National Library of Energy BETA

Sample records for water saturation fluid

  1. Effects of fluid properties and initial gas saturation on oil recovery by water flooding 

    E-Print Network [OSTI]

    Arnold, Marion Denson

    1959-01-01

    EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

  2. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    E-Print Network [OSTI]

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    change in reservoir pressure, water saturation, and CO 2 /? ? ) in reservoir pressure, fluid saturations, and theand water saturation within a reservoir without significant

  3. Fluid distribution effect on sonic attenuation in partially saturated limestones

    SciTech Connect (OSTI)

    Cadoret, T. [Elf Exploration Production, Pau (France). Dept. Sismique] [Elf Exploration Production, Pau (France). Dept. Sismique; Mavko, G. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States); Zinszner, B. [Inst. Francais du Petrole, Rueil Malmaison (France). Lab. de Physique des Roches] [Inst. Francais du Petrole, Rueil Malmaison (France). Lab. de Physique des Roches

    1998-01-01

    Extensional and torsional wave-attenuation measurements are obtained at a sonic frequency around 1 kHz on partially saturated limestones using large resonant bars, 1 m long. To study the influence of the fluid distribution, the authors use two different saturation methods: drying and depressurization. When water saturation (S{sub w}) is higher than 70%, the extensional wave attenuation is found to depend on whether the resonant bar is jacketed. This can be interpreted as the Biot-Gardner-White effect. The experimental results obtained on jacketed samples show that, during a drying experiment, extensional wave attenuation is influenced strongly by the fluid content when S{sub w} is between approximately 70% and 100%. This sensitivity to fluid saturation vanishes when saturation is obtained through depressurization. Using a computer-assisted tomographic (CT) scan, the authors found that, during depressurization, the fluid distribution is homogeneous at the millimetric scale at all saturations. In contrast, during drying, heterogeneous saturation was observed at high water-saturation levels. Thus, the authors interpret the dependence of the extensional wave attenuation upon the saturation method as principally caused by a fluid distribution effect. Torsional attenuation shows no sensitivity to fluid saturation for S{sub w} between 5% and 100%.

  4. Environmental and Transport Effects on Core Measurements of Water Saturation, Salinity, Wettability, and Hydrocarbon Composition

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 166154 Environmental and Transport Effects on Core Measurements of Water Saturation, Salinity and core surfacing operations can significantly alter the water saturation, salinity, hydrocarbon lapse variations of multiphase fluid saturation, water salinity, phase composition, and wettability

  5. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water...

  6. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  7. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  8. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  9. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    SciTech Connect (OSTI)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-06-10

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected CO{sub 2} than are any of the individual images of change in geophysical parameters.

  10. Annual Logging Symposium, June 1620, 2012 IMPROVED ASSESSMENT OF IN-SITU FLUID SATURATION WITH

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SATURATION WITH MULTI-DIMENSIONAL NMR MEASUREMENTS AND CONVENTIONAL WELL LOGS Kanay Jerath and Carlos Torres saturating fluids. However, often there is ambiguity as to whether fluids appraised with NMR measurements-filtrate invasion, the NMR response of virgin reservoir fluids can be masked by that of mud filtrate. In order

  11. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  12. [Investigation of ultrasonic wave interactions with fluid-saturated porous rocks]. [Annual report

    SciTech Connect (OSTI)

    Adler, L.

    1992-07-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  13. (Investigation of ultrasonic wave interactions with fluid-saturated porous rocks)

    SciTech Connect (OSTI)

    Adler, L.

    1992-01-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  14. Grain Scale Modeling of Arbitrary Fluid Saturation in Random Packings

    E-Print Network [OSTI]

    Konstantin Melnikov; Roman Mani; Falk K. Wittel; Marcel Thielmann; Hans J. Herrmann

    2015-03-25

    We propose a model for increasing liquid saturation in a granular packing which can account for liquid redistribution at saturation levels beyond the well-studied capillary bridge regime. The model is capable of resolving and combining capillary bridges, menisci and fully saturated pores to form local liquid clusters of any shape. They can exchange volume due to the local Laplace pressure gradient via a liquid film on the surfaces of grains. Local instabilities like Haines jumps trigger the discontinuous evolution of the liquid front. The applicability of the model is demonstrated and compared to benchmark experiments on the level of individual liquid structures as well as on larger systems.

  15. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA)

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  16. Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation

    E-Print Network [OSTI]

    Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation Robert C slip-weakening behavior is specified, and the off-fault material is described using an elastic-plastic poroelastoplastic materials with and without plastic dilation. During nondilatant undrained response near

  17. Tracer diffusion in compacted, water-saturated bentonite

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-08-04

    Compacted Na-bentonite clay barriers, widely used in theisolation of solid-waste landfills and other contaminated sites, havebeen proposed for a similar use in the disposal of high-level radioactivewaste. Molecular diffusion through the pore space in these barriers playsa key role in their performance, thus motivating recent measurements ofthe apparent diffusion coefficient tensor of water tracers in compacted,water-saturated Na-bentonites. In the present study, we introduce aconceptual model in which the pore space of water-saturated bentonite isdivided into 'macropore' and 'interlayer nanopore' compartments. Withthis model we determine quantitatively the relative contributions ofpore-network geometry (expressed as a geometric factor) and of thediffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contristivity factor) to the apparent diffusioncoefficient tensor. Our model predicts, in agreement with experiment,that the mean principal value of the apparent diffusion coefficienttensor follows a single relationship when plotted against the partialmontmorillonite dry density (mass of montmorillonite per combined volumeof montmorillonite and pore space). Using a single fitted parameter, themean principal geometric factor, our model successfully describes thisrelationship for a broad range of bentonite-water system, from dilute gelto highly-compacted bentonite with 80 percent of its pore water ininterlayer nanopores.

  18. ssessing the conditions under which magmas become fluid-saturated has

    E-Print Network [OSTI]

    Langmuir, Charles H.

    that at a very low mole fraction of H2O (XH2OCO2 than oxidized ones: for instance, at NNO 2 the mole fraction of CO2 is 0.8, whereas at NNO 0.8, it is 0.95. This is due in fluid-saturated conditions with known H2O and CO2 concentrations, the corresponding volatile fugacities

  19. Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1

    E-Print Network [OSTI]

    , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities sands.We model the viscoelastic properties of a heavy- oil-saturated rock sample using CPA and a measured frequency- dependent complex shear modulus of the heavy oil. Comparison of modeled results

  20. ' low-frequency seismic waves in 'fluid-saturated layered rocks

    E-Print Network [OSTI]

    Table 2 lists properties for water, oil, and methane _ _ _ _'. ' for a range of reservoir conditions (4). ' VI. mmsmcALjExAMPLE's -. To illustrate the in?uence of' fluid ...

  1. The effect of undrained heating on a fluid-saturated hardened cement paste

    E-Print Network [OSTI]

    Ghabezloo, Siavash; Saint-Marc, Jérémie

    2008-01-01

    The effect of undrained heating on volume change and induced pore pressure increase is an important point to properly understand the behaviour and evaluate the integrity of an oil well cement sheath submitted to rapid temperature changes. This thermal pressurization of the pore fluid is due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. The equations governing the undrained thermo-hydro-mechanical response of a porous material are presented and the effect of undrained heating is studied experimentally for a saturated hardened cement paste. The measured value of the thermal pressurization coefficient is equal to 0.6MPa/'C. The drained and undrained thermal expansion coefficients of the hardened cement paste are also measured in the heating tests. The anomalous thermal behaviour of cement pore fluid is back analysed from the results of the undrained heating test.

  2. On the propagation of a disturbance in a heterogeneous, deformable, porous medium saturated with two fluid phases

    E-Print Network [OSTI]

    Vasco, D.W.

    2014-01-01

    Wave Figure 3. Oil-Water Air-Water Figure 4. Air-Water Oil-? associated with both the air-water and the oil-waterin Figure 4 for both the air- water and the oil-water fluid

  3. Acoustic wave propagation in a macroscopically inhomogeneous porous medium saturated by a fluid

    E-Print Network [OSTI]

    Laurent De Ryck; Jean-Philippe Groby; Philippe Leclaire; Walter Lauriks; Armand Wirgin; Claude Dépollier; Zine El Abidine Fellah

    2006-06-08

    The equations of motion in a macroscopically inhomogeneous porous medium saturated by a fluid are derived. As a first verification of the validity of these equations, a two-layer rigid frame porous system considered as one single porous layer with a sudden change in physical properties is studied. A simple wave equation is derived and solved for this system. The reflection and transmission coefficients are calculated numerically using a wave splitting-Green's function approach (WS-GF). The reflected and transmitted wave time histories are also simulated. Experimental results obtained for materials saturated by air are compared to the results given by this approach and to those of the classical transfer matrix method (TMM).

  4. Water as a thermoacoustic working fluid

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-01-01

    This short report, addressed only to the thermoacoustic cognoscenti, discusses thermodynamic and transport properties of water with emphasis on water's virtues as a thermoacoustic working fluid. Short-stack-approximation calculations are presented, showing that water is a good working fluid. A very rough design for a sound source using water is also presented as a starting point for discussing the merits and difficulties of this technology. 4 figs.

  5. On the relationship between water-flux and hydraulic gradient for unsaturated and saturated clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Threshold gradient for water flow in clay systems. Soil.Darcy’s law for the flow of water in soils. Soil Science 93:1970. Saturated flow of water through clay loam subsoil

  6. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

    2005-09-06

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  7. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  8. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  9. Tectonic "short circuit" of sub-horizontal fluid-saturated bodies as a possible mechanism of the earthquake

    E-Print Network [OSTI]

    Andrei Nechayev

    2013-07-18

    An alternative earthquake mechanism is proposed. The traditional stress mechanism of fracture formation assigned a support role. As a proximate cause of the earthquake the destruction of the roofs of sub-horizontal fluid-saturated bodies (SHFB) is considered. This collapse may occur due to redistribution of fluid pressure within the system of SHFB connected by cracks (tectonic or other nature). It can cause both shifts of rock blocks contributing to seismic shocks and various effects characteristic of foreshocks and aftershocks.

  10. PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS ABOVE THE

    E-Print Network [OSTI]

    Aubertin, Michel

    PARAMETRIC STUDY ON THE WATER CONTENT PROFILES AND OXIDATION RATES IN NEARLY SATURATED TAILINGS of various factors on the water content profiles in reactive tailings. The results presented here show that the position of the water table has a large influence on the water content profiles and on the oxygen flux

  11. Localization of Shear in Saturated Granular Media: Insights from a Multi-Scaled Granular-Fluid Model

    E-Print Network [OSTI]

    Aharonov, Einat; Sparks, David; Toussaint, Renaud

    2013-01-01

    The coupled mechanics of fluid-filled granular media controls the behavior of many natural systems such as saturated soils, fault gouge, and landslides. The grain motion and the fluid pressure influence each other: It is well established that when the fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and as a result catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these systems increases. Despite the great importance of the coupled mechanics of grains-fluid systems, the basic physics that controls this coupling is far from understood. We developed a new multi-scaled model based on the discrete element method, coupled with a continuum model of fluid pressure, to explore this dynamical system. The model was shown recently to capture essential feedbacks between porosity changes arising from rearrangement of grains, and local pressure variations due to ...

  12. EGS rock reactions with Supercritical CO2 saturated with water...

    Office of Scientific and Technical Information (OSTI)

    CO2 as a working fluid. less Authors: Earl D. Mattson ; Travis L. McLing ; William Smith ; Carl Palmer Publication Date: 2013-02-01 OSTI Identifier: 1076541 Report Number(s):...

  13. Connate Water Saturation -Irreducible or Not: the Key to Reliable Hydraulic Rock Typing in Reservoirs Straddling Multiple Capillary Windows

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 166082 Connate Water Saturation - Irreducible or Not: the Key to Reliable Hydraulic Rock Typing Irreducible water saturation is an important attribute to quantify reservoir petrophysical quality in terms of flow capacity. High in-situ capillary pressure causes connate water saturation in reservoir rocks

  14. X-ray Microtomography Determination of Air?Water Interfacial Area?Water Saturation Relationships in Sandy Porous Media

    SciTech Connect (OSTI)

    Costanza-Robinson, Molly S.; Harrold, Katherine H.; Lieb-Lappen, Ross M. (Middlebury)

    2008-08-06

    In this work, total smooth air-water interfacial areas were measured for a series of nine natural and model sandy porous media as a function of water saturation using synchrotron X-ray microtomography. Interfacial areas decreased linearly with water saturation, while the estimated maximum interfacial area compared favorably to the media geometric surface areas. Importantly, relative interfacial area (i.e., normalized by geometric surface area) versus water saturation plots for all media collapsed into a single linear cluster (r{sup 2} = 0.93), suggesting that geometric surface area is an important, and perhaps sufficient, descriptor of sandy media that governs total smooth interfacial area?water saturation relationships. Measured relationships were used to develop an empirical model for estimating interfacial area-water saturation relationships for sandy porous media. Model-based interfacial area estimates for independent media were generally slightly higher than interfacial areas measured using aqueous-phase interfacial tracer methods, which may indicate that microtomography captures regions of the air-water interface that are not accessible to aqueous-phase interfacial tracers. The empirical model presented here requires only average particle diameter and porosity as input parameters and can be used to readily estimate air-water interfacial area?water saturation relationships for sandy porous media.

  15. Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures change. The volumetric capillary water content of the soil at high suction can be calculated corresponds to a decreasing internal pressure of the water, which modifies its thermodynamic properties

  16. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength

    E-Print Network [OSTI]

    Bourg, I.C.

    2009-01-01

    diffusion in compacted water- saturated sodium bentonite at2000. QINS studies of water diffusion in Na-montmorillonite.1996. Thermodynamic properties of water in compacted sodium

  17. Rewetting of a low superheated rod with saturated water

    SciTech Connect (OSTI)

    Portillo, O.; Reyes, R.; Wayner, P.C. Jr.

    1999-07-01

    The study of the rewetting of a superheated surface has application in several technological fields. It is related to the control mechanism for loss of coolant accident (LOCA) in nuclear reactors. An adsorption model as the precursory mechanism for rewetting of a superheated surface is extended from its application to non-polar liquids to a polar fluid, and modeling calculations are compared with experimental data found in the literature. The adsorption model is based on interfacial forces acting at the tip of the rewetting front, the three-phase region. In this region, solid, liquid and vapor interfaces generate a contact angle that depends on the degree of superheat and describes the velocity of rewetting. The contact angle is a function of interfacial forces calculated through the disjoining pressure of the adsorbed film precursory of the rewetting. The influences of van der Waals and electrostatic intermolecular forces in the film thickness are analyzed. The authors find that the order of magnitude of the film thickness in the controlling region is of a few angstroms: thus, only van der Waals intermolecular forces define the interactions. For the prediction of the velocity of rewetting the temperature profile along the rod's surface is required and a one-dimensional and a two-dimensional heat conduction balances are solved. The thermophysical properties in the adsorption model are predicted by ASPEN PLUS data bank and from ASME steam tables. Variations of the predicted values have a strong influence on the results. The surface boundary condition on the rod contains an evaporative heat transfer coefficient that is calculated from the fitted experimental rewetting velocities and the two-dimensional temperature field in the rod. Using this calculation scheme the values of the evaporative heat transfer coefficient are obtained in the normal range of values. Therefore the adsorption model gives results that are consistent with experimental observations.

  18. Effect of GOR, Temperature, and Initial Water Saturation on Solution-Gas Drive in

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    of the stock-tank oil from Hamaca field (in Venezuela) used in our tests are 560,000 cp (at 24°C) and 8 on the effect of initial water saturation, solution GOR, and temperature. We used Hamaca stock-tank crude (from of the paper, we will discuss the results, followed by a number of conclusions. Experimental Live Oil. Stock

  19. Waste Management of Cuttings, Drilling Fluids, Flowback and Produced Water

    E-Print Network [OSTI]

    Walter, M.Todd

    Waste Management of Cuttings, Drilling Fluids, Flowback and Produced Water the drill bit as it cuts deeper into the earth. This fluid, which is used only of the shale. Drilling muds are made up of a base fluid (water, mineral oil

  20. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01

    Motion for a New Model of Hydraulic Fracture With an Induced1987. Hydrodynamics of a Vertical Hydraulic Fracture, Earthand Fluid Flow in the Hydraulic Fracture Pmess, (PhD.

  1. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01

    1981. The Roles of Pore Pressure and Fluid Flow in theor negative of pore pressure, over the same macroscopic areato the negative of the pore pressure, in turn equivalent to

  2. Reaction kinetics of olefin saturation in the hydrodesulfurization of fluid catalytic cracked naphtha 

    E-Print Network [OSTI]

    Schumann, Brian Herbert

    1995-01-01

    U.S. governmental agencies are calling for strict environmental regulations on the quality of gasoline. Fluid catalytic cracked naphtha is an important blending component of the gasoline pool. The majority of the sulfur in the gasoline pool comes...

  3. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  4. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  5. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    SciTech Connect (OSTI)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations

  6. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  7. Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere -- in the Metric System 

    E-Print Network [OSTI]

    Eihle, W. O.; Powers, R. J.; Clark, R.A.

    1968-01-01

    The hydrometeorologist is often confronted with the problem of determination of precipitable water in the atmosphere based on surface dewpoints and the assumption of a saturated atmosphere with a pseudoadiabatic lapse rate. ...

  8. Pore-Level Analysis of the Relationship Between Porosity, Irreducible Water Saturation, and Permeability of Clastic Rocks

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 109878 Pore-Level Analysis of the Relationship Between Porosity, Irreducible Water Saturation permeability from well- log calculations of porosity and irreducible water satura- tion. However, these models of compaction, cementation, and distribution of dispersed hydrated clay minerals. Irreducible water

  9. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).

  10. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    SciTech Connect (OSTI)

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.; Ilton, Eugene S.; Arey, Bruce W.; Tucek, Jiri; Felmy, Andrew R.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending up to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.

  11. EGS rock reactions with Supercritical CO2 saturated with water and water

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech ConnectExperiments (Conference)saturated with

  12. Deep Water Drilling to Catalyze the Global Drilling Fluids Market...

    Open Energy Info (EERE)

    Deep Water Drilling to Catalyze the Global Drilling Fluids Market Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 13 May, 2015 -...

  13. Complex Fluids. . . so much more than water!

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    solvent, head groups attracted to one another Form spherical micelles at low concentrations Higher hydrophobic head groups hydrophilic tail groups Complex Fluids ­ Bristol ­ Dec 17 2011 ­ p. 6/21 #12;Specific Example: Surfactants Bipolar molecules hydrophobic head groups hydrophilic tail groups Used in soaps Head

  14. Special Section --Marine Controlled-Source Electromagnetic Methods A Bayesian model for gas saturation estimation

    E-Print Network [OSTI]

    Chen, Jinsong

    reservoir model. We consid- er the porosity and fluid saturation of each layer in the reservoir, the bulk- trical resistivity of reservoir materials is highly sensitive to water saturation. However, estimating saturation estimation using marine seismic AVA and CSEM data Jinsong Chen1 , G. Michael Hoversten1 , Donald

  15. Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography

    E-Print Network [OSTI]

    , at shutdown, may freeze under subzero tem- peratures and makes cold start of a PEM fuel cell difficultQuantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X understanding of the two-phase flow and flooding occurrence in proton exchange membrane PEM fuel cells. We have

  16. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in an2 instead of water as heat transmission fluid (D.W. Brown,

  17. The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate 

    E-Print Network [OSTI]

    Dandona, Anil Kumar

    1971-01-01

    , 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

  18. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...

  19. Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor

    E-Print Network [OSTI]

    L. A. Bulavin; S. V. Khrapatiy; V. N. Makhlaichuk

    2015-03-13

    Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherland potential.Theoretical values of the dimerization constant for the heavy water vapor at different temperatures are compared to those for normal water.We see the exceeding of the values for the heavy water at all temperatures.This fact is in good agreement with all experimental data that is available.The excess is related to the differences in the character of the heat excitations of the dimers of normal and heavy water,their rotational constants and energy of their vibrational excitations.Significant role is also played by the monomer-dimer and dimer-dimer interactions.

  20. Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor

    E-Print Network [OSTI]

    Bulavin, L A; Makhlaichuk, V N

    2015-01-01

    Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherlan...

  1. Measurement of Water Transport from Saturated Pumice Aggregates to Hardening Cement Paste

    E-Print Network [OSTI]

    Bentz, Dale P.

    ) to hydrating cement paste [water/cement (w/c) ratio 0.3] took place in the first days after casting and covered-age self-desiccation shrinkage. INTRODUCTlON High strength cementitious materials are characterized~tigated the effects on the reduction of autogenous shrinkage of the replacement level of normal weight coarse

  2. Seismic low-frequency effects from oil-saturated reservoir zones

    E-Print Network [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.; Vingalov, Vjacheslav M.

    2002-01-01

    and gas saturation changes in underground reservoirs. Whilereservoir for the cases of oil and water saturation.

  3. Quantitative comparison of processes of oil-and water-based mud-filtrate invasion and corresponding effects on borehole resistivity measurements

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    for hydrocarbon exploration and production, drilling fluids sustain a pressure higher than that of formation into a porous and permeable rock formation as- suming 1D radial distributions of fluid saturation and fluid prop-filtrate and native fluids. The formation under analysis is 100% water saturated base case and is invaded

  4. Fate of Alpha-Amylase Used to Degrade Starch in Water-Based Drilling Fluids 

    E-Print Network [OSTI]

    Zhang, Jeffrey Z

    2014-12-11

    -AMYLASE USED TO DEGRADE STARCH IN WATER- BASED DRILLING FLUIDS A Thesis by JEFFREY ZEYUAN ZHANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree... ................................................................................................ 1 1.2 Drilling Fluid Filter Cake ......................................................................................... 2 1.2.1 Filter Cake Formation ....................................................................................... 2 1...

  5. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commonly used as the heat transfer fluid in refrigerators, air conditioners, and heat pumps. They generally have a low boiling point and a high heat capacity. This enables a...

  6. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a high boiling point. Viscosity and thermal capacity determine the amount of pumping energy required. A fluid with low viscosity and high specific heat is easier to pump, because...

  7. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  8. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    E-Print Network [OSTI]

    Nakagawa, S.

    2012-01-01

    exploration, it is essential to understand the seismicSEISMIC SIGNATURES OF METHANE HYDRATE FORMATION WITHIN PARTIALLY SATURATED SEDIMENT For assuring seafloor stability during off-shore oil and gas exploration

  9. Under consideration for publication in J. Fluid Mech. 1 Shallow-water sloshing in vessels undergoing

    E-Print Network [OSTI]

    Bridges, Tom

    Under consideration for publication in J. Fluid Mech. 1 Shallow-water sloshing in vessels-water equations, for sloshing in three dimensions (two horizontal and one vertical) in a vessel which is undergoing rigid-body motion in 3-space, are derived. The rigid-body motion of the vessel (roll-pitch-yaw and

  10. Trends in Hydraulic Fracturing Distributions and Treatment Fluids, Additives, Proppants, and Water Volumes Applied to

    E-Print Network [OSTI]

    Trends in Hydraulic Fracturing Distributions and Treatment Fluids, Additives, Proppants, and Water.S. Geological Survey #12;Cover photos. U.S. hydraulic fracturing operation (front and back covers). Photos courtesy of Mark Engle, U.S. Geological Survey. #12;Trends in Hydraulic Fracturing Distributions

  11. On the propagation of a coupled saturation and pressure front

    SciTech Connect (OSTI)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  12. MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS

    E-Print Network [OSTI]

    Stanford University

    MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS for t h e i n - s i t u measurement of water content i n porous media, expressed as a volume f r a c t i o n of t h e pore space; ( 2 ) t o measure water content i n t h e two-phase geothermal f l u i d flow

  13. Analysis of Water Based Fracture Fluid Flowback to Determine Fluid/Shale Chemical Interaction 

    E-Print Network [OSTI]

    Agim, Kelechi N

    2014-12-18

    Concerns about the substantial amounts of water and chemicals pumped into the subsurface during hydraulic fracturing are valid because long term effects of these stimulation actions are unknown at the present time. Although ...

  14. An analytical model for solute transport through a water-saturated single fracture and permeable rock matrix

    E-Print Network [OSTI]

    Houseworth, J.E.

    2014-01-01

    in fractured porous media, Water Resour. Res. , 48, W01542,of parallel fractures, Water Resour. Res. , 18(6), 1634–for a single fracture, Water Resour. Res. , 17(3), 555–564.

  15. Removal of Filter Cake Generated by Manganese Tetraoxide Water-based Drilling Fluids 

    E-Print Network [OSTI]

    Al Mojil, Abdullah Mohammed A.

    2011-10-21

    Three effective solutions to dissolve the filter cake created by water-based drilling fluids weighted with Mn3O4 particles were developed. Hydrochloric acid at concentration lower than 5 wt% can dissolve most of Mn3O4-based filter cake. Dissolving...

  16. J. Fluid Mech. (in press) 1 Shallow-water sloshing in vessels undergoing

    E-Print Network [OSTI]

    Bridges, Tom

    J. Fluid Mech. (in press) 1 Shallow-water sloshing in vessels undergoing prescribed rigid vertical) in a vessel which is undergoing rigid-body motion in 3-space, are derived. The rigid-body motion of the vessel (roll- pitch-yaw and/or surge-sway-heave) is modelled exactly and the only approximations

  17. Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions 

    E-Print Network [OSTI]

    Zigmond, Brandon

    2012-10-19

    , drilling fluid is of most importance and a technological challenge that can greatly affect the outcome of the overall operational efficiency. It is necessary to have a sound fundamental understanding of the behavior that water-based muds (WBM) exhibit when...

  18. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect (OSTI)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  19. Biphase Turbine Tests on Process Fluids 

    E-Print Network [OSTI]

    Helgeson, N. L.; Maddox, J. P.

    1983-01-01

    two-phase flows because of life-limiting erosion and cavitation problems. With the development of the Biphase tur bine, however, a reliable machine for efficiently converting this energy into shaft power is now avail able. Biphase Energy Systems.... The reinjection pump can then be eliminated, or at least reduced in size, and the problem of cavitation damage from pumping a saturated fluid is eliminated. Figure 3. Advanced Biphase Rotary Separator Turbine Operating with Air/Water Figure 2. Process Fluids...

  20. NOTES ABOUT REAL WATER AND REAL AIR OC569a Experimenting with Fluids, Winter 2008 10i08

    E-Print Network [OSTI]

    -4 (T=190 C, S=3.5%). Plots of fresh water density against temperature are shown in the figures below water just before freezing can float on top of the denser, 40 water). This allows life to proceed1 NOTES ABOUT REAL WATER AND REAL AIR OC569a Experimenting with Fluids, Winter 2008 10i08 · To make

  1. NOTES ABOUT REAL WATER AND REAL AIR OC569a Experimenting with Fluids, Winter 2010 11jan2010

    E-Print Network [OSTI]

    .5%). Plots of fresh water density against temperature are shown in the figures below. Fresh water is most freezing can float on top of the denser, 40 water). This allows life to proceed in the quite winter beneath1 NOTES ABOUT REAL WATER AND REAL AIR OC569a Experimenting with Fluids, Winter 2010 11jan2010

  2. Theory of frequency dependent acoustics in patchy-saturated ...

    E-Print Network [OSTI]

    and fluid distribution on elastic wave velocities in partially saturated lime- stones,'' J. Geophys. Res. 100, 9789–9803. Cadoret, T., Mavko, G., and Zinszner, ...

  3. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02

    Elastic properties of fluid saturated porous media with aligned fractures can be studied using the ...... that are in hydraulic equilibrium with the fractures, the.

  4. Hamiltonian fluid closures of the Vlasov-Amp{è}re equations: from water-bags to N moment models

    E-Print Network [OSTI]

    M. Perin; Cristel Chandre; P. J. Morrison; E. Tassi

    2015-07-02

    Moment closures of the Vlasov-Amp{\\`e}re system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.

  5. Hamiltonian fluid closures of the Vlasov-Amp{\\`e}re equations: from water-bags to N moment models

    E-Print Network [OSTI]

    Perin, M; Morrison, P J; Tassi, E

    2015-01-01

    Moment closures of the Vlasov-Amp{\\`e}re system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  7. CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation

    SciTech Connect (OSTI)

    Sprunt, E.S.; Davis, R.M.; Muegge, E.L. (Mobil R and D Corp. (US)); Desai, K.P. (Saudi Aramco (SA))

    1991-06-01

    This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure {le}4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples.

  8. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect (OSTI)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  9. Seismic attenuation due to patchy saturation

    E-Print Network [OSTI]

    Masson, Y. J; Pride, S. R

    2011-01-01

    attenuation peak is observed at lower frequencies due to oilor when oil is invading water, a single attenuation peak isusing oil as fluid 1 and water as fluid 2. The two peaks in

  10. Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid

    E-Print Network [OSTI]

    Daraio, Chiara

    expectation of laminar flow in electronic cooling, high flow rate and high fluid temperatures result in tur- bulent flow conditions in the inlet and outlet manifolds of the heat sink with predominantly laminar flow hot water as working fluid Chander Shekhar Sharma a , Manish K. Tiwari a , Bruno Michel b , Dimos

  11. A New Application of Potassium Nitrate as an Environmentally Friendly Clay Stabilizer in Water-Based Drilling Fluid 

    E-Print Network [OSTI]

    Zhou, Jing

    2015-04-15

    The application of potassium chloride (KCl) as a temporary clay stabilizing additive in water-based drilling fluids is problematic in chloride-sensitive formations. However, failure to utilize clay stabilization leads to additional costs to drilling...

  12. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect (OSTI)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  13. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids

    SciTech Connect (OSTI)

    Pruess, Karsten

    2007-11-01

    This paper summarizes our research to date into operatingEGS with CO2. Our modeling studies indicate that CO2 would achieve morefavorable heat extraction than aqueous fluids. The peculiarthermophysicalproperties of CO2 give rise to unusual features in the dependence ofenergy recovery on thermodynamic conditions and time. Preliminarygeochemical studies suggest that CO2 may avoid unfavorable rock-fluidinteractions that have been encountered in water-basedsystems. To morefully evaluate the potential of EGS with CO2 will require an integratedresearch programme of model development, and laboratory and fieldstudies.

  14. Stabilizing Fluid-Fluid Displacements in Porous Media Through Wettability Alteration

    E-Print Network [OSTI]

    Trojer, Mathias

    We study experimentally how wettability impacts fluid-fluid-displacement patterns in granular media. We inject a low-viscosity fluid (air) into a thin bed of glass beads initially saturated with a more-viscous fluid (a ...

  15. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  16. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  17. Hamiltonian fluid reductions of drift-kinetic equations and the correspondence with water-bag distribution functions

    E-Print Network [OSTI]

    Perin, Maxime; Tassi, Emanuele

    2015-01-01

    Hamiltonian models for the first three moments of the drift-kinetic distribution function, namely the density, the fluid velocity and the parallel pressure, are derived from the Hamiltonian structure of the drift-kinetic equations. The link with the water-bag closure is established, showing that, unlike the one-dimensional Vlasov equations, these solutions are the only Hamiltonian fluid reductions for the drift-kinetic equation. These models are discussed through their equations of motion and their Casimir invariants.

  18. Hamiltonian fluid reductions of drift-kinetic equations and the correspondence with water-bag distribution functions

    E-Print Network [OSTI]

    Maxime Perin; Cristel Chandre; Emanuele Tassi

    2015-10-12

    Hamiltonian models for the first three moments of the drift-kinetic distribution function, namely the density, the fluid velocity and the parallel pressure, are derived from the Hamiltonian structure of the drift-kinetic equations. The link with the water-bag closure is established, showing that, unlike the one-dimensional Vlasov equations, these solutions are the only Hamiltonian fluid reductions for the drift-kinetic equation. These models are discussed through their equations of motion and their Casimir invariants.

  19. Static Deformation of Fluid-Saturated Rocks

    E-Print Network [OSTI]

    Coyner, Karl

    1984-01-01

    The static strain response of porous solids to combinations of confining stress and pore pressure is explained both theoretically and experimentally. The theoretical analysis is a synopsis of linear elasticity principles ...

  20. Water Uptake in PEMFC Catalyst Layers

    E-Print Network [OSTI]

    Gunterman, Haluna P.

    2013-01-01

    water reservoir is measured to determine the saturation. Areservoir, it uptakes water. Instead, we aim for full saturation

  1. Coupled measurements of ?^18O and ?D of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain)

    E-Print Network [OSTI]

    Evans, Nicholas P.; Turchyn, Alexandra V.; Gázquez, Fernando; Bontognali, Tomaso R. R.; Chapman, Hazel J.; Hodell, David A.

    2015-01-01

    . The ?1818O and ?D of gypsum hydration water (CaSO4•2H2O) and salinity of fluid inclusions were measured in the same samples to test if they record the composition of the mother fluid from which gypsum was precipitated. Water isotopes are highly...

  2. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect (OSTI)

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

  3. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect (OSTI)

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  4. Fluid Hegemony: A Political Ecology of Water, Market Rule, and Insurgence at Bangalore's Frontier

    E-Print Network [OSTI]

    Ranganathan, Malini

    2010-01-01

    a system of local water harvesting that had evolved togethergrey water and freshwater) taps, and harvesting rainwater.of water sources. Already, supported by rainwater harvesting

  5. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks

    SciTech Connect (OSTI)

    Mavko, G.; Nolen-Hoeksema, R. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-02-01

    Seismic velocities in rocks at ultrasonic frequencies depend not only on the degree of saturation but also on the distribution of the fluid phase at various scales within the pore space. Two scales of saturation heterogeneity are important: (1) saturation differences between thin compliant pores and larger stiffer pores, and (2) differences between saturated patches and undersaturated patches at a scale much larger than any pore. The authors propose a formalism for predicting the range of velocities in partially saturated rocks that avoids assuming idealized pore shapes by using measured dry rock velocity versus pressure and dry rock porosity versus pressure. The pressure dependence contains all of the necessary information about the distribution of pore compliance for estimating effects of saturation at the finest scales where small amounts of fluid in the thinnest, most compliant parts of the pore space stiffen the rock in both compression and shear (increasing both P- and S-wave velocities) in approximately the same way that confining pressure stiffens the rock by closing the compliant pores. Large-scale saturation patches tend to increase only the high-frequency bulk modulus by amounts roughly proportional to the saturation. The pore-scale effects will be most important at laboratory and logging frequencies when pore-scale pore pressure gradients are unrelaxed. The patchy-saturation effects can persist even at seismic field frequencies if the patch sizes are sufficiently large and the diffusivities are sufficiently low for the larger-scale pressure gradients to be unrelaxed.

  6. A Model for Wave Propagation in a Porous Medium Saturated by a ...

    E-Print Network [OSTI]

    Let us consider a porous medium saturated by a mixture of oil and water, and. let So = So(x) and Sw = Sw(x) denote the oil and water saturations, respectively.

  7. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Transmission Fluid in the EGS Integrating the Carbon StorageK. Enhanced Geothermal Systems (EGS) Using CO2 as WorkingNHANCED G EOTHERMAL S YSTEMS (EGS): C OMPARING W ATER AND CO

  8. Nuclear Saturation and Correlations

    E-Print Network [OSTI]

    H. S. Köhler; S. A. Moszkowski

    2007-03-28

    The relation between nuclear saturation and NN-correlations is examined. Nucleons bound in a nucleus have a reduced effective mass due to the mean field. This results in off-energy-shell scatterings modifying the free-space NN-interaction by a dispersion correction. This is a major contribution to the density-dependence of the effective in-medium force and to saturation. Low-momentum effective interactions have been derived by renormalisation methods whereby correlations may be reduced by effectively cutting off high momentum components of the interaction. The effect of these cut-offs on dispersive corrections and on saturation is the main focus of this paper. The role of the tensor-force, its strength and its effect on correlations is of particular interest. The importance of the definition of the mean field in determining saturation as well as compressibility is also pointed out. With a cut-off below $\\sim 2.6 fm^{-1}$ there is no saturation but at lower density the binding energy is still well approximated suggesting that such a force may be useful in nuclear structure calculations of (small) finite nuclei if saturation is not an issue. A separable interaction that fits experimental phase-shifts exactly by inverse scattering methods is used. Recent experiments measure short ranged correlations (SRC's) to be 0.23 for $^{56}Fe$. Other experiments have obtained a depletion of occupation-numbers in $^{208}Pb$ to be $\\sim 0.2$. For nuclear matter with the separable interaction and a continuous spectrum we obtain the related quantity $\\kappa$ to be 0.175 with the Bonn-B deuteron parameters, while Machleidt's gets $\\kappa= 0.125$ for the Bonn-B potential and a continuous spectrum.

  9. Annual Logging Symposium, June 16-20, 2012 SATURATION-HEIGHT AND INVASION CONSISTENT HYDRAULIC

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    on pore geometry, which relates to saturation-height modeling at a later stage in reservoir water saturation (Swi). The assumption is that the reservoir under study underwent hydrocarbon migration water method which is only applicable to reservoir zones that are at nearly irreducible water saturation

  10. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    instead of water as heat transmission fluid. Initial studies2 ) instead of water as heat transmission fluid, and would

  11. Transport of synthetic colloids through single saturated fractures: A literature review

    SciTech Connect (OSTI)

    Reimus, P.W.

    1995-07-01

    Colloids having the same surface charge sign as the bulk of the geologic media in a groundwater system may be able to travel through the system faster than soluble species because they will follow fluid streamlines more closely and they should have less tendency to diffuse into pores or dead spaces in the media than soluble species. Synthetic colloids with uniform, controlled properties may be ideal for serving as {open_quotes}worst-case{close_quotes} tracers that provide lower-bound estimates of contaminant travel times in hydrologic systems. This report discusses a review of the literature pertaining to colloid transport in single saturated natural fractures. After a brief background discussion to put the literature review in perspective, the phenomenon of colloid transport in saturated fractures is divided into three major topics, each of which is reviewed in detail: (1) saturated fluid flow through fractures; (2) colloid transport by convection, diffusion, and force fields; and (3) colloid interactions with surfaces. It is suggested that these phenomena be accounted for in colloid transport models by using (1) lubrication theory to describe water flow through fractures, (2) particle tracking methods to describe colloid transport in fractures, and (3) a kinetic boundary layer approximation to describe colloid interactions with fracture walls. These methods offer better computational efficiency and better experimental accessibility to model parameters than rigorously solving the complete governing equations.

  12. The Combined Effect of Ocean Acidification and Euthrophication on water pH and Aragonite Saturation State in the Northern Gulf of Mexico 

    E-Print Network [OSTI]

    Garcia Tigreros, Fenix

    2013-04-10

    Rising atmospheric carbon dioxide (CO2) concentrations are increasing the rate at which anthropogenic CO2 is accumulating in the ocean, and thereby acidifying ocean water. However, accumulation of anthropogenic CO2 is not the only process affecting...

  13. Correlation of Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Tensions

    SciTech Connect (OSTI)

    Grate, Jay W.; Dehoff, Karl J.; Warner, Marvin G.; Pittman, Jonathan W.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2012-02-24

    The use of air-water, {Theta}{sub wa}, or air-liquid contact angles is customary in surface science, while oil-water contact angles {Theta}{sub ow}, are of paramount importance in subsurface multiphase flow phenomena including petroleum reocovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water-wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain a linear relationship in excellent agreement with the theoretical treatment; the data fit cos {Theta}{sub ow} = 0.667 cos {Theta}{sub ow} + 0.384 (R = 0.981, n = 13), intercepting cos {Theta}{sub ow} = -1 at -0.284. The theoretical slope, based on the fluid interfacial tensions {Theta}{sub wa}, {Theta}{sub ow}, and {Theta}{sub oa}, is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement with that obtained on an open planar silica surface using the same silane.

  14. Fluid Hegemony: A Political Ecology of Water, Market Rule, and Insurgence at Bangalore's Frontier

    E-Print Network [OSTI]

    Ranganathan, Malini

    2010-01-01

    harvesting, solid waste management), the main thrust was toslum improvement, and solid waste management. FromManagement: International Investment in Water, Wastewater and Solid Waste

  15. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Interactions at the Supercritical CO2–liquid InterfaceEnergy Concept Utilizing Supercritical CO2 Instead of Water,Feasibility of Using Supercritical CO2 as Heat Transmission

  16. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  17. Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow

    E-Print Network [OSTI]

    Flury, Markus

    contents with accuracy better than 0.01 effective saturation and the water potentials to better than 0 of water contents and water potentials inside the column. Colloid breakthrough curves were determined under a series of water contents ranging from 0.2 to 1.0 effective saturation. Colloids were mobile under all

  18. The concepts of total stress, effective stress, and fluid pressure are important to understanding where water

    E-Print Network [OSTI]

    Singha, Kamini

    hydraulic head-not from high pressure to low pressure. I digress briefly here to note that it is worthwhile weight of water is defined as the hydraulic head, h [L], h v g z P gw = + + 2 2 (1) where v energy term, is ignored. Groundwater moves from locations of higher hydraulic head to areas of lower

  19. Computational Fluid Dynamics Simulation of Green Water Around a Two-dimensional Platform 

    E-Print Network [OSTI]

    Zhao, Yucheng

    2010-07-14

    An interface-preserving level set method is incorporated into the Reynolds-Averaged Navier-Stokes (RANS) numerical method to simulate the application of the green water phenomena around a platform and the breaking wave above the deck. In the present...

  20. Long-wave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    to shorter wavelengths which then dissipate the energy. The nonlinearity in the KS equation is advective.2) The equation arises as an interface model in bio-fluids [15], solar convec- tion [19], and binary alloys [48Long-wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  1. Longwave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    then dissipate the energy. The nonlinearity in the KS equation is advective, and a#ects the dy­ namics di.2) The equation arises as an interface model in bio­fluids [15], solar convec­ tion [19], and binary alloys [48Long­wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  2. Phase behavior of a double-Gaussian fluid displaying water-like features

    E-Print Network [OSTI]

    C. Speranza; S. Prestipino; G. Malescio; P. V. Giaquinta

    2014-10-28

    Pair potentials that are bounded at the origin provide an accurate description of the effective interaction for many systems of dissolved soft macromolecules (e.g., flexible dendrimers). Using numerical free-energy calculations, we reconstruct the equilibrium phase diagram of a system of particles interacting through a potential that brings together a Gaussian repulsion with a much weaker Gaussian attraction, close to the thermodynamic stability threshold. Compared to the purely-repulsive model, only the reentrant branch of the melting line survives, since for lower densities solidification is overridden by liquid-vapor separation. As a result, the phase diagram of the system recalls that of water up to moderate (i.e., a few tens MPa) pressures. Upon superimposing a suitable hard core on the double-Gaussian potential, a further transition to a more compact solid phase is induced at high pressure, which might be regarded as the analog of the ice I to ice III transition in water.

  3. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  4. A Study of the Dielectric Properties of Dry and Saturated Green River Oil Shale

    SciTech Connect (OSTI)

    Sweeney, J; Roberts, J; Harben, P

    2007-02-07

    We measured dielectric permittivity of dry and fluid-saturated Green River oil shale samples over a frequency range of 1 MHz to 1.8 GHz. Dry sample measurements were carried out between room temperature and 146 C, saturated sample measurements were carried out at room temperature. Samples obtained from the Green River formation of Wyoming and from the Anvil Points Mine in Colorado were cored both parallel and perpendicular to layering. The samples, which all had organic richness in the range of 10-45 gal/ton, showed small variations between samples and a relatively small level of anisotropy of the dielectric properties when dry. The real and imaginary part of the relative dielectric permittivity of dry rock was nearly constant over the frequency range observed, with low values for the imaginary part (loss factor). Saturation with de-ionized water and brine greatly increased the values of the real and imaginary parts of the relative permittivity, especially at the lower frequencies. Temperature effects were relatively small, with initial increases in permittivity to about 60 C, followed by slight decreases in permittivity that diminished as temperature increased. Implications of these observations for the in situ electromagnetic, or radio frequency (RF) heating of oil shale to produce oil and gas are discussed.

  5. TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media

    SciTech Connect (OSTI)

    Reisenauer, A. E.; Key, K. T.; Narasimhan, T. N.; Nelson, R. W.

    1982-01-01

    The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output.

  6. Saturation and linear transport equation

    E-Print Network [OSTI]

    Krzysztof Kutak

    2009-04-29

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term.

  7. Static and Dynamic Behaviour Of A Porous Solid Saturated By A ...

    E-Print Network [OSTI]

    two di erent formations saturated by mixtures of oil and water and gas and water ..... o and Sw. w represent the change in oil and water content per. unit volume ...

  8. Analysis of Saturates, Aromatics, Resins, Asphaltenes (SARA), Water, and Clays in Water-Oil Emulsions for Steam-Assisted Gravity Drainage (SAGD) & Expanding Solvent-SAGD (ES-SAGD) 

    E-Print Network [OSTI]

    Kar, Taniya

    2015-08-05

    The presence of complex water-in-oil emulsions is a growing concern in heavy oil recovery due to the complexity and expenses involved in separating the water from the produced oil. Hence, it is of paramount importance to understand the components...

  9. Analytical model for flux saturation in sediment transport

    E-Print Network [OSTI]

    Thomas Pähtz; Eric J. R. Parteli; Jasper F. Kok; Hans J. Herrmann

    2015-08-21

    The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment and for a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out-of-equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and can thus be applied under different physical conditions.

  10. Helium measurements of pore-fluids obtained from SAFOD drillcore

    E-Print Network [OSTI]

    Ali, S.

    2010-01-01

    ionized water (DI) as drilling fluid. This procedure avoidsbeen contaminated with drilling fluids during recovery ofenough fluid inflow throughout scheduled drilling phases to

  11. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect (OSTI)

    Zhang, Z. Fred

    2014-01-01

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  12. COMPOUNDING EFFECTS OF FLUID CONFINEMENT AND SURFACE STRAIN ON THE WET-DRY TRANSITION AND DYNAMICS OF GRAPHENE-WATER SYSTEMS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A; Vlcek, Lukas; Cummings, Peter

    2015-01-01

    We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. We found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as well as on themore »slowing down of its dynamics that gives rise to anomalous diffusivity.« less

  13. COMPOUNDING EFFECTS OF FLUID CONFINEMENT AND SURFACE STRAIN ON THE WET-DRY TRANSITION AND DYNAMICS OF GRAPHENE-WATER SYSTEMS

    SciTech Connect (OSTI)

    Chialvo, Ariel A; Vlcek, Lukas; Cummings, Peter

    2015-01-01

    We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. We found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as well as on the slowing down of its dynamics that gives rise to anomalous diffusivity.

  14. It's The Fluids SEG Honorary Lecture

    E-Print Network [OSTI]

    T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

  15. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  16. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  17. Effects of pore fluids in the subsurface on ultrasonic wave propagation

    SciTech Connect (OSTI)

    Seifert, P.K.

    1998-05-01

    This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.

  18. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect (OSTI)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  19. QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS Hyeonkyeong Kim November 1993 The Institute and North West Water, Institute Partners . #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS #12;()Copyright by Hyeonkyeong Kim 1993 #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

  20. Squirt flow in fully saturated rocks

    SciTech Connect (OSTI)

    Dvorkin, J.; Mavko, G.; Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics

    1995-01-01

    The authors estimate velocity/frequency dispersion and attenuation in fully saturated rocks by employing the squirt-flow mechanism of solid-fluid interaction. In this model, pore fluid is squeezed from thin soft cracks into the surrounding large pores. Information about the compliance of these soft cracks at low confining pressures is extracted from high-pressure velocity data. The frequency dependence of squirt-induced pressure in the soft cracks is linked with the porosity and permeability of the soft pore space, and the characteristic squirt-flow length. These unknown parameters are combined into one expression that is assumed to be a fundamental rock property that does not depend on frequency. The appropriate value of this expression for a given rock can be found by matching the authors theoretical predictions with the experimental measurements of attenuation or velocity. The low-frequency velocity limits, as given by their model, are identical to those predicted by Gassmann`s formula. The high-frequency limits may significant exceed those given by the Biot theory: the high-frequency frame bulk modulus is close to that measured at high confining pressure. They have applied their model to D`Euville Limestone, Navajo Sandstone, and Westerly Granite. The model realistically predicts the observed velocity/frequency dispersion, and attenuation.

  1. Effective viscoelastic medium from fractured fluid-saturated ...

    E-Print Network [OSTI]

    A. Burgeaut, C. Carasso, S. Luckhaus and A. Mikelic, World Scientific, ... due to mesoscopic-scale heterogeneity”, Journal of Geophysical Research, 112, B03204. ...... definite since in the elastic limit it is associated with the strain energy density. ... imposed on our system by the first and second laws of thermodynamics.

  2. Accurate Identification, Imaging and Monitoring of Fluid-Saturated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodations Accommodations LosUnderground Reservoirs - Energy

  3. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  4. A study of air flow through saturated porous media and its applications to in-situ air sparging

    E-Print Network [OSTI]

    Marulanda, Catalina, 1971-

    2001-01-01

    The efficiency of an in situ air sparging system is controlled by the extent of contact between injected air and contaminated soil and pore fluid. Characterizing the mechanisms governing air propagation through saturated ...

  5. Is the degree of saturation a good candidate for Bishop's X parameter?

    E-Print Network [OSTI]

    Pereira, Jean-Michel; Alonso, Eduardo E; Vaunat, Jean; Olivella, Sebastia

    2010-01-01

    In unsaturated soil mechanics, the quest for an effective stress playing the same role as Terzaghi's effective stress does for saturated soils has introduced a long standing debate, dating back to the 1960s. Several contributions have been proposed since the early work of Bishop. It is well recognized to date that a single constitutive stress is not sufficient by itself to catch the main features of the behaviour of unsaturated soils and it is often combined with matric suction. In this paper, focus is given to a largely used formulation for such a constitutive stress, based on the use of an averaged pore pressure. In particular, this paper discusses on thermodynamics bases the validity of the choice of the factor X weighting the fluid pressures contribution to the constitutive stress. This factor is usually assumed to be equal to the degree of saturation of water. In this work it is shown that the choice of this natural candidate implies restrictive assumptions on the plastic flow rule. As shown from experim...

  6. View dependent fluid dynamics 

    E-Print Network [OSTI]

    Barran, Brian Arthur

    2006-08-16

    physically based rendering method known as photon mapping is used in conjunction with ray tracing to generate realistic images of water with caustics. These methods were implemented as a C++ application framework capable of simulating and rendering fluid in a...

  7. Aligned fractures modeled as boundary conditions within saturated porous media and induced anisotropy. A finite element approach.

    E-Print Network [OSTI]

    Santos, Juan

    Aligned fractures modeled as boundary conditions within saturated porous media and induced´e M. Carcione, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS SUMMARY Fractures in a fluid-saturated poroelastic -Biot- medium are very thin, compliant and highly permeable layers. Fracture

  8. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  9. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    SciTech Connect (OSTI)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  10. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael (Livermore, CA)

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  11. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  12. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    SciTech Connect (OSTI)

    Liou, T.S.

    1999-12-01

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important than the spatial correlation of asperity contacts. A faster breakthrough was observed in fractures subjected to higher normal stress, accompanied with a nonlinearly decreasing trend of the effective permeability. Interestingly, seepage dispersion is generally higher in fractures with intermediate fraction of asperity contacts; but it is lower for small or large fractions of asperity contacts. However, it may become higher if the ponding becomes significant. Transport simulations indicate that tracers bypass dead-end pores and travel along flow paths that have less flow resistance. Accordingly, tracer breakthrough curves generally show more spreading than breakthrough curves for water. Further analyses suggest that the log-normal time model generally fails to fit the breakthrough curves for water, but it is a good approximation for breakthrough curves for the tracer.

  13. Universal penetration test apparatus with fluid penetration sensor

    DOE Patents [OSTI]

    Johnson, Phillip W. (Rochester, MN); Stampfer, Joseph F. (Santa Fe, NM); Bradley, Orvil D. (Santa Fe, NM)

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  14. Kaolinite and Lead in Saturated Porous Media: Facilitated and Impeded Transport

    E-Print Network [OSTI]

    Ma, Lena

    models; Water treatment; Water pollution; Experimentation. Author keywords: Colloid; Colloid in water-saturated porous media. Batch adsorption experiments were used to obtain the adsorption isotherms of Pb onto kaolinite and quartz sand. Both kaolinite and sand adsorbed Pb from water, but the adsorption

  15. TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactive Geochemical Transport in Variably Saturated GeologicMedia

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-12-07

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.

  16. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    G. Patterson; P. Striffler

    2007-02-17

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

  17. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  18. Geomechanical Simulation of Fluid-Driven Fractures

    SciTech Connect (OSTI)

    Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

    2012-11-30

    The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

  19. Studies of a lattice model of water confined in a slit pore.

    SciTech Connect (OSTI)

    Liu, J.-C. (University of Massachusetts, Amherst, MA); Monson, Peter A. (University of Massachusetts, Amherst, MA); van Swol, Frank B.

    2008-03-01

    We describe an extension of the Bell-Salt lattice model of water to the study of water confined in a slit pore. Wall-fluid interactions are chosen to be qualitatively representative of water interacting with a graphite surface. We have calculated the bulk vapor-liquid phase coexistence for the model through direct Monte Carlo simulations of the vapor-liquid interface. Adsorption and desorption isotherms in the slit pore were calculated using grand canonical ensemble Monte Carlo simulations. In addition, the thermodynamic conditions of vapor-liquid equilibrium for the confined fluid were determined. Our results are consistent with recent calculations for off-lattice models of confined water that show metastable vapor states of confined water persisting beyond the bulk saturation conditions, except for the narrowest pores. The results are similarly consistent with recent experiments on water adsorption in graphitized carbon black.

  20. Rotation Reversal Bifurcation and Energy Confinement Saturation...

    Office of Scientific and Technical Information (OSTI)

    Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak OhmicL-Mode Plasmas Citation Details In-Document Search Title: Rotation Reversal Bifurcation and Energy...

  1. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    SciTech Connect (OSTI)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  2. Effective forces in saturated clays 

    E-Print Network [OSTI]

    Teetes, George Ray

    1993-01-01

    This paper is the culmination of a five-phase research effort investigating overpressured soil and rock formations. These formations, found all over the world, at varying depths, contain pore water confined at pressures ...

  3. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  4. Numerical simulation of two-phase fluid flow

    E-Print Network [OSTI]

    2013-01-30

    examples consider oil injection in a water-saturated porous medium. ... incremental fields, where stress and strain are increments with respect to a reference.

  5. 2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS

    E-Print Network [OSTI]

    · Climate change and impact assessments Environmental Fluid Mechanics and Hydraulic Engi- neering research generated by winds, landslide, avalanche, or earthquake · Marine Hydrokinetic Energy · Circulation2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS

  6. Post-processing of polymer foam tissue scaffolds with high power ultrasound: a route to increased pore interconnectivity, pore size and fluid transport

    E-Print Network [OSTI]

    N J Watson; R K Johal; Y Reinwald; L J White; A M Ghaemmaghami; S P Morgan; F R A J Rose; M J W Povey; N G Parker

    2013-02-18

    We expose thick polymer foam tissue scaffolds to high power ultrasound and study its effect on the openness of the pore architecture and fluid transport through the scaffold. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via x-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with no loss of scaffold integrity and negligible mass loss, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is a highly targetted and efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds.

  7. Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas 

    E-Print Network [OSTI]

    Gore, David Eugene

    1958-01-01

    INVESTIGATION OF THE THERNAL CONDUCTIVITY OF UNCONSOLIDATED SAND PACKS CONTAINING OIL, WATER, AND GAS A Thesis David E. Gore Submitted to the Graduate School of the Agricultural and Nechanical College oi' Texas in Partial fulfillment... and thxee-phase fluid saturation on the thermal conductivity of sand packs. The current research was conducted using a sand and lubricating oil on which related studies had been pexfoxmed. The thermal conductivity measuxements were made undex condi...

  8. The pH Base Saturation Relationships

    E-Print Network [OSTI]

    dePamphilis, Claude

    weather station having at least 25 years of temperature and precipitation data (U.S. Dept. of CommerceThe pH Base Saturation Relationships of Pennsylvania Subsoils by Edward J. Ciolkosz Agronomy Series Number 149 November 2001 #12;The pH Base Saturation Relationships of Pennsylvania Subsoils by Edward J

  9. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  10. Water in the West

    E-Print Network [OSTI]

    Fahlund, Andrew; Choy, Min L. Janny; Szeptycki, Leon

    2014-01-01

    hydraulic fracturing (or fracking) fluids, and limited waterEngelder, “Natural gas: Should fracking stop? ” Nature 477 (

  11. Exploring the Saturation Levels of Stimulated Raman Scattering in the Absolute Regime

    SciTech Connect (OSTI)

    Michel, D. T. [LULI, UMR 7605 CNRS-Ecole Polytechnique-CEA-Universite Paris VI, 91128 Palaiseau cedex (France); CEA DAM DIF, F- 91297 Arpajon (France); Depierreux, S.; Tassin, V. [CEA DAM DIF, F- 91297 Arpajon (France); Stenz, C. [CELIA, Universite Bordeaux 1, 351 cours de la Liberation, 33405 Talence cedex (France); Labaune, C. [LULI, UMR 7605 CNRS-Ecole Polytechnique-CEA-Universite Paris VI, 91128 Palaiseau cedex (France)

    2010-06-25

    This Letter reports new experimental results that evidence the transition between the absolute and convective growth of stimulated Raman scattering (SRS). Significant reflectivities were observed only when the instability grows in the absolute regime. In this case, saturation processes efficiently limit the SRS reflectivity that is shown to scale linearly with the laser intensity, and the electron density and temperature. Such a scaling agrees with the one established by T. Kolber et al.[Phys. Fluids B 5, 138 (1993)] and B Bezzerides et al.[Phys. Rev. Lett. 70, 2569 (1993)], from numerical simulations where the Raman saturation is due to the coupling of electron plasma waves with ion waves dynamics.

  12. Scintillation probe with photomultiplier tube saturation indicator

    DOE Patents [OSTI]

    Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  13. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    systems (EGS), heat transmission, CO 2 storage, numericaleither CO 2 or water as heat transmission fluid. For a modelCO 2 instead of water as heat transmission fluid. Originally

  14. A Saturation Algorithm for Homogeneous Binomial Ideals

    E-Print Network [OSTI]

    Mehta, Shashank K

    A Saturation Algorithm for Homogeneous Binomial Ideals Deepanjan Kesh and Shashank K Mehta Indian at computation in smaller rings is by Kesh and Mehta [7] which also requires the computation of one Gr

  15. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  16. Evaluation of C-14 as a natural tracer for injected fluids at the Aidlin sector of The Geysers geothermal system through modeling of mineral-water-gas Reactions

    E-Print Network [OSTI]

    Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

    2006-01-01

    treated Santa Rosa waste water at The Geysers (Creecraft andconsequences of treated waste water injection at The

  17. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  18. The effect on recovery of the injection of alternating slugs of gas and water at pressures above the bubble point 

    E-Print Network [OSTI]

    Givens, James Wilson

    1961-01-01

    . CONCLUSIONS, 24 6. ACKNOWLEDGEMENT. 7. APPE NDIX. 8. REFERENCES. 25 32 337530 LIST OF FIGURES AND TABLES FIGURES 1. Core Saturating and Flooding Apparatus Page 2. Physical Characteristics of Refined Oil and East Texas Crude Oil at 77'F. 3. Refined... Oil Recovery vs Pore Volumes of Injected Fluid for an Initial Gas Slug. 13 4, Refined Oil Recovery vs Pore Volumes of Injected Fluid for an Initial Water Slug. 14 5. The Effect of Slug Length on Recovery of Refined Oil. 15 6. Recovery of East...

  19. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-05-24

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater tests at proposed nuclear waste disposal site at Yucca Mountain (Nevada), Sonnenthal and Spycher (2000) and Spycher et al. (2003) enhanced TOUGHREACT on (1) high temperature geochemistry, (2) mineral reactive surface area calculations, and (3) porosity and permeability changes due to mineral alteration. On the other hand, Pruess et al. (1999) updated the TOUGH2 simulator to TOUGH2 V2. The present version of TOUGHREACT was developed by introducing the work of Sonnenthal and Spycher (2000) to the original work of Xu and Pruess (1998), and by replacing TOUGH2 (Pruess, 1991) by TOUGH2 V2 (Pruess et al, 1999). The TOUGHREACT program makes use of ''self-documenting'' features. It is distributed with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as self-teaching tutorial in the use of TOUGHREACT, and they provide templates to help jump-start new applications. The fluid and heat flow part of TOUGHREACT is derived from TOUGH2 V2, so in addition to the current manual, users must have manual of the TOUGH2 V2 (Pruess et al., 1999). The present version of TOUGHREACT provides the following different TOUGH2 fluid property or ''EOS'' (equation-of-state) modules: (1) EOS1 for water, or two waters with typical applications to hydrothermal problems, (2) EOS2 for multiphase mixtures of water and CO{sub 2} also with typical applications to hydrothermal problems, (3) EOS3 for multiphase mixtures of water and air with typical applications to vadose zone and nuclear waste disposal problems, (4) EOS4 that has the same capabilities as EOS3 but with vapor pressure lowering effects due to capillary pressure, (5) EOS9 for single phase water (Richards. equation) with typical applications to ambient reactive geochemical transport problems, (6) ECO2 for multiphase mixtures of water, CO{sub 2} and NaCl with typical applications to CO{sub 2} disposal in deep brine aquifers.

  20. It's The Fluids SEG Honorary Lecture

    E-Print Network [OSTI]

    information please visit: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil Gas TYPES of PORE FLUIDS Gas Mixtures ·DRILLING MUD ·PRODUCTION FLUIDS Miscible Injectants (CO2, Enriched Gas) #12;From Ivar = Porosity = Density sat = 0 (1- ) + f Density: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil

  1. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  2. Journal of Fluids and Structures (1996) 10, 395420 FLUID-STRUCTURE INTERACTION AND

    E-Print Network [OSTI]

    Tijsseling, A.S.

    1996-01-01

    of cooling-water systems in nuclear power stations, the reliability of fuel injection systems in aircraftJournal of Fluids and Structures (1996) 10, 395­420 FLUID-STRUCTURE INTERACTION AND CAVITATION) The simultaneous occurrence of fluid-structure interaction (FSI) and vaporous cavitation in the transient vibration

  3. Bions: A Family of Biomimetic Mineralo-Organic Complexes Derived from Biological Fluids

    E-Print Network [OSTI]

    Wu, Cheng-Yeu

    Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess ...

  4. Dependence of waterflood remaining oil saturation on relative permeability, capillary pressure, and reservoir parameters in mixed wet, turbidite sands

    SciTech Connect (OSTI)

    Hirasaki, G.J.

    1995-12-31

    The dependence of waterflood oil recovery on relative permeability, capillary pressure, and reservoir parameters was investigated by numerical simulation. The relative permeability and capillary pressure curves were based on laboratory measurements on unconsolidated sands and were evaluated for water-wet and mixed wet states. The reservoir model was a prototype turbidite sand with a range of thickness and permeability values. The economic oil recovery was based on an economic limit water cut of 50%. The remaining oil saturation in the swept region for the water-wet cases was close to the residual oil saturation. The remaining oil saturation of the mixed wet cases ranged from low values near the residual oil saturation to far above the residual oil saturation. It is dependent on the reservoir parameters that govern: (1) the vertical {open_quotes}film surface drainage{close_quotes} of oil by gravity, (2) accumulation of a high oil saturation and thus a high relative permeability under the cap rock, (3) updip migration of the oil that accumulated under the cap rock. The dependence on the reservoir parameters can be summarized by dimensionless groups. There is a dimensionless time for the vertical displacement of oil by gravity. The accumulation of a high oil saturation under the cap rock is dependent on the ratio of the capillary transition zone and the sand thickness. The updip migration is dependent on a combination of the gravity number and the end point mobility ratio.

  5. Seismic signatures of multiphase reservoir fluid distributions: Application to reservoir monitoring

    SciTech Connect (OSTI)

    Packwood, J.L.; Mavko, G.M.

    1995-12-31

    We present an investigation of the effect of multi-phase pore fluid distributions on the seismic velocity of saturated rock as a function of temperature and pressure. The purpose is to show how different fluid distributions might result in different seismic signatures. This is the rock physics link between reservoir simulation and seismic monitoring of hydrocarbon; (1) Uniform effective fluid, (2) Fluid in patches, and (3) Laminated fluid. The latter two models have heterogeneous distributions, and demonstrate that they have the same velocity characteristics. We used Beaver sandstone with a porosity of 6.4% and 5 MPa confining pressure as the rock matrix for our calculations. The uniform fluid model shows poor sensitivity to fluid saturation, with a variation in velocity of less than 1% when gas saturation exceeds 2%. The heterogeneous models show a fairly linear dependence of velocity on saturation with a variation of 7%. We also investigate the effect of oil distillation on seismic velocities during steam flooding. Comparisons velocities calculated using the patches model at temperature of 20{degrees}C and 150{degrees}C, the choice of hydrocarbon components is more critical at high values of oil saturation than at low values of oil saturation. In regions of high oil saturation, there is less than 0.5% variation in velocity using these components. The velocity variation using the effective fluid model at the same conditions is less than 0.5% over the entire range of gas saturation greater than 2%, indicating that the choice of hydrocarbons is not as critical as in the patches model.

  6. Geophys. J. Int. (0000) 000, 000000 Laboratory monitoring of P-waves in partially saturated sand

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . The study consists in running an ex- periment in a sand-filled tank partially saturated with water. Seismic propagation in the tank is generated in the kHz range by hitting a steel ball on a granite plate. Seismic data that seismic prospection may be a powerful tool for the characterization of transport phenomena in porous media

  7. Seismic signatures of reservoir transport properties and pore fluid distribution

    SciTech Connect (OSTI)

    Akbar, N. (Saudi Aramco, Dhahran (Saudi Arabia)); Mavko, G.; Nur, A.; Dvorkin, J. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-08-01

    The authors investigate the effects of permeability, frequency, and fluid distribution on the viscoelastic behavior of rock. The viscoelastic response of rock to seismic waves depends on the relative motion of pore fluid with respect to the solid phase. They consider wave-induced squirt fluid flow at two scales: (1) local microscopic flow at the smallest scale of saturation heterogeneity (e.g., within a single pore) and (2) macroscopic flow at a larger scale of fluid-saturated and dry patches. They explore the circumstances under which each of these mechanisms prevails. They examine such flows under the conditions of uniform confining (bulk) compression and obtain the effective dynamic bulk modulus of rock. The solutions are formulated in terms of generalized frequencies that depend on frequency, saturation, fluid and gas properties, and on the macroscopic properties of rock such as permeability, porosity, and dry bulk modulus. The study includes the whole range of saturation and frequency; therefore, the authors provide the missing link between the low-frequency limit and the high-frequency limit given by Mavko and Jizba. Further, they compare their model with Biot's theory and introduce a geometrical factor whose numeric value gives an indication as to whether local fluid squirt or global mechanisms dominate the viscoelastic properties of porous materials. The important results of their theoretical modeling are: (1) a hysteresis of acoustic velocity versus saturation resulting from variations in fluid distributions, and (2) two peaks of acoustic wave attenuation--one at low frequency and another at higher frequency (caused by local flow). Both theoretical results are compared with experimental data.

  8. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  9. Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils

    E-Print Network [OSTI]

    Jougnot, Damien; Revil, A; Doussan, Claude; 10.2136/vzj2011.0086

    2012-01-01

    Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has partly improved predictions by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the pred...

  10. The displacement of oil from unconsolidated sands by high temperature fluid injection 

    E-Print Network [OSTI]

    Hossain, A. K. M. Sakhawat

    1965-01-01

    PRESENTATION AND DISCUSSION OF RESULTS 7o CONCLUSIONS AND RECOMMENDATIONS So ACKNOWLEDGMENT 9, REFERENCES 10 o APPENDIX 18 22 36 37 00 L'IST OF FIGURES AMD TABLES 1 ISUJIES 1 . Saturation vs ~ Distance Plat 2 ~ Schematic Diagrkm of' Apparatus... Ratio vs Water Satur- ation for Runs Nos, 9 ? lg 11. Water-Oil Relativ'e Permeability' vent Water Saturation for P2 F, 150 F~ 200 F, and 29$m F Runs 12. Irreducible Water Saturation v's. . Temperature 1J. Residual Oi. l. Saturati6n vs Temperatuie...

  11. Centrifuge modeling of LNAPL transport in partially saturated sand

    SciTech Connect (OSTI)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-12-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an unsaturated sand prepared at two values of porosity. The duration of the centrifuge model tests corresponded to a prototype equivalent of 110 days. The choice of modeling a 2D flow together with the use of a transparent container enabled direct visual observation of the experiments. Scaling laws developed in connection with other centrifuge modeling studies were used to support the test results. Tests were conducted at two different centrifuge accelerations to verify, by means of the modeling of models technique, the similitude between the different experiments. The paper presents details of the experimental methodologies and the measuring techniques used to evaluate the final distribution of water and LNAPL content in the soils.

  12. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  13. Thermodynamic $R$-diagrams reveal solid-like fluid states

    E-Print Network [OSTI]

    George Ruppeiner; Peter Mausbach; Helge-Otmar May

    2014-11-11

    We evaluate the thermodynamic curvature $R$ for fluid argon, hydrogen, carbon dioxide, and water. For these fluids, $R$ is mostly negative, but we also find significant regimes of positive $R$, which we interpret as indicating solid-like fluid properties. Regimes of positive $R$ are present in all four fluids at very high pressure. Water has, in addition, a narrow slab of positive $R$ in the stable liquid phase near its triple point. Also, water is the only fluid we found having $R$ decrease on cooling into the metastable liquid phase, consistent with a possible second critical point.

  14. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation

    E-Print Network [OSTI]

    Goldobin, Denis S

    2015-01-01

    We study non-isothermal diffusion transport of a weakly-soluble substance in a liquid-saturated porous medium being in contact with the reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In such a system, the zones of saturated solution and non-dissolved phase coexist with the zones of undersaturated solution. The effect is firstly considered for the case of annual oscillation of the surface temperature of water-saturated ground being in contact with atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to the temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and case of weakly-soluble solids and liquids.

  15. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation

    E-Print Network [OSTI]

    Denis S. Goldobin; Pavel V. Krauzin

    2015-10-08

    We study non-isothermal diffusion transport of a weakly-soluble substance in a liquid-saturated porous medium being in contact with the reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In such a system, the zones of saturated solution and non-dissolved phase coexist with the zones of undersaturated solution. The effect is firstly considered for the case of annual oscillation of the surface temperature of water-saturated ground being in contact with atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to the temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and case of weakly-soluble solids and liquids.

  16. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 6: Mathematics, z). velocity vx (x, y, z, t) : in the x-direction. vx = Kx h/x saturated/water- table. Continuity Equation What is vx x + vy y + vz z ? It is the rate of accumulation of water at the point (x, y

  17. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 4: Groundwater () December in dried sample. Saturation: When these voids are fully filled with water. Specific Yield Sy : the ration of the colume of water that drains from a rock owing to gravity, to the total rock volumne. 00000000

  18. Petroleum Engineering 310 Reservoir Fluids

    E-Print Network [OSTI]

    of oilfield brine properties: Salinity, Bubble Point, formation volume factor, density and solution gas water12 Petroleum Engineering 310 Reservoir Fluids Credit 4: (3-3) Required for Juniors Catalog: Gas Formation Volume Factor. Viscosity. Wet Gas Gravity and Isothermal Compressibility. 5. Definition

  19. Elastic waves push organic fluids from reservoir rock Igor A. Beresnev,1

    E-Print Network [OSTI]

    Beresnev, Igor

    Elastic waves push organic fluids from reservoir rock Igor A. Beresnev,1 R. Dennis Vigil,2 Wenqing in a laboratory experiment, in which residual saturation is created in a glass micromodel, and mobilization waves push organic fluids from reservoir rock, Geophys. Res. Lett., 32, L13303, doi:10.1029/ 2005GL

  20. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    either CO 2 or water as heat transmission fluid. For a modelsystems (EGS), heat transmission, thermal breakthrough, CO 2instead of water as heat transmission fluid was proposed by

  1. Formulation of the Chip Cleanability Mechanics from fluid transport

    E-Print Network [OSTI]

    Garg, Saurabh; Dornfeld, David; Berger, K.

    2009-01-01

    drag force. Fig. 10 A Laminar fluid flow profile through thefluid (water) under the experimental flow conditions used here, has an expected parabolic laminar

  2. Formulation of the Chip Cleanability Mechanics from Fluid Transport

    E-Print Network [OSTI]

    Garg, Saurabh; Dornfeld, David; Klaus Berger

    2009-01-01

    drag force. Fig. 10 A Laminar fluid flow profile through thefluid (water) under the experimental flow conditions used here, has an expected parabolic laminar

  3. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Fluid Activity Date - 1982 Usefulness useful DOE-funding Unknown Notes Field, chemical, and isotopic data for 95 thermal and nonthermal waters in and around the Valles...

  4. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI.

    E-Print Network [OSTI]

    2015-01-01

    of gliomas using amine chemical exchange saturation transferenhancement mediated chemical exchange saturation transferZu Z, et al. On the origins of chemical exchange saturation

  5. Flow regimes for fluid injection into a confined porous medium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore »equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  6. Preferential mode of gas invasion in sediments : grain-scale model of coupled multiphase fluid flow and sediment mechanics

    E-Print Network [OSTI]

    Jain, Antone Kumar

    2009-01-01

    We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...

  7. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect (OSTI)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  8. Analytical Investigation by Using the Two-fluid-model to Study the Interfacial Behavior of Air-water Horizontal Stratified Flow

    E-Print Network [OSTI]

    Kuntoro, Hadiyan Yusuf; Indarto,

    2015-01-01

    In the chemical, petroleum and nuclear industries, pipelines are often used to transport fluids from one process site to another one. The understanding of the fluids behavior inside the pipelines is the most important consideration for the engineers and scientists. From the previous studies, there are several two-phase flow patterns in horizontal pipe. One of them is stratified flow pattern, which is characterized by the liquid flowing along the bottom of the pipe and the gas moving above it cocurrently. Another flow patterns are slug and plug flow patterns. This kind of flow triggers the damage in pipelines, such as corrosion, abrasion, and blasting pipe. Therefore, slug and plug flow patterns are undesirable in pipelines, and the flow is maintained at the stratified flow condition for safety reason. In this paper, the analytical-based study on the experiment of the stratified flow pattern in a 26 mm i.d. horizontal pipe is presented. The experiment is performed to develop a high quality database of the stra...

  9. Gas powered fluid gun with recoil mitigation

    SciTech Connect (OSTI)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  10. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  11. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  12. A model study of the performance of water-driven anticlinal reservoirs 

    E-Print Network [OSTI]

    Talash, Alvin Wesley

    1960-01-01

    II SUMMARY OF TEST DATA 1 2 3 5 6 7 8 9 10 ff 12 13 14 16 17 18 19 ZO Fluid Sam le A A A A A B B B B B B 'B B B B B B End End Ead Ead End End End End Ead f84 414 . 453 490 750 900 930 431 390 Ceater... influx. rate was 600 cc per hour (Figure 11). While the oil produced was 68 percent when the rate of water influx was 40 cc per hour (Figure 13) and the other con- ditions the same. Figure 14 is a plot of the reservoir oil saturation for optimum...

  13. Pore fluid effects on seismic velocity in anisotropic rocks

    SciTech Connect (OSTI)

    Mukerji, T.; Mavko, G. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-02-01

    A simple new technique predicts the high- and low-frequency saturated velocities in anisotropic rocks entirely in terms of measurable dry rock properties without the need for idealized crack geometries. Measurements of dry velocity versus pressure and porosity versus pressure contain all of the necessary information for predicting the frequency-dependent effects of fluid saturation. Furthermore, these measurements automatically incorporate all pore interaction, so there is no limitation to low crack density. The velocities are found to depend on five key interrelated variables: frequency, the distribution of compliant crack-like porosity, the intrinsic or noncrack anisotropy, fluid viscosity and compressibility, and effective pressure. The sensitivity of velocities to saturation is generally greater at high frequencies than low frequencies. The magnitude of the differences from dry to saturated and from low frequency to high frequency is determined by the compliant or crack-like porosity. Predictions of saturated velocities based on dry data for sandstone and granite show that compressional velocities generally increase with saturation and with frequency. However, the degree of compressional wave anisotropy may either increase or decrease upon saturation depending on the crack distribution, the effective pressure, and the frequency at which the measurements are made. Shear-wave velocities can either increase or decrease with saturation, and the degree of anisotropy depends on the microstructure, pressure, and frequency. Consequently great care must be taken when interpreting observed velocity anisotropy for measurements at low frequencies, typical of in situ observations, will generally be different from those at high frequencies, typical of the laboratory.

  14. Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils

    SciTech Connect (OSTI)

    Faybishenko, Boris

    1997-08-01

    Laboratory and field ponded infiltration tests in quasi-saturated soils (containing entrapped air) exhibit the same three-stage temporal variability for the flow rate and hydraulic conductivity. However, the values for the hydraulic conductivity may differ by as much as two orders of magnitude due to differences in the geometry and physics of flow when different laboratory and field methods are applied. The purpose of this paper is to investigate this variability using a comparison of results of ponded infiltration tests conducted under laboratory conditions using confined cores, with results of field tests conducted using partially isolated cores and double-ring infiltrometers. Under laboratory conditions in confined cores, during the firs stage, the water flux decreases over time because entrapped air plugs the largest pores in the soils; during the second stage, the quasi-saturated hydraulic conductivity increases by one to two orders of magnitude, essentially reaching the saturated hydraulic conductivity, when entrapped air is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing of the soil surface and the effect of biofilms sealing the pores within the wetted zone. Under field conditions, the second stage is only partially developed, and when the surface sealing process begins, the hydraulic pressure drops below the air entry value, thereby causing atmospheric air to enter the soils. As a result, the soils become unsaturated with a low hydraulic conductivity, and the infiltration rate consequently decreases. Contrary to the laboratory experiments in confined cores, the saturated hydraulic conductivity cannot be reached under field conditions. In computations of infiltration one has to take into account the variations in the quasi-saturated and unsaturated hydraulic conductivities, moisture and entrapped air content, and the hydraulic gradient in the quasi-saturated or unsaturated soils.

  15. Experimental study of crossover from capillary to viscous fingering for supercritical CO2 - water displacement in a homogeneous pore network

    SciTech Connect (OSTI)

    Wang, Ying; Zhang, Changyong; Wei, Ning; Oostrom, Martinus; Wietsma, Thomas W.; Li, Xiaochun; Bonneville, Alain

    2013-01-01

    Carbon sequestration in saline aquifers involves displacing resident brine from the pore space by supercritical CO2 (scCO2). The displacement process is considered unstable due to the unfavorable viscosity ratio (logM < 0). The unstable mechanisms that affect scCO2 - water displacement under reservoir conditions (i.e., 41 °C, 9 MPa) were investigated in a homogeneous micromodel. A wide range of injection rates (logCa = -7.61~-4.73) was studied in two sets of experiments: discontinuous-rate injection, where the micromodel was first cleaned and saturated with water before each injection rate was imposed, and continuous-rate injection, where the rate was increased after quasi-steady conditions were reached for a certain rate. For the discontinuous-rate experiments, capillary fingering and viscous fingering are the dominant mechanisms for low (logCa <= -6.61) and high injection rates (logCa >= -5.21), respectively. Crossover from capillary to viscous fingering was observed for logCa = -5.91~-5.21, resulting in a large decrease in scCO2 saturation. The discontinuous-rate experimental results confirmed the decrease in nonwetting fluid saturation during crossover from capillary to viscous fingering predicted by numerical simulations by Lenormand et al. (1988).1 Capillary fingering was the only mechanism that dominates all injection rates in the continuous-rate experiment, and resulted in monotonic increase in scCO2 saturation.

  16. Methods for chemical exchange saturation transfer magnetic resonance imaging

    E-Print Network [OSTI]

    Scheidegger, Rachel Nora

    2013-01-01

    Chemical exchange saturation transfer (CEST) is a relatively new magnetic resonance imaging (MRI) acquisition technique that generates contrast dependent on tissue microenvironment, such as protein concentration and ...

  17. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect (OSTI)

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  18. Combined simulation and inversion of SP and resistivity logs for the estimation of connate-water resistivity and Archie's cementation exponent

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    and water injection/steam flooding has been applied to enhance production. Fluid samples tak- en by fluid

  19. Multiphase fluid flow and subsequent geochemical transport in variably saturated fractured rocks: 1. Approaches

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten

    2000-01-01

    copper enrichment in the Atacama Desert, Northern Chile (Alpers and Brimhall, 1988), hydrothermal alteration at a potential high-level nuclear waste

  20. Analysis of mesoscopic loss effects in fine layered fluid-saturated ...

    E-Print Network [OSTI]

    santos,,,

    mechanism). These finely layered sediments behave like viscoelastic transversely isotropic (VTI) media at long wavelengths. Analysis of mesoscopic loss effects ...

  1. A Continuum Model for Deformable, Second Gradient Porous Media Partially Saturated with Compressible Fluids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in geomechanics, petroleum engineering, and generally for geo-environmental problems. However, any complete

  2. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01

    responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

  3. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  4. Dependence of waterflood remaining oil saturation on relative permeability, capillary pressure, and reservoir parameters in mixed-wet turbidite sands

    SciTech Connect (OSTI)

    Hirasaki, G.J.

    1996-05-01

    The dependence of waterflood oil recovery on relative permeability, capillary pressure, and reservoir parameters was investigated by numerical simulation. The relative permeability and capillary pressure curves were based on laboratory measurements on unconsolidated sands. The water-wet case is based on the assumption that the system is water-wet and measurements were made with refined oil. The mixed-wet case assumed that the system is mixed-wet and restored-state measurements were made with crude oil. The reservoir model was a prototype turbidite sand with a range of thickness and permeability values. The economic oil recovery was based on an economic limit water cut of 50%. The remaining oil saturation (ROS) in the swept region for the water-wet cases was close to the residual oil saturation. The ROS of the mixed-wet cases ranged from low values near the residual oil saturation to far above the residual oil saturation. It is dependent on the reservoir parameters that govern (1) the vertical film surface drainage of oil by gravity, (2) accumulation of a high oil saturation and thus a high relative permeability under the caprock, and (3) up-dip migration of the oil that accumulated under the caprock. The dependence on the reservoir parameters can be summarized by dimensionless groups. There is a dimensionless time for the vertical displacement of oil by gravity. The accumulation of a high oil saturation under the caprock is dependent on the ratio of the capillary transition zone and the sand thickness. The updip migration is dependent on a combination of the gravity number and the endpoint mobility ratio.

  5. Seismic properties of a Venezuelan heavy oil in water emulsion

    SciTech Connect (OSTI)

    Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T. [Stanford Univ., CA (United States)

    1996-08-01

    Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

  6. Laser Locking with Doppler-free Saturated Absorption Spectroscopy

    E-Print Network [OSTI]

    Novikova, Irina

    - 1 - Laser Locking with Doppler-free Saturated Absorption Spectroscopy Paul L. Stubbs, Advisor the frequency of a 795 nm diode laser using a saturated absorption spectroscopy method. Laser locking in AMO physics is done to stabilize the frequency of lasers used in the laboratory in order to make results more

  7. Saturation effects in QCD from linear transport equation

    E-Print Network [OSTI]

    Krzysztof Kutak

    2010-09-09

    We show that the GBW saturation model provides an exact solution to the one-dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term.

  8. Growth of filaments and saturation of the filamentation instability

    SciTech Connect (OSTI)

    Gedalin, M.; Medvedev, M.; Spitkovsky, A.; Krasnoselskikh, V.; Vaivads, A.; Perri, S.

    2010-03-15

    The filamentation instability of counterstreaming beams is a nonresonant hydrodynamic-type instability whose growth rate is a smooth function of the wavelength (scale). As a result, perturbations with all unstable wavelengths develop, and the growth saturates due to the saturation of available current. For a given scale, the magnetic field at saturation is proportional to the scale. As a result, the instability develops in a nearly linear regime, where the unstable modes stop growing as soon as the saturation of the corresponding wavelength is reached. At each moment there exists a dominant scale of the magnetic field which is the scale that reached saturation at this particular time. The smaller scales do not disappear and can be easily distinguished in the current structure. The overall growth of the instability stops when the loss of the streaming ion energy because of deceleration is comparable to the initial ion energy.

  9. Formation of Submicron Magnesite during Reaction of Natural Forsterite in H2O-Saturated Supercritical CO2

    SciTech Connect (OSTI)

    Qafoku, Odeta; Hu, Jian Z.; Hess, Nancy J.; Hu, Mary Y.; Ilton, Eugene S.; Feng, Ju; Arey, Bruce W.; Felmy, Andrew R.

    2014-06-01

    Natural forsterite was reacted in a) liquid water saturated with supercritical CO2 (scCO2) and in b) H2O-saturated scCO2 at 35-80 °C and 90 atm. The solid reaction products were analyzed with nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and confocal Raman spectroscopy. Two carbonate phases, nesquehonite (MgCO3.3H2O) and magnesite (MgCO3), were identified with the proportions of the two phases depending on experimental conditions. In water saturated with scCO2, nesquehonite was the dominant carbonate phase at 35-80 °C with only a limited number of large, micron size magnesite particles forming at the highest temperature, 80 °C. In contrast, in H2O-saturated scCO2 magnesite formation was identified at all three temperatures: 35 °, 50 °, and 80 °C. Magnesite was the dominant carbonation reaction product at 50 ° and 80 °C; but nesquehonite was dominant at 35 °C. The magnesite particles formed under H2O-saturated scCO2 conditions exhibited an extremely uniform submicron grain-size and nearly identical rhombohedral morphologies at all temperatures. The distribution and form of the particles were not consistent with epitaxial nucleation and growth on the forsterite surface.

  10. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    SciTech Connect (OSTI)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  11. Effective Thermoviscoelasticity of a Saturated Porous Ground

    E-Print Network [OSTI]

    fields of mechanics because of many reasons: for example [4, 15], the enhanced recovery of gas, oil and geothermally heated water depends upon flow in porous strata; underwater acoustics involves propa- gation are distinguished in analysis, i.e., description of the thermomechanical system is fulfilled using microscale

  12. Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using CRiSP

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using of Engineers began the Gas Abatement Study in order to address the problem of gas and its effects on the Snake and Columbia Rivers. One important question is how much gas reductions caused by structural changes at a few

  13. Model for locating fluids` contracts in petroleum reservoirs

    SciTech Connect (OSTI)

    Udegbunam, E.O. [Illinois State Geological Survey, Champaign, IL (United States); Numbere, D.T. [Univ. of Missouri, Rolla, MO (United States)

    1994-12-31

    Direct determination of the gas-water contact (GWC) or the oil-water contact (OWC) in new wells from geophysical logs, core analysis data and/or whole core inspection is often difficult. Rapidly changing reservoir quality in the interval of interest or gradually changing saturation profiles in the vicinity of the contact can make the determination of the GWC or OWC difficult. This paper presents a model for the accurate placement of the GWC or OWC. The input data are water saturations at various well depths as interpreted from induction logs and the average residual oil saturation. When available, permeability and porosity values from core analysis may improve the result. Using a power-law equation or a Langmuir isotherm-type equation to represent the capillary pressure saturation relationship, the GWC or OWC is expressed as a function of water saturation and well depth. A nonlinear optimization technique is then used to determine the GWC or OWC. The applicability of this model is demonstrated with a field example. The calculated OWC values from all variations of the model fall within 4 feet of the actual OWC value. This model can only be applied in an oil or gas well where an equilibrium capillary curve and a hydrocarbon-water contact occur.

  14. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01

    Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

  15. Transport in non-conformal holographic fluids

    E-Print Network [OSTI]

    Shailesh Kulkarni; Bum-Hoon Lee; Jae-Hyuk Oh; Chanyong Park; Raju Roychowdhury

    2013-03-06

    We have considered non-conformal fluid dynamics whose gravity dual is a certain Einstein dilaton system with Liouville type dilaton potential, characterized by an intrinsic parameter $\\eta$. We have discussed the Hawking-Page transition in this framework using hard-wall model and it turns out that the critical temperature of the Hawking-Page transition encapsulates a non-trivial dependence on $\\eta$. We also obtained transport coefficients such as AC conductivity, shear viscosity and diffusion constant in the hydrodynamic limit, which show non-trivial $\\eta$ dependent deviations from those in conformal fluids, although the ratio of the shear viscosity to entropy density is found to saturate the universal bound. Some of the retarded correlators are also computed in the high frequency limit for case study.

  16. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  17. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    SciTech Connect (OSTI)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  18. Active control of the resistive wall mode with power saturation

    SciTech Connect (OSTI)

    Li Li; Liu Yue [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Liu Yueqiang [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2012-01-15

    An analytic model of non-linear feedback stabilization of the resistive wall mode is presented. The non-linearity comes from either the current or the voltage saturation of the control coil power supply. For the so-called flux-to-current control, the current saturation of active coils always results in the loss of control. On the contrary, the flux-to-voltage control scheme tolerates certain degree of the voltage saturation. The minimal voltage limit is calculated, below which the control will be lost.

  19. Effects of liquid pore water on acoustic wave propagation in snow as a Biot-type porous material

    E-Print Network [OSTI]

    Sidler, Rolf

    2015-01-01

    A method to estimate phase velocity and attenuation of acoustic waves in the presence of liquid water in a snowpack is presented. The method is based on Biot's theory of wave propagation in porous materials. Empirical relations and a priori information is used to characterize snow as a porous material as a function of porosity. Plane wave theory and an equivalent pore fluid are used to solve Biot's differential equations and to asses the impact of the air and water in the pore space. The liquid water in the pore space of a snow pack reduces the velocity of the first compressional wave by roughly 300 m/s for every 0.1 increase in liquid water saturation. Also the attenuation of the compressional waves is increased with increasing liquid water content. Two end member models for compaction are evaluated to asses the importance of an independent density measurement for an estimate of liquid pore water saturation in snow with acoustic waves. The two end members correspond to no compaction at all and to a melting s...

  20. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  1. Additive for drilling fluid

    SciTech Connect (OSTI)

    Forrest, G.T.

    1992-04-07

    This patent describes a product for use in the drilling of wells. It comprises a drilling fluid and peanut hulls ground to powder form added to the drilling fluid.

  2. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  3. A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2011-01-01

    Saturated-Unsaturated Groundwater Flow Ph.D. Dissertation in~ " Fundamental principles of groundwater flow uv e in Flowunsaturated flow in a groundwater basi.n 11 9 Hater

  4. Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa)

    E-Print Network [OSTI]

    Fajans, Joel

    Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa) Department of Physics July 1998 Scientific equipment often uses ``nonmagnetic'' stainless steel, relying on the steel's nonmagnetic behavior to leave external magnetic fields unaltered. However, stainless steel's permeability can

  5. Temperature induced pore fluid pressurization in geomaterials

    E-Print Network [OSTI]

    Ghabezloo, Siavash

    2010-01-01

    The theoretical basis of the thermal response of the fluid-saturated porous materials in undrained condition is presented. It has been demonstrated that the thermal pressurization phenomenon is controlled by the discrepancy between the thermal expansion of the pore fluid and of the solid phase, the stress-dependency of the compressibility and the non-elastic volume changes of the porous material. For evaluation of the undrained thermo-poro-elastic properties of saturated porous materials in conventional triaxial cells, it is important to take into account the effect of the dead volume of the drainage system. A simple correction method is presented to correct the measured pore pressure change and also the measured volumetric strain during an undrained heating test. It is shown that the porosity of the tested material, its drained compressibility and the ratio of the volume of the drainage system to the one of the tested sample, are the key parameters which influence the most the error induced on the measuremen...

  6. A Particle-Water Based Model for Water Retention Hysteresis

    E-Print Network [OSTI]

    Yixiang Gan; Federico Maggi; Giuseppe Buscarnera; Itai Einav

    2013-12-04

    A particle-water discrete element based approach to describe water movement in partially saturated granular media is presented and tested. Water potential is governed by both capillary bridges, dominant at low saturations, and the pressure of entrapped air, dominant at high saturations. The approach captures the hysteresis of water retention during wetting and drainage by introducing the local evolution of liquid-solid contact angles at the level of pores and grains. Extensive comparisons against experimental data are presented. While these are made without the involvement of any fitting parameters, the method demonstrates relative high success by achieving a correlation coefficient of at least 82%, and mostly above 90%. For the tested materials with relatively mono-disperse grain size, the hysteresis of water retention during cycles of wetting and drainage has been shown to arise from the dynamics of solid-liquid contact angles as a function of local liquid volume changes.

  7. Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-03-24

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  8. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.

  9. Quantum fluctuations and saturable absorption in mesoscale lasers

    SciTech Connect (OSTI)

    Roy-Choudhury, Kaushik [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Levi, A. F. J. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2533 (United States)

    2011-04-15

    We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission near threshold.

  10. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured and porous media, and (5) porosity, permeability, and capillary pressure changes owing to mineral precipitation/dissolution (Sonnenthal et al., 1998, 2000, 2001; Spycher et al., 2003a). Subsequently, TOUGH2 V2 was released with additional EOS modules and features (Pruess et al., 1999). The present version of TOUGHREACT includes all of the previous extensions to the original version, along with the replacement of the original TOUGH2 (Pruess, 1991) by TOUGH2 V2 (Pruess et al., 1999). TOUGHREACT has been applied to a wide variety of problems, some of which are included as examples, such as: (1) Supergene copper enrichment (Xu et al., 2001); (2) Mineral alteration in hydrothermal systems (Xu and Pruess, 2001a; Xu et al., 2004b; Dobson et al., 2004); (3) Mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al., 2003b and 2004a); (4) Coupled thermal, hydrological, and chemical processes in boiling unsaturated tuff for the proposed nuclear waste emplacement site at Yucca Mountain, Nevada (Sonnenthal et al., 1998, 2001; Sonnenthal and Spycher, 2000; Spycher et al., 2003a, b; Xu et al., 2001); (5) Modeling of mineral precipitation/dissolution in plug-flow and fracture-flow experiments under boiling conditions (Dobson et al., 2003); (6) Calcite precipitation in the vadose zone as a function of net infiltration (Xu et al., 2003); and (7) Stable isotope fractionation in unsaturated zone pore water and vapor (Singleton et al., 2004). The TOUGHREACT program makes use of 'self-documenting' features. It is distributed with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as a self-teaching tutorial in the use of TOUGHREACT, and they provide templates to help jump-start new applications. The fluid and heat flow part of TOUGHREACT is derived from TOUGH2 V2, so in addition to the current manual, users must have the manual of the TOUGH2 V2 (Pruess et al., 1999). The present version of TOUGHREACT provides the following TOUGH2 fluid property or 'EOS' (equation-of-state) modules: (1) EOS1 for

  11. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect (OSTI)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  12. EGS rock reactions with Supercritical CO2 saturated with water and water

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech ConnectExperiments (Conference)

  13. The relation between seismic P- and S-wave velocity dispersion in saturated rocks

    SciTech Connect (OSTI)

    Mavko, G. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics; Jizba, D. [CSTJF, Pau (France)] [CSTJF, Pau (France)

    1994-01-01

    Seismic velocity dispersion in fluid-saturated rocks appears to be dominated by two mechanisms: the large scale mechanism modeled by Biot, and the local flow or squirt mechanism. The two mechanisms can be distinguished by the ratio of P- to S-wave dispersions, or more conveniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. The authors` formulation suggests that when local flow dominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Their examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.

  14. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  15. Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range

    E-Print Network [OSTI]

    Laverty, W. F.

    1964-01-01

    Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

  16. SATURATION OF THE MAGNETO-ROTATIONAL INSTABILITY IN STRONGLY RADIATION-DOMINATED ACCRETION DISKS

    SciTech Connect (OSTI)

    Jiang Yanfei; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S3H4 (Canada)

    2013-04-20

    The saturation level of the magneto-rotational instability (MRI) in a strongly radiation-dominated accretion disk is studied using a new Godunov radiation MHD code in the unstratified shearing box approximation. Since vertical gravity is neglected in this work, our focus is on how the MRI saturates in the optically thick mid-plane of the disk. We confirm that turbulence generated by the MRI is very compressible in the radiation-dominated regime, as found by previous calculations using the flux-limited diffusion approximation. We also find little difference in the saturation properties in calculations that use a larger horizontal domain (up to four times the vertical scale height in the radial direction). However, in strongly radiation pressure dominated disks (one in which the radiation energy density reaches {approx}1% of the rest mass energy density of the gas), we find that Maxwell stress from the MRI turbulence is larger than the value produced when radiation pressure is replaced with the same amount of gas pressure. At the same time, the ratio between Maxwell stress and Reynolds stress is increased by almost a factor of eight compared with the gas pressure dominated case. We suggest that this effect is caused by radiation drag, which acts like bulk viscosity and changes the effective magnetic Prandtl number of the fluid. Radiation viscosity significantly exceeds both the microscopic plasma viscosity and resistivity, ensuring that radiation-dominated systems occupy the high magnetic Prandtl number regime. Nevertheless, we find that radiative shear viscosity is negligible compared to the Maxwell stress and Reynolds stress in the flow. This may have important implications for the structure of radiation-dominated accretion disks.

  17. A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data

    SciTech Connect (OSTI)

    Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan

    2006-04-04

    We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.

  18. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  19. Drinking Water Problems: Iron and Manganese 

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2004-02-20

    /filtration system. In this system, air is pulled in and mixed with the passing stream of water. The air-saturated water then enters a precipitator/aerator vessel where air separates from the water. The water then flows through a fil- ter where various filter media...) Oxidizing filter?manganese greensand or zeolite (use with 10...

  20. What does water look like? Marta Kryven

    E-Print Network [OSTI]

    Waterloo, University of

    is shallow and pure it is transparent. Deep water is a saturated blue-green colour [Pope and Fry 1997]. MuddyWhat does water look like? Marta Kryven William Cowan University of Waterloo (a) (b) (c) (d) (e) (f of water look like water? We conducted four psychophysical experiments to isolate perceptual qualities

  1. Simulation of Aerosol Behavior in a Saturated Atmosphere With the CONTAIN Code

    SciTech Connect (OSTI)

    Kljenak, Ivo; Mavko, Borut [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)

    2002-07-01

    Experiments on aerosol behavior in an atmosphere containing saturated vapor, which were performed in the KAEVER experimental facility and proposed for the OECD International Standard Problem No. 44, were simulated with the CONTAIN thermal-hydraulic computer code. The purpose of the work was to assess the capability of the CONTAIN code to model aerosol condensation and deposition in a containment of a light-water-reactor nuclear power plant at severe accident conditions. Results of dry and wet aerosol concentrations in the test vessel atmosphere are presented and analyzed. (authors)

  2. Relationship of the electrochemical potential of porous media with hydrocarbon saturation 

    E-Print Network [OSTI]

    Ortiz, Isaias

    1971-01-01

    that the SP and resistivity of shaly sands are related to the sample cation exchange capacity per unit pore volume (or CEC). (Cation exchange capacity, CEC, is an estimate of the number of negative charges associated with a shale or clay. ) However... saturation w 1 A similar suggestion was made earlier by Hill and Milburn The equivalent Hill-Milburn assumption was: b' = b/S w (9a) b = ? . 135/ ? ? . 0055 CEC PV (9b) Waxman and Smite' equation for the conductivity of a partially water...

  3. Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study

    SciTech Connect (OSTI)

    Harmut Spetzler

    2005-11-28

    This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

  4. Stylistic control of ocean water simulations 

    E-Print Network [OSTI]

    Root, Christopher Wayne

    2009-05-15

    This thesis presents a new method for controlling the look of an ocean water simulation for the purpose of creating cartoon-styled fluid animations. Two popular techniques to simulate fluid, a statistical height field ...

  5. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect (OSTI)

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  6. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  7. Brian G. Rahm, Ph.D. NYS Water Resources Institute

    E-Print Network [OSTI]

    Walter, M.Todd

    include fluids used during the drilling process to cool and lubricate the drill bit and motor: Brine & frac fluid ­ Also known as flowback and produced water, includes water used for hydraulic fracturing, as well as water naturally present within the shale. In the Marcellus Shale, frac fluids consist

  8. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02

    of fluid properties on seismic characteristics. ... C. C. A . The host rock is permeated by a set of parallel fractures which are ..... Similar behaviour is ..... Page 14 ...

  9. Bi-directionally draining pore fluid extraction vessel

    DOE Patents [OSTI]

    Prizio, Joseph (Boulder, CO); Ritt, Alexander (Lakewood, CO); Mower, Timothy E. (Wheat Ridge, CO); Rodine, Lonn (Arvada, CO)

    1991-01-01

    The invention is used to extract pore fluid from porous solids through a combination of mechanical compression and inert-gas injection and comprises a piston for axially compressing samples to force water out, and top and bottom drainage plates for capturing the exuded water and using inert gas to force water to exit when the limits of mechanical compression have been reached.

  10. Electrorheological fluids and methods

    DOE Patents [OSTI]

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  11. Fluid Dynamics IB Dr Natalia Berloff

    E-Print Network [OSTI]

    . If an earthquake generates a tsunami or `tidal wave' near Japan, at one side of the Pacific, it is fairly simple) Example: ocean swell (small-amplitude, low-frequency waves generated by distant storms, the wavesFluid Dynamics IB Dr Natalia Berloff §4 FLOWS WITH A FREE SURFACE Water waves, river flow including

  12. Animating Sand as a Fluid Yongning Zhu

    E-Print Network [OSTI]

    Teschner, Matthias

    Animating Sand as a Fluid Yongning Zhu University of British Columbia Robert Bridson University of British Columbia Figure 1: The Stanford bunny is simulated as water and as sand. Abstract We present a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes

  13. An analysis of the saturation of a high gain FEL

    SciTech Connect (OSTI)

    Gluckstern, R.L.; Okamoto, Hiromi; Krinsky, S.

    1992-12-01

    We study the saturated state of an untapered free electron laser in the Compton regime, arising after exponential amplification of an initial low level of radiation by an initially monoenergetic, unbunched electron beam. The saturated state of the FEL is described by oscillations about an equilibrium state. Using the two invariants of the motion, and certain assumptions motivated by computer simulations, we provide approximate analytic descriptions of the radiation field and electron distribution in the saturation regime. We first consider a one-dimensional approximation, and later extend our approach to treat an electron beam of finite radial extent. Of note is a result on the radiated power in the case of an electron beam with small radius.

  14. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect (OSTI)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  15. Measurements of radon concentration in geothermal fluids at Cerro Prieto are evaluated with respect to spatial and temporal variations in reservoir thermodynamic conditions and

    E-Print Network [OSTI]

    Semprini, Lewis

    significantly suggesting an increase in the steam saturation in this part of the reservoir due to exploitation to spatial and temporal variations in reservoir thermodynamic conditions and the rock -- fluid mass ratio be attributed to the higher steam fraction in the reservoir fluid. Regression analysis of radon concentration

  16. Model for Fracturing Fluid Flowback and Characterization of Flowback Mechanisms 

    E-Print Network [OSTI]

    Song, Bo

    2014-08-28

    that may or may not be filled with injected fluid or proppant or even hydraulically connected. The investigation of factors impacting water retention will consider formation properties and fracture configurations of the cataloged locations for injected...

  17. Under consideration for publication in J. Fluid Mech. 1 A two species model of aeolian sand

    E-Print Network [OSTI]

    Under consideration for publication in J. Fluid Mech. 1 A two species model of aeolian sand 30 January 2004) The transport of sand by the wind results from the equilibrium between the erosion governing the saturation of the sand flux are investigated theo- retically. We first demonstrate

  18. Aeolian sans ripples: experimental study of saturated states

    E-Print Network [OSTI]

    Bruno Andreotti; Philippe Claudin; Olivier Pouliquen

    2005-10-11

    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit non-linear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models.

  19. Saturation of the leading spike growth in backward Raman amplifiers

    SciTech Connect (OSTI)

    Malkin, V. M.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Toroker, Z. [Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2014-09-15

    Backward Raman amplification of laser pulses in plasmas can produce nearly relativistic unfocused output intensities and multi-exawatt powers in compact devices. The largest achievable intensity depends on which of major competitive processes set this limit. It is shown here that the relativistic electron nonlinearity can cause saturation of the leading amplified spike intensity before filamentation instabilities develop. A simple analytical model for the saturation, which supports numerical simulations, is suggested. The upper limit for the leading output spike unfocused intensity is calculated.

  20. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    geothermal systems (EGS), heat transmission, thermalenhanced geothermal systems (EGS) with high pressure (commercialization of water-based EGS [2], while fluid losses

  1. Verification and Validation of the AMROC Fluid Solver Framework Coupling with DYNA3D within the Virtual Test Facility Fluid Structure Interaction Suite

    E-Print Network [OSTI]

    Deiterding, Ralf

    the Virtual Test Facility Fluid Structure Interaction Suite Euler equations Hydrodynamic equations Stiffened.4, p1 Air=0, Water=7.415, p1 Water=2962 bar · Cavitation modeling with pressure cutoff at p=0 MPa

  2. HYDRAULIC CONDUCTIVITY ESTIMATION IN PARTIALLY SATURATED SOILS USING THE ADJOINT METHOD

    E-Print Network [OSTI]

    Efendiev, Yalchin

    HYDRAULIC CONDUCTIVITY ESTIMATION IN PARTIALLY SATURATED SOILS USING THE ADJOINT METHOD J. SANTOS for the estimation of the saturated hydraulic conductivity k in a partially saturated soil Q is proposed. Groundwater exam- ple showing the implementation of the algorithm to estimate the saturated hydraulic conductivity

  3. EIGENVALUES OF SATURATED HYDROCARBONS D. J. KLEIN AND C. E. LARSON

    E-Print Network [OSTI]

    Larson, Craig E.

    EIGENVALUES OF SATURATED HYDROCARBONS D. J. KLEIN AND C. E. LARSON Abstract. A simplified H¨uckel-type molecular-orbital (MO) model for the valence electrons of saturated hydrocarbons is proposed and half negative. Keywords: saturated hydrocarbons, alkanes, stellation, para-line graph. 1. Saturated

  4. Kinetics of the water adsorption driven structural transformation of ZnS nanoparticles

    E-Print Network [OSTI]

    Goodell, C.M.; Gilbert, B.; Weigand, S.J.; Banfield, J.F.

    2008-01-01

    increased surface coverage of water allows the particles to6, 605. Kinetics of the water adsorption driven structuralhas been saturated with water is placed at the bottom of the

  5. Fluid Fishbones Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    , with the fluid sheet being the fish head and the tendrils its bones. Increasing the flow rate serves to broaden the fishbones. In the wake of the fluid fish, a regular array of drops obtains, the number and spacing of which

  6. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  7. NUMERICAL MODELING OF FLUID FLOW AND TIME-LAPSE ...

    E-Print Network [OSTI]

    gabriela

    CO2 injection operation at the Sleipner gas field in the North Sea, operated by Statoil ... The simultaneous flow of brine and CO2 is modeled with the Black-Oil formulation for ..... As water saturation is reduced, and the larger pores drained first, ...

  8. 134 Solutions Manual x Fluid Mechanics, Fifth Edition 2.103 A solid block, of specific gravity

    E-Print Network [OSTI]

    Bahrami, Majid

    134 Solutions Manual x Fluid Mechanics, Fifth Edition 2.103 A solid block, of specific gravity 0.9, floats such that 75% of its volume is in water and 25% of its volume is in fluid X, which is layered above the water. What is the specific gravity of fluid X? Solution: The block is sketched at right

  9. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  10. Aperture Photometry of Saturated Star Images from Digitised Photographic Plates

    E-Print Network [OSTI]

    J. L. Innis; D. W. Coates; A. P. Borisova; M. K. Tsvetkov

    2005-02-21

    Saturated stellar images on digitised photographic plates are many times greater in area than the `seeing disk' seen in unsaturated CCD images. Indeed the flux profile of a bright star can be traced out for several degrees from the star's centre. The radius of the saturated stellar image can often be directly related to the magnitude of the star, a fact well known and exploited in iris photometry. In this work we compare the radial flux profile of stars in the approximate range B ~9 to ~13 mag, obtained from scans of plates from the Bamberg Sky Patrol archive, with a profile of the form measured by King. We show that simple aperture photometry of saturated stellar images, obtained from photo-positives of scanned photographic plates, yield data that are in agreement with simulations using a (saturated) synthetic stellar radius profile. Raw plate magnitudes from this aperture photometry can be easily and satisfactorily transformed to standard magnitudes, as demonstrated in a recent study carried out by the current authors.

  11. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Board August 14, 2012 (received for review May 31, 2012) Wind turbines convert kinetic to electrical linearly, but then converges to a saturation potential not identified previously from physical principles does not increase the generated power further. At the SWPP, winds still occur because individual

  12. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  13. Nordic Society Oikos Colonization and Saturation of Habitats by Lizards

    E-Print Network [OSTI]

    Nordic Society Oikos Colonization and Saturation of Habitats by Lizards Author(s): Robert T. M. 78, No. 2 (Mar., 1997), pp. 283-290 Published by: Blackwell Publishing on behalf of Nordic Society speciesin colonization,differencesamonghabitattypes in colonization,andthe timetrajectoryof colonization

  14. submitted to Geophys. J. Int. Streaming potential dependence on water-content in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    submitted to Geophys. J. Int. Streaming potential dependence on water-content in Fontainebleau sand saturation, un- saturated flow, water content SUMMARY The electrokinetic potential results from the coupling of the electrokinetic coefficient as a function of water content. Two drainage experiments have been performed within

  15. www.VadoseZoneJournal.org | 8002011, Vol. 10 Catchment-Scale Soil Water

    E-Print Network [OSTI]

    Tate, Kenneth

    rainfall events and hosting two-thirds of the state's drinking water reservoirs. Thus, understanding water when lower soil horizons were at or near saturation. Following saturation, each rainfall event). Fundamental to our knowledge of water resources is the role of the soil system as a natural reservoir having

  16. Computer Vision in Fluid Mechanics

    E-Print Network [OSTI]

    Aminfar, AmirHessam

    2015-01-01

    layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.M. Princevac, "Fundamental fluid mechanics," 2014. C. W.Computer Vision in Fluid Mechanics A Thesis submitted in

  17. Computer Vision in Fluid Mechanics

    E-Print Network [OSTI]

    Aminfar, AmirHessam

    2015-01-01

    layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.Fundamental fluid mechanics," 2014. C. W. Enderlin, "MacroComputer Vision in Fluid Mechanics A Thesis submitted in

  18. Dynamics of fluid-filled gelatin cracks www.math.utwente.nl/bokhoveo/

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    Dynamics of fluid-filled gelatin cracks www.math.utwente.nl/bokhoveo/ Koji Kiyosugi, Onno Bokhove analog experiment, wherein gelatin is the elastic solid and water the intruding fluid: #12;Fluid cavity new dikes. Sketch of observations: gelatin gelatin frontal view 1 2 side view top view 32 32 1 1 1 3 2

  19. Method and system for polishing materials using a nonaqueous magnetorheological fluid

    DOE Patents [OSTI]

    Menapace, Joseph Arthur; Ehrmann, Paul Richard

    2014-09-09

    A nonaqueous magnetorheological fluid includes a primarily organic carrier liquid and magnetizable particles. The magnetorheological fluid also includes a buffer, a stabilizer, and water. A pH of the magnetorheological fluid is between 6.5 and 9.0.

  20. Design rules for pumping and metering of highly viscous fluids in microfluidics

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Design rules for pumping and metering of highly viscous fluids in microfluidics Sarah L. Perry.1039/c0lc00035c The use of fluids that are significantly more viscous than water in microfluidics has a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly

  1. Moving contact line of a volatile fluid

    E-Print Network [OSTI]

    V. Janecek; B. Andreotti; D. Prazak; T. Barta; V. S. Nikolayev

    2012-12-15

    Interfacial flows close to a moving contact line are inherently multi-scale. The shape of the interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both called after Voinov, from the dynamical processes at work at the microscopic level. Here, we solve this inner problem in the case of a volatile fluid at equilibrium with its vapor. The evaporative/condensation flux is then controlled by the dependence of the saturation temperature on interface curvature -- the so-called Kelvin effect. We derive the dependencies of the Voinov angle and of the Voinov length as functions of the substrate temperature. The relevance of the predictions for experimental problems is finally discussed.

  2. Moving contact line of a volatile fluid

    E-Print Network [OSTI]

    Janecek, V; Prazak, D; Barta, T; Nikolayev, V S

    2012-01-01

    Interfacial flows close to a moving contact line are inherently multi-scale. The shape of the interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both called after Voinov, from the dynamical processes at work at the microscopic level. Here, we solve this inner problem in the case of a volatile fluid at equilibrium with its vapor. The evaporative/condensation flux is then controlled by the dependence of the saturation temperature on interface curvature -- the so-called Kelvin effect. We derive the dependencies of the Voinov angle and of the Voinov length as functions of the substrate temperature. The relevance of the predictions for experimental problems is finally discussed.

  3. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  4. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  5. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  6. Combined Opportunities in Energy & Water Conservation Projects

    E-Print Network [OSTI]

    Keller, Arturo A.

    Combined Opportunities in Energy & Water Conservation Projects A.Keller, S. Hughes, S. Bennett, M Irrigation, Diswashers Composting Toilets Policy Recommendations The Energy-Water Nexus Modeling Co saturation in the water district In the arid western US, securing beneficial and cost-effective energy

  7. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect (OSTI)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  8. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  9. Basic fluid system trainer

    SciTech Connect (OSTI)

    Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

    1991-04-30

    This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  10. Circulating Fluid Bed Combustor 

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  11. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  12. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  13. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  14. Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives 

    E-Print Network [OSTI]

    Plamin, Sammazo Jean-bertrand

    2013-09-29

    Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

  15. Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives 

    E-Print Network [OSTI]

    Qureshi, Maha

    2013-09-29

    Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

  16. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  17. Reuse of Flowback Fluids as Hydraulic Fracturing Fluids in Tight Gas Sand Reservoirs 

    E-Print Network [OSTI]

    Haghshenas, Ashkan

    2015-05-22

    . CO2/N2/foam assisted hybrid fluid was the best predicted by our model with an error of approximately 20%. The main objectives of this paper are to: (a) to investigate the feasibility of using produced water in hydraulic fracturing in sandstone...

  18. Discussion of measurements of supersaturation and critical gas saturation

    SciTech Connect (OSTI)

    Saidi, A.M.

    1994-06-01

    In Measurements of Supersaturation and Critical Gas Saturation'' (SPE Formation Evaluation, Dec. 1992, Page 337) Firoozabadi et al. reported that several expansion solution-gas-drive experiments at pressure-decline rates much higher than usually occur in actual reservoirs terminated at the onset of gas production.'' For this reason, they neither envisaged a gas/oil separator for measuring the GOR evolution, which is an important parameter for establishing critical gas saturation, S[sub gc], nor allowed sufficient pressure decline to measure the evolution of upward gas migration to confirm their low measured S[sub gc]. This confirmation was needed because their results contradict those of Dumore, Madaoui, and Moulu and Longeron.

  19. Saturation in diffractive deep inelastic eA scattering

    E-Print Network [OSTI]

    M. S. Kugeratski; V. P. Goncalves; F. S. Navarra

    2006-02-24

    In this paper we investigate the saturation physics in diffractive deep inelastic electron-ion scattering. We estimate the energy and nuclear dependence of the ratio $\\sigma^{diff}/\\sigma^{tot}$ and predict the $x_{\\pom}$ and $\\beta$ behavior of the nuclear diffractive structure function $F_{2,A}^{D(3)}(Q^2, \\beta, x_{IP})$. Moreover, we analyze the ratio $R^{diff}_{A1,A2}(Q^2, \\beta, x_{IP}) = F_{2,A1} ^{D(3)}/F_{2,A2} ^{D(3)}$, which probes the nuclear dependence of the structure of the Pomeron. We show that saturation physics predicts that approximately 37 % of the events observed at eRHIC should be diffractive.

  20. Existence of Optical Vortices in Saturable Non-linearity

    E-Print Network [OSTI]

    Luciano Medina

    2015-05-22

    Optical propagation in non-linear media and the formation of optical vortices as dark holes is an area of extensive research in modern optical physics. Governed by a non-linear Schr\\"odinger equation, with self-focusing saturable non-linearity, we establish an existence theory for a unique class of spatially localized beams describing ring-profile vortex solitons. Our first type of results are established via a constrained minimization problem. We prove the existence of positive radially symmetric solutions and give necessary conditions restricting the wave propagation constant in terms of the topological charge and saturation constant. As demanded by beam confinement, we prove the exponential decay of the soliton amplitude at infinity. Secondly, we use a min-max technique to prove the existence of additional non-trivial solutions that arise as saddle-points of a corresponding indefinite action functional.

  1. A saturated zone site-scale flow model for Yucca mountain

    SciTech Connect (OSTI)

    Eddebbarh, Al Aziz

    2008-01-01

    A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space and solution space uncertainties were determined.

  2. Advective Desorption of Uranium (VI) from Contaminated Hanford Vadose Zone Sediments under Saturated and Unsaturated Conditions

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Zachara, John M.; Liu, Chongxuan; Qafoku, Nikolla; Smith, Steven C.; Forrester, Steven W.

    2008-11-03

    Sedimentary, hydrologic, and geochemical variations in the Hanford subsurface environment, as well as compositional differences in contaminating waste streams, have created vast differences in the migration and mobility of uranium within the subsurface environment. A series of hydraulically-saturated and -unsaturated column experiments were performed to i.) assess the effect of water content on the advective desorption and migration of uranium from contaminated sediments, and ii.) evaluate the uranium concentration that can develop in porewater and/or groundwater as a result of desorption/dissolution reactions. Flow rate and moisture content were varied to evaluate the influence of contact time, pore water velocity, and macropore desaturation on aqueous uranium concentrations. Sediments were collected from the T-TX-TY tank farm complex and the 300 Area Process Ponds located on the Hanford Site, southeastern Washington State. The sediments vary in depth, mineralogy, and in contamination events. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at repository sites across the arid western United States and, in particular, the Hanford site. Results illustrate the release of uranium from these sediments is kinetically controlled and low water contents encountered within the Hanford vadose zone result in the formation of mobile-immobile water regimes, which isolate a fraction of the reactive sites within the sediments, effectively reducing the concentration of uranium released into migrating porewaters.

  3. Lecture notes Introductory fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (15th September 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

  4. MQSN -Fluid queues Werner Scheinhardt

    E-Print Network [OSTI]

    Boucherie, Richard J.

    of Markov fluid sources is again Markov fluid. This idea can be formalized using Kronecker sums. #12;Burst information captured by number of sources that is on! #12;Burst-level models: Markov fluid Special case: sources are identical, for instance two-state on-off Markov-fluid sources. All state information captured

  5. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  6. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  7. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  8. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  9. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    SciTech Connect (OSTI)

    Alan P. Byrnes; Saibal Bhattacharya; John Victorine; Ken Stalder

    2007-09-30

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on carbonate reservoirs of widely varying moldic pore systems that represent the major of reservoirs in Kansas and are important nationally and worldwide. A goal of the project is to measure wettability, using representative oils from Kansas fields, on a wide range of moldic-porosity lithofacies that are representative of Kansas and midcontinent shallow-shelf carbonate reservoirs. This investigation will discern the relative influence of wetting and pore architecture. In the midcontinent, reservoir water saturations are frequently greater than 'irreducible' because many reservoirs are largely in the capillary transition zone. This can change the imbibition oil-water relative permeability relations. Ignoring wettability and transition-zone relative permeabilities in reservoir modeling can lead to over- and under-prediction of oil recovery and recovery rates, and less effective improved recovery management. A goal of this project is to measure drainage and imbibition oil-water relative permeabilities for a large representative range of lithofacies at differ ent initial water saturations to obtain relations that can be applied everywhere in the reservoir. The practical importance of these relative permeability and wettability models will be demonstrated by using reservoir simulation studies on theoretical/generic and actual reservoir architectures. The project further seeks to evaluate how input of these new models affects reservoir simulation results at varying scales. A principal goal is to obtain data that will allow us to create models that will show how to accurately simulate flow in the shallow-structure, complex carbonate reservoirs that lie in the transition zone. Tasks involved to meet the project objectives include collection and consolidation of available data into a publicly accessible relational digital database and collection of oil and rock samples from carbonate fields around the state (Task 1). Basic properties of these rocks and oils will be measured and used in wettability tests. Comparison will be performed between crude and synthetic oil wettability and

  10. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  11. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  12. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA)

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  13. Application of Membranes to Treatment of Water Based Exploration and Production Wastes 

    E-Print Network [OSTI]

    Olatubi, Oluwaseun Alfred

    2010-10-12

    Produced water and spent drilling fluids from petroleum operations represent a significant expense to companies developing new energy reserves. These spent fluids, seldom recycled, offer a viable source of water resources for oil-field reuse. A...

  14. Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range

    SciTech Connect (OSTI)

    Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

    2002-06-17

    Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1 - 9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (QE dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.

  15. Models for estimating saturation flow and maximum demand at closely spaced intersections 

    E-Print Network [OSTI]

    Nanduri, Sreelata

    1995-01-01

    This thesis describes models for saturation flow and maximum demand at closely spaced intersections. The effects of queue interaction between these two intersections are taken into account in both models. The saturation flow model is based...

  16. Postmodernism and the Self: How Social Saturation Influences Who We Think We Are 

    E-Print Network [OSTI]

    Hirsch, Kelly Anne

    2014-01-16

    The current research examined the role that social saturation plays in people’s beliefs about the self. Specifically, the current studies examined whether “social saturation” predicts the belief that people have multiple selves (as opposed to one...

  17. Heat-Traced Fluid Transfer Lines 

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01

    or chemical), to maintain uniform fluid viscosity independent of ambient temperature, to establish uniform temperature above the dew point, and to maintain uniform temperature and prevent component dropout. water freeze protection is needed when a steam... of the parameters. A change in viscosity prJVides false readings and therefore results in unre iable process control. Viscosity control also helps provide uni form flow rates over a wide ran e of ambient temperatures, and in addition, pumps need not be oversized...

  18. Shear flow instabilities in viscoelastic fluids

    E-Print Network [OSTI]

    Miller, Joel C.

    2006-05-23

    . . . . . . . . . . . 16 1.3.1 Flows with curved streamlines . . . . . . . . . . . . . . 16 1.3.2 Flows with straight streamlines . . . . . . . . . . . . . 17 1.4 Theoretical study of extrusion flow . . . . . . . . . . . . . . . 18 1.4.1 Single fluid... pipe, a phenomenon known as turbulent drag reduction. This has applications including fire hose design, waste water disposal, and crude oil transport. The phenomenon is not well understood, in part because even the simplest effects of polymers on high...

  19. Completion and workover fluid

    SciTech Connect (OSTI)

    Block, J.

    1985-09-17

    An aqueous completion or workover fluid for oil or gas wells having at least two solid components. One component is a hydroxy containing aluminum compound represented by the formula AlO(OH).xH/sub 2/O. The second component is a fluid loss control agent which can be either a cross-linked polyvinyl alcohol or a cross-linked hydroxyalkyl cellulose reaction product. An acid soluble weighting agent can be added for wells having higher down hole pressures. Examples of the weighting agents include iron carbonates, iron oxides, calcium carbonates, dolomite, sodium or calcium chloride, zinc bromide and calcium bromide. After use, the fluid can be displaced from the well with acid, e.g. 15% HCl, and the cake previously deposited on the bore-hole wall is dissolved by the acid so that no damaging residue remains.

  20. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  1. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  2. Automated fluid analysis apparatus and techniques

    DOE Patents [OSTI]

    Szecsody, James E.

    2004-03-16

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  3. A new model of saturated synchronous machines for power system transient stability simulations

    SciTech Connect (OSTI)

    Tamura, J.; Takeda, I. [Kitami Inst. of Tech., Hokkaido (Japan)] [Kitami Inst. of Tech., Hokkaido (Japan)

    1995-06-01

    This paper presents a new method to express the main flux saturation in synchronous machines. In the new method, the saturation is expressed by auxiliary currents and unsaturated magnetizing inductances instead of the saturated inductances. The new model using the currents contains only constant coefficients defined in terms of the unsaturated magnetizing inductances.

  4. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  5. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  6. Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    E-Print Network [OSTI]

    Niemi, H; Paatelainen, R

    2015-01-01

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how ...

  7. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  8. Unsaturated properties for non-Darcian water flow in clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Physical chemistry of clay-water interaction, Advance inporous media. Advances in Water Resources 2, 351-362. Zou,Newtonian fluids Figure 2. A water element in a capillary

  9. Elliptic flow from pQCD + saturation + hydro model

    E-Print Network [OSTI]

    Eskola, K J; Ruuskanen, P V

    2008-01-01

    We have previously predicted multiplicities and transverse momentum spectra of hadrons for the most central LHC Pb+Pb collisions at $\\sqrt{s_{NN}}=5.5$ TeV using initial state for hydrodynamic evolution from pQCD + final state saturation model. By considering binary collision and wounded nucleon profiles we extend these studies to non-central collisions, and predict the $p_{T}$ dependence of minimum bias $v_{2}$ for pions at the LHC. For protons we also show how the $p_{T}$ dependence of $v_2$ changes from RHIC to the LHC.

  10. Elliptic flow from pQCD + saturation + hydro model

    E-Print Network [OSTI]

    K. J. Eskola; H. Niemi; P. V. Ruuskanen

    2007-05-15

    We have previously predicted multiplicities and transverse momentum spectra of hadrons for the most central LHC Pb+Pb collisions at $\\sqrt{s_{NN}}=5.5$ TeV using initial state for hydrodynamic evolution from pQCD + final state saturation model. By considering binary collision and wounded nucleon profiles we extend these studies to non-central collisions, and predict the $p_{T}$ dependence of minimum bias $v_{2}$ for pions at the LHC. For protons we also show how the $p_{T}$ dependence of $v_2$ changes from RHIC to the LHC.

  11. Spin-glass model of QCD near saturation

    E-Print Network [OSTI]

    Robi Peschanski

    2006-03-15

    We establish a connection between the cascading of gluon momenta modeled with the diffusive approximation of the Balitsky-Fadin-Kuraev-Lipatov kernel and the thermodynamics of directed polymers on a tree with disorder. Using known results on the low-temperature spin-glass phase of this statistical-mechanic problem we describe the dynamical phase space of gluon transverse momenta near saturation including its fluctuation pattern. It exhibits a nontrivial clustering structure, analoguous to ``hot spots'', whose distributions are derived and possess universal features in common with other spin-glass systems.

  12. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Lail, Jason C. (Conover, NC)

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  13. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  14. PARTIALLY SATURATED FLOW IN A COMPOSITE POROELASTIC MEDIUM

    E-Print Network [OSTI]

    . This includes the Barenblatt-Biot double- diffusion model of elastic deformation and laminar flow in a fissured's law for laminar flow and of the momentum balance equations with Hooke's law for elastic deformation and consideration of the effects of dilation of the structure on the flow in both of the components. The fluid

  15. MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS

    E-Print Network [OSTI]

    Phani, A. Srikantha

    technologies - Wind turbine - Wave energy (Wells turbine) - Tidal power 7. Flow in porous media - Darcy's law 8 fluid-mechanics research and its application, as well as the technology associated with fluid flow

  16. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  17. Relativistic viscoelastic fluid mechanics

    E-Print Network [OSTI]

    Masafumi Fukuma; Yuho Sakatani

    2011-09-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  18. Supersymmetric Fluid Mechanics

    E-Print Network [OSTI]

    R. Jackiw; A. P. Polychronakos

    2000-07-17

    When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.

  19. Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst P. Popov, G. Qin, L. Bi, Y. Efendiev, R. Ewing, Institute for Scientific Computation, Texas A&M University; Z. Kang, J. Li,

    E-Print Network [OSTI]

    Ewing, Richard E.

    , where the fluid (oil, water, gas) meets no resistance form the surrounding rock [1]. The main difficulty

  20. Effects of nanopore and fluid structure on anomalies and phase transitions of confined core-softened fluids

    E-Print Network [OSTI]

    Leandro B. Krott; José Rafael Bordin; Ney Marçal Barraz Jr; Marcia C. Barbosa

    2015-02-11

    We use Molecular Dynamics simulations to study how the nanopore and the fluid structures affects the dynamic, thermodynamic and structural properties of a confined anomalous fluid. The fluid is modeled using an effective pair potential derived from the ST4 atomistic model for water. This system exhibits density, structural and dynamical anomalies and the vapor-liquid and liquid-liquid critical points similar to the quantities observed in bulk water. The confinement is modeled both by smooth and structured walls. The temperatures of extremum density and diffusion for the confined fluid show a shift to lower values while the pressures move to higher amounts for both smooth and structured confinement. In the case of smooth walls, the critical points and the limit between fluid and amorphous phases show a non-monotonic change in the temperatures and pressures when the the nanopore size is increase. In the case of structured walls the pressures and temperatures of the critical points varies monotonicaly with the porous size. Our results are explained on basis of the competition between the different length scales of the fluid and the wall-fluid interaction.

  1. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  2. Fluid Flow Modeling in Fractures

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2004-01-01

    In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

  3. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  4. Oil sands processes-affected water treatment Research field: Oil sands processes-affected water treatment

    E-Print Network [OSTI]

    Milgram, Paul

    Oil sands processes-affected water treatment Research field: Oil sands processes-affected water., to make the system work as desired. We have experimental projects on oil extraction, polymers, fluid

  5. A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing

    E-Print Network [OSTI]

    Turner, Daniel Z

    2012-01-01

    Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...

  6. Water and Climate 1. Peter Rhines

    E-Print Network [OSTI]

    basins are cyclically created by plate tectonics. So, why don t the seas become saturated with salt....and hence we have life #12;#12;water not water #12;#12;· Salt enters the seas from weathering of rocks eventually? That would be about 26.5% salinity (26.5 g of salt in 100 g. of seawater

  7. Computer Vision in Fluid Mechanics

    E-Print Network [OSTI]

    Aminfar, AmirHessam

    2015-01-01

    Laminar flows are usually unidirectional flows, which the fluidlaminar flows ? Streak line: Streak line is locus of fluid

  8. Nonlinear stability of ideal fluid equilibria

    SciTech Connect (OSTI)

    Holm, D.D.

    1988-01-01

    The Lyapunov method for establishing stability is related to well- known energy principles for nondissipative dynamical systems. A development of the Lyapunov method for Hamiltonian systems due to Arnold establishes sufficient conditions for Lyapunov stability by using the energy plus other conserved quantities, together with second variations and convexity estimates. When treating the stability of ideal fluid dynamics within the Hamiltonian framework, a useful class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the dynamical fluid variables. Such conserved quantities, when added to the energy, help to provide convexity estimates that bound the growth of perturbations. These convexity estimates, in turn, provide norms necessary for establishing Lyapunov stability under the nonlinear evolution. In contrast, the commonly used second variation or spectral stability arguments only prove linearized stability. As ideal fluid examples, in these lectures we discuss planar barotropic compressible fluid dynamics, the three-dimensional hydrostatic Boussinesq model, and a new set of shallow water equations with nonlinear dispersion due to Basdenkov, Morosov, and Pogutse(1985). Remarkably, all three of these samples have the same Hamiltonian structure and, thus, possess the same Casimir functionals upon which their stability analyses are based. We also treat stability of modified quasigeostrophic flow, a problem whose Hamiltonian structure and Casimirs closely resemble Arnold's original example. Finally, we discuss some aspects of conditional stability and the applicability of Arnold's development of the Lyapunov technique. 100 refs.

  9. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect (OSTI)

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  10. On the propagation of a disturbance in a smoothly varying heterogeneous porous medium saturated with three fluid phases

    E-Print Network [OSTI]

    Vasco, D.W.

    2014-01-01

    to acknowledge the support of Aramco. I would like to thankwork was supported by Aramco and by the Assistant Secretary,

  11. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 39:703717 (DOI: 10.1002/ d.344)

    E-Print Network [OSTI]

    Wang, Zhi Jian "ZJ"

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 39 consuming if `non-water-tight' geometries are given. Signiÿcant user time can be taken to repair or clean cleaning or repairing, dramatically reducing grid generation time. An I2B adaptive Cartesian grid

  12. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  13. Shallow Water Waves and Solitary Waves

    E-Print Network [OSTI]

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  14. Galilean relativistic fluid mechanics

    E-Print Network [OSTI]

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  15. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  16. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  17. Relationship of salinity and depth to the water table on Tamarix spp. (Saltcedar) growth and water use. 

    E-Print Network [OSTI]

    Schmidt, Kurtiss Michael

    2004-09-30

    Saltcedar is an invasive shrub that has moved into western United States riparian areas and is continuing to spread. Saltcedar is a phreatophyte that can utilize a saturated water table for moisture once established and ...

  18. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    of Using Supercritical CO2 as Heat Transmission Fluid in anH.J. , Jr. Wellbore Heat Transmission, J. Petrol. Tech. ,CO 2 instead of water as heat transmission fluid, and would

  19. Mathematical thermodynamics of fluids Eduard Feireisl

    E-Print Network [OSTI]

    Krejcí, Pavel

    Mathematical thermodynamics of fluids Eduard Feireisl Institute of Mathematics, Academy of Sciences Agreement 320078 CIME courses, Cetraro 29 June - 4 July 2015 Eduard Feireisl Thermodynamics of fluids #12 Thermodynamics of fluids #12;Fluids at equilibrium Thermodynamic state variables mass density

  20. Application of nuclear magnetic resonance imaging and spectroscopy to fluids in porous media 

    E-Print Network [OSTI]

    Mandava, Shanthi Sree

    1991-01-01

    and resolution of those saturations were developed with regards to the imaging method employed. The estimates so developed show that MRI can effectively monitor dynamic displacements for quantitative property estimation. An NMR spin-echo technique... in porous media was conducted with NMR Spectroscopy. A study of the effect of surrounding physical barriers on the diffusion of fluids in porous media was attempted. A Pulsed Gradient Spin-Echo sequence was developed to determine apparent self...

  1. On the saturation amplitude of the f-mode instability

    E-Print Network [OSTI]

    Kastaun, Wolfgang; Kokkotas, Kostas D

    2010-01-01

    We investigate strong nonlinear damping effects which occur during high amplitude oscillations of neutron stars, and the gravitational waves they produce. For this, we use a general relativistic nonlinear hydrodynamics code in conjunction with a fixed spacetime (Cowling approximation) and a polytropic equation of state (EOS). Gravitational waves are estimated using the quadrupole formula. Our main interest are $l=m=2$ $f$-modes subject to the CFS (Chandrasekhar, Friedman, Schutz) instability, but we also investigate axisymmetric and quasi-radial modes. We study various models to determine the influence of rotation rate and EOS. We find that axisymmetric oscillations at high amplitudes are predominantly damped by shock formation, while the non-axisymmetric $f$-modes are mainly damped by wave breaking and, for rapidly rotating models, coupling to non-axisymmetric inertial modes. From the observed nonlinear damping, we derive upper limits for the saturation amplitude of CFS-unstable $f$-modes. Finally, we estima...

  2. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    SciTech Connect (OSTI)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  3. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  4. Removing sulphur oxides from a fluid stream

    DOE Patents [OSTI]

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  5. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S; Rother, Gernot; Wesolowski, David J; Cole, David R; Wallacher, Dirk

    2012-01-01

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

  6. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  7. Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel

    SciTech Connect (OSTI)

    Bhide, R.R.; Singh, S.G.; Sridharan, Arunkumar; Duttagupta, S.P.; Agrawal, Amit [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2009-09-15

    The current work focuses on the pressure drop, heat transfer and stability in two phase flow in microchannels with hydraulic diameter of less than one hundred microns. Experiments were conducted in smooth microchannels of hydraulic diameter of 45, 65 {mu}m, and a rough microchannel of hydraulic diameter of 70 {mu}m, with deionised water as the working fluid. The local saturation pressure and temperature vary substantially over the length of the channel. In order to correctly predict the local saturation temperature and subsequently the heat transfer characteristics, numerical techniques have been used in conjunction with the conventional two phase pressure drop models. The Lockhart-Martinelli (liquid-laminar, vapour-laminar) model is found to predict the two phase pressure drop data within 20%. The instability in two phase flow is quantified; it is found that microchannels of smaller hydraulic diameter have lesser instabilities as compared to their larger counterparts. The experiments also suggest that surface characteristics strongly affect flow stability in the two phase flow regime. The effect of hydraulic diameter and surface characteristics on the flow characteristics and stability in two phase flow is seldom reported, and is of considerable practical relevance. (author)

  8. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment)

    SciTech Connect (OSTI)

    Spetzler, Hartmut

    2006-05-01

    We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible anomalies for the irrigation with the surfactant. The quantity of data is large and deserves careful analysis. Detailed analyses of the two data sets are ongoing.

  9. Modeling cation diffusion in compacted water-saturated Na-bentonite at low ionic strength

    E-Print Network [OSTI]

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2008-01-01

    Basis for Nuclear Waste Management XXII; Wronkiewicz, D. ,Scientific Basis for Nuclear Waste Management XIX; Murphy,In Scientific Basis for Nuclear Waste Management XX; Gray,

  10. A constitutive law for low-temperature creep of water-saturated sandstones

    E-Print Network [OSTI]

    , Scotland, UK Brian R. Crawford ExxonMobil Upstream Research Company, Houston, Texas, USA Brian G. D. Smart, provides a more complete description of the experimental data. In particular, the parameters can be used

  11. Modeling cation diffusion in compacted water-saturatedNa-bentonite at low ionic strength

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2007-08-28

    Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm{sup -3} (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm{sup -3}.

  12. Shallow seismic AVO variations related to partial water saturation during a pumping test

    E-Print Network [OSTI]

    Sloan, Steven D.; Tsoflias, Georgios P.; Steeples, Don W.

    2007-11-27

    High-resolution shallow seismic reflection experiments were conducted during and after a pumping test of an agricultural irrigation well to image the cone of depression. Although variations in the reflection time from the ...

  13. An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563AbuseConnect Technicalof PDEsFermilab A0(Technical Report)

  14. DECAY OF SOLUTIONS TO A WATER WAVE MODEL WITH A ...

    E-Print Network [OSTI]

    2009-07-15

    Dutykh and F. Dias have introduced a system which models water waves in a fluid layer of finite depth under the influence of viscous effects. The model.

  15. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  16. Null Fluids - A New Viewpoint of Galilean Fluids

    E-Print Network [OSTI]

    Banerjee, Nabamita; Jain, Akash

    2015-01-01

    This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.

  17. Null Fluids - A New Viewpoint of Galilean Fluids

    E-Print Network [OSTI]

    Nabamita Banerjee; Suvankar Dutta; Akash Jain

    2015-09-15

    This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.

  18. PII S0016-7037(01)00579-8 The origin and evolution of base metal mineralising brines and hydrothermal fluids,

    E-Print Network [OSTI]

    Banks, David

    that the major element chemistry of these fluids is comparable with that of evolved oil-field brines, and fluids of mineralising palaeoflu- ids is a complex function of the basin chemistry, subsequent modifications due to water by the evaporation of seawater or a seawater­meteoric water mixture past the point of halite precipitation. The major

  19. Notes 09. Fluid inertia and turbulence in fluid film bearings 

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01

    . Use the program to observe the effects of fluid inertia in the pressure field (shifting and increase/decrease) and the resulting forces. In addition, derive conclusions from the effects of the Gumbel cavitation condition on the fluid film forces.... Question to ponder: Does the physical modeling of liquid cavitation in superlaminar thin film flows must be revised? (Inertialess) Turbulent flow model for short length journal bearings Fluid inertia effects are not that important in a hydrodynamic...

  20. M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Archimedes's 1st

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Buoyancy Archimedes's 1st laws #12; M. Bahrami Fluid Mechanics (S 09) Fluid statics 10 Fig. 11: Archimedes second law. Bahrami Fluid Mechanics (S 09) Fluid statics 11 Pressure distribution in rigidbody motion Fluids

  1. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    E-Print Network [OSTI]

    Pruess, K.

    2011-01-01

    third primary variable (CO2 mass fraction) from X = 0 to X =1# X X " b " CO2 where X is the mass fraction of CO 2 in theCO2 X = Assuming a single co-existing CO 2 -rich phase, water mass fraction

  2. SIMULATION OF CONSOLIDATION IN PARTIALLY SATURATED SOIL MATERIALS

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2010-01-01

    gain water from rainfall. In an active mill tailing pond,tailings material is built up on older material as the pondtailings from Uranium mills are often disposed off in the form of slurries into lined or unlined ponds.

  3. Fate and Transport of Polymeric Nanoparticles in Saturated Porous Media 

    E-Print Network [OSTI]

    Sanders, Jonathan Edward

    2015-08-11

    to contaminants which have high vapor pressure and low water solubility. Similarly to bioremediation, these systems can also take years to achieve endpoint goals 37. 2.2.4. Sorption Media Sorption media are typically employed in either a pump and treat system... in the pore water velocity of m-xylene(aq) and MSCKs .... 51 ix LIST OF TABLES TABLE Page 1 Common ENP size distribution ………………………...……….. 4 2 Particle transport models ……………………………..…………. 21 3 Properties of Texas Gold sand…………………………………… 22 4...

  4. Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    used in drilling and fracking · Recent increase in permit fee to fund new DEP enforcement · Permit fluids ­ return fluids from fracking ­ mixture of water, sand and chemicals Production fluids ­ fluids, manganese, barium, arsenic, etc.) Surfactants/detergents Total suspended solids Oil/Grease Fracking

  5. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    B. Peterman; R. Moscati

    2000-08-10

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from {approx} 40 to {approx} 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits.

  6. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  7. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  8. Collapse dynamics and runout of dense granular materials in a fluid V. Topina,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    [3]. The dis- persion of fuel fragments in the coolant water during a hypothetic nuclear accidentCollapse dynamics and runout of dense granular materials in a fluid V. Topina,b , Y. Moneriea,b , F. (Dated: April 16, 2012) We investigate the effect of an ambient fluid on the dynamics of collapse

  9. On the saturation amplitude of the f-mode instability

    E-Print Network [OSTI]

    Wolfgang Kastaun; Beatrix Willburger; Kostas D. Kokkotas

    2011-10-05

    We investigate strong nonlinear damping effects which occur during high amplitude oscillations of neutron stars, and the gravitational waves they produce. For this, we use a general relativistic nonlinear hydrodynamics code in conjunction with a fixed spacetime (Cowling approximation) and a polytropic equation of state (EOS). Gravitational waves are estimated using the quadrupole formula. Our main interest are l=m=2 f modes subject to the CFS (Chandrasekhar, Friedman, Schutz) instability, but we also investigate axisymmetric and quasiradial modes. We study various models to determine the influence of rotation rate and EOS. We find that axisymmetric oscillations at high amplitudes are predominantly damped by shock formation, while the nonaxisymmetric f modes are mainly damped by wave breaking and, for rapidly rotating models, coupling to nonaxisymmetric inertial modes. From the observed nonlinear damping, we derive upper limits for the saturation amplitude of CFS-unstable f modes. Finally, we estimate that the corresponding gravitational waves for an oscillation amplitude at the upper limit should be detectable with the advanced LIGO and VIRGO interferometers at distances above 10 MPc. This strongly depends on the stellar model, in particular on the mode frequency.

  10. Reaction of Si(111) Surface with Saturated Hydrocarbon

    SciTech Connect (OSTI)

    Suryana, Risa; Nakahara, Hitoshi; Saito, Yahachi; Ichimiya, Ayahiko

    2011-12-10

    Reaction of Si(111) surface with saturated hydrocarbon such as methane (CH{sub 4}) and ethane (C{sub 2}H{sub 6}) was carried out in a gas source molecular beam epitaxy (GSMBE). After carbonization, structures formed on the surface were observed by in situ reflection high-energy electron diffraction (RHEED). Structures transition formed on the surface were 7x7, {delta}-7x7, 1x1, and SiC structures. In the case of CH{sub 4}, the Si surfaces were carbonized at 800 deg. C for 120 min (7.2x10{sup 4} L) with a W-filament of 2800 deg. C, and SiC layers were obtained. In the case of C{sub 2}H{sub 6}, the mixture of 7x7 and SiC structure was observed. Decomposition of hydrocarbon was characterized in quadrupole mass spectroscopy (QMS) measurements. An atomic force microscopy (AFM) image of the mixture of 7x7 and SiC shows a wandering shape. Whereas, the SiC layer shows a regular step. This result seems to be related to the different in the amount of CH{sub 3} molecules on the surface.

  11. Gluon saturation and Feynman scaling in leading neutron production

    E-Print Network [OSTI]

    Carvalho, F; Spiering, D; Navarra, F S

    2015-01-01

    In this paper we extend the color dipole formalism to the study of leading neutron production in $e + p \\rightarrow e + n + X$ collisions at high energies and estimate the related observables, which were measured at HERA and may be analysed in future electron-proton ($ep$) colliders. In particular, we calculate the Feynman $x_F$ distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive $ep$ HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analysed in detail. We show that the recently released H1 leading neutron spectra can be reproduced using the color dipole ...

  12. Cartesian Cut Cell Two-Fluid Solver for Hydraulic Flow Problems

    E-Print Network [OSTI]

    Ingram, David

    of high velocity air which in turn drives a turbine also involves the flows of both water and air domain encompasses both water and air regions and the interface between the two fluids is treated; Free surface; Air water interaction. Introduction The development of numerical methods which

  13. Origin of retrograde fluids in metamorphic rocks B. Yardley*, S. Gleeson, S. Bruce, D. Banks

    E-Print Network [OSTI]

    Banks, David

    infiltration of near-surface waters, rather than to the action of deep metamorphic fluids. In this study, we basement rocks is often the result of infiltration of water from sedimentary basins or the surface. At high examine the evidence for deep infiltration of surface-derived waters into metamorphic basement rocks

  14. Fluid relief and check valve

    DOE Patents [OSTI]

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  15. Propulsion in a viscoelastic fluid

    E-Print Network [OSTI]

    Eric Lauga

    2007-03-21

    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.

  16. Solubilization of wellbore filtercakes formed from drill-in fluids 

    E-Print Network [OSTI]

    Jepson, Richard Kendall

    2000-01-01

    Research was performed to study the degradation of filtercakes formed by water-based drill-in fluids (DIF), primarily sized-salt (SS) and sized-calcium carbonate (SCC) DIFs. The experiments to degrade DIF filtercakes varied temperature (43?C to 71?...

  17. Reply to Engelder: Potential for fluid migration from the Marcellus

    E-Print Network [OSTI]

    Jackson, Robert B.

    ­rock interaction (2, 3). Data of flow-back water from hydraulically fractured shale-gas wells show-gas wells following hydraulic fracturing, apparently from permeable units within the Marcellus Formation possible Engelder's letter (1) argues that the sequestration of hydraulic fracturing fluids (HFFs

  18. The determination of glucose in sonophoretically extracted interstitial fluid and the characterization of ultrasound parameters 

    E-Print Network [OSTI]

    Cantrell, Jeffrey Travis

    2000-01-01

    chamber and used to correlate ultrasound spectral properties to the amount of fluid extracted. Results indicate that the highest amount of water extracted occurs when the acoustic coupling media on the surface of the skin is cavitating, resulting in mild...

  19. Fluids migration and dynamics of a blocks-and-faults system

    E-Print Network [OSTI]

    1910-70-11

    Keywords: earthquake catalog, block model, fault, tectonic structure, fluid, fil- ...... nal vertical fault near upper vertices of adjacent internal blocks, and formation of ... acts near the right external vertical fault: fractures filled in with water emerge ...

  20. Computational fluid dynamics analysis of cold plasma carrier gas injected into a fluid using level set method

    E-Print Network [OSTI]

    Yu, K.N.

    , and water. Our objective was to develop a model to perform complete fluid dynamics and heat transfer cells. Specifically, the authors developed a three-phase-interaction model which was coupled with heat dynamics and heat transfer output variables, such as temperature, in three phases, i.e., air, helium gas

  1. Analysis of Orthogonal Saturated Designs Daniel T. Voss and Weizhen Wang

    E-Print Network [OSTI]

    Wang, Weizhen

    Analysis of Orthogonal Saturated Designs Daniel T. Voss and Weizhen Wang This chapter provides. Emphasis is on the development of adaptive methods of analysis of orthogonal saturated designs which are also discussed briefly. 1 Introduction In the design and analysis of experiments in industry, screening

  2. Extensional wave attenuation and velocity in partially saturated sand in the sonic frequency range

    SciTech Connect (OSTI)

    Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

    2001-08-10

    Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1-9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (Q{sub E} dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.

  3. Non-quadratic Lyapunov functions for performance analysis of saturated systems

    E-Print Network [OSTI]

    Hu, Tingshu

    Non-quadratic Lyapunov functions for performance analysis of saturated systems Tingshu Hu, Andrew R. Teel and Luca Zaccarian Abstract-- In a companion paper [14], we developed a sys- tematic Lyapunov approach to the regional stability and per- formance analysis of saturated systems via quadratic Lyapunov

  4. Technical Note Stimulus-induced Rotary Saturation (SIRS): A potential method for the detection of

    E-Print Network [OSTI]

    Technical Note Stimulus-induced Rotary Saturation (SIRS): A potential method for the detection General Hospital, USA c Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan Accepted 1 May 2008 Available online 20 May 2008 Keywords: fMRI Neuronal current imaging Rotary saturation

  5. Catenaries in viscous fluid

    E-Print Network [OSTI]

    Chakrabarti, Brato

    2015-01-01

    This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...

  6. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  7. Immobilized fluid membranes for gas separation

    DOE Patents [OSTI]

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  8. Reply to discussion of measurements of supersaturation and critical gas saturation

    SciTech Connect (OSTI)

    Firoozabadi, A.; Mikkelsen, M.; Ottesen, B.

    1994-06-01

    The authors fail to see the validity of this discussion. However, they hope this response will clarify some misconceptions of Saidi and in the literature on the subject of critical gas saturation in porous media. They divide Said's discussion into two main propositions. (1) Initial gas flow in a core during depressurization is caused by the flow of gas bubbles from the top of the core. This may be different from the bulk-gas flow; therefore, the critical gas saturations reported in a cited reference may be too low. (2) Material balance (based on the equilibrium criterion) should be used to calculate gas saturation and critical gas saturation. Supersaturation has a negligible effect on gas saturation. Propositions 1 and 2 are false, and they reject them unequivocally. In this response the authors briefly state the physical principles of gas evolution in porous media and discuss the invalidity of these propositions.

  9. Regulation of calcium phosphate sedimentation in biological fluids through post-nucleation shielding

    E-Print Network [OSTI]

    Chang, Joshua C

    2015-01-01

    In vertebrates, insufficient availability of calcium and phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are present at high concentrations throughout body fluids -- at concentrations exceeding the saturation point. This situation leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this Letter, we use ideas from mean-field classical nucleation theory to study the regulation of sedimentation of cal...

  10. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  11. Real-time Water Waves with Wave Particles 

    E-Print Network [OSTI]

    Yuksel, Cem

    2010-10-12

    This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...

  12. Uncertainty quantification of CO? saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO? saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO? saturation, but we focus on how the ERT observation errors propagate to the estimated CO? saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore »information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO? saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO? saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO? saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO? saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO? saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  13. Uncertainty quantification of CO? saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect (OSTI)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO? saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO? saturation, but we focus on how the ERT observation errors propagate to the estimated CO? saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO? saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO? saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO? saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO? saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO? saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.

  14. Fluid-driven deformation of a soft granular material

    E-Print Network [OSTI]

    Christopher W. MacMinn; Eric R. Dufresne; John S. Wettlaufer

    2015-02-24

    Compressing a porous, fluid-filled material will drive the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through the Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multi-scale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.

  15. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams Greg Nash

    2004-03-31

    Chemical compounds have been designed under this contract that can be used to trace water that has been injected into vapor-dominated and two-phase geothermal fields. Increased knowledge of the injection flow is provided by the tracers, and this augments the power that can be produced. Details on the stability and use of these tracers are included in this report.

  16. Supercritical Fluid Extraction 

    E-Print Network [OSTI]

    Johnston, K. P.; Flarsheim, W. M.

    1984-01-01

    removed 88% [4J. MODAR Inc. [30J claims supercritical water will be used eventually for liquefaction and gasification of forest products and fossil fuels, as it exhibits an affinity for, and an ability to react with, organics. This is caused...

  17. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    SciTech Connect (OSTI)

    Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

    2008-08-01

    A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

  18. MEMBRANES FOR THE CONTROL OF NATURAL ORGANIC MATTER FROM SURFACE WATERS

    E-Print Network [OSTI]

    Ryan, Joe

    , Boulder Reservoir Water; CHFP, chloral hydrate formation potential; Dalton, indicative of membrane pore, heterotrophic plate count; LSI, Langelier saturation index; MWCO, molecular weight cuto; MTBE, methyl tert.0), silt density index SDI ` 3), and Langelier saturation index LSI ` 0). A potential major role

  19. Metal chelate process to remove pollutants from fluids

    DOE Patents [OSTI]

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  20. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Broader source: Energy.gov (indexed) [DOE]

    Xergy is using its Electro Chemical Compression (ECC) technology to operate a heat pump cycle using water as the working fluid
    Image: Xergy Xergy is using its Electro...

  1. Inserting Group Variables into Fluid Mechanics

    E-Print Network [OSTI]

    R. Jackiw

    2004-10-28

    A fluid, like a quark-gluon plasma, may possess degrees of freedom indexed by a group variable, which retains its identity even in the fluid/continuum description. Conventional Eulerian fluid mechanics is extended to encompass this possibility.

  2. Finite element simulation of electrorheological fluids

    E-Print Network [OSTI]

    Rhyou, Chanryeol, 1973-

    2005-01-01

    Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

  3. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Broader source: Energy.gov [DOE]

    Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

  4. Water Clean Water Clean

    E-Print Network [OSTI]

    Ishida, Yuko

    Keep Our Water Clean Keep Our Water Clean Home and garden pesticides and fertilizers are polluting residues wash into gutters, storm drains, and streams by rain,garden watering,or cleaning up drinking water. Follow these tips to keep our rivers, creeks, and oceans clean. What can you do to protect

  5. Water, water everywhere,

    E-Print Network [OSTI]

    Eberhard, Marc O.

    1 Water, water everywhere, but is it safe to drink? An Inquiry-based unit investigating the journey of your drinking water from source to tap of drinking water will contain different contaminants, based on surrounding land uses (guided inquiry activity

  6. Water Resources Forests & Water

    E-Print Network [OSTI]

    Water Resources Forests & Water More than half of the nation's freshwater supply originates on forestland. Healthy and sustainable forests can help ensure a continuous supply of clean and abundant water. Not only does forestland provide the cleanest water of any land use, it also helps absorb rainfall

  7. Low temperature barrier wellbores formed using water flushing

    DOE Patents [OSTI]

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  8. Helium measurements of pore-fluids obtained from SAFOD drillcore

    SciTech Connect (OSTI)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

    2010-04-15

    {sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

  9. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    rates of each fluid (water and air) to be known for eachcontained two separate air-to-water heat exchangers, rathercontained two, larger air-to-water heat exchangers, compared

  10. Petropolises: A Quest for Soft Infrastructure as Water-Based Urbanisms of the Floating Frontier City

    E-Print Network [OSTI]

    Murdoch, Thomas; Bhatia, Neeraj

    2014-01-01

    Oil Boat takes on oil, water, and drilling fluid to ballastSoft Infrastructure as Water-Based Urbanisms of the Floatingfor oil operations in waters with depths greater than 2,000

  11. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    to the unmixed fluid (water): 3 Cmax = Cmixed; the C valuethan the C value for the water. E = 1 – exp(-Tau * (C max /= Cunmixed; the C value for the water is higher than the C

  12. Method for removing impurities from an impurity-containing fluid stream

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Fox, Robert V.

    2010-04-06

    A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.

  13. Computational fluid dynamic applications

    SciTech Connect (OSTI)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  14. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  15. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  16. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  17. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  18. Relationships of radon diffusion coefficient with saturated hydraulic conductivity, fines content and moisture saturation of radon/infiltration barriers for the UMTRA Project

    SciTech Connect (OSTI)

    Li, P.Y.; Chen, P.K. [Morrison-Knudsen Co., Inc., Boise, ID (United States)

    1994-01-24

    The release of {sup 222}Radon to the atmosphere is controlled by the rate of its gas transport through earthen materials. Of the many soil-related parameters, radon diffusion coefficient is the key parameter that characterizes this transport. We compared the radon diffusion coefficients measured at the laboratories for the UMTRA Project with simple empirical correlations developed by others. The empirical correlations predict the radon diffusion coefficient based on the fraction of moisture saturation and porosity. One of the more recent correlations agrees reasonably well with the measurements. In addition, by using a series of correlation curves, we studied the empirical relationships of the. radon diffusion coefficient with the saturated hydraulic conductivity, the fines content, and the moisture saturation in soil. The results reveal that a reliable determination of the long-term moisture and porosity is essential in the design of an adequate radon barrier with respect to the radon diffusion coefficient.

  19. Violation of Bell's inequality in fluid mechanics

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2013-05-28

    We show that a classical fluid mechanical system can violate Bell's inequality because the fluid motion is correlated over large distances.

  20. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  1. Mapping steam and water flow in petroleum reservoirs

    SciTech Connect (OSTI)

    Wilt, M.; Schenkel, C. [Lawrence Livermore National Lab., CA (United States); Daley, T.; Peterson, J.; Majer, E. [Lawrence Berkeley National Lab., CA (United States); Murer, A.S. [Mobil Exploration and Producing US (United States); Johnston, R.M. [SPE, CalResources LLC (United States); Klonsky, L. [Chevron USA Production Co. (United States)

    1996-11-01

    Over the past 5 years, we have applied high-resolution geophysical methods (crosswell seismic and electromagnetics (EM), and passive seismic) to map and characterize petroleum reservoirs in the San Joaquin Valley and to monitor changes during secondary recovery operations. The two techniques provide complementary information. Seismic data reveal the reservoir structure, whereas EM measurements are more sensitive to the pore fluid distribution. Seismic surveys at the south Belridge field were used to map fracture generation and monitor formation changes due to the onset of steam flooding. Early results show possible sensitivity to changes in gas saturation caused by the steam flooding. Crosswell EM surveys were applied at a shallow pilot at Lost Hills for reservoir characterization and steamflood monitoring. Images made from baselines data clearly show the distribution of the target oil sands; repeated surveys during the steam flood allowed us to identify the boundaries of the steam chest and to accurately predict breakthrough. Applications of the EM techniques in steel-cased wells are at an early stage, but preliminary results at Lost Hills show sensitivity to formation resistivity in a water-flood pilot. Finally, passive seismic surveys during hydrofracture operations measured events corelatable in frequency content and magnitude with the size and orientation of induced fractures.

  2. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  3. A density functional theory study of electric potential saturation: planar geometry

    E-Print Network [OSTI]

    Gabriel Tellez; Emmanuel Trizac

    2003-08-01

    We investigate the possibility of electrostatic potential saturation, which may lead to the phenomenon of effective charge saturation. The system under study is a uniformly charged infinite plane immersed in an arbitrary electrolyte made up of several micro-species. To describe the electric double layer, we use a generic density functional theory in which the local micro-ionic density profiles are arbitrary functions of the local electrostatic potential. A necessary and sufficient condition is obtained for saturation, whereby the electrostatic potential created by the plane becomes independent of its bare charge, provided the latter is large enough.

  4. Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    E-Print Network [OSTI]

    Xin-Bin Wei; Sheng-Qin Feng

    2014-11-20

    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced the Cooper-Frye hydrodynamic evolution to systematically study the pseudo-rapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at BNL Relativistic Heavy Ion Collider (RHIC). The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.

  5. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  6. Reservoir description of low resistivity sandstones in the Mugrosa Formation (Oligocene) of Gala-Llanito Fields, Colombia, South America 

    E-Print Network [OSTI]

    Bernal Guerrero, Maria Cristina

    1993-01-01

    resistivity log response produce oil. However, some of these reservoirs which present a low-resistivity response on well logs still produce water-free oil irrespective of the calculated water saturation value. Identification of the fluid saturations from...

  7. Local entropy generation for saturated two-phase flow Remi Revellin a,*, Stephane Lips a

    E-Print Network [OSTI]

    Khandekar, Sameer

    promoted. Bejan [1] studied entropy generation through heat and fluid flow of a single-phase fluid. He- and Y-shaped assemblies of ducts, channels and streams. They assumed a laminar and fully developed flow the porous medium approach based on extended Darcy equation for fluid flow, and two-equation model for heat

  8. A micromechanical approach to modeling partly saturated soils 

    E-Print Network [OSTI]

    Lamborn, Mark Jackson

    1986-01-01

    . 9. Cartesian Coordinate System (xl, x2, x3), in Relation to Cartesian Coordinate System ( Bl, B2, B3) Figure 3 . 1 0 . Uniform Pressure Pm Acting on Surface of Sphere . 124 Figure 3. 11. Three Spheres in Contact Alonq an Axis of Symmetry Figure... 3 . 1 2 . Mixture Phase Acting as a Binder Between Nei qhbori nq Spheres 135 Fi qure 3 . 1 3 . Air-Water Mixture 143 m n Figure 3. 14. Angle Bma Relative to x3 and x3 Coordinate Axes 172 Figure 4. 1. Uniform Pressure Acting Over a Portion of a...

  9. Quantum Field Theory of Fluids

    E-Print Network [OSTI]

    Ben Gripaios; Dave Sutherland

    2015-04-23

    The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.

  10. Comment on `Nanoscale water capillary bridges under deeply negative

    E-Print Network [OSTI]

    Balibar, Sébastien

    saturated vapor pressure Psat. Because of the cohesion forces between particles, the pressure can evenComment on `Nanoscale water capillary bridges under deeply negative pressure' [Chem. Phys. Lett micro- scope tip and a silicon wafer. They deduced the pressure of liquid water inside the capillary

  11. Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling-based stochastic model

    E-Print Network [OSTI]

    Chen, Jinsong

    non-economic and economic gas saturation because electrical resistivity of reservoir materialsJoint inversion of seismic AVO and EM data for gas saturation estimation using a sampling- based is developed to estimate gas saturation and porosity using seismic AVO and EM data. Markov chain Monte Carlo

  12. A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity

    E-Print Network [OSTI]

    A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity the local thermal stratification. Convectively neutral air masses are common not only in the Tropics in winter. 1. Introduction The thermal stratification of the troposphere influ- ences the energies

  13. Development and application of saturable absorbers to femtosecond solid-state laser mode-locking

    E-Print Network [OSTI]

    Prasankumar, Rohit Prativadi, 1975-

    2003-01-01

    Semiconductor saturable absorbers have had a major impact on the field of ultrashort pulse generation by increasing the stability and reliability of ultrashort pulse lasers, making them more useful in many applications. ...

  14. Tumor angiogenesis, O2 saturation, glucose and amino acid metabolisms study using functional imaging 

    E-Print Network [OSTI]

    Xie, Xueyi

    2009-05-15

    This research is primarily focused on the study of tumors in experimental animal models using functional imaging in the presence of various contrast agents. The study of malignant tumor angiogenesis, oxygen saturation, ...

  15. Suppression of Mode-Beating in a Saturated Hole-Coupling FEL Oscillator

    E-Print Network [OSTI]

    Krishnagopal, S.

    2011-01-01

    cavity case L and with an FEL interaction. of mode-beatingMode profiles (with an FEL interaction) at three differentin a Saturated Hole-coupled FEL Oscillator S. Krishnagopal,

  16. Stabilization techniques and silicon-germanium saturable absorbers for high repetition rate mode-locked lasers

    E-Print Network [OSTI]

    Grawert, Felix Jan

    2005-01-01

    The monolithic integration of passively mode-locked solid-state lasers at highest repetition rates has been prevented by Q-switching instabilities and the lack of integrable saturable absorbers to date. In this thesis we ...

  17. Nonlinear Dynamics of a Rotor Supported by Homopolar Magnetic Bearings with Saturation 

    E-Print Network [OSTI]

    Kang, Kyungdae

    2011-02-22

    control loop that includes low pass filter effects. An analytical magnetization curve model is proposed to predict the nonlinear magnetic force under the influence of the magnetic flux saturation more accurately. The modified Langmuir method with the novel...

  18. Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas

    SciTech Connect (OSTI)

    Rice, J. E.; Greenwald, M. J.; Podpaly, Y. A.; Reinke, M. L.; Hughes, J. W.; Howard, N. T.; Ma, Y.; Cziegler, I.; Ennever, P. C.; Ernst, D.; Fiore, C. L.; Gao, C.; Irby, J. H.; Marmar, E. S.; Porkolab, M.; Tsujii, N.; Wolfe, S. M. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Diamond, P. H. [UCSD, La Jolla, California 92903 (United States); Duval, B. P. [CRPP, EPFL, Lausanne 1015 (Switzerland)

    2012-05-15

    Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.

  19. Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone Aquifers

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    1 Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone in the pore networks corresponding to three different sandstones. The simulations were used to study up

  20. Variations in coral reef net community calcification and aragonite saturation state on local and global scales

    E-Print Network [OSTI]

    Bernstein, Whitney Nicole

    2013-01-01

    Predicting the response of net community calcification (NCC) to ocean acidification OA and declining aragonite saturation state [Omega]a requires a thorough understanding of controls on NCC. The diurnal control of light ...

  1. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants

    SciTech Connect (OSTI)

    Wang, Dengjun; Su, Chuming; Liu, Chongxuan; Zhou, Dongmei

    2014-05-01

    Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 0–50 mg L–1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 0–5 mg L–1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticles (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.

  2. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  3. FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND

    E-Print Network [OSTI]

    Boyland, Philip

    FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND Department of Mathematics University in the most basic models of fluid motion. 1. Introduction Fluid mechanics is the source of many of the ideas, Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba- sic fluid mechanical concepts

  4. Mechanical Engineering ME 3720 FLUID MECHANICS

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics

  5. Lecture notes Introductory incompressible fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Introductory incompressible fluid mechanics Simon J.A. Malham Simon J.A. Malham (23rd of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum. Liquids are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can

  6. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  7. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.

  8. Fluid Mechanics IB Lecturer: Dr Natalia Berloff

    E-Print Network [OSTI]

    : hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate

  9. Water-like solvation thermodynamics in a spherically symmetric solvent model

    E-Print Network [OSTI]

    Buldyrev, Sergey

    Water-like solvation thermodynamics in a spherically symmetric solvent model with two. The Jagla fluid has been recently shown to possess water-like structural, dynamic, and thermodynamic and thereby show that the Jagla fluid also displays water-like solvation thermodynamics. We further find low

  10. A preliminary study to Assess Model Uncertainties in Fluid Flows

    SciTech Connect (OSTI)

    Marc Oliver Delchini; Jean C. Ragusa

    2009-09-01

    The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.

  11. Fluid-filled bomb-disrupting apparatus and method

    DOE Patents [OSTI]

    Cherry, Christopher R. (Albuquerque, NM)

    2001-01-01

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  12. Technique for thermodynamic crystallization temperature of brine fluids

    SciTech Connect (OSTI)

    Clark, D.E.; Hubbard, J.T.

    1983-03-01

    The application of high density solids free brine fluids has proven to be technically and economically successful in hydrocarbon completion and workover operations. The use of inorganic salts such as calcium chloride, calcium bromide, zinc bromide, and sodium bromide has contributed to the development of complex salt systems. As the density and complexity of these systems becomes more detailed, the requirement for proper fluid design becomes increasingly important. When a brine solution is cooled sufficiently, a temperature is reached where the solution will be saturated. A further decrease in temperature will result in the precipitation of salt from the solution. The temperature at which this transpires, provided no super-cooling occurs, is the crystallization point of the solution. A correctly formulated solids free brine should have the optimum crystallization point for the temperature conditions it will encounter. A recently developed semiautomatic procedure constructs a cooling curve plot of each brine tested. This cooling curve plot allows the determination of the super-cooling potential, the Thermodynamic Crystallization Temperature, and the Last Crystal To Dissolve Temperature. The device provides a permanent record of the cooling curve with repeatable accuracy, which assists in the development of error free brine formulation tables, brine density, and/or crystallization point adjustments, and brine analysis.

  13. Phase behavior of coal fluids: Data for correlation development

    SciTech Connect (OSTI)

    Robinson, R.J. Jr.; Gasem, K.A.M.; Shaver, R.D.

    1990-01-01

    The effective design and operation of processes for conversion of coal to fluid fuels requires accurate knowledge of the phase behavior of the fluid mixtures encountered in the conversion process. The overall objective of the author's work is to develop accurate predictive methods for representation of vapor-liquid equilibria in systems encountered in coal conversion processes. The objectives of the present project include: (1) measurements of binary vapor-liquid phase behavior data for selected solute gases (e.g. CO{sub 2} and C{sub 2}H{sub 6}) in a series of heavy hydrocarbon solvents to permit evaluation of interaction parameters in models for phase behavior, (2) measurements on ternary systems in which high-melting-point solvents are dissolved in more volatile aromatics to provide mixed solvents, (3) evaluation of existing equations-of-state and other models for representation of phase behavior in systems of the type studied experimentally; development of new correlation frameworks as needed, and (4) generalization of the interaction parameters for the solutes studied to a wide spectrum of heavy solvents; presentations of final results in formats useful in the design/optimization of coal liquefaction processes. This quarter, our framework for correlating saturation properties using a scaled-variable-reduced-coordinate'' approach was further developed to provide for generalized vapor pressure predictions. 59 refs., 6 figs., 8 tabs.

  14. Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    E-Print Network [OSTI]

    H. Niemi; K. J. Eskola; R. Paatelainen

    2015-05-11

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.

  15. PDM performance Test Results and Preliminary Analysis: Incompressible and Compressible Fluids

    SciTech Connect (OSTI)

    Dreesen, D.S.; Gruenhagan, E.; Cohen, J.C.; Moran, D.W.

    1999-02-01

    Three, small diameter, Moineau, positive displacement (drilling) motors (PDMs) were dynamometer tested using water, air-water mist, air-water foam, and aerated water. The motors included (1) a 1.5-inch OD, single-lobe mud motor; (2) a 1.69-inch OD, 5:6 multi-lobe mud motor; and (3) a 1.75-inch OD, 5:6 multi-lobe air motor. This paper describes the test apparatus, procedures, data analysis, and results. Incompressible and compressible fluid performance are compared; linear performance, predicted by a positive displacement motor model, is identified where it occurs. Preliminary results and conclusions are (1) the performance of all three motors is accurately modeled using a two-variable, linear model for incompressible fluid and (2) the model was not successfully adapted to model compressible fluid performance.

  16. Oscillatory Rise of Bubbles in Wormlike Micellar Fluids with Different Microstructures Nestor Z. Handzy and Andrew Belmonte

    E-Print Network [OSTI]

    -Newtonian, according to whether the Navier-Stokes equation does or does not accurately de- scribe the fluid's motion. Newtonian fluids consist of molecules small enough to be approximated by point masses (such as air and water [13]. Also, rising air bubbles and falling solid spheres have been observed to oscillate without

  17. Under consideration for publication in J. Fluid Mech. 1 Shape dynamics and scaling laws for a body

    E-Print Network [OSTI]

    dissolving in fluid flow Jinzi Mac Huang1, M. Nicholas J. Moore1,2, Leif Ristroph1 1 Applied Math Lab November 2014) While fluid flows are known to promote dissolution of materials, such processes are poorly problem through experiments in which hard candy bodies dissolve in laminar, high-speed water flows. We

  18. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    fracturing,  or  “fracking. ”  In  this  process,  fluids  a  coal  bed  through  fracking  requires  between  50,000  gallons  of  water.  Fracking  to  create  a  well  in  a  

  19. The effect of water content on solute transport in unsaturated porous media

    E-Print Network [OSTI]

    The effect of water content on solute transport in unsaturated porous media Ingrid Y. Padilla, T, Tucson Abstract. The effect of water content on NaCl transport in unsaturated porous media was investigated under steady state flow conditions for water contents ranging between full saturation and 15

  20. Dissolution and compaction of natural quartz sand as functions of temperature, pore-fluid pressure, and strain 

    E-Print Network [OSTI]

    Elmquist, Valerie Renee

    1995-01-01

    Experimental studies were conducted using quartz sand and distilled water in a hydrotherinal flow-through system at conditions which simulate diagenesis. The flow-through system can monitor fluid chemistry and time-dependent ...