Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

2

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...  

Open Energy Info (EERE)

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

3

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

4

HYDROGEN PRODUCTION THROUGH WATER GAS SHIFT REACTION OVER NICKEL CATALYSTS.  

E-Print Network [OSTI]

??The progress in fuel cell technology has resulted in an increased interest towards hydrogen fuel. Consequently, water gas shift reaction has found a renewed significance.… (more)

Haryanto, Agus

2008-01-01T23:59:59.000Z

5

Advanced Water-Gas Shift Membrane Reactor  

SciTech Connect (OSTI)

The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

2009-01-07T23:59:59.000Z

6

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

7

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

8

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Yields Energy in Darkness · CO supports both cell growth and ATP synthesis, in darkness · ATP can be used to regenerate more water-gas shift catalysts in darkness · Dark bioreactor simplifies reactor design, operation's comments that shift reaction can support cell growth yielding energy in darkness leading to sustained H2

9

Analysis of a duo-selecting membrane reactor for the water-gas shift  

E-Print Network [OSTI]

The water-gas shift reaction is an exothermic and reversible catalytic process that converts carbon monoxide and water (steam) to hydrogen and carbon dioxide. In regard to energy-related issues, the water-gas shift is part ...

Hardy, AliciA Jillian Jackson, 1978-

2004-01-01T23:59:59.000Z

10

Comparison of Palladium and Platinum Water Gas Shift Kinetics Using Density Functional Theory Models.  

E-Print Network [OSTI]

??The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at low… (more)

Clay, John

2014-01-01T23:59:59.000Z

11

Comparison of palladium and platinum Water Gas Shift reaction kinetics using density functional theory models.  

E-Print Network [OSTI]

?? The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at… (more)

Clay, John P.

2014-01-01T23:59:59.000Z

12

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

13

Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems  

E-Print Network [OSTI]

linked with gas transfer. Microbreaking, or the breakdown of small-scale waves that do not entrain airEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems; accepted 5 April 2007; published 17 May 2007. [1] Air-water gas transfer influences CO2 and other

Ho, David

14

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa

15

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

16

Development of Novel Water-Gas Shift Membrane Reactor  

SciTech Connect (OSTI)

This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

Ho, W. S. Winston

2004-12-29T23:59:59.000Z

17

A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas  

E-Print Network [OSTI]

. Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

Jaehne, Bernd

18

The deep water gas charged accumulator and its possible replacements  

E-Print Network [OSTI]

. The problem may arise when the wellhead is at water depth of more than 3500 ft. In deep water drilling, the accumulators should be placed on the subsea blowout preventer stack to reduce hydraulic response times and provide a hydraulic power supply in case...

Mir Rajabi, Mehdi

2006-04-12T23:59:59.000Z

19

Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis  

E-Print Network [OSTI]

Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis Sara Yu Choung Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne National Laboratory Chemical Engineering Division

20

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir(EC-LEDS) | Open EnergyWater

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift  

SciTech Connect (OSTI)

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

2008-03-07T23:59:59.000Z

22

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect (OSTI)

This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

Carl R.F. Lund

2001-08-10T23:59:59.000Z

23

Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal  

DOE Patents [OSTI]

The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

Siriwardane, Ranjani V; Fisher, II, James C

2013-12-31T23:59:59.000Z

24

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect (OSTI)

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

25

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

26

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

SciTech Connect (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

Barton, Thomas; Argyle, Morris; Popa, Tiberiu

2009-06-30T23:59:59.000Z

27

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

SciTech Connect (OSTI)

This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

28

Kinetic studies of the water gas shift reaction on a sulfided cobalt/molybdena/alumina catalyst  

SciTech Connect (OSTI)

In this study, the applicability of low temperature oxygen chemisorption (LTOC) to measure the specific surface area of several rare-earth oxides (La, Ce, Pr, Nd, Tb) and the kinetics of the water-gas shift reaction over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst are investigated. The LTOC results indicate that oxygen is possibly adsorbed in the molecular form, O/sub 2//sup -/, as observed by others after heat treatment of these oxides in vacuum. Lanthana and ceria were found to have ratios of total surface area to LTOC similar to those of chromia and molybdena respectively, after a comparable pretreatment. Furthermore, ceria is deduced to exist as a monolayer on the alumina support at loadings below 12%. An additional hour of reduction after the 6 hours of reduction shows a significant increase in LTOC on lanthana, neodymia and terbia which may be due to phase changes exhibited by these polymorphic oxides. The kinetics of the water-gas shift reaction has been extensively studied on iron oxide (high temperature shift) and copper oxide (low temperature shift) based catalysts. This investigation establishes the kinetics over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst in the medium temperature shift range, 250-300/sup 0/C. The catalyst was sulfided in-situ in a high pressure integrated Berty reactor system. Reaction rates were measured for different CO/H/sub 2/O feed ratios in the range 0.3-3.0, with and without CO/sub 2/ in the feed. The reaction was carried out at several pressures in the range 5-27 atm. and GHSV's in the range 4800-2400 hr/sup 1/.

Srivatsa, N.R.

1987-01-01T23:59:59.000Z

29

Structure Sensitivity of the Low-temperature Water-gas Shift Reaction on Cu–CeO2 catalysts  

SciTech Connect (OSTI)

We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu-CeO{sub 2} catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuO{sub x} structures exist. We show here that only the strongly bound Cu-[O{sub x}]-Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuO{sub x} clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu{sup 2+} ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition-precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition-precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu-CeO{sub 2} catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO{sub 2}, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i.e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 {+-} 10 kJ/mol, in a product-free (2% CO-10% H{sub 2}O) gas mixture.

Si, R.; Zhang, L.; Raitano, J.; Yi, N.; Chan, S.-W.; Flytzani-Stephanopoulos, M.

2012-01-17T23:59:59.000Z

30

A mini review on the chemistry and catalysis of the water gas shift reaction  

E-Print Network [OSTI]

Water gas shift (WGS) reaction is a chemical reaction in which carbon monoxide reacts with water vapor to form carbon dioxide and hydrogen. It is an important reaction industrially used in conjunction with steam reforming of hydrocarbons for the production of high purity hydrogen. Grenoble et al examined the roles of both active metals and metal oxide support on the kinetics of the WGS reaction. They found out that the turn over numbers of various Al2O3 supported transition metals decreased in the trend of Cu, Re, Co, Ru, Ni, Pt, Os, Au, Fe, Pd, Rh, and Ir, which corresponds nicely to the observed volcano shaped correlation between catalytic activities and respective CO adsorption heat. This is a strong indication that CO gets activated on the metal surface during the reaction and different metals have different activation energies. The authors also observed that the turn over number of Pt/Al2O3 was one order of magnitude higher than that of Pt/SiO2, indicating a strong support effect, which the authors ascri...

Zhao, Zhun

2014-01-01T23:59:59.000Z

31

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

32

Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane  

SciTech Connect (OSTI)

Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

Ferraris, John

2013-09-30T23:59:59.000Z

33

Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. • For the first time stability of such oxides were tested for 100 redox cycles. • Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. • Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

Datta, Pradyot, E-mail: pradyot.datta@gmail.com

2013-10-15T23:59:59.000Z

34

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

SciTech Connect (OSTI)

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

35

Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis  

SciTech Connect (OSTI)

With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

2008-12-01T23:59:59.000Z

36

Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts  

SciTech Connect (OSTI)

Periodic, self-consistent density functional theory calculations (DFT-GGA-PW91) on Pt(111) and Pt3Re(111) surfaces, reaction kinetics measurements, and microkinetic modeling are employed to study the mechanism of the water–gas shift (WGS) reaction over Pt and Pt–Re catalysts. The values of the reaction rates and reaction orders predicted by the model are in agreement with the ones experimentally determined; the calculated apparent activation energies are matched to within 6% of the experimental values. The primary reaction pathway is predicted to take place through adsorbed carboxyl (COOH) species, whereas formate (HCOO) is predicted to be a spectator species. We conclude that the clean Pt(111) is a good representation of the active site for the WGS reaction on Pt catalysts, whereas the active sites on the Pt–Re alloy catalyst likely contain partially oxidized metal ensembles.

Carrasquillo-Flores, Ronald; Gallo, Jean Marcel R.; Hahn, Konstanze; Dumesic, James A.; Mavrikakis, Manos

2013-12-01T23:59:59.000Z

37

Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite-based material  

SciTech Connect (OSTI)

A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tablets of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.

van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.; Hufton, J.R.; van den Brink, R.W. [Energy research Center of the Netherlands, Petten (Netherlands)

2009-05-15T23:59:59.000Z

38

Iron-ceria Aerogels Doped with Palladium as Water-gas Shift Catalysts for the Production of Hydrogen  

SciTech Connect (OSTI)

Mixed 4.5% iron oxide-95.5% cerium oxide aerogels doped with 1% and 2% palladium (Pd) by weight have been synthesized, and their activities for the catalysis of water-gas shift (WGS) reaction have been determined. The aerogels were synthesized using propylene oxide as the proton scavenger for the initiation of hydrolysis and polycondensation of a homogeneous alcoholic solution of cerium(III) chloride heptahydrate and iron(III) chloride hexahydrate precursor. Palladium was doped onto some of these materials by gas-phase incorporation (GPI) using ({eta}{sup 3}-allyl)({eta}{sup 5}-cyclopentadienyl)palladium as the volatile Pd precursor. Water-gas shift catalytic activities were evaluated in a six-channel fixed-bed reactor at atmospheric pressure and reaction temperatures ranging from 150 to 350 C. Both 1% and 2% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels showed WGS activities that increased significantly from 150 to 350 C. The activities of 1% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels were also compared with that of the 1% Pd-doped ceria aerogel without iron. The WGS activity of 1% Pd on 4.5% iron oxide-95.5% cerium oxide aerogels is substantially higher (5 times) than the activity of 1% Pd-doped ceria aerogel without iron. The gas-phase incorporation results in a better Pd dispersion. Ceria aerogel provides a nonrigid structure wherein iron is not significantly incorporated inside the matrix, thereby resulting in better contact between the Fe and Pd and thus enhancing the WGS activity. Further, neither Fe nor Pd is reduced during the ceria-aerogel-catalyzed WGS reaction. This behavior contrasts with that noted for other Fe-based WGS catalysts, in which the original ferric oxide is typically reduced to a nonstoichiometric magnetite form.

Bali, S.; Huggins, F; Ernst, R; Pugmire, R; Huffman, G; Eyring, E

2010-01-01T23:59:59.000Z

39

Water-gas Shift Reaction on oxide/Cu(111): Rational Catalyst Screening from Density Functional Theory  

SciTech Connect (OSTI)

Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO{sub 2}/Cu(111), ZrO{sub 2}/Cu(111) < MoO{sub 3}/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper.

Liu, P.

2010-11-28T23:59:59.000Z

40

Reaction-Relevant Gold Structures in the Low Temperature Water-Gas Shift Reaction on Weiling Deng, Anatoly I. Frenkel, Rui Si, and Maria Flytzani-Stephanopoulos*,  

E-Print Network [OSTI]

cell and other uses. Highly active and stable WGS catalysts are required for integration in fuel cell systems.1 The commercially used WGS catalyst in chemical plants, Cu-ZnO, is unsuitable for fuel cell The water-gas shift (WGS) reaction is a key step in fuel processing to generate high-grade hydrogen for fuel

Frenkel, Anatoly

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

B.Jhne and E. Monahan (eds.), Air-Water GasTransfer, 1995 by AEON Verlag I Physical and Chemical Mechanisms  

E-Print Network [OSTI]

W. K. Melville E. Terrill L. Ding Field Measurements of Air Entrainment by Breaking Waves D. FarmerB.Jähne and E. Monahan (eds.), Air-Water GasTransfer, © 1995 by AEON Verlag I Physical and Chemical Mechanisms B. Jähne Impact of Quantitative Visualization and Image Processing on the Study of Small-Scale Air

Jaehne, Bernd

42

Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts  

DOE Patents [OSTI]

Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

2003-09-23T23:59:59.000Z

43

Probing the Reaction Intermediates for the Water-Gas Shift over Inverse CeOx/Au(111) Catalysts  

SciTech Connect (OSTI)

The water-gas shift (WGS) is an important reaction for the production of molecular H{sub 2} from CO and H{sub 2}O. An inverse CeO{sub x}/Au(1 1 1) catalyst exhibits a very good WGS activity, better than that of copper surfaces or Cu nanoparticles dispersed on a ZnO(0 0 0 {bar 1}) substrate which model current WGS industrial catalysts. In this work we report on intermediates likely to arise during the CO + H{sub 2}O reaction over CeO{sub x}/Au(1 1 1) using soft X-ray photoemission (sXPS) and near-edge X-ray absorption fine structure (NEXAFS). Several potential intermediates including formates (HCOO), carbonates (CO{sub 3}) and carboxylates (HOCO) are considered. Adsorption of HCOOH and CO{sub 2} is used to create both HCOO and CO{sub 3} on the CeO{sub x}/Au(1 1 1) surface, respectively. HCOO appears to have greater stability with desorption temperatures up to 600 K while CO{sub 3} only survives on the surface up to 300 K. On the CeO{sub x}/Au(1 1 1) catalysts, the presence of Ce{sup 3+} leads to the dissociation of H{sub 2}O to give OH groups. We demonstrate experimentally that the OH species are stable on the surface up to 600 K and interact with CO to yield weakly bound intermediates. When there is an abundance of Ce{sup 4+}, the OH concentration is diminished and the likely intermediates are carbonates. As the surface defects are increased and the Ce{sup 3+}/Ce{sup 4+} ratio grows, the OH concentration also grows and both carbonate and formate species are observed on the surface after dosing CO to H{sub 2}O/CeO{sub x}/Au(1 1 1). The addition of ceria nanoparticles to Au(1 1 1) is essential to generate an active WGS catalyst and to increase the production and stability of key reaction intermediates (OH, HCOO and CO{sub 3}).

Rodriguez, J.A.; Senanayake, S.D.; Stacchiola, D.; Evans, J.; Estrella, M.; Barrio-Pliego, L.; Pérez, M.; Hrbek, J.

2010-05-04T23:59:59.000Z

44

Probing the Reaction Intermediates for the Water–gas Shift over Inverse CeOx / Au(1 1 1) Catalysts  

SciTech Connect (OSTI)

The water-gas shift (WGS) is an important reaction for the production of molecular H{sub 2} from CO and H{sub 2}O. An inverse CeO{sub x}/Au(1 1 1) catalyst exhibits a very good WGS activity, better than that of copper surfaces or Cu nanoparticles dispersed on a ZnO(0 0 0 {bar 1}) substrate which model current WGS industrial catalysts. In this work we report on intermediates likely to arise during the CO + H{sub 2}O reaction over CeO{sub x}/Au(1 1 1) using soft X-ray photoemission (sXPS) and near-edge X-ray absorption fine structure (NEXAFS). Several potential intermediates including formates (HCOO), carbonates (CO{sub 3}) and carboxylates (HOCO) are considered. Adsorption of HCOOH and CO{sub 2} is used to create both HCOO and CO{sub 3} on the CeO{sub x}/Au(1 1 1) surface, respectively. HCOO appears to have greater stability with desorption temperatures up to 600 K while CO{sub 3} only survives on the surface up to 300 K. On the CeO{sub x}/Au(1 1 1) catalysts, the presence of Ce{sup 3+} leads to the dissociation of H{sub 2}O to give OH groups. We demonstrate experimentally that the OH species are stable on the surface up to 600 K and interact with CO to yield weakly bound intermediates. When there is an abundance of Ce{sup 4+}, the OH concentration is diminished and the likely intermediates are carbonates. As the surface defects are increased and the Ce{sup 3+}/Ce{sup 4+} ratio grows, the OH concentration also grows and both carbonate and formate species are observed on the surface after dosing CO to H{sub 2}O/CeO{sub x}/Au(1 1 1). The addition of ceria nanoparticles to Au(1 1 1) is essential to generate an active WGS catalyst and to increase the production and stability of key reaction intermediates (OH, HCOO and CO{sub 3}).

Senanayake, S.; Stacchiola, D; Evans, J; Estrella, M; Barrio, L; Perez, M; Hrbek, J; Rodriguez, J

2010-01-01T23:59:59.000Z

45

Water Sample Concentrator  

ScienceCinema (OSTI)

Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

Idaho National Laboratory

2010-01-08T23:59:59.000Z

46

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, June 30, 1988--September 30, 1988  

SciTech Connect (OSTI)

This report details experiments performed on three different copper-based catalysts: Cu/Cr{sub 2}O{sub 3}, Cu/MnO/Cr{sub 2}O{sub 3} and Cu/ZnO/Al{sub 2}O{sub 3}. Of these three catalysts, the Cu/ZnO/Al{sub 2}O{sub 3} exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H{sub 2}/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-12-31T23:59:59.000Z

47

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeberInformation1982)Open

48

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeberInformation1982)Open2003)

49

Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle,

50

Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik &  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle,Goff, 2002) | Open

51

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle,Goff, 2002) | Open|

52

In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu-CeO2 Catalysts: Complex Interaction Between Metallic Copper and Oxygen Vacancies of Ceria  

SciTech Connect (OSTI)

New information about the active sites for the water gas shift (WGS) reaction over Cu-CeO{sub 2} systems was obtained using in-situ, time-resolved X-ray diffraction (TR-XRD), X-ray absorption spectroscopy (TR-XAS, Cu K and Ce L3 edges), and infrared spectroscopy (DRIFTS). Cu-CeO{sub 2} nanoparticles prepared by a novel reversed microemulsion method (doped Ce1-xCuxO2 sample) and an impregnation method (impregnated CuO{sub x}/CeO{sub 2} sample) were studied. The results from all of the samples indicate that both metallic copper and oxygen vacancies in ceria were involved in the generation of active sites for the WGS reaction. Evidence was found for a synergistic Cu-O vacancy interaction. This interaction enhances the chemical activity of Cu, and the presence of Cu facilitates the formation of O vacancies in ceria under reaction conditions. Water dissociation occurred on the O vacancy sites or the Cu-O vacancy interface. No significant amounts of formate were formed on the catalysts during the WGS reaction. The presence of strongly bound carbonates is an important factor for the deactivation of the catalysts at high temperatures. This work identifies for the first time the active sites for the WGS reaction on Cu-CeO{sub 2} catalysts and illustrates the importance of in situ structural studies for heterogeneous catalytic reactions.

Wang,X.; Rodriguez, J.; Hanson, J.; Gamarra, D.; Martinez-Arias, A.; Fernandez-Garcia, M.

2006-01-01T23:59:59.000Z

53

Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts  

SciTech Connect (OSTI)

Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

2010-12-31T23:59:59.000Z

54

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

55

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep NovWater Sampling

56

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep NovWaterSampling

57

Hydordesulfurization of dibenzothiophene using hydrogen generated in situ by the water-gas shift reaction in a trickle bed reactor  

E-Print Network [OSTI]

is presented in Figure 3. The reactor used was a 63. 5 cm long, L91 cm O. D. stainless steel seamless tube placed vertically in a 45. 72 cm deep (10. 23 cm LD. ) bath filled with a molten eutectic salt. The reactor tube had an inside diameter of 1. 575 cm... simultaneously with a tube wrapped in heating tape prior to entering the reactor at the top. The gas feed was passed through a coil submerged in the molten salt bath and then introduced to the hydrocarbon and water feed upstream of the reactor entrance. Both...

Hook, Bruce David

1984-01-01T23:59:59.000Z

58

Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in-situ XAFS analysis and water-gas shift reaction.  

SciTech Connect (OSTI)

Platinum atomic layer deposition (ALD) using MeCpPtMe{sub 3} was employed to prepare high loadings of uniform-sized, 1-2 nm Pt nanoparticles on high surface area Al{sub 2}O{sub 3}, TiO{sub 2}, and SrTiO{sub 3} supports. X-ray absorption fine structure was utilized to monitor the changes in the Pt species during each step of the synthesis. The temperature, precursor exposure time, treatment gas, and number of ALD cycles were found to affect the Pt particle size and density. Lower-temperature MeCpPtMe{sub 3} adsorption yielded smaller particles due to reduced thermal decomposition. A 300 C air treatment of the adsorbed MeCpPtMe{sub 3} leads to PtO. In subsequent ALD cycles, the MeCpPtMe{sub 3} reduces the PtO to metallic Pt in the ratio of one precursor molecule per PtO. A 200 C H{sub 2} treatment of the adsorbed MeCpPtMe{sub 3} leads to the formation of 1-2 nm, metallic Pt nanoparticles. During subsequent ALD cycles, MeCpPtMe{sub 3} adsorbs on the support, which, upon reduction, yields additional Pt nanoparticles with a minimal increase in size of the previously formed nanoparticles. The catalysts produced by ALD had identical water-gas shift reaction rates and reaction kinetics to those of Pt catalysts prepared by standard solution methods. ALD synthesis of catalytic nanoparticles is an attractive method for preparing novel model and practical catalysts.

Setthapun, W.; Williams, W.; Kim, S.; Feng, H.; Elam, J.; Rabuffetti, F.; Poeppelmeier, K.; Stair, P.; Stach, E.; Ribeiro, F.; Miller, J.; Marshall, C.; Northwestern Univ.; Purdue Univ.

2010-06-03T23:59:59.000Z

59

Characterization of CeO2-Supported Cu-Pd Bimetallic Catalyst for the Oxygen-Assisted Water-Gas Shift Reaction  

SciTech Connect (OSTI)

This study was focused to investigate the roles of Cu and Pd in CuPd/CeO2 bimetallic catalysts containing 20-30 wt% Cu and 0.5-1 wt% Pd used in the oxygen-assisted water-gas shift (OWGS) reaction employing a combined bulk and surface characterization techniques such as XRD, TPR, CO chemisorption, and in-situ XPS. The catalytic activity for CO conversion and the stability of catalyst during on-stream operation increased by the addition of Cu to Pd/CeO2 or Pd to Cu/CeO2 monometallic catalysts, especially when the OWGS reaction was performed under low temperatures, below 200oC. The bimetallic catalyst after leaching with nitric acid retained about 60% of its original activity. The TPR of monometallic Cu/CeO2 showed reduction of CuO supported on CeO2 in two distinct regions, around 150 and 250oC. The high temperature peak disappeared and reduction occurred in a single step around 150oC upon Pd addition. The Pd dispersion decreased from 38.5% for Pd/CeO2 to below 1% for CuPd/CeO2 bimetallic catalyst. In-situ XPS studies showed a shift in Cu 2p peaks toward lower binding energy (BE) with concommitant shift in the Pd 3d peaks toward higher BE. Addition of Pd decreased the surface Cu concentration while the concentration of Pd remained unaltered. All these observations indicated the formation of Cu-Pd surface alloy. The valence band XP spectra collected below 10 eV corroborated the core level XP spectra and indicated that Cu is mainly involved in the catalytic reaction. The improved catalytic activity and stability of CuPd/CeO2 bimetallic catalyst was attributed to the alloy formation.

Fox, Elise; Velu, Subramani; Engelhard, Mark H.; Chin, Ya-Huei; Miller, Jeffrey T.; Kropf, Jeremy; Song, Chunshan

2008-12-10T23:59:59.000Z

60

Role of metal components in Pd?Cu bimetallic catalysts supported on CeO2 for the oxygen-enhanced water gas shift  

SciTech Connect (OSTI)

Catalytic hydrogen production and CO removal in a post-reforming process are critical for low-temperature fuel cell applications. The present study aims at clarifying the role of metal components in bimetallic catalysts for oxygen-enhanced water gas shift (OWGS), wherein a small amount of O{sub 2} is added to H{sub 2}-rich reformate gas to enhance CO shift. Among CeO{sub 2}-supported bimetallic catalysts, Pd-Cu and Pt-Cu combinations were found to show strong synergetic promoting effect in OWGS, which leads to much higher CO conversion and higher H{sub 2} yield than WGS at low temperature around 250 C. Temperature programmed reduction (TPR) showed strong interaction between Pd and Cu in Pd-Cu/CeO{sub 2} by a single reduction peak in contrast to multiple peaks on monometallic Cu/CeO{sub 2}. Extended X-ray absorption fine structure (EXAFS) analysis revealed that such bimetallic Pd-Cu and Pt-Cu form alloy nanoparticles, where noble metal is mainly surrounded by Cu atoms. Oxygen storage capacity (OSC) measurements point to higher resistance of Pd-Cu to oxidation indicating that Pd keeps Cu in reduced state in air pulse condition. From kinetic study, Pd in Pd-Cu was found to promote CO shift, rather than CO oxidation by increasing the number of active sites and by suppressing H{sub 2} activation (that is inherent to monometallic Pd), which minimizes both the inhibition effect of H{sub 2} and the loss of H{sub 2} by oxidation in OWGS. Transient response technique revealed that Cu in Pd-Cu enhances desorption of strongly chemisorbed CO{sub 2} on catalyst surface in contrast to very slow CO{sub 2} desorption from surface of monometallic Pd. Thus, the excellent OWGS activity of Pd-Cu catalyst has been attributed to the complementary roles of the two metals for enhancing CO shift, which is realized by its alloy structure and the accompanying strong interaction between metal components.

Kugai, J.; Miller, J. T.; Guo, N.; Song, C. (Chemical Sciences and Engineering Division); ( PSC-USR); (Penn State Univ.)

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst  

SciTech Connect (OSTI)

An inverse powder system composed of CeO{sub 2} nanoparticles dispersed over a CuO-Cu matrix is proposed as a novel catalyst for the water-gas shift reaction. This inverse CeO{sub 2}/CuO-Cu catalyst exhibits a higher activity than standard Cu/CeO{sub 2} catalysts. In situ synchrotron characterization techniques were employed to follow the structural changes of CeO{sub 2}/CuO-Cu under reaction conditions. Time-resolved X-ray diffraction experiments showed the transformation of CuO to metallic Cu via a Cu{sub 2}O intermediate. Short-order structural changes were followed by pair distribution function analysis and corroborated the results obtained by diffraction. Moreover, X-ray absorption spectroscopy also revealed oxidation state changes from Cu{sup 2+} to Cu{sup 0} and the partial reduction of CeO{sub x} nanoparticles. The activity data obtained by mass spectrometry revealed that hydrogen production starts once the copper has been fully reduced. The strong interaction of ceria and copper boosted the catalytic performance of the sample. The inverse catalyst was active at low temperatures, stable to several reaction runs and to redox cycles. These characteristics are highly valuable for mobile fuel cell applications. The active phases of the inverse CeO{sub 2}/CuO-Cu catalyst are partially reduced ceria nanoparticles strongly interacting with metallic copper. The nature and structure of the ceria nanoparticles are of critical importance because they are involved in processes related to water dissociation over the catalyst surface.

Barrio, L.; Estrella, M; Zhou, G; Wen, W; Hanson, J; Hungria, A; Hornes, A; Fernandez-Garcia, M; Martinez-Arias, A; Rodriguez, J

2010-01-01T23:59:59.000Z

62

Unraveling the Active Site in Copper-ceria Systems for the Water Gas Shift Reaction: In-situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst  

SciTech Connect (OSTI)

An inverse powder system composed of CeO{sub 2} nanoparticles dispersed over a CuO-Cu matrix is proposed as a novel catalyst for the water-gas shift reaction. This inverse CeO{sub 2}/CuO-Cu catalyst exhibits a higher activity than standard Cu/CeO{sub 2} catalysts. In situ synchrotron characterization techniques were employed to follow the structural changes of CeO{sub 2}/CuO-Cu under reaction conditions. Time-resolved X-ray diffraction experiments showed the transformation of CuO to metallic Cu via a Cu{sub 2}O intermediate. Short-order structural changes were followed by pair distribution function analysis and corroborated the results obtained by diffraction. Moreover, X-ray absorption spectroscopy also revealed oxidation state changes from Cu{sup 2+} to Cu{sup 0} and the partial reduction of CeOx nanoparticles. The activity data obtained by mass spectrometry revealed that hydrogen production starts once the copper has been fully reduced. The strong interaction of ceria and copper boosted the catalytic performance of the sample. The inverse catalyst was active at low temperatures, stable to several reaction runs and to redox cycles. These characteristics are highly valuable for mobile fuel cell applications. The active phases of the inverse CeO{sub 2}/CuO-Cu catalyst are partially reduced ceria nanoparticles strongly interacting with metallic copper. The nature and structure of the ceria nanoparticles are of critical importance because they are involved in processes related to water dissociation over the catalyst surface.

Rodriguez, J.A.; Barrio, L.; Estrella, M.; Zhou, G.; Wen, W.; Hanson, J.C.; Hungría, A.B.; Hornés, A.; Fernández-García, M.; Arturo Martínez-Arias, A.

2010-03-04T23:59:59.000Z

63

Water and Sediment Sampling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 Water Vapor Experiment ConcludesL)

64

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep NovWater

65

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado, Disposal

66

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,

67

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,and

68

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,andOld

69

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,andOld

70

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,andOldOld

71

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction,

72

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction,Groundwater and

73

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,Sampling at

74

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,Sampling at4

75

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,Sampling

76

Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts  

SciTech Connect (OSTI)

Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H{sub 2}S, NH{sub 3}, HCN, AsH{sub 3}, PH{sub 3}, HCl, NaCl, KCl, AS{sub 3}, NH{sub 4}NO{sub 3}, NH{sub 4}OH, KNO{sub 3}, HBr, HF, and HNO{sub 3}) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts; ferrochrome-based high-temperature WGS catalyst (HT-WGS, Shiftmax 120�, Süd-Chemie), low-temperature Cu/ZnO-based WGS catalyst (LT-WGS, Shiftmax 230�, Süd-Chemie), and iron- and cobalt-based Fischer-Trospch synthesis catalysts (Fe-FT & Co-FT, UK-CAER). In this project, TDA Research, Inc. collaborated with a team at the University of Kentucky Center for Applied Energy Research (UK-CAER) led by Dr. Burt Davis. We first conducted a detailed thermodynamic analysis. The three primary mechanisms whereby the contaminants may deactivate the catalyst are condensation, deposition, and reaction. AsH{sub 3}, PH{sub 3}, H{sub 2}S, HCl, NH{sub 3} and HCN were found to have a major impact on the Fe-FT catalyst by producing reaction products, while NaCl, KCl and PH{sub 3} produce trace amounts of deposition products. The impact of the contaminants on the activity, selectivity, and deactivation rates (lifetime) of the catalysts was determined in bench-scale tests. Most of the contaminants appeared to adsorb onto (or react with) the HT- and LT-WGS catalysts were they were co-fed with the syngas: � 4.5 ppmv AsH{sub 3} or 1 ppmv PH{sub 3} in the syngas impacted the selectivity and CO conversion of both catalysts; � H{sub 2}S slowly degraded both WGS catalysts; - A binary mixture of H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv) impacted the activity of the LT-WGS catalyst, but not the HT-WGS catalyst � Moderate levels of NH{sub 3} (100 ppmv) or HCN (10 ppmv) had no impact � NaCl or KCl had essentially no effect on the HT-WGS catalyst, but the activity of the LT-WGS catalyst decreased very slowly Long-term experiments on the Co-FT catalyst at 260 and 270 °C showed that all of the contaminants impacted it to some extent with the exception of NaCl and HF. Irrespective of its source (e.g., NH{sub 3}, KNO{sub 3}, or HNO{sub 3}), ammonia suppressed the activity of the Co-FT catalyst to a moderate degree. There was essentially no impact the Fe-FT catalyst when up to 100 ppmw halide compounds (NaCl and KCl), or up to 40 ppmw alkali bicarbonates (NaHCO{sub 3} and KHCO{sub 3}). After testing, BET analysis showed that the surface areas, and pore volumes and diameters of both WGS catalysts decreased during both single and binary H2S and NH3 tests, which was attributed to sintering and pore filling by the impurities. The HT-WGS catalyst was evaluated with XRD after testing in syngas that contained 1 ppmv PH{sub 3}, or 2 ppmv H{sub 2}S, or both H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv). The peaks became sharper during testing, which was indicative of crystal growth and sintering, but no new phases were detected. After LT-WGS tests (3-33 ppmv NH{sub 3} and/or 0-88 ppmv H{sub 2}S) there were a few new phases that appeared, including sulfides. The fresh Fe-FT catalyst was nanocrystalline and amorphous. ICP-AA spectroscopy and other methods (e.g., chromatography) were used to analyze for

Gokhan Alptekin

2012-09-30T23:59:59.000Z

77

Isotopic exchange measurements of the rates of adsorption/desorption and interconversion of CO and CO/sub 2/ over chromia-promoted magnetite: implications for water-gas shift  

SciTech Connect (OSTI)

Isotopic exchange measurements were used to investigate the adsorption/desorption and interconversion of CO and CO/sub 2/ on chromia-promoted magnetite at 565 and 627 K. The interconversion between CO and CO/sub 2/ was shown to take place through surface adsorbed species. Furthermore, the rate of interconversion was limited by the rates of adsorption/desorption, indicating either that adsorbed CO and CO/sub 2/ are in equilibrium on the surface or that the adsorption of CO and CO/sub 2/ leads to the same surface species, e.g., a surface carbonate species. A kinetic model for the water-gas shift over magnetite is proposed, and the results of the isotopic exchange measurements and volumetric adsorption data are used to estimate the rate and equilibrium constants for this model.

Tinkle, M.; Dumesic, J.A.

1987-01-01T23:59:59.000Z

78

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

2011-09-30T23:59:59.000Z

79

Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows  

SciTech Connect (OSTI)

Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

S.M. Ghiaasiaan and Seppo Karrila

2006-03-20T23:59:59.000Z

80

Water-Gas Shift Membrane Reactor Studies  

E-Print Network [OSTI]

Coal, Petroleum coke, Biomass, Waste, etc. Gasifier Particulate Removal Air Separator Oxygen Air Steam - Transition to the Hydrogen Economy - CO2 capture and sequestration #12;Coal Gasification Technology Options&D Plan · Project falls within the Technical Objective to develop technology to produce pure H2 from coal

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect (OSTI)

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30T23:59:59.000Z

82

Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level  

SciTech Connect (OSTI)

At small coverages of ceria on TiO{sub 2}(110), the CeO{sub x} nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce{sub 2}O{sub 3} dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42{sup o} with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO{sub 2}(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO{sub 2}(111) or CeO{sub 2}(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO{sub x}/TiO{sub 2}(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO{sub x}/TiO{sub 2}(110) < Cu/CeO{sub x}/TiO{sub 2}(110) < Pt/CeO{sub x}/TiO{sub 2}(110). For low coverages of Cu and CeO{sub x}, Cu/CeO{sub x}/TiO{sub 2}(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO{sub x}/TiO{sub 2}(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO{sub x}/TiO{sub 2}(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

Park, J.; Graciani, J; Evans, J; Stacchiola, D; Senanayake, S; Barrio, L; Liu, P; Fdez. Sanz, J; Hrbek, J; Rodriguez, J

2010-01-01T23:59:59.000Z

83

Gold, Copper and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level  

SciTech Connect (OSTI)

At small coverages of ceria on TiO{sub 2}(110), the CeO{sub x} nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce{sub 2}O{sub 3} dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42{sup o} with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO{sub 2}(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO{sub 2}(111) or CeO{sub 2}(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO{sub x}/TiO{sub 2}(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO{sub x}/TiO{sub 2}(110) < Cu/CeO{sub x}/TiO{sub 2}(110) < Pt/CeO{sub x}/TiO{sub 2}(110). For low coverages of Cu and CeO{sub x}, Cu/CeO{sub x}/TiO{sub 2}(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO{sub x}/TiO{sub 2}(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO{sub x}/TiO{sub 2}(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

Rodriguez, J.A.; Park, J.B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S.D.; Barrio, L.; Liu, P.; Sanz, J.F.; Hrbek, J.

2010-01-13T23:59:59.000Z

84

Transition Path Sampling of Water Exchange Rates and Mechanisms...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions . Transition Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions . Abstract: The rates...

85

Water Evaporation: A Transition Path Sampling Study  

E-Print Network [OSTI]

We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

Patrick Varilly; David Chandler

2012-10-11T23:59:59.000Z

86

Water Sampling At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

87

UMTRA project water sampling and analysis plan, Maybell, Colorado  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) describes planned water sampling activities and provides the regulatory and technical basis for ground water sampling in 1994 at the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Maybell, Colorado. The WSAP identifies and justifies sampling locations, analytical parameters, and sampling frequencies at the site. The ground water data will be used for site characterization and risk assessment. The regulatory basis for the ground water and surface water monitoring activities is derived from the EPA regulations in 40 CFR Part 192 (1993) and the proposed EPA standards of 1987 (52 FR 36000). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. This WSAP also includes a summary and the results of water sampling activities from 1989 through 1992 (no sampling was performed in 1993).

Not Available

1994-06-01T23:59:59.000Z

88

UMTRA project water sampling and analysis plan -- Shiprock, New Mexico  

SciTech Connect (OSTI)

Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site.

Not Available

1994-02-01T23:59:59.000Z

89

Water Sampling At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982)...

90

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

91

Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...  

Open Energy Info (EERE)

Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

92

Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

93

Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

94

Interpretation of Water Sample Analysis, Waunita Hot Spring Project...  

Open Energy Info (EERE)

R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

95

UMTRA project water sampling and analysis plan, Tuba City, Arizona  

SciTech Connect (OSTI)

Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

NONE

1996-02-01T23:59:59.000Z

96

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolarSampling Jump to:Sampling Jump

97

UMTRA project water sampling and analysis plan, Monument Valley, Arizona  

SciTech Connect (OSTI)

The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

Not Available

1994-04-01T23:59:59.000Z

98

RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES  

SciTech Connect (OSTI)

A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of {sup 210}Po.

Maxwell, S.

2013-05-22T23:59:59.000Z

99

Process Intensification with Integrated Water-Gas-Shift Membrane...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Gasification Systems 2013 Project Selections...

100

Development of Novel Water-Gas-Shift Membrane Reactor  

E-Print Network [OSTI]

(cm) COMoleFraction 9.50 ppm Syngas from Autothermal Reforming 1% CO, 9.5% H2O, 41% H2, 15% CO2, 33 Autothermal Reforming 1% CO, 9.5% H2O, 41% H2, 15% CO2, 33.5% N2 CO2/H2 Selectivity = 40, Permeability = 4

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Process Intensification with Integrated Water-Gas-Shift Membrane Reactor |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at DepartmentDepartment of

102

Process Intensification with Integrated Water-Gas-Shift Membrane Reactor  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department of EnergyProcess

103

Ground-water sample collection and analysis plan for the ground-water surveillance project  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy`s (DOE`s) Hanford Site in support of DOE`s environmental surveillance responsibilities. The purpose of this document is to translate DOE`s General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

Bryce, R.W.; Evans, J.C.; Olsen, K.B.

1991-12-01T23:59:59.000Z

104

Ground-water sample collection and analysis plan for the ground-water surveillance project  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

Bryce, R.W.; Evans, J.C.; Olsen, K.B.

1991-12-01T23:59:59.000Z

105

UMTRA project water sampling and analysis plan, Durango, Colorado  

SciTech Connect (OSTI)

Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

Not Available

1994-01-01T23:59:59.000Z

106

E-Print Network 3.0 - arsenic contaminated water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: arsenic contaminated water Page: << < 1 2 3 4 5 > >> 1 Soil and Water Science Department...

107

E-Print Network 3.0 - advanced water treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced water treatment Page: << < 1 2 3 4 5 > >> 1 Water Scarcity and Energy: Water and Power...

108

E-Print Network 3.0 - active water management Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water management Search Powered by Explorit Topic List Advanced Search Sample search results for: active water management Page: << < 1 2 3 4 5 > >> 1 Regional Water Management:...

109

E-Print Network 3.0 - acidic liquid water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquid water Search Powered by Explorit Topic List Advanced Search Sample search results for: acidic liquid water Page: << < 1 2 3 4 5 > >> 1 Mallinckrodt Specialty Chemicals Co....

110

E-Print Network 3.0 - accelerator water convolute Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water convolute Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator water convolute Page: << < 1 2 3 4 5 > >> 1 EINDHOVEN UNIVERSITY OF...

111

E-Print Network 3.0 - abrasive water jet Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water jet Search Powered by Explorit Topic List Advanced Search Sample search results for: abrasive water jet Page: << < 1 2 3 4 5 > >> 1 Australasian Fluid Mechanics Conference...

112

E-Print Network 3.0 - air water interfaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water interfaces Search Powered by Explorit Topic List Advanced Search Sample search results for: air water interfaces Page: << < 1 2 3 4 5 > >> 1 Determination of Methane...

113

E-Print Network 3.0 - automatic boiling water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

boiling water Search Powered by Explorit Topic List Advanced Search Sample search results for: automatic boiling water Page: << < 1 2 3 4 5 > >> 1 Numerical Simulation of Boiling...

114

E-Print Network 3.0 - activity water intake Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water intake Search Powered by Explorit Topic List Advanced Search Sample search results for: activity water intake Page: << < 1 2 3 4 5 > >> 1 Gestational and early postnatal...

115

E-Print Network 3.0 - atlantic surface water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface water Search Powered by Explorit Topic List Advanced Search Sample search results for: atlantic surface water Page: << < 1 2 3 4 5 > >> 1 GEOPHYSICAL RESEARCH LETTERS, VOL....

116

E-Print Network 3.0 - advanced heavy water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heavy water Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced heavy water Page: << < 1 2 3 4 5 > >> 1 Copyright 2011, Journal of...

117

E-Print Network 3.0 - applying water quality Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: applying water quality Page: << < 1 2 3 4 5 > >> 1 Best Management Practices Water Quality Summary:...

118

E-Print Network 3.0 - apoplastic water flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

apoplastic water flow Search Powered by Explorit Topic List Advanced Search Sample search results for: apoplastic water flow Page: << < 1 2 3 4 5 > >> 1 RESEARCH PAPER High...

119

E-Print Network 3.0 - advanced pressurized water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced pressurized water Page: << < 1 2 3 4 5 > >> 1 Physics 331 Advanced Classical...

120

E-Print Network 3.0 - atomic-scale intracellular water Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

intracellular water Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic-scale intracellular water Page: << < 1 2 3 4 5 > >> 1 Oxygen isotopes...

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

E-Print Network 3.0 - antarctic intermediate water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

intermediate water Search Powered by Explorit Topic List Advanced Search Sample search results for: antarctic intermediate water Page: << < 1 2 3 4 5 > >> 1 ON THE OCEANIC RESPONSE...

122

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

123

E-Print Network 3.0 - area water supply Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water supply Search Powered by Explorit Topic List Advanced Search Sample search results for: area water supply Page: << < 1 2 3 4 5 > >> 1 A LARGE-SCALE WATER SUPPLY MODEL FOR THE...

124

E-Print Network 3.0 - attenuate water flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water flow Search Powered by Explorit Topic List Advanced Search Sample search results for: attenuate water flow Page: << < 1 2 3 4 5 > >> 1 Water Quality and Sediment Behaviour of...

125

E-Print Network 3.0 - areas water year Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water year Search Powered by Explorit Topic List Advanced Search Sample search results for: areas water year Page: << < 1 2 3 4 5 > >> 1 Guidance to Identify Waters Protected by...

126

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

127

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

128

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect (OSTI)

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

129

E-Print Network 3.0 - amyloid water-filled nanotubes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water-filled nanotubes Search Powered by Explorit Topic List Advanced Search Sample search results for: amyloid water-filled nanotubes Page: << < 1 2 3 4 5 > >> 1 Author's personal...

130

E-Print Network 3.0 - adsorbed water films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: adsorbed water films Page: << < 1 2 3 4 5 > >> 1 Water adsorption on lubricated a-CHx in humid...

131

E-Print Network 3.0 - african water resource Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water resource Search Powered by Explorit Topic List Advanced Search Sample search results for: african water resource Page: << < 1 2 3 4 5 > >> 1 THE AFRICAN ECOSYSTEMS PROGRAM AT...

132

E-Print Network 3.0 - advanced water cooled Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water cooled Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced water cooled Page: << < 1 2 3 4 5 > >> 1 Proceedings of the 18th Annual North...

133

E-Print Network 3.0 - aqp1 water permeability Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: aqp1 water permeability Page: << < 1 2 3 4 5 > >> 1 The Structure of the Aquaporin-1 Water...

134

E-Print Network 3.0 - acetonitril-water binary mixture Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acetonitril-water binary mixture Search Powered by Explorit Topic List Advanced Search Sample search results for: acetonitril-water binary mixture Page: << < 1 2 3 4 5 > >> 1...

135

E-Print Network 3.0 - african ground water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ground water Search Powered by Explorit Topic List Advanced Search Sample search results for: african ground water Page: << < 1 2 3 4 5 > >> 1 The Differences between European and...

136

E-Print Network 3.0 - aquatic plants water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: aquatic plants water Page: << < 1 2 3 4 5 > >> 1 NO LONGER HENRY'S HUDSON: EXOTIC SPECIES...

137

E-Print Network 3.0 - acetonitrile-water binary mixtures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acetonitrile-water binary mixtures Search Powered by Explorit Topic List Advanced Search Sample search results for: acetonitrile-water binary mixtures Page: << < 1 2 3 4 5 > >> 1...

138

E-Print Network 3.0 - annulus water pool Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water pool Search Powered by Explorit Topic List Advanced Search Sample search results for: annulus water pool Page: << < 1 2 3 4 5 > >> 1 IEEE TRANSACTIONS ON MEDICAL IMAGING 1...

139

E-Print Network 3.0 - annual spring water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spring water Search Powered by Explorit Topic List Advanced Search Sample search results for: annual spring water Page: << < 1 2 3 4 5 > >> 1 Why Springs Are Valuable Natural...

140

E-Print Network 3.0 - aqp1 water channel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: aqp1 water channel Page: << < 1 2 3 4 5 > >> 1 The Structure of the Aquaporin-1 Water Channel: A...

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - associating water-soluble copolymers Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water-soluble copolymers Search Powered by Explorit Topic List Advanced Search Sample search results for: associating water-soluble copolymers Page: << < 1 2 3 4 5 > >> 1 The...

142

E-Print Network 3.0 - airs water vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water vapor Search Powered by Explorit Topic List Advanced Search Sample search results for: airs water vapor Page: << < 1 2 3 4 5 > >> 1 A laboratory experiment from the Little...

143

E-Print Network 3.0 - advanced alkaline water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alkaline water Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced alkaline water Page: << < 1 2 3 4 5 > >> 1 Net alkalinity and net acidity...

144

E-Print Network 3.0 - aquaporin-1 water channels Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water channels Search Powered by Explorit Topic List Advanced Search Sample search results for: aquaporin-1 water channels Page: << < 1 2 3 4 5 > >> 1 Mercury Inhibits the L170C...

145

E-Print Network 3.0 - advanced boiling water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced boiling water Page: << < 1 2 3 4 5 > >> 1 Boiling Radial Flow in Fractures of...

146

E-Print Network 3.0 - americas warm water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

warm water Search Powered by Explorit Topic List Advanced Search Sample search results for: americas warm water Page: << < 1 2 3 4 5 > >> 1 Ch.8 Weather Weather and Climate...

147

E-Print Network 3.0 - avt water treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water treatment Search Powered by Explorit Topic List Advanced Search Sample search results for: avt water treatment Page: << < 1 2 3 4 5 > >> 1 This article appeared in a journal...

148

E-Print Network 3.0 - acid-water complexes measured Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water complexes measured Search Powered by Explorit Topic List Advanced Search Sample search results for: acid-water complexes measured Page: << < 1 2 3 4 5 > >> 1 NUCLEATION OF...

149

E-Print Network 3.0 - amazonian river water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

river water Search Powered by Explorit Topic List Advanced Search Sample search results for: amazonian river water Page: << < 1 2 3 4 5 > >> 1 CONTENTS OF AMAZONIA AND GLOBAL...

150

E-Print Network 3.0 - atlantic deep water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: atlantic deep water Page: << < 1 2 3 4 5 > >> 1 Atlantic Ocean Lynne D Talley Summary: for...

151

E-Print Network 3.0 - asia water resources Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water resources Search Powered by Explorit Topic List Advanced Search Sample search results for: asia water resources Page: << < 1 2 3 4 5 > >> 1 APRU FELLOWS PROGRAM 2012 in...

152

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

153

E-Print Network 3.0 - air-water interface predictive Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water interface predictive Page: << < 1 2 3 4 5 > >> 1 Generalized Interface Polarity Scale...

154

E-Print Network 3.0 - atmospheric water transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric water transport Page: << < 1 2 3 4 5 > >> 1 JPL (MLS Team) Scientific Publication Scientific...

155

E-Print Network 3.0 - air-water flow experimental Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water flow experimental Page: << < 1 2 3 4 5 > >> 1 Mechanical engineering Department...

156

Field Sampling Report -Water 2005 SFEI PRISM-Methods Development  

E-Print Network [OSTI]

of aquatic toxicity by Pacific Eco-Risk (PER) (2 twenty-liter carboys). 2.2 Personnel The personnel and work transferred remaining samples to AMS in Livermore April 18, 2005 0800-1200 Mr. Salop shipped remaining samples

157

July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect (OSTI)

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

None

2011-01-01T23:59:59.000Z

158

A STATEWIDE SUMMARY OF SMALLMOUTH BASS SAMPLING DATA FROM SOUTH DAKOTA WATERS  

E-Print Network [OSTI]

r SOUTH c·~ o -0 . ~ o ] A STATEWIDE SUMMARY OF SMALLMOUTH BASS SAMPLING DATA FROM SOUTH DAKOTA WATERS Department Of Game, Fish & Parks Wildlife Division Anderson Building -- Pierre. South Dakota 57501 Progress Report No. 90-9 #12;A STATEWIDE SUMMARY OF SMALLMOUTH BASS SAMPLING DATA FROM SOUTH DAKOTA WATERS

159

384 Power plant waste water sampling and analysis plan  

SciTech Connect (OSTI)

This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

Hagerty, K.J.; Knotek, H.M.

1995-01-01T23:59:59.000Z

160

UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1  

SciTech Connect (OSTI)

Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

{sup 222}Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water  

SciTech Connect (OSTI)

Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA`s standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations.

Hightower, J.H. III [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering] [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

1994-12-31T23:59:59.000Z

162

Sustainable Urban Water Management James P. Heaney, Len Wright, and David Sample  

E-Print Network [OSTI]

3-1 Chapter 3 Sustainable Urban Water Management James P. Heaney, Len Wright, and David Sample sustainable urban water management systems. Systems View of Urban Water Management The mid 1960's were and environmental management during the 1960's and 1970's because of strong federal support for research, a national

Pitt, Robert E.

163

E-Print Network 3.0 - alloy-625 inconel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Industrial Engineering, Concordia University Collection: Engineering 22 Water-Gas Shift Membrane Reactor Studies Summary: in quartz & Inconel reactors to determine...

164

E-Print Network 3.0 - anode catalyst pathway Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Polyols 16 Water-Gas Shift Catalysis via Mesoporous Catalysts 20 Pd on ceriasilica aerogel... and ceriasilica xerogel catalysts for WGS 23 Hydrogen Production in...

165

In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions  

E-Print Network [OSTI]

water-gas shift (CO + H 2 O of water on surfaces has a significant influence on the mechanisms and kinetics

Yamamoto, S.

2008-01-01T23:59:59.000Z

166

Category:Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJumpInformationcontaining StateoutSurface Water

167

Geochemical Sampling of Thermal Waters in Nevada | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssetsof Thermal Waters in

168

E-Print Network 3.0 - air-water solution interface Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water solution interface Page: << < 1 2 3 4 5 > >> 1 BES Chemical Sciences Division Research...

169

E-Print Network 3.0 - air-water cross flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water cross flow Page: << < 1 2 3 4 5 > >> 1 Journal of Colloid and Interface Science 326...

170

E-Print Network 3.0 - air-water interactions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water interactions Page: << < 1 2 3 4 5 > >> 1 The Earth's ...as conduit Summary: , and...

171

E-Print Network 3.0 - ambient water quality Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: ambient water quality Page: << < 1 2 3 4 5 > >> 1 Episodic Toxicity in the San Francisco Bay System...

172

E-Print Network 3.0 - air water two-phase Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air water two-phase Page: << < 1 2 3 4 5 > >> 1 Proceedings of FEDSM2005 2005 ASME Fluids...

173

E-Print Network 3.0 - air-water vertical upward Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water vertical upward Page: << < 1 2 3 4 5 > >> 1 Journal of Colloid and Interface Science...

174

E-Print Network 3.0 - advanced light-water nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: advanced light-water nuclear Page: << < 1 2 3 4 5 > >> 1 1 Managed by UT-Battelle for the U.S. Department...

175

E-Print Network 3.0 - air-water two-phase flow Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water two-phase flow Page: << < 1 2 3 4 5 > >> 1 Heat and Mass Transfer Laboratory Gnie...

176

E-Print Network 3.0 - applying water cooled Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: applying water cooled Page: << < 1 2 3 4 5 > >> 1 Proceedings of the 18th Annual North American...

177

UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1  

SciTech Connect (OSTI)

Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

NONE

1995-09-01T23:59:59.000Z

178

Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado  

SciTech Connect (OSTI)

The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites.

NONE

1995-09-01T23:59:59.000Z

179

SSSSaaaammmmpppplllliiiinnnngggg ffffoooorrrr BBBBaaaacccctttteeeerrrriiiiaaaa iiiinnnn WWWWeeeellllllllssss Water samples for bacteria tests must always be col-  

E-Print Network [OSTI]

the inside surface of the faucet by flam- ing with a propane torch (a disposable butane lighter is fine the bottle immediately after collecting water sample. Refrigerate the sample and transport it to the laborato, disability, religion, age or national origin. Issued in furtherance of Cooperative Extension Work

180

May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)  

SciTech Connect (OSTI)

Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

None

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)  

SciTech Connect (OSTI)

Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

None

2011-12-01T23:59:59.000Z

182

May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)  

SciTech Connect (OSTI)

Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

None

2012-12-01T23:59:59.000Z

183

Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site  

SciTech Connect (OSTI)

As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

2007-01-01T23:59:59.000Z

184

UMTRA project water sampling and analysis plan, Falls City, Texas. Revision 1  

SciTech Connect (OSTI)

Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas, are described in this water sampling and analysis plan (WSAP). The following plan identifies and justifies the sampling locations, analytical parameters, and sampling frequency for the routine monitoring stations at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. The Falls City site is in Karnes County, Texas, approximately 8 miles [13 kilometers southwest of the town of Falls City and 46 mi (74 km) southeast of San Antonio, Texas. Before surface remedial action, the tailings site consisted of two parcels. Parcel A consisted of the mill site, one mill building, five tailings piles, and one tailings pond south of Farm-to-Market (FM) Road 1344 and west of FM 791. A sixth tailings pile designated Parcel B was north of FM 791 and east of FM 1344.

NONE

1995-09-01T23:59:59.000Z

185

RAPID METHOD FOR DETERMINATION OF {sup 228}Ra IN WATER SAMPLES  

SciTech Connect (OSTI)

A new rapid method for the determination of {sup 228}Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/ Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine {sup 228}Ra in solid samples (via {sup 228}Ac) , radiochemical methods that employ gas flow proportional counting techniques typically provide lower MDA (Minimal Detectable Activity) levels for the determination of {sup 228}Ra in water samples. Most radiochemical methods for {sup 228}Ra collect and purify {sup 228}Ra and allow for {sup 228}Ac daughter ingrowth for ~36 hours. In this new SRNL/EBL approach, {sup 228}Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 hours so that {sup 228}Ra assay results on water samples can be achieved in < 6 hours. The method uses a rapid calcium carbonate precipitation enhanced with a small amount of phosphate added to enhance chemical yields (typically >90%), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. {sup 228}Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify {sup 228}Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and {sup 90}Y. La is used to determine {sup 228}Ac chemical yield via ICP-MS, but {sup 133}Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.

Maxwell, S.

2012-09-05T23:59:59.000Z

186

Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp.  

E-Print Network [OSTI]

Identification of Bacteria in Biofilm and Bulk Water SamplesNo. 12 Identification of Bacteria in Biofilm and Bulk Water

Martiny, A. C; Albrechtsen, H.-J.; Arvin, E.; Molin, S.

2005-01-01T23:59:59.000Z

187

Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

Peterson, Robert E.; Patton, Gregory W.

2009-12-14T23:59:59.000Z

188

Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)  

SciTech Connect (OSTI)

Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

Paller, M.

1990-11-01T23:59:59.000Z

189

Supplement to the UMTRA Project water sampling and analysis plan, Maybell, Colorado  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Maybell, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Maybell (DOE, 1994a). Further, this supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Maybell. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1994) and 60 CFR 2854 (1 995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Maybell site are the Maybell Baseline Risk Assessment (currently in progress), the Maybell Remedial Action Plan (RAP) (DOE, 1994b), and the Maybell Environmental Assessment (DOE, 1995).

NONE

1995-09-01T23:59:59.000Z

190

Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

NONE

1995-09-01T23:59:59.000Z

191

Supplement to the UMTRA Project water sampling and analysis plan, Monument Valley, Arizona  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

NONE

1995-09-01T23:59:59.000Z

192

Supplement to the UMTRA Project water sampling and analysis plan, Mexican Hat, Utah  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Mexican Hat (DOE, 1994). Further, the supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Mexican Hat. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1991) and 60 FR 2854 (1995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Mexican Hat site are the Mexican Hat Long-Term Surveillance Plan (currently in progress), and the Mexican Hat Site Observational Work Plan (currently in progress).

NONE

1995-09-01T23:59:59.000Z

193

E-Print Network 3.0 - air-lift water-pumping wind-turbines Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water-pumping wind-turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: air-lift water-pumping wind-turbines Page: << < 1 2 3 4 5 > >> 1 Review...

194

Analysis of 129I in Groundwater Samples: Direct and Quantitative Results below the Drinking Water Standard  

SciTech Connect (OSTI)

Due to its long half-life (15.7 million years) and relatively unencumbered migration in subsurface environments, 129I has been recognized as a contaminant of concern at numerous federal, private, and international facilities. In order to understand the long-term risk associated with 129I at these locations, quantitative analysis of groundwater samples must be performed. However, the ability to quantitatively assess the 129I content in groundwater samples requires specialized extraction and sophisticated analytical techniques, which are complicated and not always available to the general scientific community. This paper highlights an analytical method capable of directly quantifying 129I in groundwater samples at concentrations below the MCL without the need for sample pre-concentration. Samples were analyzed on a Perkin Elmer ELAN DRC II ICP-MS after minimal dilution using O2 as the reaction gas. Analysis of continuing calibration verification standards indicated that the DRC mode could be used for quantitative analysis of 129I in samples below the drinking water standard (0.0057 ng/ml or 1 pCi/L). The low analytical detection limit of 129I analysis in the DRC mode coupled with minimal sample dilution (1.02x) resulted in a final sample limit of quantification of 0.0051 ng/ml. Subsequent analysis of three groundwater samples containing 129I resulted in fully quantitative results in the DRC mode, and spike recovery analyses performed on all three samples confirmed that the groundwater matrix did not adversely impact the analysis of 129I in the DRC mode. This analytical approach has been proven to be a cost-effective, high-throughput technique for the direct, quantitative analysis of 129I in groundwater samples at concentrations below the current MCL.

Brown, Christopher F.; Geiszler, Keith N.; Lindberg, Michael J.

2007-03-03T23:59:59.000Z

195

SPRING 2014 CHEMISTRY COLLOQUIA "Fundamental Studies on the Water-gas Shift Reaction on  

E-Print Network [OSTI]

/Oxide Catalysts: Active Sites and Reaction Mechanism" The high-performance of gold-ceria, copper-ceria and gold

Tsymbal, Evgeny Y.

196

CERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh  

E-Print Network [OSTI]

on pure hydrogen or a hydrogen-rich gas with little or no carbon monoxide. In the near term, fuel cells used in fuel processors. This reaction increases the hydrogen content and reduces the carbon monoxide) to the reactor. The reactor section incorporates a bypass loop, which allows for baseline gas chromatograph

Azad, Abdul-Majeed

197

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's E.GilmanKurt's

198

The effect of PdZn particle size on reverse-water-gas-shift reaction . |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceTheof carbon

199

A Cu/Pt Near-Surface Alloy for Water-Gas Shift Catalysis. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon,Electrocatalysis |Framework

200

Desulfurization of a coal model compound by in situ hydrogen generation through water-gas shift  

E-Print Network [OSTI]

TECHNIQUE 94 PAGE APPENDIX 5 TEMPERATURE PROGRAM 101 APPENDIX 6 TEMPERATURE PROFILES 104 NOTATION 112 VITA 113 1x LIST OF FIGURES FIGURE PAGE 1 Reaction Scheme or Benzothiophene (from Guin et al. Ind. Eng. Chem. Process. Dev. , 19 (1980)) 2... and Conversion 62 5 Computer Results or Non-Linear Regression Analysis 98 6 Results of Kinetic Parameters Estimation 7 Statistical Analysis Results for Temperature Profile Tl 108 8 Statistical Analysis Results f or Temperature Prof ile T2 109 9...

Kumar, Meyyappan

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

Atkinson, R.

2012-07-31T23:59:59.000Z

202

UMTRA ground water sampling techniques: Comparison of the traditional and low flow methods  

SciTech Connect (OSTI)

This report describes the potential changes in water quality data that may occur with the conversion from MBV (multiple bore volume) to LF (low flow) sampling and provides two examples of how such a change might impact Project decisions. The existing scientific literature on LF sampling is reviewed and the new LF data from three UMTRA Uranium Mill Tailings Remedial Action Project sites are evaluated seeking answers to the questions posed above. Several possible approaches, that the UMTRA Project may take to address issues unanswered by the literature are presented and compared, and a recommendation is offered for the future direction of the LF conversion effort.

NONE

1995-07-01T23:59:59.000Z

203

Water adsorption at high temperature on core samples from The Geysers geothermal field  

SciTech Connect (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal field, California, was measured at 150, 200, and 250 C as a function of steam pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption and desorption runs were made in order to investigate the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were made on the same rock samples. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there was no direct correlation between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The hysteresis decreased significantly at 250 C. The results indicate that multilayer adsorption, rather than capillary condensation, is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

204

Water adsorption at high temperature on core samples from The Geysers geothermal field  

SciTech Connect (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

205

UMTRA Project water sampling and analysis plan, Canonsburg, Pennsylvania. Revision 1  

SciTech Connect (OSTI)

Surface remedial action was completed at the US Department of Energy (DOE) Canonsburg and Burrell Uranium Mill Tailings Remedial Action (UMTRA) Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. The Burrell disposal site, included in the UMTRA Project as a vicinity property, was remediated in conjunction with the remedial action at Canonsburg. On 27 May 1994, the Nuclear Regulatory Commission (NRC) accepted the DOE final Long-Term Surveillance Plan (LTSP) (DOE, 1993) for Burrell thus establishing the site under the general license in 10 CFR {section}40.27 (1994). In accordance with the DOE guidance document for long-term surveillance (DOE, 1995), all NRC/DOE interaction on the Burrell site`s long-term care now is conducted with the DOE Grand Junction Projects Office in Grand Junction, Colorado, and is no longer the responsibility of the DOE UMTRA Project Team in Albuquerque, New Mexico. Therefore, the planned sampling activities described in this water sampling and analysis plan (WSAP) are limited to the Canonsburg site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring at the Canonsburg site for calendar years 1995 and 1996. Currently, the analytical data further the site characterization and demonstrate that the disposal cell`s initial performance is in accordance with design requirements.

NONE

1995-09-01T23:59:59.000Z

206

E-Print Network 3.0 - argonne heavy water modified reactor Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WATER REFORMER SHIFTER CO CLEAN-UP BURNER COMPRESSED EXHAUST EXPANDED EXHAUST WASTE HEAT REJECTION WATER... TANK HEAT & AIR COOL & HUMIDIFY HEAT REJECTION AND WATER RECOVERY...

207

E-Print Network 3.0 - agricultural drainage water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water runoff, unsewered... of representatives from agriculture, drinking water and wastewater utilities, environmental organizations... -326-1616 (cell) FUNDS AVAILABLE FOR WATER...

208

E-Print Network 3.0 - ambient water toxicity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The most Summary: waters of the toxicity test beakers. Immediate collection and analysis of interstitial water... was necessary. Others have recommended interstitial waters...

209

E-Print Network 3.0 - army field water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress Summary: efforts in water and related land resources management. U.S. Army Engineer Institute for Water... : System-Wide Water Resources Programs Partners: U.S....

210

Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060  

SciTech Connect (OSTI)

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

Wilborn, Bill; Knapp, Kathryn [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States)] [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States); Farnham, Irene; Marutzky, Sam [Navarro-Intera (United States)] [Navarro-Intera (United States)

2013-07-01T23:59:59.000Z

211

Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure  

SciTech Connect (OSTI)

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

Wilborn, Bill [NNSA/NFO, Nevada Site Office (United States); Farnham, Irene [Navarro-Interra LLC, Las Vegas (United States); Marutzky, Sam [Navarro-Interra LLC, Las Vegas (United States); Knapp, Kathryn [NNSA/NFO, Nevada Site Office (United States)

2013-02-24T23:59:59.000Z

212

Allison Lab Protocol: Fluorimetric Enzyme Assays for Water Samples, 6/2008, Steve Allison Fluorimetric Enzyme Assay Protocol for Streamwater  

E-Print Network [OSTI]

. Label plates with the enzyme names. For an assay with more than three samples, multiple plates for eachL amber glass bottles using sterile water. Store solutions in the 4°C refrigerator. Substrates substrate will be necessary (e.g. LAP 1, LAP 2, LAP 3...). At least 3 samples can be run per plate, so

German, Donovan P.

213

E-Print Network 3.0 - activities improved water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 5 > >> 1 Water Resources Water Quality and Water Treatment Summary: to the states for rural water supply and sanitation activities. Ministry of Agriculture (MoA) is involved......

214

E-Print Network 3.0 - annual water storage Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships Summary: and logistics Better Place, Fiskar Automotive, Mission Motors, Tesla Motors WATER Filtration, purification... , water conservation, irrigation and...

215

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network [OSTI]

CA 94720 ABSTRACT in the boiler used to make process steam.water, gas condensate, and boiler blowdown. A summary of thewater, gas condensate, and boiler blowd01m. Retort water and

Fish, Richard H.

2013-01-01T23:59:59.000Z

216

A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters  

SciTech Connect (OSTI)

To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

2010-06-22T23:59:59.000Z

217

E-Print Network 3.0 - acyl-coa dehydrogenation deficiency Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Co-production of Hydrogen and Methyl... Formate by Dehydrogenation of Methanol 5 Water-Gas Shift Catalysis via Aerogel-Supported Ceria 6 Hydrogen... below. 1.Fe-Ni nanoparticles...

218

E-Print Network 3.0 - ardennes b-1 reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is mainly produced via steam... reactors (a high temperature steam reformer and two water gas shift reactors to convert CO into CO2 and H2... -called membrane reactors (MRs),...

219

E-Print Network 3.0 - argentine reactor ra-5 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is mainly produced via steam... reactors (a high temperature steam reformer and two water gas shift reactors to convert CO into CO2 and H2... -called membrane reactors (MRs),...

220

E-Print Network 3.0 - argentine reactor ra-1 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is mainly produced via steam... reactors (a high temperature steam reformer and two water gas shift reactors to convert CO into CO2 and H2... -called membrane reactors (MRs),...

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - argentine reactor ra-0 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is mainly produced via steam... reactors (a high temperature steam reformer and two water gas shift reactors to convert CO into CO2 and H2... -called membrane reactors (MRs),...

222

E-Print Network 3.0 - alkane oxidation catalysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrogen... Reforming of Methane 10 Gas Phase Incorporation of Pd onto Iron-Ceria Aerogels for Water Gas Shift Catalysis... at the 20 North American Meeting of the Catalysis...

223

E-Print Network 3.0 - artificially heated waters Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oklahoma State University (www.hvac.okstate.edu) Summary: exchanger, and water-to-water heat pumps have been developed and validated separately... from precipitation, and latent...

224

E-Print Network 3.0 - australian water resources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Australians use less water than... and reliability is in order. Data Reliability The California Dept. of Water Resources (DWR) acknowledges... , Australia has a consistent system...

225

E-Print Network 3.0 - air soil water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iii. Soil-Plant Relationships iv. Cation exchange IV. Pollution of Water, Soil, and Air: (Lecture... unsaturated unsteady water flow X. Gaseous Phase of Soils (Hillel pages...

226

E-Print Network 3.0 - air water soil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iii. Soil-Plant Relationships iv. Cation exchange IV. Pollution of Water, Soil, and Air: (Lecture... unsaturated unsteady water flow X. Gaseous Phase of Soils (Hillel pages...

227

E-Print Network 3.0 - agricultural water management Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Florida Collection: Environmental Sciences and Ecology 11 Water Markets as a Mechanism for SustainableWater Markets as a Mechanism for Sustainable...

228

E-Print Network 3.0 - annual bathing water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The maxi- mum increase of demand for potable water as opposed... The maximum rainwater that can be harvested given by the rain- water ... Source: Papadopoulos,...

229

E-Print Network 3.0 - affect water relations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

corrosive water affects the entire household plumbing system... on water testing and treatment and issues ... Source: Liskiewicz, Maciej - Institut fr Theoretische Informatik,...

230

E-Print Network 3.0 - affects water relations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

corrosive water affects the entire household plumbing system... on water testing and treatment and issues ... Source: Liskiewicz, Maciej - Institut fr Theoretische Informatik,...

231

E-Print Network 3.0 - auxiliary water systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including drinking water distribution systems (esp. in small rural communities... ), wastewater treatment, storm runoff, irrigation systems, dams, levees, and canals. 9. Water...

232

E-Print Network 3.0 - alternate water sources Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Conveyance Water Treatment Distribution Customer Use Wastewater Collection and Treatment 12... ;2000 Urban Water-Related Energy Use Sources ... Source: Keller, Arturo A. -...

233

E-Print Network 3.0 - atmospheric water cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cycle power plant's water demand is to meet... cooling water makeup requirements. Cooling towers reject heat from a power ... Source: California Energy Commission Collection:...

234

E-Print Network 3.0 - asexual american water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: asexual american water Page: << < 1 2 3 4 5 > >> 1 Evolutionary Ecology Research, 2000, 2: 841855 2000 Alistair J. Cullum Summary: and evaporative water loss...

235

E-Print Network 3.0 - american water flea Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

earth at reducing populations Summary: affected than those that must metabolize water from their food sources. Both fleas and blow flies... lost water faster and more...

236

E-Print Network 3.0 - agricultural surface waters Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems (Hem, 1985). Irrigated agriculture can result in rising water tables, waterlogged soils... ; however, canals built in 4000 B.C. did not sufficiently drain excess water ......

237

E-Print Network 3.0 - anechoic water tank Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

238

E-Print Network 3.0 - anaerobic waste water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Jun Wei LIM... waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION... of brown water and food ... Source: Ecole Polytechnique,...

239

Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples  

SciTech Connect (OSTI)

An immunochromatographic assay (ICA) using gold nanoparticles coated with monoclonal antibody (McAb) for the detection of chromium ions (Cr) in water and serum samples was developed, optimized, and validated. Gold nanoparticles coated with affinity- purified monoclonal antibodies against isothiocyanobenzyl-EDTA (iEDTA)-chelated Cr3+ were used as the detecting reagent in this completive immunoassay-based one- step test strip. The ICA was investigated to measure chromium speciation in water samples. Chromium standard samples of 0-80 ng/mL in water were determined by the test strips. The results showed that the visual lowest detection limit (LDL) of the test strip was 50.0 ng/mL. A portable colorimetric lateral flow reader was used for the quantification of Cr. The results indicated that the linear range of the ICA with colorimetric detection was 5-80 ng/mL. The ICA was also validated for the detection of chromium ions in serum samples. The test trips showed high stability in that they could be stored at at 37 C for at least 12 weeks without significant loss of activity. The test strip also showed good selectivity for Cr detection with negligible interference from other heavy metals. Because of its low cost and short testing time (within 5 min), the test strip is especially suitable for on-site large- scale screening of Cr-polluted water samples, biomonitoring of Cr exposure, and many other field applications.

Liu, Xi; Xiang, Jun-Jian; Tang, Yong; Zhang, Xiao-Li; Fu, Qiang-Qiang; Zou, Jun-Hui; Lin, Yuehe

2012-09-01T23:59:59.000Z

240

Analytical Data Report of Water Samples Collected For I-129 Analysis  

SciTech Connect (OSTI)

This is an analytical data report for samples received from the central plateau contractor. The samples were analyzed for iodine-129.

Lindberg, Michael J.

2009-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Combined use of passive sampling and in vitro bioassays for the detection of emerging pollutants in surface water  

E-Print Network [OSTI]

, the monitoring of environmental contaminants in water use discrete sampling but it gives an incomplete picture: nicolas.creusot@ineris.fr 1. Introduction River systems are contaminated by various chemicals, including), progestagen (PR) receptors...] have been shown to be activated by environmental ligands like pesticides

Boyer, Edmond

242

E-Print Network 3.0 - air conditioners water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Moving the Market toward High Efficiency Summary: and water source air conditioners and heat pumps <135,000 Btuh and for large commercial packaged water... h and <135,000 Btuh...

243

E-Print Network 3.0 - atlantic slope waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Greenland continental slope down to a depth... , in the formation of new deep water in the North Atlantic and the Southern Ocean. Large volumes of cold polar water... ....

244

E-Print Network 3.0 - alkaline water treatment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and severity. Bogoria an alkaline saline, Rift Valley Lake at one time fresh water... rainwater was used in the dilution. Four treatments (100%vv lake water, 50%vv lake...

245

E-Print Network 3.0 - air-to-water heat pump Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuels 20 piwf AFR ( )piwttp AkR Summary: for simulating refrigeration and air conditioning equipment of all types: air-to-air, air-to-water, water... flow is...

246

E-Print Network 3.0 - atmospheric water vapour Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas, and carbon dioxide (CO2) is the second... water vapour in the air that the greenhouse effect is very large, add- ing a small additional amount... of CO2 or water vapour has...

247

Analyzing Water Samples for Sources of Contamination using PCR and qPCR Berenise Rivera  

E-Print Network [OSTI]

. Channah Rock Department of Soil, Water and Environmental Science College of Agriculture and Life Sciences Fellowship Program #12;Introduction/Importance: Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health in resource waters

Fay, Noah

248

April 2012 Groundwater and Surface Water Sampling at the Salmon, Mississippi, Site (Data Validation Package)  

SciTech Connect (OSTI)

Sampling and analysis were conducted on April 16-19, 2012, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office Of Legacy Management Sites (LMS/PLN/S04351, continually updated). Duplicate samples were collected from locations SA1-1-H, HMH-5R, SA3-4-H, SA1-2-H, Pond W of GZ, and SA5-4-4. One trip blank was collected during this sampling event.

None

2012-10-12T23:59:59.000Z

249

E-Print Network 3.0 - austrian mineral water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mines may affect air quality. As with water pollution, mines can contribute to air pollution... Chapter 15 Mineral Resources and the Environment 12;Minerals ... Source: Pan,...

250

E-Print Network 3.0 - automatic watering based Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a central receiving point via a fixed base... agencies, water utilities, AMR, automatic meter reading, AMI, advanced metering infrastructure, smart... on a 15minute interval...

251

E-Print Network 3.0 - air-water bubbly flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Chemistry 6 Hydrodynamic and statistical parameters of slug flow Lev Shemer * Summary: identification from dynamic void fraction measurements in vertical air-water flows. Int....

252

E-Print Network 3.0 - ancient river water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modern Demands published by the Arizona Sonora Desert Museum... Cruz River Channel, Pima County, Arizona. Water Resources Investigations Reports; 96-4021, 1996. Pima... , Preserve...

253

E-Print Network 3.0 - alternative water development Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: and economics 6 Managing irrigation water use for sustainable alternative bioenergy crop production and impacts... development (low impact development concept) 12...

254

E-Print Network 3.0 - advanced water reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water... it can be built on time and budget. Reactors currently under construction in Finland and France... are indeed well behind schedule. But there are several reactors that...

255

E-Print Network 3.0 - australian fresh water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: australian fresh water Page: << < 1 2 3 4 5 > >> 1 Freshwater fish resources in the Snowy River, Victoria. Freshwater fish resources in the Snowy Summary:...

256

E-Print Network 3.0 - area modulate water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-steps. The hydrological module is designed to ac- count for: water availability in terms of river runo , reservoir storage... -arid hydroclimatological conditions. This...

257

E-Print Network 3.0 - abb-ce light water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplier Beginning in 1999... , community water supply systems must provide an annual report describ- ing the quality of their drinking Source: Fernndez-Juricic, Esteban -...

258

E-Print Network 3.0 - adjacent coastal waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wetland Forests Summary: of coastal Louisiana is presently experiencing an apparent water level rise of about 3.3 feet per century... infrastructure that have also altered and...

259

E-Print Network 3.0 - awwa water quality Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relevant Coursework: Principles of Environmental Chemistry Water and Wastewater Treatment... EPA quality control mandates Worked with Operations department to help achieve...

260

E-Print Network 3.0 - agricultural water protection Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Is there greater risk of problems... Environmental Council will accept these treatment systems as effective methods to protect water quality. 12... 1 College of...

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

E-Print Network 3.0 - argonne heavy water reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrolysis LHV Low heating value LWR Light water reactor MHR Modular helium reactor Q Heat SOEC Solid oxide... electrolysis cell SOFC Solid oxide fuel cell SCWR Super critical...

262

E-Print Network 3.0 - argentinean water cooled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source: Iowa State University, Office of Biorenewables Programs Collection: Renewable Energy 82 Optimization of Water Consumption in Second Generation Bioethanol Plants Summary:...

263

E-Print Network 3.0 - aromatic hydrocarbon water-soluble Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S0045-6535(02)00145-5 Summary: Abstract Polycyclic aromatic hydrocarbons (PAHs) and dioxins are lipophilic organic pollutants occurring... with their lipophilicity and water...

264

E-Print Network 3.0 - adjacent marine waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEMINAR Diatom Based Quantitative Reconstructions of Summary: . The bay ecosystem is affected by changes in water quality and quantity in the adjacent marine... and freshwater...

265

E-Print Network 3.0 - aegean sea waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aegean Sea water masses in a dense grid of stations-winter 1988, VINITI, B89, 1201, Sebastopol, 1989... ., and Y. N. Krestenitis, Modelling the ... Source: Ecole Polytechnique,...

266

E-Print Network 3.0 - acid water environments Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides some chemicals which are incompatible with other compounds. Summary: Potassium carbon tetrachloride, carbon dioxide, water Potassium chlorate sulfuric and other acids...

267

E-Print Network 3.0 - amazon state waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are linked... . Aparicio, and C. A. Llerena CA. 2001, Water use and protection in rural communities of the Peruvian Amazon... Policies and Management for Rivers: Lessons from...

268

E-Print Network 3.0 - atmospheric water demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and this in turn reduces carbon dioxide emissions and water use. CO2... emissions Coal Dam Demand ... Source: Crimmins, Michael A. - School of Earth and Environmental...

269

E-Print Network 3.0 - amorphous solid water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iron and Aluminum in Phosphorus Retention in Sandy Soils of the Suwannee... P against leaching is critical to maintaining water quality in this area. Some of the most...

270

E-Print Network 3.0 - alkaline ground waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water from the Lake Calumet... , and ground ... Source: Bethke, Craig - Department of Geology, University of Illinois at Urbana-Champaign Collection: Environmental Sciences and...

271

COMPARISON OF RESULTS FOR QUARTER 1 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN, TENNESSEE  

SciTech Connect (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. The comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ? 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background) concentrations.

David A. King, CHP, PMP

2012-10-10T23:59:59.000Z

272

E-Print Network 3.0 - automated watering systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

automated sample extraction injection systems have been installed... to the Lab's Quattro Micro triple quadrupole mass spectrometer. The Symbiosys Enviro is an automated system......

273

COMPARISON OF RESULTS FOR QUARTER 5 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN TENNESSEE  

SciTech Connect (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 21, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference, are tabulated. All DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

none,

2013-09-23T23:59:59.000Z

274

Compost Analysis Samples provided by the Soil, Water and Forage Testing Laboratory at Texas A&M, 2003  

E-Print Network [OSTI]

Compost Analysis Samples provided by the Soil, Water and Forage Testing Laboratory at Texas A ppm ppm % % dS/m Dairy Manure Compost 0.6171 .2680 1.4345 3.5041 .2737 .4371 319.7 249.1 33.53 173.1 30.0 16.02 9.3 1.280 Dairy Manure Compost 1.0704 .3866 2.4949 6.7455 .5472 .7320 155.6 381.5 47

Mukhtar, Saqib

275

E-Print Network 3.0 - artificial sea water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: artificial sea water Page: << < 1 2 3 4 5 > >> 1 BULLETIN OF THE UNITED ,STATES FISH COMJISLIOM.465 V d . JIV, No. 30. Washington, D.C. Oct. 1, 1884. Summary: in...

276

E-Print Network 3.0 - angeles water supply Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

eenveng@sbcglobal.net 1 REDUCING GREENHOUSE GAS IMPACTS IN Summary: SUPPLY WASTEWATER TREATMENT END-USERS tons-CO2yr 12 GHG Reductions from Santa Rosa's Urban Water Cycle... ,000...

277

Estimation of land surface water and energy balance flux components and closure relation using conditional sampling  

E-Print Network [OSTI]

Models of terrestrial water and energy balance include numerical treatment of heat and moisture diffusion in the soil-vegetation-atmosphere continuum. These two diffusion and exchange processes are linked only at a few ...

Farhadi, Leila

2012-01-01T23:59:59.000Z

278

E-Print Network 3.0 - advanced waste water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Swedish report "Frbrnning av avfall en Summary: in the plants, 90-95% of the dioxins in the waste are broken down into carbon dioxide, water and hydrogen... RVF - The...

279

Supplement to the UMTRA Project water sampling and analysis plan, Ambrosia Lake, New Mexico  

SciTech Connect (OSTI)

The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is in McKinley County, New Mexico. As part of UMTRA surface remediation, residual radioactive materials were consolidated on the site in a disposal cell that was completed July 1995. The need for ground water monitoring was evaluated and found not to be necessary beyond the completion of the remedial action because the ground water in the uppermost aquifer is classified as limited use.

NONE

1995-08-01T23:59:59.000Z

280

COMPARISON OF RESULTS FOR QUARTER 2 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE, ERWIN, TENNESSEE  

SciTech Connect (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on November 15, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the results are compared using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2012). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, all DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

none,

2013-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

COMPARISON OF RESULTS FOR QUARTER 4 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUELS SERVICES SITE, ERWIN, TN  

SciTech Connect (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on June 12, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates at a 99% confidence interval that split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report specifies 95% confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0014 was the exception. The ORAU gross beta result of 6.30 ? 0.65 pCi/L from location NRD is well above NFS?s non-detected result of 1.56 ? 0.59 pCi/L. NFS?s data package includes no detected result for any radionuclide at location NRD. At NRC?s request, ORAU performed gamma spectroscopic analysis of sample 5198W0014 to identify analytes contributing to the relatively elevated gross beta results. This analysis identified detected amounts of naturally-occurring constituents, most notably Ac-228 from the thorium decay series, and does not suggest the presence of site-related contamination.

none,

2013-08-15T23:59:59.000Z

282

Sampling and analysis of water from Upper Three Runs and its wetlands near Tank 16 and the Mixed Waste Management Facility  

SciTech Connect (OSTI)

In April and September 1993, sampling was conducted to characterize the Upper Three Runs (UTR) wetland waters near the Mixed Waste Management Facility to determine if contaminants migrating from MWMF are outcropping into the floodplain wetlands. For the spring sampling event, 37 wetlands and five stream water samples were collected. Thirty-six wetland and six stream water samples were collected for the fall sampling event. Background seepline and stream water samples were also collected for both sampling events. All samples were analyzed for RCRA Appendix IX volatiles, inorganics appearing on the Target Analyte List, tritium, gamma-emitting radionuclides, and gross radiological activity. Most of the analytical data for both the spring and fall sampling events were reported as below method detection limits. The primary exceptions were the routine water quality indicators (e.g., turbidity, alkalinity, total suspended solids, etc.), iron, manganese, and tritium. During the spring, cadmium, gross alpha, nonvolatile beta, potassium-40, ruthenium-106, and trichloroethylene were also detected above the MCLs from at least one location. A secondary objective of this project was to identify any UTR wetland water quality impacts resulting from leaks from Tank 16 located at the H-Area Tank Farm.

Dixon, K.L.; Cummins, C.L.

1994-06-01T23:59:59.000Z

283

Sorption coefficients for radionuclides on samples from the water-bearing Magenta and Culebra members of the Rustler Formation  

SciTech Connect (OSTI)

The sorbing characteristics of samples from the Magenta and Culebra dolomites of the Rustler Formation (which overlie the proposed site for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico) for various radionuclides have been studied. Core samples extracted from various depths and boreholes within a given formation were selected to provide a cross section of materials which are present in the formations. They varied in composition from pure dolomite to nearly pure anhydrite. The radionuclides used in the sorption coefficient measurements (isotopes of Cs, Sr, Tc, Eu, Am and Pu) were dissolved in a simulated Culebra groundwater at concentrations of 0.1 ..mu..Ci/m1 or less. The results indicate that the sorption coefficients (Kd's) of these water-bearing units may vary widely depending on the borehole area and over several feet in depth in a common borehole. Cesium Kd values from 0.6 to 218 ml/g and 1.2 to 68 on Magenta and Culebra samples, respectively. Strontium Kd values ranged from 1.1 to 30 on Magenta Samples and from 0.6 to 32 on Culebra samples. Variations of Eu, Pu and Am Kd's were generally less than an order of magnitude on both Culebra and Magenta samples. Technetium was not sorbed by any of the samples. With few exceptions, samples with high dolomite contents had higher sorption coefficients than those with high anhydrite concentrations. Clay content may also be a factor for some radionuclides, particularly Cs, which has been shown to sorb preferentially on clay particles in Magenta.

Lynch, A. W.; Dosch, R. G.

1980-11-01T23:59:59.000Z

284

CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2  

SciTech Connect (OSTI)

CO{sub 2} diffusivity through hydrotalcite materials at 200 to 250 C was determined based upon the weight pick-up vs time. D/r{sup 2} (diffusivity/radius{sup 2}) for CO{sub 2} ranges from 3 x 10{sup -4} to 1 x 10{sup -3} depending upon the temperature. This range of diffusivity is consistent with the diffusivities through nanoporous materials, such as pillard clays and carbon molecular sieve, reported in the literature. Further the activation energy calculated based upon the diffusivity as a function of temperature is {approx}12 kcal/mole CO{sub 2}, indicating activated diffusion for CO{sub 2} transport through the intracrystalline region of hydrotalcite. More importantly nitrogen diffusivity determined based upon the same methodology is negligible. This implies that the hydrotalcite materials have a strong affinity to CO{sub 2}, but not nitrogen although the kinetic diameters for both molecules are similar. This result supports our proposed concept on the use of the hydrotalcite membrane for selective permeation of CO{sub 2}. In the next quarter, we will conduct more calculation to determine the CO{sub 2} permeability of an ideal hydrotalcite membrane. This theoretical analysis will provide a quantitative basis for the design of a hydrotalcite membrane. Further, the theoretical diffusivity thus obtained can be used as a tool to (1) gauge the degree of defects of experimental membranes prepared, and (2) direct the future membrane synthesis and improvement.

Paul K. T. Liu

2003-11-19T23:59:59.000Z

285

Kinetics of Oxygen-enhanced Water Gas Shift on Bimetallic Catalysts and the Roles of Metals and Support.  

E-Print Network [OSTI]

??The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However,… (more)

Kugai, Junichiro

2011-01-01T23:59:59.000Z

286

Robots Help with Sample Preparation and Analysis at UNL Water Sciences Lab  

E-Print Network [OSTI]

to headspace to liquid injection. Paired with the new inert source Agilent 5973, with both electron impact (EI to the Lab's Quattro Micro triple quadrupole mass spectrometer. The Symbiosys Enviro is an automated system and others such as algal toxins that may negatively impact Nebraska's water quality and environment. #12;

Nebraska-Lincoln, University of

287

Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling  

SciTech Connect (OSTI)

Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

Haselow, L.A.; Rogers, V.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Riordan, C.J. [Metcalf and Eddy, Inc. (United States); Eidson, G.W.; Herring, M.K. [Normandeau Associates, Inc. (United States)

1992-08-01T23:59:59.000Z

288

COMPARISON OF RESULTS FOR QUARTER 3 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE, ERWIN, TENNESSEE  

SciTech Connect (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on March 20, 2013. Representatives from the U.S. Nuclear Regulatory Commission and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0012 was the exception. The ORAU result of 9.23 {+-} 0.73 pCi/L from location MCD is well above NFS?s result of -0.567 {+-} 0.63 pCi/L (non-detected). NFS?s data package included a detected result for U-233/234, but no other uranium or plutonium detection, and nothing that would suggest the presence of beta-emitting radionuclides. The ORAU laboratory reanalyzed sample 5198W0012 using the remaining portion of the sample volume and a result of 11.3 {+-} 1.1 pCi/L was determined. As directed, the laboratory also counted the filtrate using gamma spectrometry analysis and identified only naturally occurring or ubiquitous man-made constituents, including beta emitters that are presumably responsible for the elevated gross beta values.

none,

2013-05-28T23:59:59.000Z

289

Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2006 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. The monitoring frequency and selection criteria for each sampling location is in Appendix C. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix D. If issued, addenda to this plan will be inserted in Appendix E, and Groundwater Monitoring Schedules (when issued) will be inserted in Appendix F. Guidance for managing purged groundwater is provided in Appendix G.

N /A

2006-01-01T23:59:59.000Z

290

Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

None

1999-09-01T23:59:59.000Z

291

Cold Water Vapor in the Barnard 5 Molecular Cloud  

E-Print Network [OSTI]

After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

Wirström, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

2014-01-01T23:59:59.000Z

292

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

293

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental, LLC

2011-09-01T23:59:59.000Z

294

Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

NONE

1996-08-01T23:59:59.000Z

295

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21PreparedRffiS.-SeaGrand

296

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo

297

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-August Ambrosia Lake, New

298

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-August Ambrosia Lake,

299

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-August Ambrosia Lake,October

300

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-August Ambrosia

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-August AmbrosiaGroundwater

302

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-August

303

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentral Nevada Test

304

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentral Nevada

305

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentral Nevadaand

306

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentral

307

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentralNatural Gas and

308

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentralNatural Gas

309

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE&.17-AugustCentralNatural

310

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.

311

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal Site August 2013

312

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal Site August 2013and

313

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal Site August

314

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal Site

315

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, New

316

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, New3

317

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, New3and

318

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, New3and3

319

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, New3and34

320

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar,

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, Rio

322

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar, Rio4

323

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal SiteL-Bar,

324

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, Disposal

325

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison, Colorado,

326

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison, Colorado,

327

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,

328

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah,

329

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah,Tuba City, Arizona, Disposal

330

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah,Tuba City, Arizona,

331

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep Nov Jan Mar

332

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep Nov Jan

333

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep Nov

334

Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling  

DOE Patents [OSTI]

A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

Smith, Brian (1126 Delaware St., Berkeley, CA 94702); Menchaca, Leticia (1126 Delaware St., Berkeley, CA 94702)

1999-01-01T23:59:59.000Z

335

UMTRA water sampling technical (peer) review: Responses to observations, comments, and recommendations submitted by Don Messinger (Roy F. Weston, Inc.)  

SciTech Connect (OSTI)

An independent technical review (peer review) was conducted during the period of September 15--17, 1992. The review was conducted by C. Warren Ankerberg (Geraghty and Miller, Inc., Tampa, Florida) and Don Messinger (Roy F. Weston, Inc., West Chester, Pennsylvania). The review was held at Jacobs Engineering in Albuquerque, New Mexico, and at the Shiprock, New Mexico, site. The peer review included a review of written documentation [water sampling standard operating procedures (SOP)], an inspection of technical reports and other deliverables, a review of staff qualifications and training, and a field visit to evaluate the compliance of field procedures with SOPS. Upon completion of the peer review, each reviewer independently prepared a report of findings from the review. The reports listed findings and recommended actions. This document responds to the observations, comments, and recommendations submitted by Don Messinger following his review. The format of this document is to present the findings and recommendations verbatim from Mr. Messinger`s report, followed by responses from the UMTRA Project staff. Included in the responses from the UMTRA Project staff are recommended changes in SOPs and strategies for implementing the charges.

NONE

1993-08-01T23:59:59.000Z

336

UMTRA water sampling technical (peer) review. Responses to observations, comments, and recommendations submitted by C. Warren Ankerberg (Geraghty & Miller, Inc.)  

SciTech Connect (OSTI)

At the request of the Office of Independent Technical Review for the U.S. Department of Energy (DOE), Uranium Mill Tailings Remedial Action (UMTRA) Project, an independent technical review (peer review) was conducted during the period of September 15-17, 1992. The review was conducted by C. Warren Ankerberg (Geraghty & Miller, Inc., Tampa, Florida) and Don Messinger (Roy F. Weston, Inc., West Chester, Pennsylvania). The peer review included a review of written documentation [water sampling standard operating procedures (SOP)], an inspection of technical reports and other deliverables, a review of staff qualifications and training, and a field visit to evaluate the compliance of field procedures with SOPs. The approach of the peer reviewers was to verify that the program meets the following criteria: Reported results are traceable to and consistent with recorded data. The basic assumptions and acceptance criteria are valid. Data are traceable to their origin and to reported analytical results. The procedures employed are consistent both internally and externally with written SOPs and regulatory guidelines. Inferences and conclusions are soundly based. The procedures and/or reports generated present work that satisfies the local, state and/or Federal regulatory requirements as applicable. The approach is consistent with industry standards and/or state-of-the-art technology, as practical. The data generated by activities are legally defensible and technically sound. UMTRA staff are adequately trained and qualified for the work. This document is a response to the observations, comments, and recommendations submitted by C. Warren Ankerberg following his review. The format of this document is to present the findings and recommendations verbatim from Mr. Ankerberg`s report, followed by responses from the UMTRA Project staff. Included in the responses from the UMTRA Project staff are recommended changes in SOPs and strategies for implementing the changes.

NONE

1993-08-01T23:59:59.000Z

337

PROJECT GOALS Assess the completeness of available energy and water  

E-Print Network [OSTI]

Government Department practices to reduce water, gas and electricity consumption · Identify barriers: Office electricity use for all ACT Government Departments 2008/09 OUTCOMES Prior to 2007 several factors Government Departments · Compare Annual Report data from Online System for Comprehensive Activity Reporting

338

Toxicity of Water Samples Collected in the Vicinity of F and H Seepage Basin 1990-1995  

SciTech Connect (OSTI)

Water and contaminants from the F- and H-Area Seepage Basins outcrop as shallow groundwater seeps down gradient from the basins. In 1990, 1991, 1993, 1994, and 1995, toxicity tests were performed on water collected from a number of these seeps, as well as from several locations in Fourmile Branch and several uncontaminated reference locations.

Specht, W.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bowers, B.

1996-09-01T23:59:59.000Z

339

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

340

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

none,

2013-09-01T23:59:59.000Z

342

200-DV-1OU Sediment and Pore Water Analysis and Report for Samples at Borehole C8096  

SciTech Connect (OSTI)

This is an analytical data report for sediment samples received at 200-DV-1 OU. On August 30, 2011 sediment samples were received from 200-DV-1 OU Borehole C8096 for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

Lindberg, Michael J.

2011-10-01T23:59:59.000Z

343

Bechtel Jacobs Company LLC Sampling and Analysis Plan for the Water Resources Restoration Program for Fiscal Year 2009, Oak Ridge Reservation, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Oak Ridge Reservation (ORR) Water Resources Restoration Program (WRRP) was established by the U. S. Department of Energy (DOE) in 1996 to implement a consistent approach to long-term environmental monitoring across the ORR. The WRRP has four principal objectives: (1) to provide the data and technical analysis necessary to assess the performance of completed Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) actions on the ORR; (2) to perform monitoring to establish a baseline against which the performance of future actions will be gauged and to support watershed management decisions; (3) to perform interim-status and post-closure permit monitoring and reporting to comply with Resource Conservation and Recovery Act of 1976 (RCRA) requirements; and (4) to support ongoing waste management activities associated with WRRP activities. Water quality projects were established for each of the major facilities on the ORR: East Tennessee Technology Park (ETTP); Oak Ridge National Laboratory (ORNL), including Bethel Valley and Melton Valley; and the Y-12 National Security Complex (Y-12 Complex or Y-12), including Bear Creek Valley (BCV), Upper East Fork Poplar Creek (UEFPC), and Chestnut Ridge. Off-site (i.e., located beyond the ORR boundary) sampling requirements are also managed as part of the Y-12 Water Quality Project (YWQP). Offsite locations include those at Lower East Fork Poplar Creek (LEFPC), the Clinch River/Poplar Creek (CR/PC), and Lower Watts Bar Reservoir (LWBR). The Oak Ridge Associated Universities (ORAU) South Campus Facility (SCF) is also included as an 'off-site' location, although it is actually situated on property owned by DOE. The administrative watersheds are shown in Fig. A.l (Appendix A). The WRRP provides a central administrative and reporting function that integrates and coordinates the activities of the water quality projects, including preparation and administration of the WRRP Sampling and Analysis Plan (SAP). A brief summary is given of the organization of the SAP appendices, which provide the monitoring specifics and details of sampling and analytical requirements for each of the water quality programs on the ORR. Section 2 of this SAP provides a brief overview and monitoring strategy for the ETTP. Section 3 discusses monitoring strategy for Bethel Valley, and Melton Valley background information and monitoring strategy is provided in Section 4. BCV and UEFPC monitoring strategies are presented in Sect. 5 and 6, respectively. Section 7 provides background information and monitoring strategy for all off-site locations.

Ketelle R.H.

2008-09-25T23:59:59.000Z

344

Water-column Sampling Benthic Sampling  

E-Print Network [OSTI]

in cooperation with the Idaho Department of Environmental Quality Scientific Investigations Report 2006-5091 U, Idaho By James S. Kuwabara, Brent R. Topping, Paul F. Woods, James L. Carter, and Stephen W. Hager Scientific Investigations Report 2006-5091 Internet access at: http://pubs.usgs.gov/sir/2006/5091 #12

345

Use of EIChroM`s TRU resin in the determination of americium, plutonium and uranium in air filter and water samples  

SciTech Connect (OSTI)

TRU Resin, an extraction chromatographic material (octyl (phenyl)-N,Ndiisobutylcarbamoyl-methylphosphene oxide (CMPO) dissolved in tributyl phosphate (TBP)) manufactured by EIChroM Industries, was tested for its actinide sorption and desorption characteristics. A study was initiated to demonstrate the effectiveness of extracting plutonium, americium and uranium from water and air filter samples from the Environmental Measurements Laboratory`s Quality Assessment Program (QAP), and the effectiveness of subsequent desorption of one chemical species at a time in order to prepare each of them for a spectrometry. Crossover of plutonium into the americium fraction with the TRU Resin was observed and could not be eliminated while using TRU Resin only. However, prior extraction of plutonium using an anion exchange resin can overcome this problem. A method for the determination of americium is proposed which combines the extraction of plutonium onto Bio-Rad AG 1-X8 anion exchange resin with the extraction of americium using the TRU Resin. This method was tested on three triplicate sets of QAP air filters and two triplicate sets of QAP water samples. The recoveries ranged from 70 to 90 percent, and the results were identical to those obtained by the existing methods. The time required to perform the analysis for americium was shortened from 5 weeks to 1 week.

Berne, A.

1995-12-01T23:59:59.000Z

346

The water-gas shift (WGS) reaction (CO + H2O = CO2+ H2) is an important reaction for hydrogen upgrading during fuel  

E-Print Network [OSTI]

-treatment units in practical low-temperature PEM fuel cell systems, whereby the deleterious CO should be totally for hydrogen upgrading during fuel gas processing. Emerging applications in fuel cells require active, non-pyrophoric, and cost-effective catalysts. Along with a new group of platinum catalysts with atomically dispersed Pt

Napp, Nils

347

In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts Michael Estrella,  

E-Print Network [OSTI]

Academy of Sciences, Pudong New Area, Shanghai, P.R. China, 201204 ReceiVed: April 25, 2009; Re 95% of the hydrogen supply is produced from the reforming of crude oil, coal, natural gas, wood the performance of the Pt electrode in fuel cell systems. In order to get clean hydrogen for fuel cells and other

Frenkel, Anatoly

348

Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp.  

E-Print Network [OSTI]

formation in a model drinking water distribution system. J.and activity in drinking water distribution networks underbacterial species from drinking water biofilms and proof of

Martiny, A. C; Albrechtsen, H.-J.; Arvin, E.; Molin, S.

2005-01-01T23:59:59.000Z

349

Sampling for Bacteria in Wells  

E-Print Network [OSTI]

This publication will instruct you on the proper procedures for collecting a sample from a water well for bacteriological analysis....

Lesikar, Bruce J.

2001-11-15T23:59:59.000Z

350

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County Rural EHeatersCBS (1)

351

Method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents [OSTI]

Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

Willms, R. Scott (Los Alamos, NM)

1996-01-01T23:59:59.000Z

352

Arkansas Water Resources Center  

E-Print Network [OSTI]

of best management practices and trends in water quality. SCOPE This project is a cooperative effort Bridge, AR and near Portland, AR. The Garret Bridge site is a full storm-water sampling station with auto;METHODS The Garret Bridge site is a full storm-water sampling station. It uses an automatic sampler

Soerens, Thomas

353

Sampling and analytical testing of groundwater and surface water at the Colorado School of Mines Research Institute (CSMRI) has been conducted on a quarterly basis since early  

E-Print Network [OSTI]

is being consumed, changing the water chemistry, and leading to lower uranium concentrations with flow, Th-230, Th-232, and uranium), and metals (arsenic, barium calcium, cadmium, chromium, lead, manganese and analytical testing for radium, calcium, magnesium, potassium, sodium, uranium, and zinc will continue

354

E-Print Network 3.0 - assurance sampling method Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for NRDA followed standard operating procedure (SOP), water sampling plans, Summary: procedures, and NOAA's Analytical Quality Assurance Project Plan (QAPP). Samples were sent to...

355

Arkansas Water Resources Center  

E-Print Network [OSTI]

, effectiveness of best management practices and trends in water quality. SCOPE This report is for continued water Bridge site is a full storm-water sampling station with auto- sampler and data sonde. The Portland site. Garret Bridge site. 2 #12;Figure 2 Portland site. METHODS The Garrett Bridge site is a full storm-water

Soerens, Thomas

356

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

This document contains the CY2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed.

Bisping, Lynn E.

2000-01-27T23:59:59.000Z

357

Work plan for monitor well installation water and sediment sample collection aquifer testing and topographic surveying at the Riverton, Wyoming, UMTRA Project Site  

SciTech Connect (OSTI)

Investigations conducted during preparation of the site observational work plan (SOWP) at the Uranium Mill Tailings Remedial Action (UMTRA) Project site support a proposed natural flushing ground water compliance strategy, with institutional controls. However, additional site-specific data are needed to reduce uncertainties in order to confirm the applicability and feasibility of this proposed compliance strategy option. This proposed strategy will be analyzed in the site-specific environmental assessment. The purpose of this work plan is to summarize the data collection objectives to fill those data needs, describe the data collection activities that will be undertaken to meet those objectives, and elaborate on the data quality objectives which define the procedures that will be followed to ensure that the quality of these data meet UMTRA Project needs.

NONE

1995-06-01T23:59:59.000Z

358

Enhanced monitor system for water protection  

DOE Patents [OSTI]

An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

Hill, David E. (Knoxville, TN) [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias (Knoxville, TN) [Knoxville, TN

2009-09-22T23:59:59.000Z

359

Field-deployable, nano-sensing approach for real-time detection of free mercury, speciation and quantification in surface stream waters and groundwater samples at the U.S. Department of Energy contaminated sites  

SciTech Connect (OSTI)

The detrimental effects on human health caused by long-term exposure to trace contamination of toxic metals have been documented in numerous epidemiological and toxicological studies. The fact that metals are non-biodegradable and accumulate in the food chain poses a severe threat to the environment and human health. Their monitoring in drinking water, aquatic ecosystems, food and biological fluids samples is then essential for global sustainability. While research efforts employing established methodology continue to advance conceptual/computational models of contaminant behavior, the increasing awareness and public concern with environmental and occupational exposure to toxic metals calls for sensing devices capable to handle on-site elemental analysis in short analysis time. Field analysis with potable methodology prevents unnecessary scrutiny of un-contaminated samples via laboratory-bound methods, reduces analysis cost and expedites turnaround time for decision making and remediation purposes. Of particular toxicological interest are mercury and its species. Mercury is recognized as a major environmental pollution issue. The field-portable sensor developed in this project provides a unique and valuable tool for the on-site, real-time determination of inorganic mercury in surface waters. The ability to perform on-site analysis of mercury should prove useful in remote locations with difficult accessibility. It should facilitate data collection from statistically meaningful population sizes for a better understanding of the dose-effect role and the water-soil-plant-animal-human transfer mechanisms. The acquired knowledge should benefit the development of efficient environmental remediation processes, which is extremely relevant for a globally sustainable environment.

Campiglia, Andres D. [UCF; Hernandez, Florencio E. [UCF

2014-08-28T23:59:59.000Z

360

Water quality and business aspects of sachet-vended water in Tamale, Ghana .  

E-Print Network [OSTI]

??Microbial water quality analyses were conducted on 15 samples of factory-produced sachet water and 15 samples of hand-tied sachet water, sold in Tamale, Ghana. The… (more)

Okioga, Teshamulwa (Teshamulwa Irene)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Water quality and business aspects of sachet-vended water in Tamale, Ghana  

E-Print Network [OSTI]

Microbial water quality analyses were conducted on 15 samples of factory-produced sachet water and 15 samples of hand-tied sachet water, sold in Tamale, Ghana. The tests included the membrane filtration (MF) test using ...

Okioga, Teshamulwa (Teshamulwa Irene)

2007-01-01T23:59:59.000Z

362

Environmental surveillance master sampling schedule  

SciTech Connect (OSTI)

This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring the onsite drinking water falls outside the scope of the SESP. The Hanford Environmental Health Foundation is responsible for monitoring the nonradiological parameters as defined in the National Drinking Water Standards while PNL conducts the radiological monitoring of the onsite drinking water. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize the expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control and reporting. The ground-water sampling schedule identifies ground-water sampling events used by PNL for environmental surveillance of the Hanford Site.

Bisping, L.E.

1994-02-01T23:59:59.000Z

363

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents [OSTI]

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2006-07-25T23:59:59.000Z

364

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents [OSTI]

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2009-03-17T23:59:59.000Z

365

Water Resources Water Quality and Water Treatment  

E-Print Network [OSTI]

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

366

CO conversion over dual-site catalysts by the Water-Gas Shift Reaction for fuel cell applications : comparative mechanistic and kinetic study of gold and platinum supported catalysts.  

E-Print Network [OSTI]

??Les piles à combustible, alimentée par de l’hydrogène, représentent une solution prometteuse pour limiter la pollution. L’une des alternatives économiques envisagées à court et moyen… (more)

Thinon, Olivier

2009-01-01T23:59:59.000Z

367

Sampling box  

DOE Patents [OSTI]

An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

2000-01-01T23:59:59.000Z

368

Name ___________________________________________ The laboratory website provides access to multiple water use and water quality publications.  

E-Print Network [OSTI]

to lower water pH) 4. R + Metals + Titration for Drip Irrigation $42.50 per sample 5. R + Metals + Heavy water use and water quality publications. Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences Texas AgriLife Extension Service W14 WATER SAMPLE INFORMATION FORM Please submit

369

Water Sampling (Healy, 1970) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term

370

Category:Water Sampling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV Economics By Building Type Jump

371

Cruise Report 2002 RMP Water Cruise  

E-Print Network [OSTI]

for analysis of total PCDD/PCDF (dioxins) by Axys Analytical and Frontier Analytical. 2. Collect water samples

372

Fast and Easy Sample Dialysis When downstream quality matters,  

E-Print Network [OSTI]

samples with convenience · No need to use a syringe to load or remove samples. Simply load your sampleL Milli-Q® water Conductivity standard curve using NaCl Protein recovery after 5 hours: 89% Volume

Lebendiker, Mario

373

Hanford Site Environmental Surveillance Master Sampling Schedule, January 2001  

SciTech Connect (OSTI)

This document contains the CY 2001 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed.

Bisping, Lynn E.

2001-01-08T23:59:59.000Z

374

Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein  

DOE Patents [OSTI]

A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

1980-01-01T23:59:59.000Z

375

Purge water management system  

DOE Patents [OSTI]

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

376

Purge water management system  

DOE Patents [OSTI]

A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

1996-01-01T23:59:59.000Z

377

Thermoelectrically cooled water trap  

DOE Patents [OSTI]

A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

Micheels, Ronald H. (Concord, MA)

2006-02-21T23:59:59.000Z

378

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

379

Arsenic removal from water  

DOE Patents [OSTI]

Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

Moore, Robert C. (Edgewood, NM); Anderson, D. Richard (Albuquerque, NM)

2007-07-24T23:59:59.000Z

380

Water resources data, Kentucky. Water year 1991  

SciTech Connect (OSTI)

Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

McClain, D.L.; Byrd, F.D.; Brown, A.C.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O Mixtures: the Source of C in Methanol and the Role of Water  

SciTech Connect (OSTI)

The low temperature (403 – 453K) conversions of CO:hydrogen and CO2:hydrogen mixtures (6 bar total pressure) to methanol over copper catalysts are both assisted by the presence of small amounts of water (mole fraction ~0.04%-0.5%). For CO2:hydrogen reaction mixtures, the water product from both methanol synthesis and reverse water gas shift serves to initiate both reactions in an autocatalytic manner. In the case of CO:D2 mixtures, very little methanol is produced until small amounts of water are added. The effect of water on methanol production is more immediate than in CO2:D2, yet the steady state rates are similar. Tracer experiments in 13CO:12CO2:hydrogen (with or without added water), show that the dominant source of C in the methanol product gradually shifts from CO2 to CO as the temperature is lowered. Cu-bound formate, the major IR visible surface species under CO2:hydrogen, is not visible in CO:moist hydrogen. Though formate is visible in the tracer experiments, the symmetric stretch is absent. These results, in conjunction with recent DFT calculations on Cu(111), point to carboxyl as a common intermediate for both methanol synthesis and reverse water gas shift, with formate playing a spectator co-adsorbate role.

Yang, Yong; Mims, Charles A.; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.

2013-02-01T23:59:59.000Z

382

Surface Water Quality Standards  

E-Print Network [OSTI]

recreational uses. ?The Commission will seek substantial additional public comment on any proposed changes to the standards before adopting them into the state admin- istrative code,? Davenport said. ?Because of the com- plexity and regulatory importance... Conservation Board?s state watershed coordinator, said the standards for contact recreation, with only a few exceptions, are uniformly applied regardless of water body type or the actual level of recreation use. ?Because a minimum of 10 water samples over a...

Wythe, Kathy

2007-01-01T23:59:59.000Z

383

ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS  

SciTech Connect (OSTI)

The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

NELSEN LA

2009-01-30T23:59:59.000Z

384

E-Print Network 3.0 - assurance plan project Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for NRDA followed standard operating procedure (SOP), water sampling plans, Summary: procedures, and NOAA's Analytical Quality Assurance Project Plan (QAPP). Samples were sent...

385

E-Print Network 3.0 - analytical quality assurance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for NRDA followed standard operating procedure (SOP), water sampling plans, Summary: procedures, and NOAA's Analytical Quality Assurance Project Plan (QAPP). Samples were sent...

386

E-Print Network 3.0 - activation analysis--an analytical Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(SOP), water sampling plans, Summary: procedures, and NOAA's Analytical Quality Assurance Project Plan (QAPP). Samples were sent to certified... accredited analytical...

387

Water Intoxication  

E-Print Network [OSTI]

2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

Lingampalli, Nithya

2013-01-01T23:59:59.000Z

388

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of desalination research. The primary technological method of generating additional water supplies is through desalination and enhanced water reuse and recycling technologies....

389

Thamm, Ludwig & Reuter Process Model for Unmanned Aerial Systems (UAS) Proceedings of the 10th  

E-Print Network [OSTI]

on the availability of electrical power, water, gas and communication infrastructures. In central Europe under normal

390

Fuel Cell 101 Don Hoffman  

E-Print Network [OSTI]

(with air) ­ Steam Reforming (with steam) ­ Autothermal Reforming (with air and steam) · Water Gas Shift

391

Environmental surveillance master sampling schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This document contains the planned schedule for routine sample collection for the Surface Environmental Surveillance Project (SESP) and Ground-Water Monitoring Project. Samples for radiological analyses include Air-Particulate Filter, gases and vapor; Water/Columbia River, Onsite Pond, Spring, Irrigation, and Drinking; Foodstuffs/Animal Products including Whole Milk, Poultry and Eggs, and Beef; Foodstuffs/Produce including Leafy Vegetables, Vegetables, and Fruit; Foodstuffs/Farm Products including Wine, Wheat and Alfalfa; Wildlife; Soil; Vegetation; and Sediment. Direct Radiation Measurements include Terrestrial Locations, Columbia River Shoreline Locations, and Onsite Roadway, Railway and Aerial, Radiation Surveys.

Bisping, L E

1992-01-01T23:59:59.000Z

392

Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada  

E-Print Network [OSTI]

Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada Ralph L. Seiler sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water indicates that W exhibits Tungsten con- centrations are strongly and positively correlated

393

Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2010  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on July 6 and 7, 2010. Additionally, a water sample was obtained at one well known as the 29-6 Water Hole, several miles west of the Gasbuggy site. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. The one water well sample was analyzed for gamma-emitting radionuclides and tritium. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2010-12-01T23:59:59.000Z

394

Marketing water  

E-Print Network [OSTI]

management, water conservation programs Story by Kathy Wythe tx H2O | pg. 17 public information programs and materials that increase awareness about regional water issues. The company recently opened the TecH2O, a water resource learning center...tx H2O | pg. 16 W ith rapid population growth and the memory of the worst drought in 50 years, cities and groups are promoting programs that educate their constituents about water quality, water conservation, and landscape management. Many...

Wythe, Kathy

2008-01-01T23:59:59.000Z

395

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

SciTech Connect (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

396

Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

None

2009-11-01T23:59:59.000Z

397

Passive sampling for the monitoring of organic pollutants (PAHs, BTEX) in groundwater. Application to a former  

E-Print Network [OSTI]

Passive sampling for the monitoring of organic pollutants (PAHs, BTEX) in groundwater. Application techniques for groundwater sampling can affect the measurement of chemical composition of water. Sampling devices such as low-flow peristaltic pumps can sample water slowly from wells to obtain representative

Boyer, Edmond

398

Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification  

E-Print Network [OSTI]

Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET in glass at pH 3.5). None of the leachates approaches the maximum concentrations for drinking water- QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union

Filzmoser, Peter

399

UNL WATER CENTER WATER CURRENT  

E-Print Network [OSTI]

................ Sidney Area Deals with Drought 6................ Water and Electricity Are Inseparable 10's East Campus. "Consolidating administration,faculty and staff and facilities is costeffectiveandper or commercial products constitute endorsement by the U.S. Government. WATER CURRENT Water Center University

Nebraska-Lincoln, University of

400

UNL WATER CENTER WATER CURRENT  

E-Print Network [OSTI]

INSIDE UNL WATER CENTER WATER CURRENT PROTECTING NEBRASKAíS WATER RESOURCES THROUGH RESEARCH with a vision, thereís an untapped market using resources right under our feet,î the University of Nebraska outdoors in India, Bangladesh, China and Viet- nam. Thousands of them have been grown to harvest

Nebraska-Lincoln, University of

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Radioactive isotopes in Danish drinking water  

E-Print Network [OSTI]

Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

402

Water Conservation and Water Use Efficiency (Wisconsin)  

Broader source: Energy.gov [DOE]

Wisconsin has several statutes that promote water conservation and controlled water use, and this legislation establishes mandatory and voluntary programs in water conservation and water use...

403

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

404

ESPC IDIQ Contract Sample  

Broader source: Energy.gov [DOE]

Document displays a sample indefinite delivery, indefinite quantity (IDIQ) energy savings performance contract (ESPC).

405

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network [OSTI]

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

406

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs. The document contains the CY 2002 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project.

Bisping, Lynn E.

2002-01-16T23:59:59.000Z

407

Procedures for the storage and digestion of natural waters for the determination of lterable reactive phosphorus, total lterable  

E-Print Network [OSTI]

Review Procedures for the storage and digestion of natural waters for the determination and digestion of water samples for ®lterable reactive phosphorus (FRP), total ®lterable phosphorus (TFP samples contain digestion of samples

Canberra, University of

408

Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

Wilson, Cathy; Newman, Brent; Heikoop, Jeff

409

Computerized Waters  

E-Print Network [OSTI]

- ing 2002?2005 and documented in TWRI?s Technical Report 284 released in January 2006, include: ? Capabilities for short-term reliability analyses based on current storage conditions (Or what is the likelihood of meeting water needs in the near... System Reference Manual. TWRI Technical Report 255, Second Edition, April 2005. ? Water Rights Analysis Package Modeling System Users Manual. TWRI Technical Report 256, Second Edition, April 2005. ? Fundamentals of Water Availability Modeling...

Wythe, Kathy

2006-01-01T23:59:59.000Z

410

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

411

Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Management This department applies multi-disciplinary science and technology-based modeling to assess complex environmental systems. It integrates ecology, anthropology, and...

412

E-Print Network 3.0 - aryl-derivatized water-soluble functionalized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aryl-derivatized water-soluble functionalized Search Powered by Explorit Topic List Advanced Search Sample search results for: aryl-derivatized water-soluble functionalized Page:...

413

Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

K. Futa; B.D. Marshall; Z.E. Peterman

2006-03-24T23:59:59.000Z

414

Rain sampling device  

DOE Patents [OSTI]

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

1991-05-14T23:59:59.000Z

415

Rain sampling device  

DOE Patents [OSTI]

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

1991-01-01T23:59:59.000Z

416

COMPUTER SCIENCE SAMPLE PROGRAM  

E-Print Network [OSTI]

COMPUTER SCIENCE SAMPLE PROGRAM (First Math Course MATH 198) This sample program suggests one way CS 181: Foundations of Computer Science II CS 180: Foundations of Computer Science I CS 191

Gering, Jon C.

417

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

418

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

419

Snake and Columbia Rivers Sediment Sampling Project  

SciTech Connect (OSTI)

The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-12-01T23:59:59.000Z

420

Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2011  

SciTech Connect (OSTI)

This document contains the calendar year 2011 schedule for the routine collection of samples for the Surface Environmental Surveillance Project and the Drinking Water Monitoring Project. Each section includes sampling locations, sampling frequencies, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis. If a sample will not be collected in 2011, the anticipated year for collection is provided. Maps showing approximate sampling locations are included for media scheduled for collection in 2011.

Bisping, Lynn E.

2011-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Investigating Water  

E-Print Network [OSTI]

........................................................................................... 193 Lesson 11 Water and Pollution........................................................................................................................ 195 Activity 11.1, Pollution, Pollution, Everywhere...! ............................................................................. 205 Record Sheet 11.1, Pollution, Pollution, Everywhere! ..................................................................... 207 Activity 11.2, Pollution at Its Source...

Howard Jr., Ronald A.

2002-01-02T23:59:59.000Z

422

Water Privatisation   

E-Print Network [OSTI]

This dissertation deals with the policy issues of large-scale, urban water privatisation projects in the face of uncertainty and variability. The main objective is to evaluate whether a single policy approach, namely privatisation associated...

Zölls, Elisa

2011-08-17T23:59:59.000Z

423

Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media  

SciTech Connect (OSTI)

Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

Kang, Misun [ORNL; Bilheux, Hassina Z [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-lin [University of Tennessee, Knoxville (UTK); Perfect, Edmund [University of Tennessee, Knoxville (UTK); Horita, Juske [Texas Tech University (TTU); Warren, Jeffrey [ORNL

2013-01-01T23:59:59.000Z

424

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

Lutz, Jim

2012-01-01T23:59:59.000Z

425

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Gas-fired Storage Water Heater .. 418 Assess California’s Small Gas Storage Water Heaters Small Gas Storage Water Heater Market The objective of

Lutz, Jim

2012-01-01T23:59:59.000Z

426

More Than 14 Million Environmental Sampling Records from National...  

Broader source: Energy.gov (indexed) [DOE]

and about 300,000 samples. The data span a wide range of media including air, soil, sediment, biota, and water, and it includes various analytes and time periods. "The system was...

427

Method and apparatus for sampling low-yield wells  

DOE Patents [OSTI]

An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

Last, George V. (Richland, WA); Lanigan, David C. (Kennewick, WA)

2003-04-15T23:59:59.000Z

428

Water Rights: Surface Water (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Natural Resources regulates the use and diversion of surface waters. An entity that creates additional stream volumes by releases from impoundments built and financed by...

429

Sampled data lattice filters  

E-Print Network [OSTI]

SAMPLED DATA LATTICE FILTERS A Thesis by WILLIAM TERRY THRIFT III Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1979 Major Subfect...: Electrical Engineering SAMPLED DATA LATTICE FILTERS A Thesis by WILLIAM TERRY THRIFT III Approved as to style and content by: (Chair an of Committee) (Hea f Department) (Member) (Member) (Member) (Member) December 1979 ABSTRACT Sampled Data...

Thrift, William Terry

1980-01-01T23:59:59.000Z

430

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, ''General Environmental protection Program,'' and DOE Order 5400.5, ''Radiation Protection of the Public and the Environment.'' The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY1999 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes the sampling location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be collected in 1999 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing approximate sampling locations.

LE Bisping

1999-02-12T23:59:59.000Z

431

EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION  

E-Print Network [OSTI]

programs) · Audience: homeowners Outcome 4: Increase water reuse and recycling programs · Example program: Water harvesting ­ rain barrels and cisterns · Audience: home owners #12;: Water conservation. Conserve Florida's finite water resources by teaching rural, suburban and urban

Kane, Andrew S.

432

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

433

In-situ continuous water monitoring system  

DOE Patents [OSTI]

An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

Thompson, C.V.; Wise, M.B.

1998-03-31T23:59:59.000Z

434

Electrochimica Acta 50 (2004) 205210 A direct analysis of nanomolar metal ions in environmental water  

E-Print Network [OSTI]

pollution is one of the most serious subjects since water is essential for the life. Especially heavy metal water samples with Nafion-coated microelectrodes Hong-Jeong Kim, Kwang-Seok Yun, Euisik Yoon, Juhyoun water samples directly. Results from the direct water analysis showed similar performance to those from

Kwak, Juhyoun

435

Rehabilitation Services Sample Occupations  

E-Print Network [OSTI]

/Industries Correction Agencies Drug Treatment Centers Addiction Counselor Advocacy Occupations Art Therapist BehavioralRehabilitation Services Sample Occupations Sample Work Settings Child & Day Care Centers Clinics................................ IIB 29-1000 E4 Careers in Counseling and Human Services .........IIB 21-1010 C7 Careers in Health Care

Ronquist, Fredrik

436

Sampling system and method  

DOE Patents [OSTI]

The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

2013-04-16T23:59:59.000Z

437

Household Water Quality Home Water Quality Problems  

E-Print Network [OSTI]

in water heater. Scale buildup in pipes and re duced water flow. Hard water due to calcium and magnesiumHousehold Water Quality Home Water Quality Problems­ Causes and Treatments Blake Ross, Extension Many areas have water containing impurities from natural or artificial sources. These impurities may

Liskiewicz, Maciej

438

Conductivity as applied to water analysis  

E-Print Network [OSTI]

for the "Dionio Water Tester11. 1. Detection of condenser leaks. 2. Measurement of the priming of boilers. 3. Estimation of the hardness of water. 6. 4. Softening water. 5. Detection of sewage pollution. 6. Test of sewage effluent. 7. Estimation... of the purity of distilled water. 8. Checking the purity of a water supply. In most cases, conductivity is a very satisfactory means of detecting condenser leaks and may also he used in estimating the extent of the leakage. The conductivity of a sample...

Godfrey, Truman M.

1913-05-15T23:59:59.000Z

439

Biological sample collector  

DOE Patents [OSTI]

A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

Murphy, Gloria A. (French Camp, CA)

2010-09-07T23:59:59.000Z

440

E-Print Network 3.0 - aktivnostej izotopov 239pu Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de mathmatiques Collection: Mathematics 23 Assessment of size-fractionated species of curium-244 via alpha spectrometry in groundwater Summary: waters sampled downstream from...

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - ammonium nitrate melt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Peat Decomposition in Plum Summary: , phosphate, ammonium and DIC on all of the water samples. Nitrate concentrations were measured according... ;11 indicating greater...

442

E-Print Network 3.0 - acetic acid injection Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies ; Biology and Medicine 65 Supplemental Material Supplemental Table 1. ESI-MSMS parameters for studies done at the Univ. of Summary: a Waters 2777C Sample...

443

action-based path sampling: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Matter (arXiv) Summary: We use transition path sampling to study evaporation in the SPCE model of liquid water. Based on thousands of evaporation trajectories, we...

444

E-Print Network 3.0 - aluminum alloy electrochemical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: aluminum alloy electrochemical Page: << < 1 2 3 4 5 > >> 1 Reaction of Aluminum with Water to Produce...

445

E-Print Network 3.0 - aluminium electrolysis tanks Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminium electrolysis tanks Page: << < 1 2 3 4 5 > >> 1 PRE-INVESTIGATION WATER ELECTROLYSIS...

446

E-Print Network 3.0 - acid- ono-2506 treated Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: 1, where vials A and D contain the D-acid mixture treated SWNTs (sample I) in heavy water (vial A... ) and in the D-acid mixture (vial D); vials B and C (sample II)...

447

Grabbing water  

E-Print Network [OSTI]

We introduce a novel technique for grabbing water with a flexible solid. This new passive pipetting mechanism was inspired by floating flowers and relies purely on the coupling of the elasticity of thin plates and the hydrodynamic forces at the liquid interface. Developing a theoretical model has enabled us to design petal-shaped objects with maximum grabbing capacity.

P. M. Reis; J. Hure; S. Jung; J. W. M. Bush; C. Clanet

2012-07-16T23:59:59.000Z

448

Water Sampling At Long Valley Caldera Geothermal Area (Evans...  

Open Energy Info (EERE)

but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano...

449

Ch. III, Interpretation of water sample analyses Waunita Hot...  

Open Energy Info (EERE)

Published Colorado Geological Survey in Cooperation with the U.S. Department of Energy, 1981 Report Number Special Publication 16 DOI Not Provided Check for DOI...

450

Water Sampling At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

451

Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa Jump to:TricityOpen Energy

452

Water Sampling At Heber Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area Exploration Technique

453

Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area ExplorationOpen Energy

454

Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area ExplorationOpen

455

Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeber Area

456

Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeberInformation1982) |

457

Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa JumpHeberInformation1982) |Et Al.,

458

News Release: DOE Announces Riverton Water Sampling Results | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkers prepare toBlog1,

459

Radiochemical Analyses of Water Samples from Selected Streams  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores"December 2010r* R> : ,

460

Radiochemical Analyses of Water Samples from Selected Streams  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores"December 2010r* R> :

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan: Energy Type Term(Lewicki

462

Water Sampling At International Geothermal Area, Philippines (Wood, 2002) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan:Open

463

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County, Michigan:OpenInformationArea

464

Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy Information Witcher, 2006)

465

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy Information

466

Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,Energy

467

Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenaw County,EnergyDellechaie,InformationOpen

468

Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt LakeWashtenawInformation Henkle, Et Al.,EnergyOpen

469

Transition Path Sampling of Water Exchange Rates and Mechanisms around  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfor aOxide Nanoparticles.

470

Interpretation of Water Sample Analysis, Waunita Hot Spring Project,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data,associationOilGunnison County,

471

Waste classification sampling plan  

SciTech Connect (OSTI)

The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

Landsman, S.D.

1998-05-27T23:59:59.000Z

472

Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2007  

SciTech Connect (OSTI)

This document contains the calendar year 2007 schedule for the routine collection of samples for the Surface Environmental Surveillance Project and Drinking Water Monitoring Project. Each section includes sampling locations, sampling frequencies, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2007 in which case the anticipated year for collection is provided. Maps showing approximate sampling locations are included for media scheduled for collection in 2007.

Bisping, Lynn E.

2007-01-31T23:59:59.000Z

473

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, General Environmental Protection Program: and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The sampling design is described in the Operations Office, Environmental Monitoring Plan, United States Department of Energy, Richland DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY 2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2000 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection.

LE Bisping

2000-01-27T23:59:59.000Z

474

Dissolution actuated sample container  

DOE Patents [OSTI]

A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

Nance, Thomas A.; McCoy, Frank T.

2013-03-26T23:59:59.000Z

475

SAMPLING AND ANALYSIS PROTOCOLS  

SciTech Connect (OSTI)

Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

Jannik, T; P Fledderman, P

2007-02-09T23:59:59.000Z

476

Liquid sampling system  

DOE Patents [OSTI]

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

477

Cleaner, Safer Water through Water Safety Plans  

E-Print Network [OSTI]

CS232615A Cleaner, Safer Water through Water Safety Plans National Center for Environmental Health). Water Safety Plans A Water Safety Plan (WSP) is a preventive management approach used to manage threats to a drinking water system--from catchment to consumer. It helps in the · Management of activities

478

Ground water provides drinking water, irrigation for  

E-Print Network [OSTI]

Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

Saldin, Dilano

479

Regional Water Management: Adapting to Uncertain Water  

E-Print Network [OSTI]

Regional Water Management: Adapting to Uncertain Water Supply and Demand Jim Schneider, Ph · How Nebraska manages water · Dealing with uncertain water supplies: adaptive management #12;Regional-wide, systematic approach · Flexible--Adaptive Management Adaptive Manageme nt #12;Integrated Water Management

Nebraska-Lincoln, University of

480

Optical monitor for water vapor concentration  

DOE Patents [OSTI]

A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

Kebabian, Paul (Acton, MA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water sampling water-gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

482

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

483

MONITORING A TOXIC CYANOBACTERIA BLOOM IN LAKE BOURGET (FRANCE) AND ITS CONSEQUENCES FOR WATER QUALITY  

E-Print Network [OSTI]

the turbidity of the water in treatment units providing drinking water. These central supplies obtain their lake of Feuillade et al. [3]. The samples were taken in the water treatment units, before (water intake in treatment unit) and at the end of the treatment steps (in water reaching the consumers). Intracellular

Jacquet, Stéphan

484

Water Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act regulates and registers water withdrawals in the Commonwealth of Massachusetts to enable effective planning and management of water use and conservation. The Act establishes a Water...

485

Protected Water Sources (Iowa)  

Broader source: Energy.gov [DOE]

This chapter designates protected water sources, which are subject to additional special conditions regarding water use. Permit applications for water withdrawals from these sources may still be...

486

Storm Water Analytical Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storm Water Analytical Period Storm Water Analytical Period The Individual Permit authorizes the discharge of storm water associated with historical industrial activities at LANL...

487

Water Permits (Louisiana)  

Broader source: Energy.gov [DOE]

The Water Permits Division authorizes permits administered under the Water Quality Regulations. Louisiana's Water Quality Regulations require permits for the discharge of pollutants from any point...

488

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Light Water Reactor Sustainability Program ACCOMPLISHMENTS REPORT 2013 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

489

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

490

Efficient Water Use & Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL....

491

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition InformationInteractionsWater

492

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWaste to beswim WatchingWaterW

493

DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION  

SciTech Connect (OSTI)

On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

Bannochie, C.; Crawford, C.

2013-06-18T23:59:59.000Z

494

Viscous sludge sample collector  

DOE Patents [OSTI]

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A [Richland, WA

1983-01-01T23:59:59.000Z

495

Management of produced water in oil and gas operations  

E-Print Network [OSTI]

of oil present in the sample. For example, the calibration factor obtained for samples containing kerosene is different from the calibration factor obtained for samples containing diesel. However according to EPA, if the analyzer is calibrated...) for analysis which reduces the chances of inaccuracy because the larger the amount of sample the higher the chances of good representation of the original sample. 6 In this work TOC-700 was used to analyze kerosene-water emulsions. To match TOC...

Patel, Chirag V.

2005-02-17T23:59:59.000Z

496

affect gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 15 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

497

air-sea gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 49 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

498

affects gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 15 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

499

From: "Cheryl Beecroft" Subject: Drinking Water Results-ITB  

E-Print Network [OSTI]

From: "Cheryl Beecroft" Subject: Drinking Water Results-ITB Date: Fri, 1 Oct samples collected at ITB. The results were below the allowable level of 10ug/L for lead in drinking water 2010 15:54:56 -0400 To: Please see the table below for lead content in water

Thompson, Michael

500

Environmental Science: Sample Pathway  

E-Print Network [OSTI]

Environmental Science: Sample Pathway Semester I Semester II Freshman Year CGS Core CGS Core GE 100 Intro to Env Science ES 105 Env Earth Science Sophomore Year CGS Core (CGS NS201 will fulfill CAS BI107 & 124) MA 115 Statistics Summer Environmental Internship Junior Year CH 171 Chem for Health Sciences CH

Goldberg, Bennett