion concentration in the unsaturated zone suggests that there would be very little impact on the groundwater from this buried drilling fluid at these two sites. 46 references, 58 figures, 3 tables.

  3. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams; Greg Nash

    2004-03-01T23:59:59.000Z

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  4. Fluid dynamics on sieve trays

    SciTech Connect (OSTI)

    Hag, M.A.

    1982-08-01T23:59:59.000Z

    A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.

  5. Centrifuge modeling of LNAPL transport in partially saturated sand

    SciTech Connect (OSTI)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-12-01T23:59:59.000Z

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an unsaturated sand prepared at two values of porosity. The duration of the centrifuge model tests corresponded to a prototype equivalent of 110 days. The choice of modeling a 2D flow together with the use of a transparent container enabled direct visual observation of the experiments. Scaling laws developed in connection with other centrifuge modeling studies were used to support the test results. Tests were conducted at two different centrifuge accelerations to verify, by means of the modeling of models technique, the similitude between the different experiments. The paper presents details of the experimental methodologies and the measuring techniques used to evaluate the final distribution of water and LNAPL content in the soils.

  6. Sand pack residual oil saturations as affected by extraction with various solvents

    E-Print Network [OSTI]

    Murray, Clarence

    1958-01-01T23:59:59.000Z

    of Water Flood Extraction Test (Sand Packs J, K, L, and N) 8. Results of Water Flood Extraction Test (Sand Pack M) TABLES I. Behavior of Oils Mixed with Various Solvents 18 II. Sand and Sand Pack Properties III. Fluid Properties IV. Results of Water... solvents which do not alter the rock-fluM properties. The present work was performed on sand, packs composed of pure ~ Oica sand to provide wetting properties simflar to natural cores and to provide packs with reproducible characteristics. Fluids studied...

  7. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12T23:59:59.000Z

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  8. Preferential mode of gas invasion in sediments : grain-scale model of coupled multiphase fluid flow and sediment mechanics

    E-Print Network [OSTI]

    Jain, Antone Kumar

    2009-01-01T23:59:59.000Z

    We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...

  9. Drill-in fluids control formation damage

    SciTech Connect (OSTI)

    Halliday, W.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-12-01T23:59:59.000Z

    Several factors led to development, oil company interest in, and use of payzone drilling fluids, including operator concern about maximizing well production, increasing acceptance of horizontal drilling and openhole completion popularity. This article discusses water-base drill-in'' fluid systems and applications. Payzone damage, including fine solids migration, clay swelling and solids invasion, reduces effective formation permeability, which results in lower production rates. Formation damage is often caused by invasion of normal drilling fluids that contain barite or bentonite. Drill-in systems are designed with special bridging agents to minimize invasion. Several bridging materials designed to form effective filter cake for instantaneous leak-off control can be used. Bridging materials are also designed to minimize stages and time required to clean up wells before production. Fluids with easy-to-remove bridging agents reduce completion costs. Drill-in fluid bridging particles can often be removed more thoroughly than those in standard fluids.

  10. Pore fluid effects on seismic velocity in anisotropic rocks

    SciTech Connect (OSTI)

    Mukerji, T.; Mavko, G. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-02-01T23:59:59.000Z

    A simple new technique predicts the high- and low-frequency saturated velocities in anisotropic rocks entirely in terms of measurable dry rock properties without the need for idealized crack geometries. Measurements of dry velocity versus pressure and porosity versus pressure contain all of the necessary information for predicting the frequency-dependent effects of fluid saturation. Furthermore, these measurements automatically incorporate all pore interaction, so there is no limitation to low crack density. The velocities are found to depend on five key interrelated variables: frequency, the distribution of compliant crack-like porosity, the intrinsic or noncrack anisotropy, fluid viscosity and compressibility, and effective pressure. The sensitivity of velocities to saturation is generally greater at high frequencies than low frequencies. The magnitude of the differences from dry to saturated and from low frequency to high frequency is determined by the compliant or crack-like porosity. Predictions of saturated velocities based on dry data for sandstone and granite show that compressional velocities generally increase with saturation and with frequency. However, the degree of compressional wave anisotropy may either increase or decrease upon saturation depending on the crack distribution, the effective pressure, and the frequency at which the measurements are made. Shear-wave velocities can either increase or decrease with saturation, and the degree of anisotropy depends on the microstructure, pressure, and frequency. Consequently great care must be taken when interpreting observed velocity anisotropy for measurements at low frequencies, typical of in situ observations, will generally be different from those at high frequencies, typical of the laboratory.

  11. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  12. Fluid Inclusion Gas Analysis

    SciTech Connect (OSTI)

    Dilley, Lorie

    2013-01-01T23:59:59.000Z

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  13. Seismic properties of a Venezuelan heavy oil in water emulsion

    SciTech Connect (OSTI)

    Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T. [Stanford Univ., CA (United States)

    1996-08-01T23:59:59.000Z

    Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

  14. The effect on recovery of the injection of alternating slugs of gas and water at pressures above the bubble point

    E-Print Network [OSTI]

    Givens, James Wilson

    1961-01-01T23:59:59.000Z

    Separator G Wet Test Meter FIGURE I H I I K Oil Tank Core Graduated Cylinder Thermal Expansion Chamber L Live Oil Storage Tank M Natural Gas Cylinder CORE SATURATING AND FLOODING APPARATUS The fluids produced from the core flowed into a... transparent separator F, made of Lucite, where the gas and liquids were allowed to separate at atmospheric conditions. The gas passed from the top oi' the separator to a wet test geter G, where it was measured. The liquids, oil and water, were drained from...

  15. Correlation of Oil-Water and Air-Water Contact Angles of Diverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Correlation of Oil-Water and Air-Water Contact Angles of Diverse...

  16. Fluid origins, paths, and fluid-rock reactions at convergent margins, using halogens, Cl stable isotopes, and alkali metals as geochemical tracers

    E-Print Network [OSTI]

    Wei, Wei

    2007-01-01T23:59:59.000Z

    range kg/yr Cl sources and sinks Water or rock mass mol/kgtemperature at the source of fluid-rock reactions, asto identify the fluid-rock reactions at source. In addition,

  17. aromtisko ogderau saturs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffractive vector meson production, we show that the proton appears quite dense to a small size probe at present HERA energies. This means that saturation effects are already...

  18. aromatics saturation opening: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative)...

  19. Calculations of composition boundaries of saturated phases

    SciTech Connect (OSTI)

    Brewer, L.; Hahn, S.

    1983-09-27T23:59:59.000Z

    A program for the HP-41CV calculator is presented for calculating the equilibrium composition boundaries of pairs of saturating solids, liquids, or a combination of a solid and liquid. The activity coefficients must be represented in the form ln ..gamma../sub 1/ = (b/sub h//T - b/sub s/)x/sub 2//sup 2/ + (c/sub h//T - c/sub x/)x/sub 2//sup 3/ where h refers to an enthalpy contribution and s refers to an excess entropy contribution. For solid-liquid equilibria, enthalpies and entropies of fusion are required. For all equilibria, provision is made for use of hypothetical standard states such as the Henry's Law standard states. For example, in treating solid solutions of molybdenum in face-centered cubic metals such as Ni, Rh, or Pt, it is sometimes convenient to use a hypothetical fcc standard state of Mo which represents the limiting Henry's Law behavior of Mo in the fcc metal and has much different properties than a real fcc molybdenum solid.

  20. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect (OSTI)

    B.W. ARNOLD

    2004-10-27T23:59:59.000Z

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  1. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    SciTech Connect (OSTI)

    Weber, D.S.; Evans, D.D.

    1988-11-01T23:59:59.000Z

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  2. Model for locating fluids` contracts in petroleum reservoirs

    SciTech Connect (OSTI)

    Udegbunam, E.O. [Illinois State Geological Survey, Champaign, IL (United States); Numbere, D.T. [Univ. of Missouri, Rolla, MO (United States)

    1994-12-31T23:59:59.000Z

    Direct determination of the gas-water contact (GWC) or the oil-water contact (OWC) in new wells from geophysical logs, core analysis data and/or whole core inspection is often difficult. Rapidly changing reservoir quality in the interval of interest or gradually changing saturation profiles in the vicinity of the contact can make the determination of the GWC or OWC difficult. This paper presents a model for the accurate placement of the GWC or OWC. The input data are water saturations at various well depths as interpreted from induction logs and the average residual oil saturation. When available, permeability and porosity values from core analysis may improve the result. Using a power-law equation or a Langmuir isotherm-type equation to represent the capillary pressure saturation relationship, the GWC or OWC is expressed as a function of water saturation and well depth. A nonlinear optimization technique is then used to determine the GWC or OWC. The applicability of this model is demonstrated with a field example. The calculated OWC values from all variations of the model fall within 4 feet of the actual OWC value. This model can only be applied in an oil or gas well where an equilibrium capillary curve and a hydrocarbon-water contact occur.

  3. VAM2D: Variably saturated analysis model in two dimensions

    SciTech Connect (OSTI)

    Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))

    1991-10-01T23:59:59.000Z

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.

  4. Formation of Submicron Magnesite during Reaction of Natural Forsterite in H2O-Saturated Supercritical CO2

    SciTech Connect (OSTI)

    Qafoku, Odeta; Hu, Jian Z.; Hess, Nancy J.; Hu, Mary Y.; Ilton, Eugene S.; Feng, Ju; Arey, Bruce W.; Felmy, Andrew R.

    2014-06-01T23:59:59.000Z

    Natural forsterite was reacted in a) liquid water saturated with supercritical CO2 (scCO2) and in b) H2O-saturated scCO2 at 35-80 °C and 90 atm. The solid reaction products were analyzed with nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and confocal Raman spectroscopy. Two carbonate phases, nesquehonite (MgCO3.3H2O) and magnesite (MgCO3), were identified with the proportions of the two phases depending on experimental conditions. In water saturated with scCO2, nesquehonite was the dominant carbonate phase at 35-80 °C with only a limited number of large, micron size magnesite particles forming at the highest temperature, 80 °C. In contrast, in H2O-saturated scCO2 magnesite formation was identified at all three temperatures: 35 °, 50 °, and 80 °C. Magnesite was the dominant carbonation reaction product at 50 ° and 80 °C; but nesquehonite was dominant at 35 °C. The magnesite particles formed under H2O-saturated scCO2 conditions exhibited an extremely uniform submicron grain-size and nearly identical rhombohedral morphologies at all temperatures. The distribution and form of the particles were not consistent with epitaxial nucleation and growth on the forsterite surface.

  5. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01T23:59:59.000Z

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  6. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    SciTech Connect (OSTI)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  7. Moment of Fluid Interface Reconstruction with Filaments

    SciTech Connect (OSTI)

    Jemison, Matthew B. [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    A moving system made up of multiple fluids (e.g. air and water) may be defined by an evolving interface with a changing topology. MOF uses a piecewise linear interface reconstruction to numerically model deforming boundaries. Given a volume fraction V and reference centroid x for a material in cell {Omega}, we seek to find an interface {Gamma} that exactly captures V and minimizes error in x. This differs from Volume of Fluid methods.

  8. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01T23:59:59.000Z

    responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

  9. Correlation of selected rock and fluid properties with residual oil saturation obtained by laboratory waterfloods

    E-Print Network [OSTI]

    Edgington, Jason Monroe

    1968-01-01T23:59:59.000Z

    thickness of one-fourth of an inch. End p1eces were mach'ned from lucite and f1+ted w1th rubber "0" r1ngs +o provide low pressure seals. Alum1num plates I ~ Core Holder 2. Vaouum Tube Voltmeter S. l00 Ohm Resistor 4. Calibration Leads S. Powerstat 6... of the end pieces. Three steel rods, thread- ed on both ends, were placed through the alum1num plates and bolted tightly to hold the end pieces 1n place. 12 DESCRIPTION OF EXPERI KNTAL PROCEDURE The experimental procedure consisted of preparing core...

  10. A Model for Wave Propagation in a Porous Medium Saturated by a Two-Phase Fluid

    E-Print Network [OSTI]

    Douglas Jr., Jim

    Yacimientos Petrol#19;#16;feros Fiscales S. E. and Universidad de Buenos Aires Jim Douglas, Jr. Purdue University Jaime Corber#19;o Yacimientos Petrol#19;#16;feros Fiscales and Oscar M. Lovera University

  11. Reaction kinetics of olefin saturation in the hydrodesulfurization of fluid catalytic cracked naphtha

    E-Print Network [OSTI]

    Schumann, Brian Herbert

    1995-01-01T23:59:59.000Z

    . . . 30 . . . 3 I . . . 3 I 13. Run 222-92-70--Comparison ofkw/rto Carbon Number forNormalOlefin . . . . 32 14. Run 222-92-70 ? -Comparison of k w/r to Carbon Number for Iso Olefins . . . . . . . . . . . 32 15. Run 222-92-70 ? -Comparison of k w.../r to Carbon Number for Cycfic Olefins . . . . . . 33 16. Run 963-94-24 ? -Comparison of k w/r to Carbon Number for Normal Olefins . . . . 33 17. Run 963-94-24 ? -Comparison of k w/r to Carbon Number for Iso Olefins . . . . . . . . . . . 34 18. Run 963...

  12. A Continuum Model for Deformable, Second Gradient Porous Media Partially Saturated with Compressible Fluids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in geomechanics, petroleum engineering, and generally for geo-environmental problems. However, any complete

  13. On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments

    E-Print Network [OSTI]

    Buckingham, Michael

    interactions. Designated the VGS theory, the new model returns dispersion curves that differ mildly from those sediments Michael J. Buckinghama Marine Physical Laboratory, Scripps Institution of Oceanography, University granular material, such as a marine sediment, is extended to include the effects of the viscosity

  14. Laser Locking with Doppler-free Saturated Absorption Spectroscopy

    E-Print Network [OSTI]

    Novikova, Irina

    - 1 - Laser Locking with Doppler-free Saturated Absorption Spectroscopy Paul L. Stubbs, Advisor the frequency of a 795 nm diode laser using a saturated absorption spectroscopy method. Laser locking in AMO physics is done to stabilize the frequency of lasers used in the laboratory in order to make results more

  15. Theory of frequency dependent acoustics in patchy-saturated ...

    E-Print Network [OSTI]

    The theory of the dynamic bulk modulus, K˜( ), of a porous rock, whose saturation occurs in patches of ... it is usually able to predict the speeds of sound of a saturated sample if .... strain by the usual equations of isotropic elasticity: ij. KBG ll ij.

  16. Water displacement mercury pump

    DOE Patents [OSTI]

    Nielsen, Marshall G. (Woodside, CA)

    1985-01-01T23:59:59.000Z

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  17. Dynamo Saturation in Rapidly Rotating Solar-Type Stars

    E-Print Network [OSTI]

    Kitchatinov, L L

    2015-01-01T23:59:59.000Z

    The magnetic activity of solar-type stars generally increases with stellar rotation rate. The increase, however, saturates for fast rotation. The Babcock-Leighton mechanism of stellar dynamos saturates as well when the mean tilt-angle of active regions approaches ninety degrees. Saturation of magnetic activity may be a consequence of this property of the Babcock-Leighton mechanism. Stellar dynamo models with a tilt-angle proportional to the rotation rate are constructed to probe this idea. Two versions of the model - treating the tilt-angles globally and using Joy's law for its latitude dependence - are considered. Both models show a saturation of dynamo-generated magnetic flux at high rotation rates. The model with latitude-dependent tilt-angles shows also a change in dynamo regime in the saturation region. The new regime combines a cyclic dynamo at low latitudes with an (almost) steady polar dynamo.

  18. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

  19. An overview of instability and fingering during immiscible fluid flow in porous and fractured media

    SciTech Connect (OSTI)

    Chen, G.; Neuman, S.P. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Water Resources; Taniguchi, M. [Nara Univ. of Education (Japan). Dept. of Earth Sciences

    1995-04-01T23:59:59.000Z

    Wetting front instability is an important phenomenon affecting fluid flow and contaminant transport in unsaturated soils and rocks. It causes the development of fingers which travel faster than would a uniform front and thus bypass much of the medium. Water saturation and solute concentration in such fingers tend to be higher than in the surrounding medium. During infiltration, fingering may cause unexpectedly rapid arrival of water and solute at the water-table. This notwithstanding, most models of subsurface flow and transport ignore instability and fingering. In this report, we survey the literature to assess the extent to which this may or may not be justified. Our overview covers experiments, theoretical studies, and computer simulations of instability and fingering during immiscible two-phase flow and transport, with emphasis on infiltration into soils and fractured rocks. Our description of instability in an ideal fracture (Hele-Shaw cell) includes an extension of existing theory to fractures and interfaces having arbitrary orientations in space. Our discussion of instability in porous media includes a slight but important correction of existing theory for the case of an inclined interface. We conclude by outlining some potential directions for future research. Among these, we single out the effect of soil and rock heterogeneities on instability and preferential flow as meriting special attention in the context of nuclear waste storage in unsaturated media.

  20. Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using CRiSP

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using of Engineers began the Gas Abatement Study in order to address the problem of gas and its effects on the Snake and Columbia Rivers. One important question is how much gas reductions caused by structural changes at a few

  1. Preserving the Volume of Fluid Using Multi-phase Flow Approach Roman Durikovic

    E-Print Network [OSTI]

    Durikovic, Roman

    complex behaviors. We often see rising bubbles or flow of muddy water, such flows involve sev- eral fluids volume when the fluid passes through a donor cell to an acceptor cell. The VOF method was improved

  2. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25T23:59:59.000Z

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  3. Viscous fluid dynamics

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-03-12T23:59:59.000Z

    We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.

  4. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  5. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Ob- ject-Oriented Modeling of Thermo-Fluid Systems, Modelicable and Compressible Thermo-Fluid Pipe Networks, ModelicaStandardization of Thermo-Fluid Modeling in Modelica.Fluid

  6. Factors affecting water coning

    E-Print Network [OSTI]

    Parker, Randy Keith

    1977-01-01T23:59:59.000Z

    (December 1977) Randy Keith Parker, B. S. , Texas ASM University Chairman of Advisory Conmittee: Dr. Richard A. Morse The production of oil that is underlain by water, through a partially penetrating well at a production rate greater than a certain... of well, reservoir, and fluid parameters, it was found that equivalent systems could be determined that had the same water and oil production characteristics. Most of the we' ll, reservoir, and fluid relationships are based on two equations which were...

  7. Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media

    SciTech Connect (OSTI)

    Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

    2008-01-01T23:59:59.000Z

    When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was invaded.

  8. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29T23:59:59.000Z

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured and porous media, and (5) porosity, permeability, and capillary pressure changes owing to mineral precipitation/dissolution (Sonnenthal et al., 1998, 2000, 2001; Spycher et al., 2003a). Subsequently, TOUGH2 V2 was released with additional EOS modules and features (Pruess et al., 1999). The present version of TOUGHREACT includes all of the previous extensions to the original version, along with the replacement of the original TOUGH2 (Pruess, 1991) by TOUGH2 V2 (Pruess et al., 1999). TOUGHREACT has been applied to a wide variety of problems, some of which are included as examples, such as: (1) Supergene copper enrichment (Xu et al., 2001); (2) Mineral alteration in hydrothermal systems (Xu and Pruess, 2001a; Xu et al., 2004b; Dobson et al., 2004); (3) Mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al., 2003b and 2004a); (4) Coupled thermal, hydrological, and chemical processes in boiling unsaturated tuff for the proposed nuclear waste emplacement site at Yucca Mountain, Nevada (Sonnenthal et al., 1998, 2001; Sonnenthal and Spycher, 2000; Spycher et al., 2003a, b; Xu et al., 2001); (5) Modeling of mineral precipitation/dissolution in plug-flow and fracture-flow experiments under boiling conditions (Dobson et al., 2003); (6) Calcite precipitation in the vadose zone as a function of net infiltration (Xu et al., 2003); and (7) Stable isotope fractionation in unsaturated zone pore water and vapor (Singleton et al., 2004). The TOUGHREACT program makes use of 'self-documenting' features. It is distributed with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as a self-teaching tutorial in the use of TOUGHREACT, and they provide templates to help jump-start new applications. The fluid and heat flow part of TOUGHREACT is derived from TOUGH2 V2, so in addition to the current manual, users must have the manual of the TOUGH2 V2 (Pruess et al., 1999). The present version of TOUGHREACT provides the following TOUGH2 fluid property or 'EOS' (equation-of-state) modules: (1) EOS1 for

  9. View dependent fluid dynamics

    E-Print Network [OSTI]

    Barran, Brian Arthur

    2006-08-16T23:59:59.000Z

    , are modified to support a nonuniform simulation grid. In addition, infinite fluid boundary conditions are introduced that allow fluid to flow freely into or out of the simulation domain to achieve the effect of large, boundary free bodies of fluid. Finally, a...

  10. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect (OSTI)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31T23:59:59.000Z

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  11. Prediction of core saturation instability at an HVDC converter

    SciTech Connect (OSTI)

    Burton, R.S. [Teshmont Consultants, Inc., Winnipeg, Manitoba (Canada)] [Teshmont Consultants, Inc., Winnipeg, Manitoba (Canada); Fuchshuber, C.F. [Alberta Power Ltd., Edmonton, Alberta (Canada)] [Alberta Power Ltd., Edmonton, Alberta (Canada); Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada); Gole, A.M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada)] [Univ. of Manitoba, Winnipeg, Manitoba (Canada)

    1996-10-01T23:59:59.000Z

    Core saturation instability has occurred on several HVDC schemes resulting from interactions between second harmonic and dc quantities (voltages and currents) on the ac side of the converter and fundamental frequency quantities on the dc side of the converter. The instability can be reinforced by unbalanced saturation of the converter transformers. The paper presents an analytical method which can be used to quickly screen ac and dc system operating conditions to predict where core saturation instability is likely to occur. Analytical results have been confirmed using the digital transients simulation program PSCAD/EMTDC.

  12. Drill pipe corrosion control using an inert drilling fluid

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1981-01-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  13. area saturated zone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1) nature of the energy transfers. In both cases the magnetic energy grows at small scale and saturates as an inverse cascade ''. Rodion Stepanov; Franck Plunian 2007-11-08...

  14. aspartate aminotransferase saturation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1) nature of the energy transfers. In both cases the magnetic energy grows at small scale and saturates as an inverse cascade ''. Rodion Stepanov; Franck Plunian 2007-11-08...

  15. arterial oxygen saturation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1) nature of the energy transfers. In both cases the magnetic energy grows at small scale and saturates as an inverse cascade ''. Rodion Stepanov; Franck Plunian 2007-11-08...

  16. A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2011-01-01T23:59:59.000Z

    saturation) 1/L c c Compression Index; slope of the best-line is called the compression index (C ) in the case of thestraightline is the compression index, C of c Constant air

  17. Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa)

    E-Print Network [OSTI]

    Fajans, Joel

    Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa) Department of Physics July 1998 Scientific equipment often uses ``nonmagnetic'' stainless steel, relying on the steel's nonmagnetic behavior to leave external magnetic fields unaltered. However, stainless steel's permeability can

  18. A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2011-01-01T23:59:59.000Z

    Saturated-Unsaturated Groundwater Flow Ph.D. Dissertation in~ " Fundamental principles of groundwater flow uv e in Flowunsaturated flow in a groundwater basi.n 11 9 Hater

  19. Spinning fluids reactor

    SciTech Connect (OSTI)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  20. Quantum fluctuations and saturable absorption in mesoscale lasers

    SciTech Connect (OSTI)

    Roy-Choudhury, Kaushik [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Levi, A. F. J. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2533 (United States)

    2011-04-15T23:59:59.000Z

    We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission near threshold.

  1. Predicted geoacoustic properties of gas hydrate saturated marine sediments

    E-Print Network [OSTI]

    Curtis, William Robert

    1992-01-01T23:59:59.000Z

    PREDICTED GEOACOUSTIC PROPERTIES OF GAS HYDRATE SATURATED MAR&K SEDIMENTS A Thesis by WILLIAM ROBERT CURTIS JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1992 Major Subject: Oceanography PREDICTED GEOACOUSTIC PROPERTIES OF GAS HYDRATE SATURATED MARINE SEDIMENTS A Thesis by WILLIAM ROBERT CURTIS JR. Approved as to style and content by; A brey L. Anderson (Chair of Committee...

  2. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  3. The relation between seismic P- and S-wave velocity dispersion in saturated rocks

    SciTech Connect (OSTI)

    Mavko, G. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics; Jizba, D. [CSTJF, Pau (France)] [CSTJF, Pau (France)

    1994-01-01T23:59:59.000Z

    Seismic velocity dispersion in fluid-saturated rocks appears to be dominated by two mechanisms: the large scale mechanism modeled by Biot, and the local flow or squirt mechanism. The two mechanisms can be distinguished by the ratio of P- to S-wave dispersions, or more conveniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. The authors` formulation suggests that when local flow dominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Their examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.

  4. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect (OSTI)

    Watson, R.

    1995-07-01T23:59:59.000Z

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  5. Fluid Dynamics Seminar Fluid Dynamics Research Centre

    E-Print Network [OSTI]

    Davies, Christopher

    France) 8th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics

  6. Fluid Dynamics Seminar Fluid Dynamics Research Centre

    E-Print Network [OSTI]

    Thomas, Peter J.

    France) 8 th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics

  7. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30T23:59:59.000Z

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.

  8. Bi-directionally draining pore fluid extraction vessel

    DOE Patents [OSTI]

    Prizio, Joseph (Boulder, CO); Ritt, Alexander (Lakewood, CO); Mower, Timothy E. (Wheat Ridge, CO); Rodine, Lonn (Arvada, CO)

    1991-01-01T23:59:59.000Z

    The invention is used to extract pore fluid from porous solids through a combination of mechanical compression and inert-gas injection and comprises a piston for axially compressing samples to force water out, and top and bottom drainage plates for capturing the exuded water and using inert gas to force water to exit when the limits of mechanical compression have been reached.

  9. SATURATION OF THE MAGNETO-ROTATIONAL INSTABILITY IN STRONGLY RADIATION-DOMINATED ACCRETION DISKS

    SciTech Connect (OSTI)

    Jiang Yanfei; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S3H4 (Canada)

    2013-04-20T23:59:59.000Z

    The saturation level of the magneto-rotational instability (MRI) in a strongly radiation-dominated accretion disk is studied using a new Godunov radiation MHD code in the unstratified shearing box approximation. Since vertical gravity is neglected in this work, our focus is on how the MRI saturates in the optically thick mid-plane of the disk. We confirm that turbulence generated by the MRI is very compressible in the radiation-dominated regime, as found by previous calculations using the flux-limited diffusion approximation. We also find little difference in the saturation properties in calculations that use a larger horizontal domain (up to four times the vertical scale height in the radial direction). However, in strongly radiation pressure dominated disks (one in which the radiation energy density reaches {approx}1% of the rest mass energy density of the gas), we find that Maxwell stress from the MRI turbulence is larger than the value produced when radiation pressure is replaced with the same amount of gas pressure. At the same time, the ratio between Maxwell stress and Reynolds stress is increased by almost a factor of eight compared with the gas pressure dominated case. We suggest that this effect is caused by radiation drag, which acts like bulk viscosity and changes the effective magnetic Prandtl number of the fluid. Radiation viscosity significantly exceeds both the microscopic plasma viscosity and resistivity, ensuring that radiation-dominated systems occupy the high magnetic Prandtl number regime. Nevertheless, we find that radiative shear viscosity is negligible compared to the Maxwell stress and Reynolds stress in the flow. This may have important implications for the structure of radiation-dominated accretion disks.

  10. Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range

    E-Print Network [OSTI]

    Laverty, W. F.

    1964-01-01T23:59:59.000Z

    Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

  11. A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data

    SciTech Connect (OSTI)

    Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan

    2006-04-04T23:59:59.000Z

    We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.

  12. PARAMETER AND SYSTEM IDENTIFICATION FOR FLUID FLOW IN UNDERGROUND RESERVOIRS

    E-Print Network [OSTI]

    Ewing, Richard E.

    associated with two seem­ ingly disparate applications: production of petroleum and the remediation of water procedures associated with injection and production wells. Equations to describe the flow of fluids in porous. Such data can include pressure and flow rates of various fluid phases obtained during production, or during

  13. William Benton and Jim Turner, Cabot Specialty Fluids

    E-Print Network [OSTI]

    Laughlin, Robert B.

    wells is to control well pressures while drilling or completing wells. Cesium formate is the heaviest of the monovalent alkali metal salts, all of which are very soluble in water and form high density fluids with a range of beneficial properties. This makes them ideally suited for use as drilling and completion fluids

  14. Fluid forces on two circular cylinders in crossflow

    SciTech Connect (OSTI)

    Jendrzejczyk, J.A.; Chen, S.S.

    1986-01-01T23:59:59.000Z

    Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.

  15. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    1999-01-01T23:59:59.000Z

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  16. Simulation of Aerosol Behavior in a Saturated Atmosphere With the CONTAIN Code

    SciTech Connect (OSTI)

    Kljenak, Ivo; Mavko, Borut [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)

    2002-07-01T23:59:59.000Z

    Experiments on aerosol behavior in an atmosphere containing saturated vapor, which were performed in the KAEVER experimental facility and proposed for the OECD International Standard Problem No. 44, were simulated with the CONTAIN thermal-hydraulic computer code. The purpose of the work was to assess the capability of the CONTAIN code to model aerosol condensation and deposition in a containment of a light-water-reactor nuclear power plant at severe accident conditions. Results of dry and wet aerosol concentrations in the test vessel atmosphere are presented and analyzed. (authors)

  17. Geothermal fluid genesis in the Great Basin

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.K.

    1990-01-01T23:59:59.000Z

    Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

  18. Model for Fracturing Fluid Flowback and Characterization of Flowback Mechanisms

    E-Print Network [OSTI]

    Song, Bo

    2014-08-28T23:59:59.000Z

    A large volume of fracturing fluid that may include slick water and various sorts of additives is injected into shale formations along with proppant to create hydraulic fractures which define a stimulated shale volume a shale gas well will actually...

  19. Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    Comparison of pressure-saturation characteristics derived from computed tomography and lattice), Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann

  20. Mathematical Programming techniques in Water Network Optimization

    E-Print Network [OSTI]

    2014-03-05T23:59:59.000Z

    Mar 5, 2014 ... water networks, where the fluid is transported in pipes with no air contact and .... sume only non-positive values, possibly bounded from below.

  1. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-06-10T23:59:59.000Z

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  2. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  3. Drilling fluids and reserve pit toxicity

    SciTech Connect (OSTI)

    Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

    1988-11-01T23:59:59.000Z

    Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

  4. Application of x-ray microtomography to environmental fluid flow D. Wildenschild*a,c

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    of fluids in pores ultimately controls subsurface flow and contaminant transport relevant to groundwater-scale measurements make it possible to test existing and new theory, as well as emerging numerical modeling schemes, capillary pressure-saturation relationship 1. INTRODUCTION One of the most difficult and puzzling

  5. Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Andelman, David

    Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces Haim Diamant and David Andelman School-Fluid Interfaces, Adsorption, Adsorption Kinetics, Interfacial Tension. 1 #12;Abstract We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete

  6. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02T23:59:59.000Z

    This unexpected result is caused by the wave-induced flow of fluids between pores and fractures. ..... For non-fractured rock setting fracture weaknesses. DN and ...

  7. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12T23:59:59.000Z

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  8. R-modes in Neutron Stars with Crusts: Turbulent Saturation, Spin-down, and Crust Melting

    E-Print Network [OSTI]

    Yanqin Wu; Christopher D. Matzner; Phil Arras

    2000-06-09T23:59:59.000Z

    Rossby waves (r-modes) have been suggested as a means to regulate the spin periods of young or accreting neutron stars, and also to produce observable gravitational wave radiation. R-modes involve primarily transverse, incompressive motions of the star's fluid core. However, neutron stars gain crusts early in their lives: therefore, r-modes also imply shear in the fluid beneath the crust. We examine the criterion for this shear layer to become turbulent, and derive the rate of dissipation in the turbulent regime. Unlike dissipation from a viscous boundary layer, turbulent energy loss is nonlinear in mode energy and can therefore cause the mode to saturate at amplitudes typically much less than unity. This energy loss also reappears as heat below the crust. We study the possibility of crust melting as well as its implications for the spin evolution of low-mass X-ray binaries. Lastly, we identify some universal features of the spin evolution that may have observational consequences.

  9. Method and system for polishing materials using a nonaqueous magnetorheological fluid

    DOE Patents [OSTI]

    Menapace, Joseph Arthur; Ehrmann, Paul Richard

    2014-09-09T23:59:59.000Z

    A nonaqueous magnetorheological fluid includes a primarily organic carrier liquid and magnetizable particles. The magnetorheological fluid also includes a buffer, a stabilizer, and water. A pH of the magnetorheological fluid is between 6.5 and 9.0.

  10. Design rules for pumping and metering of highly viscous fluids in microfluidics

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Design rules for pumping and metering of highly viscous fluids in microfluidics Sarah L. Perry.1039/c0lc00035c The use of fluids that are significantly more viscous than water in microfluidics has a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly

  11. An analysis of the saturation of a high gain FEL

    SciTech Connect (OSTI)

    Gluckstern, R.L.; Okamoto, Hiromi (Maryland Univ., College Park, MD (United States). Dept. of Physics); Krinsky, S. (Brookhaven National Lab., Upton, NY (United States))

    1992-12-01T23:59:59.000Z

    We study the saturated state of an untapered free electron laser in the Compton regime, arising after exponential amplification of an initial low level of radiation by an initially monoenergetic, unbunched electron beam. The saturated state of the FEL is described by oscillations about an equilibrium state. Using the two invariants of the motion, and certain assumptions motivated by computer simulations, we provide approximate analytic descriptions of the radiation field and electron distribution in the saturation regime. We first consider a one-dimensional approximation, and later extend our approach to treat an electron beam of finite radial extent. Of note is a result on the radiated power in the case of an electron beam with small radius.

  12. Water bell and sheet instabilities Jeffrey M. Aristoff, Chad Lieberman,

    E-Print Network [OSTI]

    Bush, John W.M.

    . 1 G. I. Taylor, "The dynamics of thin sheets of fluid. I. Water bells," Proc. R. Soc. London, Ser," Proc. R. Soc. London, Ser. A 253, 296 1959 . 3 G. I. Taylor, "The dynamics of thin sheets of fluid. III. A 253, 289 1959 . 2 G. I. Taylor, "The dynamics of thin sheets of fluid. II. Waves on fluid sheets

  13. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06T23:59:59.000Z

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  14. EIGENVALUES OF SATURATED HYDROCARBONS D. J. KLEIN AND C. E. LARSON

    E-Print Network [OSTI]

    Larson, Craig E.

    EIGENVALUES OF SATURATED HYDROCARBONS D. J. KLEIN AND C. E. LARSON Abstract. A simplified H¨uckel-type molecular-orbital (MO) model for the valence electrons of saturated hydrocarbons is proposed and half negative. Keywords: saturated hydrocarbons, alkanes, stellation, para-line graph. 1. Saturated

  15. HYDRAULIC CONDUCTIVITY ESTIMATION IN PARTIALLY SATURATED SOILS USING THE ADJOINT METHOD

    E-Print Network [OSTI]

    Efendiev, Yalchin

    HYDRAULIC CONDUCTIVITY ESTIMATION IN PARTIALLY SATURATED SOILS USING THE ADJOINT METHOD J. SANTOS for the estimation of the saturated hydraulic conductivity k in a partially saturated soil Q is proposed. Groundwater exam- ple showing the implementation of the algorithm to estimate the saturated hydraulic conductivity

  16. Saturated area formation on nonconvergent hillslope topography with shallow soils: A numerical investigation

    E-Print Network [OSTI]

    Walter, M.Todd

    -dimensional, variably saturated groundwater model VS2D [Healy, 1990; Lappala et al. 1993] is used to simulate saturated of Connecticut, Storrs Abstract. Prediction of saturated area formation is important for hydrologic modeling changes in surface saturation are possible on steep hillslopes when 1 6. 1. Introduction It is improper

  17. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10T23:59:59.000Z

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  18. Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives 

    E-Print Network [OSTI]

    Plamin, Sammazo Jean-bertrand

    2013-09-29T23:59:59.000Z

    Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

  19. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  20. Application of Membranes to Treatment of Water Based Exploration and Production Wastes 

    E-Print Network [OSTI]

    Olatubi, Oluwaseun Alfred

    2010-10-12T23:59:59.000Z

    Produced water and spent drilling fluids from petroleum operations represent a significant expense to companies developing new energy reserves. These spent fluids, seldom recycled, offer a viable source of water resources for oil-field reuse. A...

  1. Application of Membranes to Treatment of Water Based Exploration and Production Wastes

    E-Print Network [OSTI]

    Olatubi, Oluwaseun Alfred

    2010-10-12T23:59:59.000Z

    Produced water and spent drilling fluids from petroleum operations represent a significant expense to companies developing new energy reserves. These spent fluids, seldom recycled, offer a viable source of water resources for oil-field reuse. A...

  2. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 at 10 km above ground in the jet streams assuming airborne wind energy devices ("jet stream the theoretical limit of wind energy available at these altitudes, particularly because some recent studies

  3. ARRA Proposed Award: Downtown Oakland Targeted Measure Saturation Program

    E-Print Network [OSTI]

    : Community Energy Services Corporation City of Oakland Circlepoint Multimedia Design Estimated Full buildings in a dense, 120 block area in the City of Oakland that is an economically disadvantaged areaARRA Proposed Award: Downtown Oakland Targeted Measure Saturation Program Targeting the City

  4. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09T23:59:59.000Z

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  5. Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities

    E-Print Network [OSTI]

    Gu, Tingyue

    Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities Tingyue Gu, Gow, the extent of size exclusion is not the same for all the components. This often causes uneven adsorption capacity and vice versa. A study of size exclusion coupled with adsorption is a rel- atively new topic

  6. Micro-Thermodynamics Saturation has the most possible

    E-Print Network [OSTI]

    Russell, Lynn

    1 Micro-Thermodynamics · Saturation has the most possible dissolved species · Equilibrium means of "phase" (from particle to droplet) Bohren, 1987 Macro-Thermodynamics · Hot air rises · Rising air)! 0.1! 10! Diameter (µm)! dN! dlogD! Diameter (µm)! 0.1! 10! 7.1 Surface Thermodynamics · Surfaces

  7. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  8. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    2003-01-01T23:59:59.000Z

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  9. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02T23:59:59.000Z

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  10. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  11. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect (OSTI)

    Moller, Nancy; Weare J. H.

    2008-05-29T23:59:59.000Z

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

  12. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  13. Effective interactions between fluid membranes

    E-Print Network [OSTI]

    Bing-Sui Lu; Rudolf Podgornik

    2015-05-01T23:59:59.000Z

    A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject to the constraint that they do not interpenetrate. The steric constraint is implemented via a representation of the Heaviside function, which enables one to transform it into a novel effective steric potential. The steric potential is found to consist of two contributions: one generated by zero mode fluctuations of the membranes, and the other by thermal bending fluctuations. For membranes of cross-sectional area $S$, we find that the bending fluctuation part scales with the inter-membrane separation $d$ as $d^{-2}$ for $d \\ll \\sqrt{S}$, but crosses over to $d^{-4}$ scaling for $d \\gg \\sqrt{S}$, whereas the zero mode part of the steric potential always scales as $d^{-2}$. For membranes interacting exclusively via the steric potential, we obtain exact nonlinear expressions for the effective interaction potential and for the rms undulation amplitude $\\sigma$, which becomes small at low temperatures $T$ and/or large bending stiffnesses $\\kappa$. Moreover, $\\sigma$ scales as $d$ for $d \\ll \\sqrt{S}$, but saturates at $\\sqrt{k_{{\\rm B}} T S/\\kappa}$ for $d \\gg \\sqrt{S}$. In addition, using variational Gaussian theory, we apply our self-consistent treatment to study inter-membrane interactions subject to three different types of potential: (i)~the Moreira-Netz potential for a pair of strongly charged membranes with an intervening solution of multivalent counterions, (ii)~an attractive square well, (iii)~the Morse potential, and (iv)~a combination of hydration and van der Waals interactions.

  14. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

    1993-01-01T23:59:59.000Z

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  15. Basic fluid system trainer

    SciTech Connect (OSTI)

    Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

    1991-04-30T23:59:59.000Z

    This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  16. Circulating Fluid Bed Combustor

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01T23:59:59.000Z

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  17. Phoresis in fluids

    E-Print Network [OSTI]

    Brenner, Howard

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

  18. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17T23:59:59.000Z

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  19. Ultrarelativistic fluid dynamics

    E-Print Network [OSTI]

    David W. Neilsen; Matthew W. Choptuik

    1999-04-20T23:59:59.000Z

    This is the first of two papers examining the critical collapse of spherically symmetric perfect fluids with the equation of state P = (Gamma -1)rho. Here we present the equations of motion and describe a computer code capable of simulating the extremely relativistic flows encountered in critical solutions for Gamma <= 2. The fluid equations are solved using a high-resolution shock-capturing scheme based on a linearized Riemann solver.

  20. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  1. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  2. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05T23:59:59.000Z

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  3. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    SciTech Connect (OSTI)

    Keith P. Johnston

    2009-04-06T23:59:59.000Z

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  4. CSE Master Specialization Fluid Dynamics

    E-Print Network [OSTI]

    Lang, Annika

    CSE Master Specialization Fluid Dynamics Course Semester Fluid Dynamics II HS Quantitative Flow Energie- und Verfahrenstechnik FS Biofluiddynamics FS #12;CSE in Fluid Dynamics: Very large high in Fluid Dynamics: Physiology of the inner ear MicroCT imaging Multilayer MFS for Stokes flow simulations

  5. Process for retarding fluid flow

    SciTech Connect (OSTI)

    Sandford, B.B.; Zillmer, R.C.

    1989-01-10T23:59:59.000Z

    A process is described for retarding the flow of fluid in a subterranean formation, comprising: (a) introducing an effective amount of a gel-forming composition into a subterranean formation, the gel-forming composition being operable when gelled in the formation for retarding the flow of fluid therein. The gel-forming composition consists of: i. a first substance dissolved in water to form an aqueous solution, the first substance being selected from the group consisting of polyvivyl alcohols, and mixtures thereof, wherein the gel-forming composition contains an amount of the first substance of from about 0.5 to about 5 weight percent of the gel-forming composition, and ii. an effective amount of glutaraldehyde which is operable for forming a weakly acidic condition having a pH from about 5.5 to less than 7 in the gel-forming composition and also operable for promoting crosslinking of the first substance and glutaraldehyde and for forming a gel from the gel-forming composition under the weakly acidic condition within a period of time no greater than about 5 days without adding an acidic catalyst to the gel-forming composition to lower the pH of the gel-forming composition below about 5.5.

  6. Pyrite oxidation in saturated and Unsaturated Porous Media Flow: AComparison of alternative mathematical modeling approaches

    SciTech Connect (OSTI)

    Xu, Tianfu; White, Stephen P.; Pruess, Karsten

    1998-02-15T23:59:59.000Z

    Pyrite (FeS{sub 2}) is one of the most common naturally occurring minerals that is present in many subsurface environments. It plays an important role in the genesis of enriched ore deposits through weathering reactions, is the most abundant sulfide mineral in many mine tailings, and is the primary source of acid drainage from mines and waste rock piles. The pyrite oxidation reaction serves as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications. Mathematical modeling of these processes is extremely challenging because aqueous concentrations of key species vary over an enormous range, oxygen inventory and supply are typically small in comparison to pyrite inventory, and chemical reactions are complex, involving kinetic control and microbial catalysis. We present the mathematical formulation of a general multi-phase advective-diffusive reactive transport model for redox processes. Two alternative implementations were made in the TOUGHREACT and TOUGH2-CHEM simulation codes which use sequential iteration and simultaneous solution, respectively. The simulators are applied to reactive consumption of pyrite in (1) saturated flow of oxidizing water, and (2) saturated-unsaturated flow in which oxygen transport occurs in both aqueous and gas phases. Geochemical evolutions predicted from different process models are compared, and issues of numerical accuracy and efficiency are discussed.

  7. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    SciTech Connect (OSTI)

    Alan P. Byrnes; Saibal Bhattacharya; John Victorine; Ken Stalder

    2007-09-30T23:59:59.000Z

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on carbonate reservoirs of widely varying moldic pore systems that represent the major of reservoirs in Kansas and are important nationally and worldwide. A goal of the project is to measure wettability, using representative oils from Kansas fields, on a wide range of moldic-porosity lithofacies that are representative of Kansas and midcontinent shallow-shelf carbonate reservoirs. This investigation will discern the relative influence of wetting and pore architecture. In the midcontinent, reservoir water saturations are frequently greater than 'irreducible' because many reservoirs are largely in the capillary transition zone. This can change the imbibition oil-water relative permeability relations. Ignoring wettability and transition-zone relative permeabilities in reservoir modeling can lead to over- and under-prediction of oil recovery and recovery rates, and less effective improved recovery management. A goal of this project is to measure drainage and imbibition oil-water relative permeabilities for a large representative range of lithofacies at differ ent initial water saturations to obtain relations that can be applied everywhere in the reservoir. The practical importance of these relative permeability and wettability models will be demonstrated by using reservoir simulation studies on theoretical/generic and actual reservoir architectures. The project further seeks to evaluate how input of these new models affects reservoir simulation results at varying scales. A principal goal is to obtain data that will allow us to create models that will show how to accurately simulate flow in the shallow-structure, complex carbonate reservoirs that lie in the transition zone. Tasks involved to meet the project objectives include collection and consolidation of available data into a publicly accessible relational digital database and collection of oil and rock samples from carbonate fields around the state (Task 1). Basic properties of these rocks and oils will be measured and used in wettability tests. Comparison will be performed between crude and synthetic oil wettability and

  8. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13T23:59:59.000Z

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  9. Laboratory imaging of stimulation fluid displacement from hydraulic fractures

    SciTech Connect (OSTI)

    Tidwell, V. [Sandia National Lab., Albuquerque, NM (United States); Parker, M. [SPE, Richardson, TX (United States)

    1996-11-01T23:59:59.000Z

    Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack.

  10. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  11. Existence of Optical Vortices in Saturable Non-linearity

    E-Print Network [OSTI]

    Luciano Medina

    2015-05-22T23:59:59.000Z

    Optical propagation in non-linear media and the formation of optical vortices as dark holes is an area of extensive research in modern optical physics. Governed by a non-linear Schr\\"odinger equation, with self-focusing saturable non-linearity, we establish an existence theory for a unique class of spatially localized beams describing ring-profile vortex solitons. Our first type of results are established via a constrained minimization problem. We prove the existence of positive radially symmetric solutions and give necessary conditions restricting the wave propagation constant in terms of the topological charge and saturation constant. As demanded by beam confinement, we prove the exponential decay of the soliton amplitude at infinity. Secondly, we use a min-max technique to prove the existence of additional non-trivial solutions that arise as saddle-points of a corresponding indefinite action functional.

  12. Concise representation of the saturation properties for pure compounds 

    E-Print Network [OSTI]

    Borrelli, Leslie Kieffer

    1982-01-01T23:59:59.000Z

    CONCISE REPRESENTATION QF THE SATURATIQN PROPERTIES FQR PURE CQHPQUN DS A Thesis by LESLIE KIEFFER BQRRELLI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the r equirement for the degree of NASTER... of Depa ent) May 1982 ABSTRACT CONCISE REPRESENTATION QF THE SATURATION PROPERTIES FOR PURE COMPOUNDS (May 1982) Leslie Kieffer Borrelli, B. S. , Texas ARM University Chair man of Advisor y Committee: Dr . Kenneth R. Hall Vapor pr essure...

  13. Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs

    E-Print Network [OSTI]

    Alotaibi, Mohammed

    2012-02-14T23:59:59.000Z

    to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil...

  14. Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Alotaibi, Mohammed

    2012-02-14T23:59:59.000Z

    to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil...

  15. Fluxion: An Innovative Fluid Dynamics Game on Multi-Touch Handheld Device

    E-Print Network [OSTI]

    Boyer, Edmond

    )). For example, players can place a heater to turn water into gas or place a freezer to turn it into ice. hal) (b) (c) Fig. 3. (a) A heater turns water into gas. (b) Water is turned into an ice cube so simulation on iPhone to create an innovative game experience. Using fluid dynamics and water tri

  16. Automated fluid analysis apparatus and techniques

    DOE Patents [OSTI]

    Szecsody, James E.

    2004-03-16T23:59:59.000Z

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  17. Dense, vertical jet in stagnant homogeneous fluid

    E-Print Network [OSTI]

    Vergara, Ignacio

    1977-01-01T23:59:59.000Z

    ~ip t The laboratory equipment for the experiment consisted of a receiving tank, an auxiliary tank for the PreParation of the jet fluid and mixing of the dye, a pumping system, a concentration measurement system and photographic equip- ment. The receiving tank... of ejected brine = 1Os O/Tank capacity Jet or nozzle diamter Total water depth [in model is tank depth (l. 22 m)] Thickness of the dense layer a L the bottom Water depth at the nozzle F2 Fr Negative b Densimetri Accelerati (9. 8 m/sec xDz uoyancy...

  18. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada; Iterative Performance Assessment, Phase 2

    SciTech Connect (OSTI)

    Ahola, M.; Sagar, B. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1992-10-01T23:59:59.000Z

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 {times} 200 km) and subregional (50 {times} 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved.

  19. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  20. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01T23:59:59.000Z

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  1. Nonlinear instability of an Oldroyd elastico–viscous magnetic nanofluid saturated in a porous medium

    SciTech Connect (OSTI)

    Moatimid, Galal M., E-mail: gal-moa@hotmail.com [Department of Mathematics, Faculty of Education, Ain Shams University, Roxy (Egypt); Alali, Elham M. M., E-mail: dr-elham-alali@hotmail.com; Ali, Hoda S. M., E-mail: hoda-ali-1@hotmail.com [Department of Mathematics, Faculty of Science (Girls Branch), University of Tabuk, Tabuk, P.O. Box 741 (Saudi Arabia)

    2014-09-15T23:59:59.000Z

    Through viscoelastic potential theory, a Kelvin-Helmholtz instability of two semi-infinite fluid layers, of Oldroydian viscoelastic magnetic nanofluids (MNF), is investigated. The system is saturated by porous medium through two semi-infinite fluid layers. The Oldroyd B model is utilized to describe the rheological behavior of viscoelastic MNF. The system is influenced by uniform oblique magnetic field that acts at the surface of separation. The model is used for the MNF incorporated the effects of uniform basic streaming and viscoelasticity. Therefore, a mathematical simplification must be considered. A linear stability analysis, based upon the normal modes analysis, is utilized to find out the solutions of the equations of motion. The onset criterion of stability is derived; analytically and graphs have been plotted by giving numerical values to the various parameters. These graphs depict the stability characteristics. Regions of stability and instability are identified and discussed in some depth. Some previous studies are recovered upon appropriate data choices. The stability criterion in case of ignoring the relaxation stress times is also derived. To relax the mathematical manipulation of the nonlinear approach, the linearity of the equations of motion is taken into account in correspondence with the nonlinear boundary conditions. Taylor's theory is adopted to expand the governing nonlinear characteristic equation according to of the multiple time scales technique. This analysis leads to the well-known Ginzburg–Landau equation, which governs the stability criteria. The stability criteria are achieved theoretically. To simplify the mathematical manipulation, a special case is considered to achieve the numerical estimations. The influence of orientation of the magnetic fields on the stability configuration, in linear as well as nonlinear approaches, makes a dual role for the magnetic field strength in the stability graphs. Stability diagram is plotted for different sets of physical parameters. A new stability as well as instability region, in the parameter space, appears due to the nonlinear effects.

  2. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01T23:59:59.000Z

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  3. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA)

    1997-01-01T23:59:59.000Z

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  4. Harmonic waves in a fluid-solid waveguide

    E-Print Network [OSTI]

    Yapura, Carlos Ludwig

    1992-01-01T23:59:59.000Z

    branches for a water-loaded aluminum plate have been obtained for different fluid-to-solid layer thickness ratios. The results are checked with well-known solutions in the low &equency gong wavelength) and high frequency (short wavelength) limits... . . 45 . . . . . 47 LIST OF FIGURES Fig. 1 Schematic diagram of the fluid-solid bilayer. Fig. 2 Dispersion diagram for a &ee aluminum plate Page 19 Fig. 3 Phase velocity as a function of &equency for a &ee aluminum plate. . . . . . . . . . 20 Fig...

  5. Near-Infrared Spectroscopic Investigation of Water in Supercritical CO2 and the Effect of CaCl2

    SciTech Connect (OSTI)

    Wang, Zheming; Felmy, Andrew R.; Thompson, Christopher J.; Loring, John S.; Joly, Alan G.; Rosso, Kevin M.; Schaef, Herbert T.; Dixon, David A.

    2013-01-25T23:59:59.000Z

    Near-infrared (NIR) spectroscopy was applied to investigate the dissolution and chemical interaction of water dissolved into supercritical carbon dioxide (scCO2) and the influence of CaCl2 in the co-existing aqueous phase at fo empe e : 40 50 75 nd 100 C at 90 atm. Consistent with the trend of the vapor pressure of water, the solubility of pure water in scCO2 inc e ed f om 40 ?C (0.32 mole%) o 100 ?C (1.61 mole%). The presence of CaCl2 negatively affects the solubility of water in scCO2: at a given temperature and pressure the solubility of water decreased as the concentration of CaCl2 in the aqueous phase increased, following the trend of the activity of water. A 40 ?C, the water concentration in scCO2 in contact with saturated CaCl2 aqueous solution was only 0.16 mole%, a drop of more than 50% as compared to pure water while that a 100 ?C was 1.12 mole%, a drop of over 30% as compared to pure water, under otherwise the same conditions. Analysis of the spectral profiles suggested that water dissolved into scCO2 exists in the monomeric form under the evaluated temperature and pressure conditions, for both neat water and CaCl2 solutions. However, its rotational degrees of freedom decrease at lower temperatures due to higher fluid densities, leading to formation of weak H2O:CO2 Lewis acid-base complexes. Similarly, the nearly invariant spectral profiles of dissolved water in the presence and absence of saturated CaCl2 under the same experimental conditions was taken as evidence that CaCl2 dissolution in scCO2 was limited as the dissolved Ca2+/CaCl2 would likely be highly hydrated and would alter the overall spectra of waters in the scCO2 phase.

  6. Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone Aquifers

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    1 Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone models. As a step toward this, network flow models were used to simulate the flow of CO2-saturated brine

  7. Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range

    SciTech Connect (OSTI)

    Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

    2002-06-17T23:59:59.000Z

    Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1 - 9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (QE dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.

  8. Consolidation theories for saturated-unsaturated soils and numerical simulation of residential buildings on expansive soils

    E-Print Network [OSTI]

    Zhang, Xiong

    2005-11-01T23:59:59.000Z

    , the physical meanings for the parameters in the constitutive laws for saturated-unsaturated are illustrated. A new set of the differential equations for the coupled two or three dimensional consolidation of saturated-unsaturated soils are proposed, together...

  9. Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    E-Print Network [OSTI]

    Niemi, H; Paatelainen, R

    2015-01-01T23:59:59.000Z

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how ...

  10. Gas production potential of disperse low-saturation hydrateaccumulations in oceanic sediments

    SciTech Connect (OSTI)

    Moridis, George J.; Sloan, E. Dendy

    2006-07-19T23:59:59.000Z

    In this paper we evaluate the gas production potential ofdisperse, low-saturation (SH<0.1) hydrate accumulations in oceanicsediments. Such hydrate-bearing sediments constitute a significantportion of the global hydrate inventory. Using numerical simulation, weestimate (a) the rates of gas production and gas release from hydratedissociation, (b) the corresponding cumulative volumes of released andproduced gas, as well as (c) the water production rate and the mass ofproduced water from disperse, low-SH hydrate-bearing sediments subject todepressurization-induced dissociation over a 10-year production period.We investigate the sensitivity of items (a) to (c) to the followinghydraulic properties, reservoir conditions, and operational parameters:intrinsic permeability, porosity, pressure, temperature, hydratesaturation, and constant pressure at which the production well is kept.The results of this study indicate that, despite wide variations in theaforementioned parameters (covering the entire spectrum of suchdeposits), gas production is very limited, never exceeding a few thousandcubic meters of gas during the 10-year production period. Such lowproduction volumes are orders of magnitude below commonly acceptedstandards of economic viability, and are further burdened with veryunfavorable gas-to-water ratios. The unequivocal conclusion from thisstudy is that disperse, low-SH hydrate accumulations in oceanic sedimentsare not promising targets for gas production by means ofdepressurization-induced dissociation, and resources for early hydrateexploitation should be focused elsewhere.

  11. Event-triggered control with LQ optimality guarantees for saturated linear systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Event-triggered control with LQ optimality guarantees for saturated linear systems A. Seuret , C of the domain of attraction. Keywords: event-based control, input saturation, linear quadratic performance 1 with event-triggered control algorithms for linear systems subject to plant input saturation. Hence, given

  12. Asymptotical Computations for a Model of Flow in Saturated Porous Media

    E-Print Network [OSTI]

    Weinmüller, Ewa B.

    a variably saturated porous medium with exponential diffusivity, such as soil, rock or concrete is given by uAsymptotical Computations for a Model of Flow in Saturated Porous Media P. Amodio a , C.J. Budd b for an implicit second order ordinary differential equation which arises in models of flow in saturated porous

  13. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING...

  14. A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing

    E-Print Network [OSTI]

    Turner, Daniel Z

    2012-01-01T23:59:59.000Z

    Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...

  15. Causal dissipative hydrodynamics for QGP fluid in 2+1 dimensions

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-08-01T23:59:59.000Z

    In 2nd order causal dissipative theory, space-time evolution of QGP fluid is studied in 2+1 dimensions. Relaxation equations for shear stress tensors are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous QGP fluid, initialized under the same conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in a viscous dynamics, energy density or temperature of the fluid evolve slowly, than in an ideal fluid. Cooling gets slower as viscosity increases. Transverse expansion also increases in a viscous dynamics. For the first time we have also studied elliptic flow of 'quarks' in causal viscous dynamics. It is shown that elliptic flow of quarks saturates due to non-equilibrium correction to equilibrium distribution function, and can not be mimicked by an ideal hydrodynamics.

  16. MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS

    E-Print Network [OSTI]

    Loh, Watson

    MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS J. Drelich Ch. Fang C.L. White Michigan been used to measure interfacial tensions between immisci- ble fluid phases. A recent monograph sources of information on the in- terfacial tension measurement methods include selected chapters in Refs

  17. Spin-glass model of QCD near saturation

    E-Print Network [OSTI]

    Robi Peschanski

    2006-03-15T23:59:59.000Z

    We establish a connection between the cascading of gluon momenta modeled with the diffusive approximation of the Balitsky-Fadin-Kuraev-Lipatov kernel and the thermodynamics of directed polymers on a tree with disorder. Using known results on the low-temperature spin-glass phase of this statistical-mechanic problem we describe the dynamical phase space of gluon transverse momenta near saturation including its fluctuation pattern. It exhibits a nontrivial clustering structure, analoguous to ``hot spots'', whose distributions are derived and possess universal features in common with other spin-glass systems.

  18. Elliptic flow from pQCD + saturation + hydro model

    E-Print Network [OSTI]

    K. J. Eskola; H. Niemi; P. V. Ruuskanen

    2007-05-15T23:59:59.000Z

    We have previously predicted multiplicities and transverse momentum spectra of hadrons for the most central LHC Pb+Pb collisions at $\\sqrt{s_{NN}}=5.5$ TeV using initial state for hydrodynamic evolution from pQCD + final state saturation model. By considering binary collision and wounded nucleon profiles we extend these studies to non-central collisions, and predict the $p_{T}$ dependence of minimum bias $v_{2}$ for pions at the LHC. For protons we also show how the $p_{T}$ dependence of $v_2$ changes from RHIC to the LHC.

  19. A micromechanical approach to modeling partly saturated soils

    E-Print Network [OSTI]

    Lamborn, Mark Jackson

    1986-01-01T23:59:59.000Z

    . Values for these dimensi onless quanti ti es are not available at present. Approxi mat1 ons for the loads transmi tted by indi vidual part1cles are gi ven. ACKNOWLEOGEMENTS I would like to thank Dr. D. H. Allen, Dr. R. L. Lytton, and Dr. R. A... Values of the Degree of Saturation, Ds, I3 and the Angle, zm, for the Case of the Mixture Phase Acting as a Binder 139 Table 3. 4. Initial Volume Tractions and Maximum Tensile Stressed Volume of the Mixture Phase for the Different Packing...

  20. Tunable polarity of the Casimir force based on saturated ferrites

    SciTech Connect (OSTI)

    Zeng Ran [School of Telecommunication, Hangzhou Dianzi University, Hangzhou 310018 (China); Yang Yaping [Department of Physics, Tongji University, Shanghai 200092 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2011-01-15T23:59:59.000Z

    We study the polarity of the Casimir force between two different parallel slabs separated by vacuum when the saturated ferrite materials under the influence of an external magnetic field are taken into consideration. Between the ordinary dielectric slab and the ferrite slab, repulsive Casimir force may be observed by adjusting the applied magnetic field. For the ferrite material, we consider the frequency dependence of the permeability modified by the external magnetic field to analyze the formation of the repulsive Casimir force. The restoring force, which means the transition of the force polarity from repulsion to attraction with the increasing slab separation, can also be obtained between two different ferrite slabs.

  1. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  2. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  3. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

  4. NMR imaging techniques and applications in the flow behavior of fluids in porous media

    E-Print Network [OSTI]

    Halimi, Hassan I

    1990-01-01T23:59:59.000Z

    proton magnetic resonance technique can be used to determine the oil saturation in the pores of a rock. The NMR system can produce images of the molecules under investigation because the signals recorded are obtained directly from fluids contained... in liquids as well. This should enable us to obtain additional information about the fluids in the rock '4. Spin-spin relaxation has a characteristic time T~. T~ is the time constant for the decay of the precessing R-Zo component of the magnetization...

  5. A Model for the Saturation of the Turbulent Dynamo

    E-Print Network [OSTI]

    Schober, Jennifer; Federrath, Christoph; Bovino, Stefano; Klessen, Ralf S

    2015-01-01T23:59:59.000Z

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e. on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate the magnetic energy in the linear regime, the saturation level, i.e. the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present the first scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover timescale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales...

  6. Use of an inert drilling fluid to control geothermal drill pipe corrosion

    SciTech Connect (OSTI)

    Caskey, B.C.

    1981-04-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  7. Removing sulphur oxides from a fluid stream

    DOE Patents [OSTI]

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08T23:59:59.000Z

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  8. Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    used in drilling and fracking · Recent increase in permit fee to fund new DEP enforcement · Permit fluids ­ return fluids from fracking ­ mixture of water, sand and chemicals Production fluids ­ fluids, manganese, barium, arsenic, etc.) Surfactants/detergents Total suspended solids Oil/Grease Fracking

  9. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  10. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E. (Akron, OH)

    1994-01-01T23:59:59.000Z

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  11. Recent Developments in Geothermal Drilling Fluids

    SciTech Connect (OSTI)

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01T23:59:59.000Z

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  12. Viscous dark fluid

    E-Print Network [OSTI]

    V. Folomeev; V. Gurovich

    2007-10-15T23:59:59.000Z

    The unified dark energy and dark matter model within the framework of a model of a continuous medium with bulk viscosity (dark fluid) is considered. It is supposed that the bulk viscosity coefficient is an arbitrary function of the Hubble parameter. The choice of this function is carried out under the requirement to satisfy the observational data from recombination ($z\\approx 1000$) till present time.

  13. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Rother, Gernot [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin

    2012-01-01T23:59:59.000Z

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

  14. On the propagation of a disturbance in a smoothly varying heterogeneous porous medium saturated with three fluid phases

    E-Print Network [OSTI]

    Vasco, D.W.

    2014-01-01T23:59:59.000Z

    to acknowledge the support of Aramco. I would like to thankwork was supported by Aramco and by the Assistant Secretary,

  15. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  16. Real-time Water Waves with Wave Particles

    E-Print Network [OSTI]

    Yuksel, Cem

    2010-10-12T23:59:59.000Z

    This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

  17. Prediction of the saturated hydraulic conductivity from Brooks and Corey's water retention parameters

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    's equation with Darcy's law [Burdine, 1953; Brutsaert, 1967]. The model proposed by Mualem [1976] represents is time consuming and expensive. In this study, we derive a simple closed-form equation that predicts

  18. Modeling cation diffusion in compacted water-saturatedNa-bentonite at low ionic strength

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2007-08-28T23:59:59.000Z

    Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm{sup -3} (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm{sup -3}.

  19. One-dimensional fluid diffusion induced by constant-rate flow injection: Theoretical analysis and application

    E-Print Network [OSTI]

    is essential in the exploitation of natural fluid resources, such as water, steam, petroleum, and natural gas advantages of our method are the reliability of the testing method, its economy of time, and the flexibility wastes. [3] In general, the nature of fluids in reservoir rocks can be characterized in terms of quantity

  20. Statistical Estimation of Fluid Flow Fields Johnny Chang David Edwards Yizhou Yu

    E-Print Network [OSTI]

    Yu, Yizhou

    their motion fields. 1 Introduction Dynamic fluids, such as rivers, ocean waves, moving clouds, smoke and fires (4) where is the kinematic viscosity of the fluid, is its den- sity and f is an external force scale. A good ex- ample is the changing surface geometry of a water surface. This is because the self

  1. FLUID-STRUCTURE INTERACTION AND TRANSIENT CAVITATION TESTS IN A T-PIECE PIPE

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    FLUID-STRUCTURE INTERACTION AND TRANSIENT CAVITATION TESTS IN A T-PIECE PIPE ARRIS S TIJSSELING featuring the combined phenomena of fluid-structure interaction (FSI) and vaporous cavitation is presented and the static pressure of the liquid control the severity of the cavitation phenomenon. Keywords: Water hammer

  2. The displacement of gas by oil in the presence of connate water

    E-Print Network [OSTI]

    Dardaganian, Stephen Garabed

    1957-01-01T23:59:59.000Z

    residual gas saturation 7 percent of pore space greater than the study utiliaing the higher viscosity oil. Except for the variations resulting from the extreme fluid viscosity ratios, the results closely agreed. The major difference could well... mixed stream of oil and gas. The mobile gas phase established within the core was then dis- placed by an oil flood. The assumption was made that the residual gas saturation within the oil bank would be the same as that which would occur within a...

  3. Solubilization of wellbore filtercakes formed from drill-in fluids 

    E-Print Network [OSTI]

    Jepson, Richard Kendall

    2000-01-01T23:59:59.000Z

    Research was performed to study the degradation of filtercakes formed by water-based drill-in fluids (DIF), primarily sized-salt (SS) and sized-calcium carbonate (SCC) DIFs. The experiments to degrade DIF filtercakes varied temperature (43?C to 71?...

  4. 2005 Pearson Education South Asia Pte Ltd Applied Fluid Mechanics

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    of the pressure drag coefficient for cylinders, spheres, and other shapes. · Discuss the effect of Reynolds number. · Hydrodynamics is the name given to the study of moving bodies immersed in liquids, particularly water. 17. Drag Education South Asia Pte Ltd Applied Fluid Mechanics 17.Drag and Lift 18.Fans, Blowers, Compressors

  5. Solubilization of wellbore filtercakes formed from drill-in fluids

    E-Print Network [OSTI]

    Jepson, Richard Kendall

    2000-01-01T23:59:59.000Z

    Research was performed to study the degradation of filtercakes formed by water-based drill-in fluids (DIF), primarily sized-salt (SS) and sized-calcium carbonate (SCC) DIFs. The experiments to degrade DIF filtercakes varied temperature (43?C to 71?...

  6. FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS

    E-Print Network [OSTI]

    Sen, Mihir

    = heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

  7. Abstract # 202 Time dependent behaviour of fluids filled geomaterials: application

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : - Multiphase Fluid Flow in Deformable Porous Media (Marte Gutierrez) hal-00525940,version1-13Oct2010 Author, rockfill [2], rocks and soft rocks [3, 4, 5] and concrete. Time effects involve distinct aspects of chalk with strain rate during CRS oedometric tests, 0.2 MPa refers to oil-water suction [5]. (b

  8. Versatile Surface Tension and Adhesion for SPH Fluids Nadir Akinci

    E-Print Network [OSTI]

    Teschner, Matthias

    Versatile Surface Tension and Adhesion for SPH Fluids Nadir Akinci University of Freiburg Gizem as a result of the impact of a water droplet into a filled container. Our surface tension force allows such as surface tension and adhesion emerge as a result of inter-molecular forces in a microscopic scale

  9. Evaluation of coastal wave attenuation due to viscous fluid sediment at Jefferson County, Texas

    E-Print Network [OSTI]

    Tuttle, Meghan I

    2000-01-01T23:59:59.000Z

    . The paper also investigates a natural 'fluid mud' phenomenon. A viscous seabed exists at the eastern survey area, causing water wave attenuation. The interdependent effects of seafloor mud on progressive surface waves are discussed. The reduction in wave...

  10. Geothermal: Sponsored by OSTI -- ECO2N V. 2.0: A New TOUGH2 Fluid...

    Office of Scientific and Technical Information (OSTI)

    V. 2.0: A New TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  11. The determination of glucose in sonophoretically extracted interstitial fluid and the characterization of ultrasound parameters

    E-Print Network [OSTI]

    Cantrell, Jeffrey Travis

    2000-01-01T23:59:59.000Z

    chamber and used to correlate ultrasound spectral properties to the amount of fluid extracted. Results indicate that the highest amount of water extracted occurs when the acoustic coupling media on the surface of the skin is cavitating, resulting in mild...

  12. Physical and numerical modeling of the external fluid mechanics of OTEC pilot plants

    E-Print Network [OSTI]

    Singarella, Paul N.

    1982-01-01T23:59:59.000Z

    This study examined the near field external fluid mechanics of symmetrical OTEC pilot plant designs (20-80 MWe) under realistic deep water conditions. The objective was to assess the environmental impact of different plant ...

  13. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15T23:59:59.000Z

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  14. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-06-01T23:59:59.000Z

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated in some detail, as are permeabilities of some of the simpler types of fractured materials.

  15. LUBRICANTS AND HYDRAULIC FLUIDS

    E-Print Network [OSTI]

    Engineer Manual Department

    Contents) Major General, USA Chief of Staff i Table of Contents Purpose ........................................................ 1-1 1-1 Applicability .................................................... 1-2 1-1 References ...................................................... 1-3 1-1 Distribution Statement ............................................. 1-4 1-1 Scope ......................................................... 1-5 1-2 Friction ........................................................ 2-1 2-1 Wear .......................................................... 2-2 2-4 Lubrication and Lubricants ......................................... 2-3 2-6 Hydrodynamic or Fluid Film Lubrication ............................... 2-4 2-6 Boundary Lubrication ............................................. 2-5 2-8 Extreme Pressure (EP) Lubrication ................................... 2-6 2-9 Elastohydrodynamic (EHD) Lubrication ................................ 2-7 2-9 Oil R

  16. A new and effective method for thermostatting confined fluids

    SciTech Connect (OSTI)

    De Luca, Sergio; Todd, B. D., E-mail: btodd@swin.edu.au [Department of Mathematics, Faculty of Science, Engineering and Technology, and Centre for Molecular Simulation, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Hansen, J. S. [DNRF Center “Glass and Time,” IMFUFA, Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)] [DNRF Center “Glass and Time,” IMFUFA, Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Daivis, Peter J. [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia)] [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia)

    2014-02-07T23:59:59.000Z

    We present a simple thermostatting method suitable for nanoconfined fluid systems. Two conventional strategies involve thermostatting the fluid directly or employing a thermal wall that couples only the wall atoms with the thermostat. When only a thermal wall is implemented, the temperature control of the fluid is true to the actual experiment and the heat is transferred from the fluid to the walls. However, for large or complex systems it can often be computationally prohibitive to employ thermal walls. To overcome this limitation many researchers choose to freeze wall atoms and instead apply a synthetic thermostat to the fluid directly through the equations of motion. This, however, can have serious consequences for the mechanical, thermodynamic, and dynamical properties of the fluid by introducing unphysical behaviour into the system [Bernardi et al., J. Chem. Phys. 132, 244706 (2010)]. In this paper, we propose a simple scheme which enables working with both frozen walls and naturally thermostatted liquids. This is done by superimposing the walls with oscillating particles, which vibrate on the edge of the fluid control volume. These particles exchange energy with the fluid molecules, but do not interact with wall atoms or each other, thus behaving as virtual particles. Their displacements violate the Lindemann criterion for melting, in such a way that the net effect would not amount to an additional confining surface. One advantage over standard techniques is the reduced computational cost, particularly for large walls, since they can be kept rigid. Another advantage over accepted strategies is the opportunity to freeze complex charged walls such as ?-cristobalite. The method furthermore overcomes the problem with polar fluids such as water, as thermalized charged surfaces require higher spring constants to preserve structural stability, due to the effects of strong Coulomb interactions, thus inevitably degrading the thermostatting efficiency.

  17. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator

    SciTech Connect (OSTI)

    Bodenan, F., E-mail: f.bodenan@brgm.f [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France); Guyonnet, D.; Piantone, P.; Blanc, P. [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France)

    2010-07-15T23:59:59.000Z

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al{sup 0}, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al{sup 0} are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  18. Low temperature barrier wellbores formed using water flushing

    DOE Patents [OSTI]

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10T23:59:59.000Z

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  19. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2003-10-21T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  20. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-10-08T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  1. Pore level imaging of fluid transport using synchrotron x-ray microtomography

    SciTech Connect (OSTI)

    Coles, M.E.; Hazlett, R.D.; Muegge, E.L. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States); Spanne, P. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Soll, W.E. [Los Alamos National Lab., NM (United States); Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-31T23:59:59.000Z

    Recently developed high resolution computed microtomography (CMI) using synchrotron X-ray sources is analogous to conventional medical Cr scanning and provides the ability to obtain three-dimensional images of specimens with a spatial resolution on the order of micrometers. Application of this technique to the study of core samples has previously been shown to provide excellent two- and three-dimensional high resolution descriptions of pore structure and mineral distributions of core material. Recently, computed microtomographic endpoint saturation images of a fluid filled sandstone core sample were obtained using a microtomographic apparatus and a high energy X-ray beam produced by a superconducting wiggler at the National Synchrotron Light Source at Brookhaven National Laboratory. Images of a 6 mm subsection of the one inch diameter core sample were obtained prior and subsequent to flooding to residual oil. Both oil and brine phases were observable within the imaged rock matrix. The rock matrix image data was used as input to a fluid transport simulator and the results compared with the end point saturation images and data. These high resolution images of the fluid filled pore space have not been previously available to researchers and will provide valuable insight to fluid flow, and provide data as input into and validation of high resolution porous media flow simulators, such as percolation-network and Lattice Boltzmann models.

  2. Immobilized fluid membranes for gas separation

    DOE Patents [OSTI]

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18T23:59:59.000Z

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  3. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-11-01T23:59:59.000Z

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

  4. Molecular modelling and simulation of the surface tension of real quadrupolar fluids

    E-Print Network [OSTI]

    Stephan Werth; Katrin Stöbener; Peter Klein; Karl-Heinz Küfer; Martin Horsch; Hans Hasse

    2014-08-21T23:59:59.000Z

    Molecular modelling and simulation of the surface tension of fluids with force fields is discussed. 29 real fluids are studied, including nitrogen, oxygen, carbon dioxide, carbon monoxide, fluorine, chlorine, bromine, iodine, ethane, ethylene, acetylene, propyne, propylene, propadiene, carbon disulfide, sulfur hexafluoride, and many refrigerants. The fluids are represented by two-centre Lennard-Jones plus point quadrupole models from the literature. These models were adjusted only to experimental data of the vapour pressure and saturated liquid density so that the results for the surface tension are predictions. The deviations between the predictions and experimental data for the surface tension are of the order of 20 percent. The surface tension is usually overestimated by the models. For further improvements, data on the surface tension can be included in the model development. A suitable strategy for this is multi-criteria optimization based on Pareto sets. This is demonstrated using the model for carbon dioxide as an example.

  5. Fluid-driven deformation of a soft granular material

    E-Print Network [OSTI]

    Christopher W. MacMinn; Eric R. Dufresne; John S. Wettlaufer

    2015-02-24T23:59:59.000Z

    Compressing a porous, fluid-filled material will drive the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through the Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multi-scale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.

  6. An Opto-Electric Micropump for Saline Fluids

    E-Print Network [OSTI]

    Reza Kiani Iranpour; Seyyed Nader Rasuli

    2014-05-07T23:59:59.000Z

    A novel method to pump fluid in lab on chip devices with velocities up to tens of micrometer per second is introduced. A focused laser beam locally heats up an electrolyte. A net charge tends to accumulate in the heat-absorbing area, due to unequal tendencies of positive and negative ions to move in the presence of the temperature gradient. An external electric field then exerts a net force on the accumulated charge and consequently on water. This causes flow of water, with velocities up to tens of micrometer per second, for a simple NaCl+water solution. The method lets us change direction and amount of fluid pumping, simply by replacing the focal area.

  7. Metal chelate process to remove pollutants from fluids

    DOE Patents [OSTI]

    Chang, S.G.T.

    1994-12-06T23:59:59.000Z

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  8. Reaction of glass during gamma irradiation in a saturated tuff environment. Part 1. SRL 165 glass

    SciTech Connect (OSTI)

    Bates, J.K.; Fischer, D.F.; Gerding, T.J.

    1986-02-01T23:59:59.000Z

    The influence of gamma irradiation on the reaction of actinide-doped borosilicate glass (SRL 165) in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The following conclusions were reached. The reaction of, and subsequent actinide release from, the glass depends on the dynamic interaction between radiolysis effects, which cause the solution pH to become more acidic; glass reaction, which drives the pH more basic; and test component interactions that may extract glass components from solution. The use of large gamma irradiation dose rates to accelerate reactions that may occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons between the present results and data obtained by reacting similar glasses using MCC-1 and NNWSI rock cup procedures indicate that the irradiation conditions used in the present experiments do not dramatically influence the reaction rate of the glass. 8 figs., 9 tabs.

  9. Spin and Madelung fluid

    E-Print Network [OSTI]

    G. Salesi

    2009-06-23T23:59:59.000Z

    Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

  10. Formulation, Implementation and Validation of a Two-Fluid model in a Fuel Cell CFD Code

    SciTech Connect (OSTI)

    Kunal Jain, Vernon Cole, Sanjiv Kumar and N. Vaidya

    2008-11-01T23:59:59.000Z

    Water management is one of the main challenges in PEM Fuel Cells. While water is essential for membrane electrical conductivity, excess liquid water leads to ooding of catalyst layers. Despite the fact that accurate prediction of two-phase transport is key for optimal water management, understanding of the two-phase transport in fuel cells is relatively poor. Wang et. al. [1], [2] have studied the two-phase transport in the channel and diffusion layer separately using a multiphase mixture model. The model fails to accurately predict saturation values for high humidity inlet streams. Nguyen et. al. [3] developed a two-dimensional, two-phase, isothermal, isobaric, steady state model of the catalyst and gas diffusion layers. The model neglects any liquid in the channel. Djilali et. al. [4] developed a three-dimensional two-phase multicomponent model. The model is an improvement over previous models, but neglects drag between the liquid and the gas phases in the channel. In this work, we present a comprehensive two- fluid model relevant to fuel cells. Models for two-phase transport through Channel, Gas Diffusion Layer (GDL) and Channel-GDL interface, are discussed. In the channel, the gas and liquid pressures are assumed to be same. The surface tension effects in the channel are incorporated using the continuum surface force (CSF) model. The force at the surface is expressed as a volumetric body force and added as a source to the momentum equation. In the GDL, the gas and liquid are assumed to be at different pressures. The difference in the pressures (capillary pressure) is calculated using an empirical correlations. At the Channel-GDL interface, the wall adhesion affects need to be taken into account. SIMPLE-type methods recast the continuity equation into a pressure-correction equation, the solution of which then provides corrections for velocities and pressures. However, in the two-fluid model, the presence of two phasic continuity equations gives more freedom and more complications. A general approach would be to form a mixture continuity equation by linearly combining the phasic continuity equations using appropriate weighting factors. Analogous to mixture equation for pressure correction, a difference equation is used for the volume/phase fraction by taking the difference between the phasic continuity equations. The relative advantages of the above mentioned algorithmic variants for computing pressure correction and volume fractions are discussed and quantitatively assessed. Preliminary model validation is done for each component of the fuel cell. The two-phase transport in the channel is validated using empirical correlations. Transport in the GDL is validated against results obtained from LBM and VOF simulation techniques. The Channel-GDL interface transport will be validated against experiment and empirical correlation of droplet detachment at the interface. References [1] Y. Wang S. Basu and C.Y. Wang. Modeling two-phase flow in pem fuel cell channels. J. Power Sources, 179:603{617, 2008. [2] P. K. Sinha and C. Y. Wang. Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell. Chem. Eng. Sci., 63:1081-1091, 2008. [3] Guangyu Lin and Trung Van Nguyen. A two-dimensional two-phase model of a pem fuel cell. J. Electrochem. Soc., 153(2):A372{A382, 2006. [4] T. Berning and N. Djilali. A 3d, multiphase, multicomponent model of the cathode and anode of a pem fuel cell. J. Electrochem. Soc., 150(12):A1589{A1598, 2003.

  11. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25T23:59:59.000Z

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  12. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains

    SciTech Connect (OSTI)

    Rathnayake, Sewwandi S. [Kent State University; Mirheydari, Mona [Kent State University; Schulte, Adam [Kent State University; Gillahan, James E. [Kent State University; Gentit, Taylor [Kent State University; Phillips, Ashley N. [Kent State University; Okonkwo, Rose K. [Kent State University; Burger, Koert N.J. [Utrecht University; Mann, Elizabeth K. [Kent State University; Vaknin, David [Ames Laboratory; Bu, Wei [Ames Laboratory; Agra-Kooijman, Dena Mae [Kent State University; Kooijman, Edgar E. [Kent State University

    2013-10-04T23:59:59.000Z

    Neutral lipid transport in mammals is complicated involving many types of apolipoprotein. The exchangeable apolipoproteins mediate the transfer of hydrophobic lipids between tissues and particles, and bind to cell surface receptors. Amphipathic a-helices form a common structural motif that facilitates their lipid binding and exchangeability. ApoLp-III, the only exchangeable apolipoprotein found in insects, is a model amphipathic a:helix bundle protein and its three dimensional structure and function mimics that of the mammalian proteins apoE and apoAI. Even the intracellular exchangeable lipid droplet protein TIP47/perilipin 3 contains an a-helix bundle domain with high structural similarity to that of apoE and apoLp-III. Here, we investigated the interaction of apoLp-III from Locusta migratoria with lipid monolayers. Consistent with earlier work we find that insertion of apoLp-III into fluid lipid monolayers is highest for diacylglycerol. We observe a preference for saturated and more highly ordered lipids, suggesting a new mode of interaction for amphipathic a-helix bundles. X-ray reflectivity shows that apoLp-III unfolds at a hydrophobic interface and flexible loops connecting the amphipathic cc-helices stay in solution. X-ray diffraction indicates that apoLp-III insertion into diacylglycerol monolayers induces additional ordering of saturated acyl-chains. These results thus shed important new insight into the protein-lipid interactions of a model exchangeable apolipoprotein with significant implications for its mammalian counterparts. (C) 2013 Elsevier B.V. All rights reserved.

  13. Reservoir description of low resistivity sandstones in the Mugrosa Formation (Oligocene) of Gala-Llanito Fields, Colombia, South America

    E-Print Network [OSTI]

    Bernal Guerrero, Maria Cristina

    1993-01-01T23:59:59.000Z

    resistivity log response produce oil. However, some of these reservoirs which present a low-resistivity response on well logs still produce water-free oil irrespective of the calculated water saturation value. Identification of the fluid saturations from...

  14. Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission

    E-Print Network [OSTI]

    Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular a microcavity to optimize the color of a phosphorescent organic light emitting device OLED based on the-sky blue.1063/1.2742577 The development of a stable, efficient, and saturated blue remains an important goal for phosphorescent organic

  15. Linear Feedback Control Input under Actuator Saturation: a Takagi-Sugeno Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Linear Feedback Control Input under Actuator Saturation: a Takagi-Sugeno Approach Souad Bezzaoucha into account the effect of saturation throughout the design procedure, a controller that may be linear. The third strategy is a two-step approach in which a nominal linear controller is first constructed

  16. Inelastic scattering and current saturation in graphene Vasili Perebeinos* and Phaedon Avouris

    E-Print Network [OSTI]

    Perebeinos, Vasili

    . The discrepancy is due to the self-heating effect which lowers substantially the value of the saturated velocity about the role of self-heating and elastic scattering on the current satu- ration. High bias find that the self-heating of graphene on SiO2 limits significantly the value of the saturated current

  17. Extensional wave attenuation and velocity in partially saturated sand in the sonic frequency range

    SciTech Connect (OSTI)

    Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

    2001-08-10T23:59:59.000Z

    Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1-9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (Q{sub E} dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.

  18. Ultrafast absorber saturation process and short pulse formation in injection lasers

    E-Print Network [OSTI]

    Buller, Gerald S.

    Ultrafast absorber saturation process and short pulse formation in injection lasers S. V. Zaitsev 1998 The nature of lasing threshold in passively Q-switched GaAs/AlGaAs lasers with saturable absorbers formed by heavy ion implantation is investigated in this article. After studying various laser

  19. Natural history of severe decompression sickness after rapid ascent from air saturation in a porcine model

    E-Print Network [OSTI]

    Fahlman, Andreas

    Carlo analysis decreased subject requirement without sacrificing power. This model provides a useful, the tissues contain the maximum nitrogen load possible for a given depth, so decompression from saturation saturation conditions are relatively sparse and, for ethical reasons, do not ap- proach the severe profiles

  20. 0.0.1 Saturated models What follows is the main definition of model theory.

    E-Print Network [OSTI]

    0.0.1 Saturated models What follows is the main definition of model theory. Definition: Let x's an algebraically closed field. It's also 1-saturated. Understanding a theory is understanding its types. Definition there is only 1 variable.) However, there is clearly no element satisfying these statements in N. Definition

  1. Non-quadratic Lyapunov functions for performance analysis of saturated systems

    E-Print Network [OSTI]

    Hu, Tingshu

    Non-quadratic Lyapunov functions for performance analysis of saturated systems Tingshu Hu, Andrew R. Teel and Luca Zaccarian Abstract-- In a companion paper [14], we developed a sys- tematic Lyapunov approach to the regional stability and per- formance analysis of saturated systems via quadratic Lyapunov

  2. Method for removing impurities from an impurity-containing fluid stream

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Fox, Robert V.

    2010-04-06T23:59:59.000Z

    A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.

  3. EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

  4. EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

  5. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    SciTech Connect (OSTI)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-11-01T23:59:59.000Z

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab.

  6. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect (OSTI)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01T23:59:59.000Z

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  7. Finite element simulation of electrorheological fluids

    E-Print Network [OSTI]

    Rhyou, Chanryeol, 1973-

    2005-01-01T23:59:59.000Z

    Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

  8. The effect of flooding velocity and degree of reservoir depletion on the recovery of oil by water flooding

    E-Print Network [OSTI]

    Hall, Phillips C

    1959-01-01T23:59:59.000Z

    I3 at 110 F 19 Observed Variation of Gas Saturation and Residual Oil Saturation . 21 5, Observed Pressure and Gas-Oil Ratio Histories As A Function of the Cumulative Recovery. . . . . . . . . . . 21 Waterflood Recovery At A Constant Pressure... ~ ~ ( ~ ~ ~ ~ Waterflood Recovery As A Function of Initial Gas SB'turatlon ~ ~ ~ ~ o ~ a ~ ~ ~ o o e ~ ~ ~ ~ 4 s a a a ~ 10. Residual Oil Saturation After Primary, Water. Flooding and Final Pressure Depletion. . . ~. . . . . ~ . . 30 Results of laboratory flooding...

  9. Experimental Investigation on the Use of Water Soluble Polyacrylamides as Thickeners During CO_(2) WAG EOR 

    E-Print Network [OSTI]

    Tovar, Francisco

    2014-07-24T23:59:59.000Z

    and core flood experiments in heavy oil indicate that the use of chemicals in the water slug may improve mobility control during WAG. Therefore, stability studies of common polymers used for EOR applications in CO_(2) saturated environments becomes...

  10. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. Water-induced morphology changes in BaO?-Al2O3 NOx storage materials. Abstract: Exposure of NO2-saturated BaO?-Al2O3 NOx storage materials to H2O vapour...

  11. Fluid modes of a spherically confined Yukawa plasma

    SciTech Connect (OSTI)

    Kaehlert, H.; Bonitz, M. [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel (Germany)

    2010-09-15T23:59:59.000Z

    The normal modes of a three-dimensional Yukawa plasma in an isotropic harmonic confinement are investigated by solving the linearized cold fluid equations. The eigenmodes are found analytically and expressed in terms of hypergeometric functions. It is found that the mode frequencies solely depend on the dimensionless plasma parameter {xi}={kappa}R, where R is the plasma radius and {kappa} is the inverse screening length. The eigenfrequencies increase monotonically with {xi} and saturate in the limit {xi}{yields}{infinity}. Compared with the results in the Coulomb limit [D. H. E. Dubin, Phys. Rev. Lett. 66, 2076 (1991)], we find an additional class of modes characterized by the number n which determines the number of radial nodes in the perturbed potential. These modes originate from the degenerate bulk modes of the Coulomb system. Analytical formulas for the eigenfrequencies are derived for limiting cases.

  12. Variable flexure-based fluid filter

    DOE Patents [OSTI]

    Brown, Steve B.; Colston Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13T23:59:59.000Z

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  13. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov (indexed) [DOE]

    for Fluids & Fractures - time lapse MTCSEM for fluid imaging - joint CSEM-MTseismic imaging ??? - use MEQ focal information with EM Imaging ScientificTechnical Approach...

  14. Heat transfer in porous media with fluid phase changes

    SciTech Connect (OSTI)

    Su, H.J.

    1981-06-01T23:59:59.000Z

    A one-dimensional experimental apparatus was built to study the heat pipe phenomenon. Basically, it consists of a 25 cm long, 2.5 cm I.D. Lexane tube packed with Ottawa sand. The two ends of the tube were subjected to different tempratures, i.e., one above the boiling temperature and the other below. The tube was well insulated so that a uniform one-dimensional heat flux could pass through the sand pack. Presence of the heat pipe phenomenon was confirmed by the temperature and saturation profiles of the sand pack at the final steady state condition. A one-dimensional steady state theory to describe the experiment has been developed which shows the functional dependence of the heat pipe phenomenon on liquid saturation gradient, capillary pressure, permeability, fluid viscosity, latent heat, heat flux and gravity. Influence of the heat pipe phenomenon on wellbore heat losses was studied by use of a two-phase two-dimensional cylindrical coordinate computer model.

  15. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28T23:59:59.000Z

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  16. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30T23:59:59.000Z

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  17. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01T23:59:59.000Z

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  18. Computational fluid dynamic applications

    SciTech Connect (OSTI)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03T23:59:59.000Z

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  19. Viscous dark fluid universe

    SciTech Connect (OSTI)

    Hipolito-Ricaldi, W. S. [Universidade Federal do Espirito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil); Velten, H. E. S.; Zimdahl, W. [Universidade Federal do Espirito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, Espirito Santo (Brazil)

    2010-09-15T23:59:59.000Z

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  20. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  1. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  2. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01T23:59:59.000Z

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  3. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    fracturing,  or  “fracking. ”  In  this  process,  fluids  a  coal  bed  through  fracking  requires  between  50,000  gallons  of  water.  Fracking  to  create  a  well  in  a  

  4. PROOF COPY [14-0457GB] 006409PHF PHYSICS OF FLUIDS 26, 000000 (2014)1

    E-Print Network [OSTI]

    Chan, Derek Y C

    mass, drag, and hydrody-18 namic lubrication--the last arises from the drainage of water trapped that are used in waste-water treatment, oil recovery,28 and mineral flotation1­3 the fluid mechanics can vary solved but the bubble has been treated as a "particle" with an effective mass.8,9 The collision42

  5. 1. Introduction Fluid flow in continuous casting of steel is of great inter-

    E-Print Network [OSTI]

    Thomas, Brian G.

    -phase fluid flow owing to the simulation kinematic viscosity of steel and water, the flow pattern itself and entrainment of the mold slag, · transient fluctuations and waves in the top surface level, and their effect, such as intermixing during a grade change and segregation. Extensive past work has employed physical water models

  6. Journal of Fluids and Structures 20 (2005) 753762 Fluidstructure interaction and transient cavitation tests in a

    E-Print Network [OSTI]

    Tijsseling, A.S.

    cavitation tests in a T-piece pipe A.S. Tijsselinga,�, A.E. Vardyb a Department of Mathematics and Computer­structure interaction (FSI) and vaporous cavitation is presented. The model is a closed, water-filled, T of the cavitation phenomenon. r 2005 Elsevier Ltd. All rights reserved. Keywords: Water hammer; Fluid

  7. Bistability and pulsations in cw semiconductor lasers with a controlled amount of saturable absorption

    SciTech Connect (OSTI)

    Harder, C.; Lau, K.Y.; Yariv, A.

    1981-09-01T23:59:59.000Z

    Experimental results of a buried heterostructure cw laser with a controllable amount of saturable absorption introduced by a segmented contact are presented. With no absorption the laser is stable and has a linear output characteristic. Increasing of the saturable absorption by changing the pump current through the control segment causes the light output of the device to pulsate and to show bistable and hysteretical behavior. The introduction of a controllable amount of saturable absorption suggest the usefulness of this device in generating extremely short pulses, for example, by passive mode locking and as a bistable optical device.

  8. Fluid Mixing from Viscous Fingering

    E-Print Network [OSTI]

    Jha, Birendra

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

  9. Bio-inspired fluid locomotion

    E-Print Network [OSTI]

    Chan, Brian, 1980-

    2009-01-01T23:59:59.000Z

    We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

  10. Rip Cosmology via Inhomogeneous Fluid

    E-Print Network [OSTI]

    V. V. Obukhov; A. V. Timoshkin; E. V Savushkin

    2013-09-18T23:59:59.000Z

    The conditions for the appearance of the Little Rip, Pseudo Rip and Quasi Rip universes in the terms of the parameters in the equation of state of some dark fluid are investigated. Several examples of the Rip cosmologies are investigated.

  11. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    SciTech Connect (OSTI)

    Roy, Sukhdev, E-mail: sukhdevroy@dei.ac.in; Yadav, Chandresh [Department of Physics and Computer Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282 005 (India)] [Department of Physics and Computer Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282 005 (India)

    2013-12-09T23:59:59.000Z

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800?nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates.

  12. GEOPHYSICAL FLUID DYNAMICS-I OC512/AS509 2011 P.Rhines 19-21 Jan 2011 LECTUREs 7-8: Dynamics of a single-layer fluid: waves, inertial oscillations, and

    E-Print Network [OSTI]

    -water' balance in a homogeneous fluid. The MASS conservation equation for a constant density fluid implies.1-7.6 (began last week), 10.4 (Kelvin waves) (similar material in Vallis §§ 2.8, 3.1, 3.6-3.8 Bretherton than a fraction of a wavelength. This is implicit in a scale analysis of the governing equation

  13. PDM performance Test Results and Preliminary Analysis: Incompressible and Compressible Fluids

    SciTech Connect (OSTI)

    Dreesen, D.S.; Gruenhagan, E.; Cohen, J.C.; Moran, D.W.

    1999-02-01T23:59:59.000Z

    Three, small diameter, Moineau, positive displacement (drilling) motors (PDMs) were dynamometer tested using water, air-water mist, air-water foam, and aerated water. The motors included (1) a 1.5-inch OD, single-lobe mud motor; (2) a 1.69-inch OD, 5:6 multi-lobe mud motor; and (3) a 1.75-inch OD, 5:6 multi-lobe air motor. This paper describes the test apparatus, procedures, data analysis, and results. Incompressible and compressible fluid performance are compared; linear performance, predicted by a positive displacement motor model, is identified where it occurs. Preliminary results and conclusions are (1) the performance of all three motors is accurately modeled using a two-variable, linear model for incompressible fluid and (2) the model was not successfully adapted to model compressible fluid performance.

  14. Solubility of hydrocarbons in salt water

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, X. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

    1994-01-01T23:59:59.000Z

    In the design and operation of industrial processes, physical and thermodynamic property data are required. Increasingly stringent regulations are making water solubility of substances even more critical. Water solubility data of naphthenes, or cycloalkanes, is applicable for the complete range of salt concentrations, including water without salt to water saturated with salt. The results are intended for use in initial engineering and environmental applications. Solubility values from the correlation are useful in determining the distribution of a hydrocarbon spill on its contact with sea water. Solubility values at other salt concentrations also may be computed. Results are presented for water solubility of hydrocarbons (naphthenes) as a function of salt concentration (log(S) = A + BX + CX[sup 2]). The correlation constants, A, B and C, are displayed in an easy-to-use tabular format that is applicable for rapid engineering use with the personal computer or hand-held calculator. The results for solubility in salt water are applicable for the complete range of salt concentrations. This range covers water without salt, X = 0, to water saturated with salt, X = 358,700 ppM(wt). Correlation and experimental results are in favorable agreement.

  15. Fluid-filled bomb-disrupting apparatus and method

    DOE Patents [OSTI]

    Cherry, Christopher R. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  16. Analysis of a drift-diffusion model with velocity saturation for spin-polarized transport in semiconductors

    E-Print Network [OSTI]

    Nicola Zamponi

    2014-02-25T23:59:59.000Z

    A system of drift-diffusion equations with electric field under Dirichlet boundary conditions is analyzed. The system of strongly coupled parabolic equations for particle density and spin density vector describes the spin-polarized semi-classical electron transport in ferromagnetic semiconductors. The presence of a nonconstant and nonsmooth magnetization vector, solution of the Landau-Lifshitz equation, causes the diffusion matrix to be dependent from space and time and to have in general poor regularity properties, thus making the analysis challenging. To partially overcome the analytical difficulties the velocity saturation hypothesis is made, which results in a bounded drift velocity. The global-in-time existence and uniqueness of weak solutions is shown by means of a semi-discretization in time, which yields an elliptic semilinear problem, and a quadratic entropy inequality, which allow for the limit of vanishing time step size. The convergence of the weak solutions to the steady state, under some restrictions on the parameters and data, is shown. Finally the higher regularity of solutions for a smooth magnetization in two space dimensions is shown through a diagonalization argument, which allows to get rid of the cross diffusion terms in the fluid equations, and the iterative application of Gagliardo-Nirenberg inequalities and a generalized version of Aubin lemma.

  17. A micromechanical approach to modeling partly saturated soils 

    E-Print Network [OSTI]

    Lamborn, Mark Jackson

    1986-01-01T23:59:59.000Z

    . 9. Cartesian Coordinate System (xl, x2, x3), in Relation to Cartesian Coordinate System ( Bl, B2, B3) Figure 3 . 1 0 . Uniform Pressure Pm Acting on Surface of Sphere . 124 Figure 3. 11. Three Spheres in Contact Alonq an Axis of Symmetry Figure... 3 . 1 2 . Mixture Phase Acting as a Binder Between Nei qhbori nq Spheres 135 Fi qure 3 . 1 3 . Air-Water Mixture 143 m n Figure 3. 14. Angle Bma Relative to x3 and x3 Coordinate Axes 172 Figure 4. 1. Uniform Pressure Acting Over a Portion of a...

  18. Influence of formation clays on the flow of aqueous fluids

    SciTech Connect (OSTI)

    Hower, W.F.

    1981-01-01T23:59:59.000Z

    Most sandstone formations contain clays that can have a significant effect on the flow of aqueous fluids. The clays most frequently detected are smectite, mixed layer, illite, kaolinite, and chlorite. All of these clays are capable of migrating and causing permeability damage when they are contacted by waters foreign to the formation. Normally, these waters alter ionic environments around the clays, which causes the clays to be dislodged from their original positions. Thus, any time clay is present in the rock, it can be assumed that permeability damage can occur. The degree of damage depends upon the concentration and types of clays present, their relative position in the rock, the severity of the ionic environmental change; and fluid velocity. Permeability damage has been minimized in oil and gas wells through the use of potassium and ammonium ions. 15 references.

  19. Fluid Mechanics IB Lecturer: Dr Natalia Berloff

    E-Print Network [OSTI]

    : hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate

  20. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  1. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    cake solids mass/m2, w 3. Ruth equation using dw = (1-)solid dx fluidL p Ku solidK )1( 1 resistance, , with cake porosity : velocity, u layer thickness, L pressure drop, p dynamic viscosity, fluid Finland februari 2014 Unit w: kg/m2 Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514

  2. QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    which include both me- chanical mechanisms and fluids, such as internal combustion engines and hydraulic

  3. Recent developments in geothermal drilling fluids

    SciTech Connect (OSTI)

    Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

    1981-01-01T23:59:59.000Z

    Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

  4. The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-Khamsin

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-temperature oxidation (LTO) of four Arabian crudes as well as blends of naphtha with a super-light crude-saturates increased. The lightest crude with 51.1 ºAPI gravity and un-saturates fraction of 0.2 showed the least LTO

  5. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  6. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants

    SciTech Connect (OSTI)

    Wang, Dengjun; Su, Chuming; Liu, Chongxuan; Zhou, Dongmei

    2014-05-01T23:59:59.000Z

    Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 0–50 mg L–1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 0–5 mg L–1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticles (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.

  7. New mud system produces solids-free, reusable water

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water, or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.

  8. Minimal time problem for a fed-batch bioreactor with saturating singular control

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Minimal time problem for a fed-batch bioreactor with saturating singular control T´erence Bayen in the present work is a fed-batch bioreactor with one species and one substrate. Our aim is to find an optimal

  9. E-Print Network 3.0 - attributes saturated salt Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: attributes saturated salt Page: << < 1 2 3 4 5 > >> 1 This thesis focuses on the restoration of salt marshes in north-west Europe. Salt marshes are important habitats that...

  10. High-Gain Harmonic Generation Free-Electron Laser at Saturation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gain Harmonic Generation Free-Electron Laser at Saturation T. Shaftan 1 , M. Babzien 1 , I. Ben-Zvi 1 , S. G. Biedron 2 , L. F. DiMauro 1 , A. Doyuran 1 , J.N. Galayda 2 , E....

  11. Effect of Initial Oil Saturation on In-Situ Combustion Performance of a Canadian Bitumen

    E-Print Network [OSTI]

    Aleksandrov, Denis

    2013-05-31T23:59:59.000Z

    generated from the chemical reactions between fuel formed during ISC and injected oxygen. Heat generation depends on the amount of fuel formed, which, in turn, is affected by initial oil saturation (IOS). Thus, in this study, ISC process dynamics were...

  12. Adaptive Internal Model Control for Mid-Ranging of Closed-Loop Systems with Internal Saturation

    E-Print Network [OSTI]

    saturations. The problem originates from previous work in machining with industrial robots, where an external and tested in milling scenarios [1], [2]. The setup consists of a conventional industrial robot

  13. Variations in coral reef net community calcification and aragonite saturation state on local and global scales

    E-Print Network [OSTI]

    Bernstein, Whitney Nicole

    2013-01-01T23:59:59.000Z

    Predicting the response of net community calcification (NCC) to ocean acidification OA and declining aragonite saturation state [Omega]a requires a thorough understanding of controls on NCC. The diurnal control of light ...

  14. Suppression of Mode-Beating in a Saturated Hole-Coupling FEL Oscillator

    E-Print Network [OSTI]

    Krishnagopal, S.

    2011-01-01T23:59:59.000Z

    cavity case L and with an FEL interaction. of mode-beatingMode profiles (with an FEL interaction) at three differentin a Saturated Hole-coupled FEL Oscillator S. Krishnagopal,

  15. Main flux saturation modelling in double-cage and deep-bar induction machines

    SciTech Connect (OSTI)

    Levi, E. [Liverpool John Moores Univ. (United Kingdom). School of Electrical Engineering] [Liverpool John Moores Univ. (United Kingdom). School of Electrical Engineering

    1996-06-01T23:59:59.000Z

    The available models of saturated double-cage and deep-bar induction machines are the current state-space model and the flux state-space model, where state-space variables are selected either as stator current and currents of both rotor cages, or stator flux linkage and flux linkages of both rotor cages. This paper presents a number of models of saturated double-cage (deep-bar) induction machines where alternative sets of state-space variables are selected. The method of main flux saturation modelling relies on recently introduced concept of generalized flux space vector, which has originally been developed for modelling of saturated single-cage induction machines. The procedure and the novel models are verified by experimental study and simulation of self-excitation process in a double-cage induction generator.

  16. Comparative analysis of remaining oil saturation in waterflood patterns based on analytical modeling and simulation 

    E-Print Network [OSTI]

    Azimov, Anar Etibar

    2006-08-16T23:59:59.000Z

    In assessing the economic viability of a waterflood project, a key parameter is the remaining oil saturation (ROS) within each pattern unit. This information helps in identifying the areas with the highest ROS and thus ...

  17. Silicon-germanium saturable absorbers and erbium-doped waveguides for integrated mode-locked lasers

    E-Print Network [OSTI]

    Byun, Hyunil

    2006-01-01T23:59:59.000Z

    In this thesis, Silicon-Germanium (SiGe) Saturable Bragg Reflectors (SBR) and Erbium-doped waveguide chips are fabricated and characterized as crucial components for integration of a mode-locked laser on a Si-chip. The ...

  18. Development and application of saturable absorbers to femtosecond solid-state laser mode-locking

    E-Print Network [OSTI]

    Prasankumar, Rohit Prativadi, 1975-

    2003-01-01T23:59:59.000Z

    Semiconductor saturable absorbers have had a major impact on the field of ultrashort pulse generation by increasing the stability and reliability of ultrashort pulse lasers, making them more useful in many applications. ...

  19. Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems

    SciTech Connect (OSTI)

    Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

  20. High-energy scattering in the saturation regime including running coupling and rare fluctuation effects

    SciTech Connect (OSTI)

    Xiang Wenchang [Fakultaet fuer Physik, Universitaet Bielefeld, D-33501 Bielefeld (Germany)

    2009-01-01T23:59:59.000Z

    The analytic form of the asymptotic behavior of the S matrix in the saturation regime including the running coupling is obtained. To get this result, we solve the Balitsky and Kovchegov-Weigert evolution equations in the saturation regime, which include running coupling corrections. We study also the effect of rare fluctuations on top of the running coupling. We find that the rare fluctuations are less important in the running coupling case as compared to the fixed coupling case.

  1. High energy scattering in the saturation regime including running coupling and rare fluctuation effects

    E-Print Network [OSTI]

    Wenchang Xiang

    2008-09-16T23:59:59.000Z

    The analytic result for the $S$-matrix in the saturation regime including the running coupling is obtained. To get this result we solve the Balitsky and Kovchegov-Weigert evolution equations in the saturation regime, which include running coupling corrections. We study also the effect of rare fluctuations on top of the running coupling. We find that the rare fluctuations are less important in the running coupling case as compared to the fixed coupling case.

  2. Estimation of Saturation of Permanent-Magnet Synchronous Motors Through an Energy-Based Model

    E-Print Network [OSTI]

    Jebai, AlKassem; Martin, Philippe; Rouchon, Pierre

    2011-01-01T23:59:59.000Z

    We propose a parametric model of the saturated Permanent-Magnet Synchronous Motor (PMSM) together with an estimation method of the magnetic parameters. The model is based on an energy function which simply encompasses the saturation effects. Injection of fast-varying pulsating voltages and measurements of the resulting current ripples then permit to identify the magnetic parameters by linear least squares. Experimental results on a surface-mounted PMSM and an interoir magnet PMSM illustrate the relevance of the approach.

  3. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    fluidr L wDdrag v½bL Lv dxbFF 331 0 . Picture: BMH99 PTG #12;Fluid&ParticulateSystems 424514/2010 Fluid/2010 Fluid&ParticulateSystems ÅA424514/2014 Basic concept wFAw A F VpVpP losscs cs loss losspumppump carlosscar wFP 212121 ,0, ppwwzz F w wFP #12;Fluid&ParticulateSystems 424514/2010 Fluid

  4. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30T23:59:59.000Z

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  5. Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    E-Print Network [OSTI]

    H. Niemi; K. J. Eskola; R. Paatelainen

    2015-05-11T23:59:59.000Z

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.

  6. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    DOE Patents [OSTI]

    Zhang, Zhiqiang (Lexington, KY); Lockwood, Frances E. (Georgetown, KY)

    2008-03-25T23:59:59.000Z

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  7. Organic fluids in a supercritical Rankine cycle for low temperature power generation

    SciTech Connect (OSTI)

    Vidhi, Rachana [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Sabau, Adrian S [ORNL

    2013-01-01T23:59:59.000Z

    This paper presents a performance analysis of a supercritical organic Rankine cycle (SORC) with various working fluids with thermal energy provided from a geothermal energy source. In the present study, a number of pure fluids (R23, R32, R125, R143a, R134a, R218, and R170) are analyzed to identify the most suitable fluids for different operating conditions. The source temperature is varied between 125 C and 200 C, to study its effect on the efficiency of the cycle for fixed and variable pressure ratios. The energy and exergy efficiencies for each working fluid are obtained and the optimum fluid is selected. It is found that thermal efficiencies as high as 21% can be obtained with 200 C source temperature and 10 C cooling water temperature considered in this study. For medium source temperatures (125 150 C), thermal efficiencies higher than 12% are obtained.

  8. Fluid observers and tilting cosmology

    E-Print Network [OSTI]

    A. A. Coley; S. Hervik; W. C. Lim

    2006-05-24T23:59:59.000Z

    We study perfect fluid cosmological models with a constant equation of state parameter $\\gamma$ in which there are two naturally defined time-like congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e., $\\gamma>4/3$), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e., $\\gamma < 4/3$), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant.

  9. Stability of stainless-steel nanoparticle and water mixtures

    E-Print Network [OSTI]

    Song, You Young; Bhadeshia, H. K. D. H.; Suh, Dong-Woo

    2014-11-28T23:59:59.000Z

    of such mixtures, especially for heavy metallic particles. For 0.017 wt% stainless steel-distilled water nanoparticle-fluid, the thermal conductivity increases by 8.3 % at the optimal stability condition of pH 11. Keywords: Stainless steel, Nanofluid, Stability... of larger particle density related to metallic particles, metallic nanoparticle-fluids have been studied much less than oxides or nanotube dispersions. An important characteristic of a nanoparticle-fluid mixture or nanofluid is its stability with respect...

  10. Numerical Analysis of Water Temperature Distribution in the Tank of ASHPWH it ha Cylindrical Condenser

    E-Print Network [OSTI]

    Wang, D.; Shan, S.; Wang, R.

    2006-01-01T23:59:59.000Z

    presented a mathematic model for a cylindrical water tank with a cylindrical condenser as its heat source. The computational fluid dynamics (CFD) software package, FLUENT, was used to study hot water temperature distribution in the tank of the ASHPWH...

  11. air-water vertical upward: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 30 Chapter 2 x Pressure Distribution in a Fluid 89...

  12. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, Thomas (Morgantown, WV)

    1989-01-01T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  13. Maxwell's fluid model of magnetism

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2015-02-20T23:59:59.000Z

    In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.

  14. Design of Hard Water Stable Emulsifier Systems for Petroleum-

    E-Print Network [OSTI]

    Clarens, Andres

    Design of Hard Water Stable Emulsifier Systems for Petroleum- and Bio-based Semi for petroleum and bio-based MWFs that improve fluid lifetime by providing emulsion stability under hard water. The newly developed petroleum and bio-based formulations with improved hard water stability are competitive

  15. J. Fluid Mech. (1999), vol. 391, pp. 123149. Printed in the United Kingdom c 1999 Cambridge University Press

    E-Print Network [OSTI]

    Renardy, Yuriko

    conditions, the fully nonlinear saturation to steady bamboo waves is achieved. As the speed is increased-dependent. The appearance of vortices and the locations of the extremal values of pressure are investigated for both up material. An industrial application is the lubricated pipelining of crude oil with the addition of water

  16. Non-Newtonian fluid flow

    E-Print Network [OSTI]

    Osinski, Charles Anthony

    1963-01-01T23:59:59.000Z

    zero and unity. The Ostwald- de Waele Equation (4), commonly known as the power law, is sometimes used to describe fluid behavior of this type. The rheological equation is (4) where the parameters "k" and "n" are constant for a particular fluid... be extended to include Reynolds numbers and the type of flow determined to be laminar and/or turbulent. It is assumed that the transition from laminar to turbulent flow occurs at a Reynolds number of 2100, the numeric distribution of Reynolds numbers...

  17. Viscosity of a nucleonic fluid

    E-Print Network [OSTI]

    Aram Z. Mekjian

    2012-03-21T23:59:59.000Z

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  18. DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION

    E-Print Network [OSTI]

    Kasman, Alex

    -fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction

  19. Environmental and Water Resources Engineering Seminar Wednesday, March 7, 2012

    E-Print Network [OSTI]

    Kamat, Vineet R.

    ). This has the combined features of the cooling properties of water and lubricity of oil. MWFs inevitably and lubrication at the contact point are achieved by application of a fluid referred to as metalworking fluid (MWF attractive option, since it is effective with relatively low energy demands when compared to current physical

  20. Steady water waves with multiple critical layers: interior dynamics

    E-Print Network [OSTI]

    Mats Ehrnström; Joachim Escher; Gabriele Villari

    2011-04-01T23:59:59.000Z

    We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.

  1. 5.4.1 Ventilation and mode water `Mode Water' is the name given to a layer of

    E-Print Network [OSTI]

    Talley, Lynne D.

    5.4.1 Ventilation and mode water generation `Mode Water' is the name given to a layer of nearly (rather than the Ekman layer) that ventilates the underlying ocean, 5.4 Mode Waters Kimio Hanawa and Lynne of ventilated fluid within the sub- tropical gyre was indeed much increased due to lateral induction. In fact

  2. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  3. Synthetic drill-in fluid for gravel packing depleted sands and pressured shale

    SciTech Connect (OSTI)

    Ali, S.; Griffith, G. [Chevron USA Production Co., New Orleans, LA (United States); Jones, T.; Hinojosa, R. [Baker Hughes INTEQ, Houston, TX (United States); Smejkal, K. [Baker Oil Tools, Houston, TX (United States)

    1999-03-01T23:59:59.000Z

    Weighted synthetic- or oil-base drill-in fluids offer an excellent solution to the problem of reactive, pressured shale. However, some operators remain uneasy about drilling into a reservoir with an invert emulsion drill-in fluid. This apprehension is partly due to the possibility of creating emulsion blocks or changing the rock matrix wettability. Either of these conditions may reduce the crude`s mobility by restricting flow. This formation damage is avoided with water-base drill-in fluids, but the borehole stability problem remains an issue. A synthetic drill-in fluid`s ability to stabilize reactive shales is well documented. There remains a concern that once reactive shales are exposed to completion brine, the inhibition imparted by a synthetic fluid is lost. If lost, the shale particles could spall (slough) freely into the wellbore, plugging the screens and resulting in an incomplete gravel placement. Another concern is the effective displacement of the synthetic fluid to the completion brine without creating undesirable emulsions and damaging the integrity of the synthetic-fluid filter cake. The key appears to be selecting a spacer system that prevents formation of viscous emulsions at the interfaces and would not aggressively attack the wellbore filter cake. The paper describes laboratory evaluation, simulated core tests, test results, a field case history in the South Timbalier field offshore Louisiana, and lessons learned.

  4. A study of boiling water flow regimes at low pressures

    E-Print Network [OSTI]

    Fiori, Mario P.

    1966-01-01T23:59:59.000Z

    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

  5. Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    is the fracking fluid (also called drilling return wa- ter, drilling wastewater, flowback, or produced- ing (fracking), the portion of water withdrawals related to mining is likely to rise. The information

  6. Isotope Geochemistry of Thermal and Nonthermal Waters in the...

    Open Energy Info (EERE)

    geothermal fluids display a positive oxygen 18 shift of not less than 2 because of rock-water isotopic exchange at 220-300C. The Valles geothermal system is capped by a...

  7. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    E-Print Network [OSTI]

    Tsang, Yvonne

    2010-01-01T23:59:59.000Z

    of high-level nuclear waste releases heat that will increaseinfinite string of waste containers (heat source) emplacedof fluid and heat flow near high-level waste containers

  8. Visually simulating realistic fluid motion

    E-Print Network [OSTI]

    Naithani, Priyanka

    2002-01-01T23:59:59.000Z

    's second law of motion and Conservation of Mass, which leads to the continuity equation. Newton's second law states that the total force F, acting on an element equals mass m times the element's acceleration a. In the case of fluids we do not consider...

  9. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  10. Seismic waves in rocks with fluids and fractures

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14T23:59:59.000Z

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  11. Quantifying the stimuli of photorheological fluids

    E-Print Network [OSTI]

    Bates, Sarah Woodring

    2010-01-01T23:59:59.000Z

    We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...

  12. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  13. Fluid Gravity Engineering Rocket motor flow analysis

    E-Print Network [OSTI]

    Anand, Mahesh

    Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External (plume / contamination) · Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;

  14. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    size distribution (CSD) and quality #12;Fluid&ParticulateSystems 424514/2010 Fluid solution ­ Selective distribution of impurities between a liquid phase and a solid phase uniformity, purity

  15. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  16. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  17. Stator-flux-based vector control of induction machines in magnetic saturation

    SciTech Connect (OSTI)

    Hofmann, H.; Sanders, S.R.; Sullivan, C. [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1995-12-31T23:59:59.000Z

    In many variable-torque applications of induction machines it is desirable to operate the machine in magnetic saturation, thus allowing the machine to produce higher torques. Stator-flux-based control schemes have been developed as a possible alternative method of control of induction machines. Stator-flux-based control schemes need not depend on the magnetic characteristics of the machine, and hence are potentially more robust and easier to implement in magnetic saturation than rotor-flux-based control. The authors analyze the induction machine in saturation using a nonlinear {pi}-model of the machine`s magnetics, and develop a control scheme in the stator flux reference frame that is independent of magnetics. Experiments carried out on a 3 hp, 1,800 rpm wound rotor induction machine show smooth operation of the control scheme at torque levels up to at least 4 times rated torque.

  18. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    : The submersible laser bathymetric (LBath) optical system is capable of simultaneously providing visual images- dynamical wing. This underwater package is pulled through the water by a single towed cable with fiber optic special high energy density optical fibers. A remote Pentium based PC also at the surface is used

  19. Ultrasonic fluid densitometer for process control

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  20. Physico-chemical and Bio-chemical Controls on Soil C Saturation Behavior

    SciTech Connect (OSTI)

    Six, Johan; Plante, Alain

    2011-06-02T23:59:59.000Z

    In this project, we tested through a multitude of lab and field experiments the concept of soil C stabilization and determined metrics for the level of C saturation across soils and soil organic matter fractions. The basic premise of the soil C saturation concept is that there is a maximum amount of C that can be stabilized within a soil, even when C input is further increased. In a first analysis, our results showed that linear regression models do not adequately predict maximal organic C stabilization by fine soil particles. Soil physical and chemical properties associated with soil clay mineralogy, such as specific surface area and organic C loading, should be incorporated into models for predicting maximal organic C stabilization. In a second analysis, we found significantly greater maximal C stabilization in the microaggregate-protected versus the non-microaggregate protected mineral fractions, which provides independent validation that microaggregation plays an important role in increasing the protection and stabilization of soil C leading to greater total soil C accumulation in these pools. In a third study, our results question the role of biochemical preference in mineral C stabilization and of the chemical recalcitrance of specific plant-derived compounds in non-protected soil C accumulation. Because C biochemical composition of slowly turning over mineral protected C pools does not change with C saturation, input C composition is unlikely to affect long-term C stabilization. Rather, C saturation and stabilization in soil is controlled only by the quantity of C input to the soil and the physical and chemical protection mechanisms at play in long-term C stabilization. In conclusion, we have further corroborated the concept of soil C saturation and elucidated several mechanisms underlying this soil C saturation.

  1. Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation

    SciTech Connect (OSTI)

    Cropper, Clark [University of Tennessee, Knoxville (UTK); Perfect, Edmund [ORNL; van den Berg, Dr. Elmer [University of Tennessee, Knoxville (UTK); Mayes, Melanie [ORNL

    2010-01-01T23:59:59.000Z

    The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.

  2. Water Intoxication

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01T23:59:59.000Z

    2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

  3. Fluid Construction Grammar on Real Robots

    E-Print Network [OSTI]

    Steels, Luc

    Chapter 10 Fluid Construction Grammar on Real Robots Luc Steels1,2, Joachim De Beule3, and Pieter and P. Wellens (2012). Fluid Construction Grammar on Real Robots. In Luc Steels and Manfred Hild (Eds game experiments reported in this book. This framework is called Fluid Construction Grammar (FCG

  4. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .zevenhoven@abo.fi 2Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514/2014 2.1 Flow tube sections / Turku Finland RoNz 3 Fluid Flow in Tube Systems loss 2 2 1 pump 2 2 1 ppwzgppwzg outoutoutoutininininloss,311 ' 3 ppzgp 2loss,322 ' 3 ppzgp 210 VVV For a fully developed turbulent flow (horizontal

  5. Harmonic Fluids Changxi Zheng Doug L. James

    E-Print Network [OSTI]

    Columbia University

    Harmonic Fluids Changxi Zheng Doug L. James Cornell University Abstract Fluid sounds- ing. Furthermore, while offline applications can rely on talented foley artists to "cook up" plausible for vortex-based fluid sounds [Dobashi et al. 2003] and solid bodies [O'Brien et al. 2001; James et al. 2006

  6. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  7. Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers

    SciTech Connect (OSTI)

    Mehuys, D.; Mittelstein, M.; Salzman, J.; Yariv, A.

    1987-11-01T23:59:59.000Z

    Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.

  8. Positive and negative chirping of laser pulses shorter than 100 fsec in a saturable absorber

    SciTech Connect (OSTI)

    Miranda, R.S.; Jacobovitz, G.R.; Brito Cruz, C.H.; Scarparo, M.A.F.

    1986-04-01T23:59:59.000Z

    We present a calculation of the chirp generated in laser pulses shorter than 100 fsec on propagation through a saturable absorber (DODCI in ethylene glycol). The calculation takes into account the absorber saturation and the solvent nonlinear refractive index. At pulse energies greater than 10 nJ the chirp tends to be predominantly positive, and it increases rapidly as the pulse duration becomes shorter than 50 fsec. At pulse energies in the 1--7-nJ range the chirp is mostly negative for pulses longer than 30 fsec.

  9. Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven Ã?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 Ã?bo Akademi Univ - Thermal and Flow Engineering

  10. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00:123

    E-Print Network [OSTI]

    Buscaglia, Gustavo C.

    , magma chambers, fluid­fuel interactions, crude oil recovery, spray cans, sediment transport in riversINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00 for the treatment of discontinuous pressures in multi­fluid flows Roberto F. Ausas1 , Gustavo C. Buscaglia1

  11. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of desalination research. The primary technological method of generating additional water supplies is through desalination and enhanced water reuse and recycling technologies....

  12. Water Efficiency

    Energy Savers [EERE]

    Water Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group...

  13. Environmental and Water Resources Engineering Seminar Friday, February 17, 2012

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Brown, North Campus The University of Michigan 4:00 ­ 5:00 PM Dr. Aleksey Sheshukov Biological and Agricultural Engineering Kansas State University "Freezing of nonheaving unsaturated soils: Model formulation with zones composed of different combinations of ice, liquid water, and air. Predictions of ice saturation

  14. The displacement of gas by oil in the presence of connate water 

    E-Print Network [OSTI]

    Dardaganian, Stephen Garabed

    1957-01-01T23:59:59.000Z

    mixed stream of oil and gas. The mobile gas phase established within the core was then dis- placed by an oil flood. The assumption was made that the residual gas saturation within the oil bank would be the same as that which would occur within a... water bank resulting from a waterflood. The results indicate that the residual gas saturation within and behind the oil bank increases as the gas saturation prior to the flood increases. The relationship between the initial and residual gas...

  15. Silica recovery and control in Hawaiian geothermal fluids

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01T23:59:59.000Z

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  16. Silica recovery and control in Hawaiian geothermal fluids. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01T23:59:59.000Z

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  17. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R. (Rigby, ID)

    1982-01-01T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  18. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  19. Locomotion in complex fluids: Integral theorems

    E-Print Network [OSTI]

    Eric Lauga

    2014-10-15T23:59:59.000Z

    The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

  20. Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge

    SciTech Connect (OSTI)

    Ishijima, T.; Hotta, H.; Sugai, H.; Sato, M. [Plasma Nanotechnology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Honda Electronics Corporation, 20 Oyamazuka, Oiwa-cho, Toyohashi 441-3193 (Japan)

    2007-09-17T23:59:59.000Z

    Intense microwaves are injected from a slot antenna into water partly filling a metal vessel. When the vessel is evacuated to saturated vapor pressure ({approx}5x10{sup 3} Pa) of water, microwave breakdown gives rise to plasmas in many bubbles in the boiling water. Gas bubbling technique enables production of multibubble plasmas in water even at atmospheric pressure. Optical emissions from the exited species are investigated to identify radical species in water. In order to demonstrate application to purification of polluted water, methylene blue and trichlorethylene solution in 8 l water were observed to rapidly decrease with multibubble plasma treatment.