National Library of Energy BETA

Sample records for water sampling water-gas

  1. Water-Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation, search REDIRECT Downhole Fluid Sampling Retrieved from "http:en.openei.orgw...

  2. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

  3. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...

    Open Energy Info (EERE)

    Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Redirect page Jump to: navigation, search REDIRECT Surface Gas Sampling At Fenton Hill Hdr Geothermal...

  4. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  5. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration...

  6. Water-Gas Samples At Long Valley Caldera Area (Goff & Janik,...

    Open Energy Info (EERE)

    Area (Goff & Janik, 2002) Redirect page Jump to: navigation, search REDIRECT Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Retrieved from "http:...

  7. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor water-gas-shift.pdf (597.03 KB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry CX-014220: Categorical Exclusion Determination

  8. Process Intensification with Integrated Water-Gas-Shift Membrane...

    Broader source: Energy.gov (indexed) [DOE]

    water-gas-shift.pdf (597.03 KB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  9. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensification with Integrated Water-Gas-Shift Membrane Reactor Hydrogen-Selective Membranes for High- Pressure Hydrogen Separation This project will develop hydrogen-selective membranes for an innovative water-gas-shift reactor that improves gas separation effciency, enabling reduced energy use and greenhouse gas emissions. Introduction The goal of process intensifcation is to reduce the equipment footprint, energy consumption, and environmental impact of manufacturing processes. One candidate

  10. High-Temperature Water-Gas Shift Membrane Reactor Study

    SciTech Connect (OSTI)

    Ciocco, M.V.; Iyoha, O.; Enick, R.M.; Killmeyer, R.P.

    2007-06-01

    NETL’s Office of Research and Development is exploring the integration of membrane reactors into coal gasification plants as a way of increasing efficiency and reducing costs. Water-Gas Shift Reaction experiments were conducted in membrane reactors at conditions similar to those encountered at the outlet of a coal gasifier. The changes in reactant conversion and product selectivity due to the removal of hydrogen via the membrane reactor were quantified. Research was conducted to determine the influence of residence time and H2S on CO conversion in both Pd and Pd80wt%Cu membrane reactors. Effects of the hydrogen sulfide-to-hydrogen ratio on palladium and a palladium-copper alloy at high-temperature were also investigated. These results were compared to thermodynamic calculations for the stability of palladium sulfides.

  11. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect (OSTI)

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  12. The adsorption behavior of octafluoropropane at the water/gas interface

    SciTech Connect (OSTI)

    Giebel, Friederike; Paulus, Michael; Nase, Julia Bieder, Steffen; Kiesel, Irena; Tolan, Metin

    2014-12-14

    We studied the adsorption behavior of the gas octafluoropropane at the water/gas interface as a function of different pressures. In a custom-made measurement cell, the gas pressure was varied in a range between 1 bar and close to the condensation pressure of octafluoropropane. The electron density profiles of the adsorption layers show that the layer thickness increases with pressure. The evolution of the layer electron density indicates that the bulk electron density is reached if a layer consisting of more than one monolayer of octafluoropropane is adsorbed on the water surface.

  13. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  14. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-01-01

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  15. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction

    SciTech Connect (OSTI)

    Laine, R.M.

    1986-01-20

    The purpose of this report is to update and reorganize our recent review on homogeneous catalysis of the water-gas shift reaction (WGSR) based on recent literature publications and patents. This updated version will serve as a means of selecting 10 candidate catalyst systems for use in developing effective, sulfur-tolerant, low temperature WGSR catalysts. This report discusses the variations possible in the basic chemistry associated with WGSR catalytic cycles, including basic, acidic, and neutral conditions. Then individual mechanism for specific WGSR catalyst systems are discussed. Finally, on the basis of the literature reports, a list is presented of candidate catalysts and basic systems we have chosen for study in Task 3.

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Salmon, Mississippi, Site, Water Sampling Location Map .........5 Water Sampling Field Activities Verification ...

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........1 Water Sampling Locations at the Rulison, .........3 Water Sampling Field Activities Verification ...

  18. One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Han, W.; Wen, W; Hanson, J; Teng, X; Marinkovic, N; Rodriguez, J

    2009-01-01

    Synchrotron-based in situ time-resolved X-ray diffraction and X-ray absorption spectroscopy were used to study pure ceria and Pd-loaded ceria nanotubes and nanorods (1D-ceria) as catalysts for the water-gas shift (WGS) reaction. While bulk ceria is very poor as WGS catalysts, pure 1D-ceria displayed catalytic activity at a temperature as low as 300 C. The reduction of the pure 1D-ceria in pure hydrogen started at 150 C, which is a much lower temperature than those previously reported for the reduction of 3D ceria nanoparticles. This low reduction temperature reflects the novel morphology of the oxide systems and may be responsible for the low-temperature WGS catalytic activity seen for the 1D-ceria. Pd-loaded 1D ceria displayed significant WGS activity starting at 200 C. During pretreatment in H{sub 2}, the ceria lattice parameter increased significantly around 60 C, which indicates that Pd-oxygen interactions may facilitate the reduction of Pd-loaded 1D-ceria. Pd and ceria both participate in the formation of the active sites for the catalytic reactions. The low-temperature hydrogen pretreatment results in higher WGS activity for Pd-loaded 1D-ceria.

  19. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts

    SciTech Connect (OSTI)

    Upadhye, AA; Ro, I; Zeng, X; Kim, HJ; Tejedor, I; Anderson, MA; Dumesic, JA; Huber, GW

    2015-01-01

    We show that localized surface plasmon resonance (LSPR) can enhance the catalytic activities of different oxide-supported Au catalysts for the reverse water gas shift (RWGS) reaction. Oxide-supported Au catalysts showed 30 to 1300% higher activity for RWGS under visible light compared to dark conditions. Au/TiO2 catalyst prepared by the deposition-precipitation (DP) method with 3.5 nm average Au particle size showed the highest activity for the RWGS reaction. Visible light is converted into chemical energy for this reaction with up to a 5% overall efficiency. A shift in the apparent activation energy (from 47 kJ mol(-1) in dark to 35 kJ mol(-1) in light) and apparent reaction order with respect to CO2 (from 0.5 in dark to 1.0 in light) occurs due to the LSPR. Our kinetic results indicate that the LSPR increases the rate of either the hydroxyl hydrogenation or carboxyl decomposition more than any other steps in the reaction network.

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites .........7 Water Sampling Field Activities Verification ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMSGRN.........7 Water Sampling Field Activities Verification ...

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal .........9 Water Sampling Field Activities Verification ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2014 LMSRBLS00514 .........5 Water Sampling Field Activities Verification ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Rulison, Colorado, Site November 2014 LMS.........3 Water Sampling Field Activities Verification ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Rulison, Colorado, Site October 2015 LMS.........5 Water Sampling Field Activities Verification ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMSMNT.........7 Water Sampling Field Activities Verification ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site .........9 Water Sampling Field Activities Verification ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2015 LMSRBLS00515 .........5 Water Sampling Field Activities Verification ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Produced Water Sampling at the Rulison, Colorado, Site May 2015 LMSRULS00115 Available .........3 Water Sampling Field Activities Verification ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site December 2013 .........5 Water Sampling Field Activities Verification ...

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Produced Water Sampling at the Rulison, Colorado, Site January 2016 LMSRULS00915 .........3 Water Sampling Field Activities Verification ...

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site .........7 Water Sampling Field Activities Verification ...

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing .........5 Water Sampling Field Activities Verification ...

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMSMNT.........7 Water Sampling Field Activities Verification ...

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMSMNTS01013 This .........7 Water Sampling Field Activities Verification ...

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMSNAP.........5 Water Sampling Field Activities Verification ...

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site .........5 Water Sampling Field Activities Verification ...

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMSTUB.........9 Water Sampling Field Activities Verification ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January .........7 Water Sampling Field Activities Verification ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Static Water Level Data ...

  2. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  3. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect (OSTI)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Data Durango Processing Site Surface Water Quality Data Equipment Blank Data Static ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Natural Gas Analysis Data ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrographs Time-Concentration ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrograph Time-Concentration ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graph ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Quality Data Equipment Blank Data Static Water Level Data Time-Concentration Graphs ...

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graphs ...

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site June 2015 .........7 Water Sampling Field Activities Verification ...

  16. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis

    SciTech Connect (OSTI)

    Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

    2008-12-01

    With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, and Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site December 2013 LMSRVTS00913 This page intentionally left blank ...

  18. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  19. Water and Sediment Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDC Blank 7222014 Below MDC Below MDC Water Sampling Results Location Sample Date WIPP ... Tut Tank 3132014 Below MDC Below MDC Fresh Water Tank 3122014 Below MDC Below MDC Hill ...

  20. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction. Task 1, Topical report No. 1

    SciTech Connect (OSTI)

    Laine, R.M.

    1986-01-20

    The purpose of this report is to update and reorganize our recent review on homogeneous catalysis of the water-gas shift reaction (WGSR) based on recent literature publications and patents. This updated version will serve as a means of selecting 10 candidate catalyst systems for use in developing effective, sulfur-tolerant, low temperature WGSR catalysts. This report discusses the variations possible in the basic chemistry associated with WGSR catalytic cycles, including basic, acidic, and neutral conditions. Then individual mechanism for specific WGSR catalyst systems are discussed. Finally, on the basis of the literature reports, a list is presented of candidate catalysts and basic systems we have chosen for study in Task 3.

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, Produced Water, and Natural Gas Sampling at the Gasbuggy, New Mexico, Site October 2014 LMSGSBS00614 Available for sale to the public from: U.S. ...

  2. In Situ Time-Resolved Characterization of Ni-MoO2 Catalysts for the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen,W.; Calderon, J.; Brito, J.; Marinkovic, N.; Hanson, J.; Rodriquez, J.

    2008-01-01

    Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.

  3. Iron-ceria Aerogels Doped with Palladium as Water-gas Shift Catalysts for the Production of Hydrogen

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Ernst, R; Pugmire, R; Huffman, G; Eyring, E

    2010-01-01

    Mixed 4.5% iron oxide-95.5% cerium oxide aerogels doped with 1% and 2% palladium (Pd) by weight have been synthesized, and their activities for the catalysis of water-gas shift (WGS) reaction have been determined. The aerogels were synthesized using propylene oxide as the proton scavenger for the initiation of hydrolysis and polycondensation of a homogeneous alcoholic solution of cerium(III) chloride heptahydrate and iron(III) chloride hexahydrate precursor. Palladium was doped onto some of these materials by gas-phase incorporation (GPI) using ({eta}{sup 3}-allyl)({eta}{sup 5}-cyclopentadienyl)palladium as the volatile Pd precursor. Water-gas shift catalytic activities were evaluated in a six-channel fixed-bed reactor at atmospheric pressure and reaction temperatures ranging from 150 to 350 C. Both 1% and 2% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels showed WGS activities that increased significantly from 150 to 350 C. The activities of 1% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels were also compared with that of the 1% Pd-doped ceria aerogel without iron. The WGS activity of 1% Pd on 4.5% iron oxide-95.5% cerium oxide aerogels is substantially higher (5 times) than the activity of 1% Pd-doped ceria aerogel without iron. The gas-phase incorporation results in a better Pd dispersion. Ceria aerogel provides a nonrigid structure wherein iron is not significantly incorporated inside the matrix, thereby resulting in better contact between the Fe and Pd and thus enhancing the WGS activity. Further, neither Fe nor Pd is reduced during the ceria-aerogel-catalyzed WGS reaction. This behavior contrasts with that noted for other Fe-based WGS catalysts, in which the original ferric oxide is typically reduced to a nonstoichiometric magnetite form.

  4. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMS/AMB/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Ambrosia Lake, New Mexico February 2015 RIN 14116607 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site February 2015 LMS/MON/S01214 This page intentionally left blank U.S. Department of Energy DVP-December 2014, Monument Valley, Arizona February 2015 RIN 14126645 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May 2014 LMS/RVT/S00314 This page intentionally left blank U.S. Department of Energy DVP-March 2014, Riverton, Wyoming May 2014 RIN 14035986 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, WY, Processing Site, Sample Location Map ...................................................................3 Data

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    February 2015 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Site April 2015 LMS/GJO/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Grand Junction, Colorado, Site April 2015 RIN 15026795 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map

  10. Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas

    SciTech Connect (OSTI)

    James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

    2008-05-31

    This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

  11. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  12. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and September 2013 Groundwater and Surface Water Sampling at the Durango, Colorado, Disposal and Processing Sites March 2014 LMS/DUD/DUP/S00613 This page intentionally left blank U.S. Department of Energy DVP-June and September 2013, Durango, Colorado March 2014 RIN 13055370 and 13085577 Page i Contents Sampling Event Summary ...............................................................................................................1 Durango, Colorado, Disposal Site Sample Location Map-June

  15. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    SciTech Connect (OSTI)

    Klaehn, John; Peterson, Eric; Orme, Christopher; Bhandari, Dhaval; Miller, Scott; Ku, Anthony; Polishchuk, Kimberly; Narang, Kristi; Singh, Surinder; Wei, Wei; Shisler, Roger; Wickersham, Paul; McEvoy, Kevin; Alberts, William; Howson, Paul; Barton, Thomas; Sethi, Vijay

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (? = 7-9) and H2/CO separation (? = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  16. In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen ,W.; Liu, J.; White, M.; Marinkovic, N.; Hanson, J.; Rodriguez, J.

    2007-01-01

    A novel and active Cu-MoO{sub 2} catalyst was synthesized by partial reduction of a precursor CuMoO{sub 4} mixed-metal oxide with CO or H{sub 2} at 200-250 C. The phase transformations of Cu-MoO{sub 2} during H{sub 2} reduction and the water-gas shift reaction could be followed by In situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO{sub 4} collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water-gas shift (WGS) reaction, diffraction lines for Cu{sub 6}Mo{sub 5}O{sub 18} and MoO{sub 2} appeared around 350 C and Cu{sub 6}Mo{sub 5}O{sub 18} was further transformed to Cu/MoO{sub 2} at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 C. The interfacial interactions between Cu clusters and MoO{sub 2} increased the water-gas shift catalytic activities at 350 and 400 C.

  17. Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Details Activities (63) Areas (51) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling...

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 100, 17B, 1A, 72, and 81 were classified as Category II. The sample results were qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique. ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... the applicable MDL. Inductively Coupled Plasma Interference Check Sample Analysis ... and background correction factors for all inductively coupled plasma instruments. ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016 LMS/AMB/S01215 This page intentionally left blank U.S. Department of Energy DVP-December 2015, Ambrosia Lake, New Mexico March 2016 RIN 15117494 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data Assessment

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Grand Junction, Colorado, Disposal Site November 2013 LMS/GRJ/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Grand Junction, Colorado November 2013 RIN 13075515 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle,

  5. Wall-catalyzed Water-Gas Shift Reaction in Multi-tubular, Pd and 80wt%Pd-20wt%Cu Membrane Reactors at 1173K

    SciTech Connect (OSTI)

    Osemwengie, I.; Enick, R.M.; Killmeyer, R.P.

    2007-07-20

    The high-temperature, water-gas shift reaction was conducted in 100 wt%Pd and 80 wt%Pd–20 wt%Cu (Pd80 wt%Cu) shell-and-tube membrane reactors at 1173 K with a 241 kPa (35 psig) trans-membrane pressure differential in the absence of heterogeneous catalyst particles. The tube bundle consisted of four parallel 15.25 cm long, 3.175 mm OD Pd-based tubes with a wall thickness of 125 μm. The modest catalytic activity of the Pd-based membrane surface for the forward WGSR, the high rate of hydrogen extraction through the Pd-based membranes, and the long residence times (1–5 s) resulted in a dramatic shift in carbon monoxide conversions of 93% at 1173 K and a 1.5:1 steam-to-carbon monoxide feed ratio—a value well above the equilibrium value of 54% associated with a conventional (non-membrane) reactor. Carbon monoxide conversions decreased from 93% to 66% and hydrogen recovery from 90% to 85% at a residence time of 5 s when the Pd was replaced with Pd80 wt%Cu, due to the lower permeance of the Pd80 wt%Cu alloy. SEM-EDS analysis of the membrane tubes suggested that the water-gas shift environment caused pinhole formation in the retentate surfaces of the Pd and Pd80 wt%Cu after approximately 8 days of operation.

  6. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1988--December 31, 1988

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-12-31

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al{sub 2}0{sub 3} catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C{sub 5}{sup +} selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a{sub 1} was near 0.80 which is higher than that of iron catalysts, while a{sub 2} was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... The gross alpha, gross beta, radium-226, and radium-228 method blank results were below the DLC. Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis ICP ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Bluewater, New Mexico, Disposal Site February 2014 LMS/BLU/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Bluewater, New Mexico February 2014 RIN 13115746 Page i Contents Sampling Event Summary ...............................................................................................................1 Bluewater, New Mexico, Disposal Site Sample Location Map.......................................................5 Data Assessment Summary

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Burrell, Pennsylvania, Disposal Site January 2014 LMS/BUR/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Burrell, Pennsylvania January 2014 RIN 13095638 Page i Contents Sampling Event Summary ...............................................................................................................1 Burrell, Pennsylvania, Disposal Site, Sample Location Map ..........................................................3 Data Assessment Summary

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Canonsburg, Pennsylvania, Disposal Site February 2014 LMS/CAN/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Canonsburg, Pennsylvania February 2014 RIN 13095639 Page i Contents Sampling Event Summary ...............................................................................................................1 Canonsburg, Pennsylvania, Disposal Site, Sample Location Map ..................................................3 Data Assessment Summary

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Disposal Site August 2014 LMS/LKD/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Disposal August 2014 RIN 14056157 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Disposal Site, Sample Location Map ...............................................................3 Data Assessment Summary

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Processing Site August 2014 LMS/LKP/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Processing August 2014 RIN 14056157 and 14056158 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site, Sample Location Map ............................................................3 Data Assessment Summary

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site February 2016 LMS/RVT/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Riverton, Wyoming February 2016 RINs 15097345, 15097346, and 15097347 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site Planned Sampling Location Map .........................................7 Data Assessment Summary

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Rifle, Colorado, New and Old Processing Sites January 2014 LMS/RFN/RFO/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Rifle, Colorado January 2014 RIN 13115731 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Sample Location Map ........................................................5 Old Rifle, Colorado, Processing

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites January 2015 LMS/RFN/RFO/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Rifle, Colorado January 2015 RINs 14106568 and 14106569 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Planned Sampling Map ......................................................3 Old Rifle,

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Slick Rock, Colorado, Processing Sites January 2016 LMS/SRE/SRW/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Slick Rock, Colorado January 2016 RINs 15087319 and 15107424 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map .....................................................5 Data Assessment

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 10 pCiL Liquid Scintillation LMR-15 Uranium Vanadium Zinc Total No. of Analytes 4 0 ... 26, 2013 TO: Rick Findlay FROM: Jeff Price SUBJECT: Trip Report (LTHMP Sampling) ...

  19. Pulse studies to decipher the role of surface morphology in CuO/CeO₂ nanocatalysts for the water gas shift reaction

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Zhao, Fuzhen; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Si, Rui; Johnston-Peck, Aaron C.; Martinez-Arias, Arturo; Hanson, Jonathan C.; Senanayake, Sanjaya D.

    2015-01-23

    The water-gas shift reaction (WGS, CO + H₂O → CO₂) was studied over CuO/CeO₂ catalysts with two different ceria particle morphohologies, in the form of nanospheres (ns) and nanocubes (nc). To understand the strong dependence of the WGS reaction activity on the ceria nanoshapes, pulses of CO (without and with water vapor) were employed during in situ X-ray diffraction (XRD) and X-ray absoprtion near edge structure (XANES) measurements done to characterize the catalysts. The results showed that CuO/CeO₂ (ns) exhibited a substantially better activity than CuO/CeO₂ (nc). The higher activity was associated with the unique properties of CuO/CeO₂ (ns), such as the easier reduction of highly dispersed CuO to metallic Cu, the stability of metallic Cu and a larger concentration Ce³⁺ in CeO₂ (ns).

  20. Pulse studies to decipher the role of surface morphology in CuO/CeO₂ nanocatalysts for the water gas shift reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Zhao, Fuzhen; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Si, Rui; Johnston-Peck, Aaron C.; Martinez-Arias, Arturo; Hanson, Jonathan C.; Senanayake, Sanjaya D.

    2015-01-23

    The water-gas shift reaction (WGS, CO + H₂O → CO₂) was studied over CuO/CeO₂ catalysts with two different ceria particle morphohologies, in the form of nanospheres (ns) and nanocubes (nc). To understand the strong dependence of the WGS reaction activity on the ceria nanoshapes, pulses of CO (without and with water vapor) were employed during in situ X-ray diffraction (XRD) and X-ray absoprtion near edge structure (XANES) measurements done to characterize the catalysts. The results showed that CuO/CeO₂ (ns) exhibited a substantially better activity than CuO/CeO₂ (nc). The higher activity was associated with the unique properties of CuO/CeO₂ (ns), suchmore » as the easier reduction of highly dispersed CuO to metallic Cu, the stability of metallic Cu and a larger concentration Ce³⁺ in CeO₂ (ns).« less

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater Sampling at the Central Nevada Test Area February 2015 LMS/CNT/S01214 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in

  2. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  3. Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004)) Jump to: navigation, search...

  4. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) (Redirected from Water-Gas Samples At Colrado Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  5. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  6. Category:Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Water Sampling page? For detailed information on Water Sampling as...

  7. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas. A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.C.; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-07-08

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600°C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600°C. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent

  8. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  9. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Gabbs Valley Area (DOE GTP) (Redirected from Water-Gas Samples At Gabbs Valley Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  10. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) (Redirected from Water-Gas Samples At Glass Buttes Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  11. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  12. Water Sampling (Healy, 1970) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location Unspecified Exploration...

  13. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  14. Surface Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Surface Water Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field...

  15. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002)) Jump to: navigation, search...

  16. Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling (Lewicki & Oldenburg, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Lewicki & Oldenburg, 2004) Exploration...

  17. August 2015 Groundwater and Surface Water Sampling at the Tuba...

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015 LMSTUB.........7 Water Sampling Field Activities Verification ...

  18. February 2016 Groundwater and Surface Water Sampling at the Tuba...

    Office of Legacy Management (LM)

    6 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April .........5 Water Sampling Field Activities Verification ...

  19. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  20. Reliability of chemical analyses of water samples

    SciTech Connect (OSTI)

    Beardon, R.

    1989-11-01

    Ground-water quality investigations require reliable chemical analyses of water samples. Unfortunately, laboratory analytical results are often unreliable. The Uranium Mill Tailings Remedial Action (UMTRA) Project`s solution to this problem was to establish a two phase quality assurance program for the analysis of water samples. In the first phase, eight laboratories analyzed three solutions of known composition. The analytical accuracy of each laboratory was ranked and three laboratories were awarded contracts. The second phase consists of on-going monitoring of the reliability of the selected laboratories. The following conclusions are based on two years experience with the UMTRA Project`s Quality Assurance Program. The reliability of laboratory analyses should not be taken for granted. Analytical reliability may be independent of the prices charged by laboratories. Quality assurance programs benefit both the customer and the laboratory.

  1. Category:Surface Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Surface Water Sampling page? For detailed information on...

  2. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  3. Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976) Exploration Activity...

  4. Water Sampling At International Geothermal Area, New Zealand...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) Exploration...

  5. Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006) Exploration Activity...

  6. Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  7. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

  8. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  9. News Release: DOE Announces Riverton Water Sampling Results | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Announces Riverton Water Sampling Results News Release: DOE Announces Riverton Water Sampling Results May 11, 2012 - 3:25pm Addthis News Contact: Contractor, Judy Miller, S.M. Stoller Corporation Public Affairs (970) 248-6363 jmiller@lm.doe.gov Laboratory results indicate water from the alternative water supply system is safe for residents to drink The U.S. Department of Energy announced today that residential drinking water testing from an alternative water supply system in Riverton,

  10. UMTRA water sampling and analysis plan, Green River, Utah

    SciTech Connect (OSTI)

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations.

  11. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  12. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  13. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

  14. Water Sampling At Kilauea East Rift Geothermal Area (Thomas,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  15. Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  16. Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details...

  17. Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details...

  18. Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details...

  19. Water Sampling At Central Nevada Seismic Zone Region (Laney,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity...

  20. Surface Water Sampling At Raft River Geothermal Area (1973) ...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location...

  1. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  2. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  3. Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton...

  4. Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  5. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) Exploration Activity...

  6. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  7. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  8. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Exploration...

  9. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  10. Surface Water Sampling At Chena Geothermal Area (Holdmann, Et...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Chena Geothermal Area (Holdmann, Et Al., 2006) Exploration Activity...

  11. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details...

  12. Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al....

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity...

  13. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  14. Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity...

  15. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration...

  16. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  17. Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt...

  18. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982)...

  19. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Exploration...

  20. Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) Exploration Activity Details...

  1. Water Sampling At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details...

  2. Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area...

  3. Water Sampling At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity...

  4. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  5. Water Sampling At Heber Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area...

  6. Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  7. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...

  8. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  9. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

  10. Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  11. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  12. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details...

  13. Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Exploration Activity...

  14. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  15. Water Sampling At Long Valley Caldera Geothermal Area (Goff,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Exploration...

  16. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    of Water Sample Analysis, Waunita Hot Spring Project, Gunnison County, Colorado Author R. H. Carpenter Organization Colorado Geological Survey in Cooperation with the U.S....

  17. Ch. III, Interpretation of water sample analyses Waunita Hot...

    Open Energy Info (EERE)

    of water sample analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  18. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  19. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  20. RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-05-22

    A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid

  1. Radiochemical Analyses of Water Samples from Selected Streams

    Office of Legacy Management (LM)

    > : , - ' and Precipitation Collected in - Connection with Calibration-Test Flaring of Gas From Test Well, - I August 15-October 13, 197,0,, Project Rulison-8, 197 1 HGS 9 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal center, Denver, Colorado 80225 RADIOCHEMICAL ANALYSES OF WATER SAMPLES FROM SELECTED STREAMS AND PRECIPITATION

  2. UMTRA project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

  3. Albany Water Gas & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    albanywgl Outage Hotline: 229-883-8330 ext. 506 Green Button Access: None References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  4. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    SciTech Connect (OSTI)

    2011-09-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  5. June 2015 Groundwater and Surface Water Sampling at the Green...

    Office of Legacy Management (LM)

    ... DVP-June 2015, Green River, Utah U.S. Department of Energy RIN 15067102 August 2015 Page 12 Inductively Coupled Plasma Interference Check Sample Analysis Interference check samples ...

  6. Diffusion Multilayer Sampling of Ground Water in Five Wells at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of MSE Cores Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Vertical Distribution of ...

  7. 384 Power plant waste water sampling and analysis plan

    SciTech Connect (OSTI)

    Hagerty, K.J.; Knotek, H.M.

    1995-01-01

    This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

  8. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect (OSTI)

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  9. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  10. UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6

    SciTech Connect (OSTI)

    1995-09-01

    This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

  11. Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al., 1996) Exploration Activity...

  12. Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details...

  13. Water Sampling At Coso Geothermal Area (1977-1978) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Coso Geothermal Area (1977-1978) Exploration Activity Details Location...

  14. Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details...

  15. Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details...

  16. Water Sampling At Reese River Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details...

  17. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977)...

  18. Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details...

  19. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  20. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity...

  1. Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) Exploration Activity Details...

  2. 400 area secondary cooling water sampling and analysis plan

    SciTech Connect (OSTI)

    Penn, L.L.

    1996-10-29

    This is a total rewrite of the Sampling and Analysis Plan in response to, and to ensure compliance with, the State Waste Discharge Permit ST 4501 issued on July 31, 1996. This revision describes changes in facility status and implements requirements of the permit.

  3. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    2011-01-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  4. September 2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site February 2016 LMS/SHP/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Shiprock, New Mexico February 2016 RINs 15097348 and 15097349 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Shiprock, New Mexico, Disposal Site

  5. January 2016 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Processing Site

    Office of Legacy Management (LM)

    6 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Processing Site March 2016 LMS/GJT/S00116 This page intentionally left blank U.S. Department of Energy DVP-January 2016, Grand Junction, Colorado March 2016 RIN 15127576 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Processing Site, Sample Location Map

  6. November 2015 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites February 2016 LMS/RFN/RFO/S01115 This page intentionally left blank U.S. Department of Energy DVP-November 2015, Rifle, Colorado February 2016 RINs 15107463 and 15107464 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Planned Sampling Map

  7. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    SciTech Connect (OSTI)

    Kumar, Ajay Sharma, Sumit

    2015-08-28

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  8. UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  9. July 2015 Groundwater and Surface Water Sampling at the Naturita, Colorado, Processing Site

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado, Processing Site October 2015 LMS/NAP/S00715 This page intentionally left blank U.S. Department of Energy DVP-July 2015, Naturita, Colorado October 2015 RIN 15077222 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary

  10. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect (OSTI)

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  11. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect (OSTI)

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  12. Analysis of core soil and water samples from the Cactus Crater Disposal Site at Enewetak atoll

    SciTech Connect (OSTI)

    Robison, W.L.; Noshkin, V.E.

    1981-02-18

    Core soil samples and water samples were collected from the Cactus Crater Disposal Site at Enewetak for analysis of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu and /sup 241/Am by both gamma spectroscopy and, through a contractor laboratory, by wet chemistry procedures. The samples processing methods, the analytical methods and the analytical quality control are all procedures developed for the continuing Marshall Island radioecology and dose assessment work.

  13. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect (OSTI)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  14. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect (OSTI)

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  15. Microsoft Word - LBNL ESD14085 water controls Final report 6...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 30, 2016 Project name: Understanding Water Controls on Shale Gas Mobilization into ... to understand and predict the dynamics of water-gas interactions within the regions of ...

  16. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  17. Flow injection sample pretreatment in the determination of trace elements in waters by atomic spectrometry

    SciTech Connect (OSTI)

    Tyson, J.F.

    1995-12-31

    Flow injection (FI) techniques are a way of automating sampling pretreatment procedures with direct coupling to the instrument. For a variety of reasons, flame atomic absorption spectrometry (FAAS) would be the method of choice for the determination of trace elements in water samples were it not for some of the inherent limitations of this technique. These limitations are concerned with the various interferences that arise from matrix components and with the atom number density in the source. This together with the various noise sources sets detection limits which are not low enough for many applications. Thus many FI procedures are devised with the aim of overcoming these limitations and thus solid phase extraction (SPE) as a means of preconcentration features largely in recently published work. Results will be presented for the determination of trace elements in water samples (both fresh and saline) in which SPE procedures were used to (a) remove the potentially interfering sea-water matrix for determinations using ICP-MS and (b) preconcentrate cadmium from surface waters prior to determination by FAAS. Hydride generation methods have been applied for the determination of selenium and arsenic. In highly saline media the elevated recoveries of Se have been investigated and for the determination of As, an evaluation of the claim that the use of surfactants improves the performance of a flow based hydride generation system has critically evaluated.

  18. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Atkinson, R.

    2012-07-31

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  19. Rapid Column Extraction Method for Actinides and Sr-89/90 in Water Samples

    SciTech Connect (OSTI)

    MAXWELL III, SHERROD L.

    2005-06-15

    The SRS Environmental Laboratory analyzes water samples for environmental monitoring, including river water and ground water samples. A new, faster actinide and strontium 89/90 separation method has been developed and implemented to improve productivity, reduce labor costs and add capacity to this laboratory. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and Sr-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha spectrometry. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized. The method can be used for routine analysis or as a rapid method for emergency preparedness. Thorium and curium are often analyzed separately due to the interference of the daughter of Th-229 tracer, actinium (Ac)-225, on curium isotopes when measured by alpha spectrometry. This new method also adds a separation step using DGA Resin{reg_sign}, (Diglycolamide Resin, Eichrom Technologies) to remove Ac-225 and allow the separation and analysis of thorium isotopes and curium isotopes at the same time.

  20. May and June 2015 Groundwater and Surface Water Sampling at the...

    Office of Legacy Management (LM)

    ... Inductively Coupled Plasma Interference Check Sample Analysis Interference check samples ... Inductively Coupled Plasma Interference Check Sample Analysis Interference check samples ...

  1. Rapid Method for Ra-226 and Ra-228 in Water Samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod, L. III

    2006-02-10

    The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Ra-226 (1620 year half-life) is one of the most toxic of the long-lived alpha emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of radium-226 and radium-228 in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare Ra-226 and Ra-228 for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both Ra-226 and Ra-228 (via Ac-228) for assay. This method uses MnO{sub 2} Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate Ra-226 and Ra-228 rapidly from water samples, along with Ba-133 tracer. DGA Resin{reg_sign} (Eichrom) and Ln-Resin{reg_sign} (Eichrom) are employed in tandem to prepare Ra-226 for assay by alpha spectrometry and to determine Ra-228 via the measurement of Ac-228 by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain Ac-228 on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The Ac-228 is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  2. Investigation of the effects of various water mediums on desulfurization and deashing of a coal sample by flotation

    SciTech Connect (OSTI)

    Ayhan, F.D. [Dicle University, Diyarbakir (Turkey)

    2009-08-15

    The aim of this study was to investigate the effects of various water mediums on desulfurization and deashing of a coal sample using flotation. For this purpose, experimental studies were conducted on a coal sample containing high ash and sulfur contents. The effects of pH, solid concentration, collector amount and frother amount on the flotation were investigated separately in Mediterranean Sea water, Cermik thermal spring water, snow water and tap water. Flotation, results indicated that, when comparing the various water mediums, the following order for the ash content was obtained: snow water < Cermik thermal spring water < tap water < the Mediterranean Sea water. For the reduction of total sulfur, the following order was obtained: snow water > Cermik thermal spring water > Mediterranean Sea water > tap water. When snow water was used as a flotation medium, it was found that a concentrate containing 3.01% total sulfur and 27.64% ash with a total sulfur reduction of 57.06% was obtained from a feed containing 7.01% total sulfur and 4.1.17% ash.

  3. Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure

    SciTech Connect (OSTI)

    Wilborn, Bill; Marutzky, Sam; Knapp, Kathryn

    2013-02-24

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

  4. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  5. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    SciTech Connect (OSTI)

    Ciora, Richard J; Liu, Paul KT

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  6. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Chanenchuk, C.A.; Satterfield, C.N.

    1989-01-01

    Most of this quarter has been devoted to design, construction and installation of a new external catalyst reduction unit. In this report, methods of reducing cobalt-based Fischer-Tropsch catalysts are reviewed, in an effort to develop an understanding of the important parameters which affect the reduction of cobalt catalysts. Design considerations for the external reduction unit are also presented.

  7. Analytical Data Report of Water Samples Collected For I-129 Analysis

    SciTech Connect (OSTI)

    Lindberg, Michael J.

    2009-10-26

    This is an analytical data report for samples received from the central plateau contractor. The samples were analyzed for iodine-129.

  8. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    SciTech Connect (OSTI)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  9. June-July 2015 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites

    Office of Legacy Management (LM)

    June-July 2015 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites November 2015 LMS/RFL/S00615 This page intentionally left blank U.S. Department of Energy DVP-June and July 2015, Old and New Rifle, Colorado November 2015 RINs 15067100, 15067101, and 15077206 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Planned

  10. April 2012 Groundwater and Surface Water Sampling at the Salmon, Mississippi, Site (Data Validation Package)

    SciTech Connect (OSTI)

    2012-10-12

    Sampling and analysis were conducted on April 16-19, 2012, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office Of Legacy Management Sites (LMS/PLN/S04351, continually updated). Duplicate samples were collected from locations SA1-1-H, HMH-5R, SA3-4-H, SA1-2-H, Pond W of GZ, and SA5-4-4. One trip blank was collected during this sampling event.

  11. Sampling and analysis plan for treatment water and creek water for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-04-01

    This document provides the Environmental Restoration Program with information about the methodology, organizational structure, quality assurance and health and safety practices to be employed during the water sampling and analysis activities associated with the remediation of the Lower East Fork Poplar Creek Operable Unit during remediation of the National Oceanic and Atmospheric Administration and Bruner sites.

  12. Results of sediment and water sampling for inorganic, organic, and radionuclide analysis at recreation areas and water intakes -- Norris, Melton Hill, and Watts Bar Lakes. Data report

    SciTech Connect (OSTI)

    1991-10-01

    Suspected water quality contamination in Watts Bar Reservoir as a result of activities in past decades at the Department of Energy`s (DOE) Oak Ridge facility is of public concern. DOE, the Tennessee Valley Authority (TVA), the State of Tennessee, and other agencies and officials have received many inquiries from the public in recent years concerning this suspected pollution, especially how this potential contamination may affect the health and safety of those persons who use beaches in the area for swimming or other water-body-contact sports. As a result of these concerns, TVA conducted a study in May and June 1991 to obtain data on potential contaminants of concern in the water and sediment of Watts Bar Reservoir. TVA collected water and sediment samples at a total of 29 sites, including 18 recreation areas and 11 water intake locations, located throughout Norris, Melton Hill, and Watts Bar Reservoirs. The samples were analyzed for radionuclides, metals, and organic compounds which could pose a threat to human health.

  13. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect (OSTI)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  14. U Isotopic Compositions and Concentrations of Rocky Flats Water Samples Collected Over the Period 4/1/15 to 6/16/15 and Submitted to LBNL

    Office of Legacy Management (LM)

    U Isotopic Compositions and Concentrations of Rocky Flats Water Samples Collected Over the Period 4/1/15 to 6/16/15 and Submitted to LBNL John N. Christensen Data Report date 12/30/15 Twenty-one water samples were submitted by SM Stoller to Lawrence Berkeley National Laboratory (LBNL) for uranium (U) isotopic analysis. The sample set includes four composite samples from the WALPOC location, one composite sample from GS10, one composite sample from the SW093 location, and one sample each from

  15. COMPARISON OF RESULTS FOR QUARTER 5 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN TENNESSEE

    SciTech Connect (OSTI)

    2013-09-23

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 21, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference, are tabulated. All DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

  16. COMPARISON OF RESULTS FOR QUARTER 2 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE, ERWIN, TENNESSEE

    SciTech Connect (OSTI)

    2013-01-21

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on November 15, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the results are compared using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2012). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, all DER values were less than 3 and results are consistent with low (e.g., background) concentrations.

  17. COMPARISON OF RESULTS FOR QUARTER 4 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUELS SERVICES SITE, ERWIN, TN

    SciTech Connect (OSTI)

    none,

    2013-08-15

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on June 12, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates at a 99% confidence interval that split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report specifies 95% confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0014 was the exception. The ORAU gross beta result of 6.30 ± 0.65 pCi/L from location NRD is well above NFS's non-detected result of 1.56 ± 0.59 pCi/L. NFS's data package includes no detected result for any radionuclide at location NRD. At NRC's request, ORAU performed gamma spectroscopic analysis of sample 5198W0014 to identify analytes contributing to the relatively elevated gross beta results. This analysis identified detected amounts of naturally-occurring constituents, most notably Ac-228 from the thorium decay series, and does not suggest the presence of site-related contamination.

  18. COMPARISON OF RESULTS FOR QUARTER 3 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE, ERWIN, TENNESSEE

    SciTech Connect (OSTI)

    none,

    2013-05-28

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on March 20, 2013. Representatives from the U.S. Nuclear Regulatory Commission and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0012 was the exception. The ORAU result of 9.23 ± 0.73 pCi/L from location MCD is well above NFS's result of -0.567 ± 0.63 pCi/L (non-detected). NFS's data package included a detected result for U-233/234, but no other uranium or plutonium detection, and nothing that would suggest the presence of beta-emitting radionuclides. The ORAU laboratory reanalyzed sample 5198W0012 using the remaining portion of the sample volume and a result of 11.3 ± 1.1 pCi/L was determined. As directed, the laboratory also counted the filtrate using gamma spectrometry analysis and

  19. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    SciTech Connect (OSTI)

    Haselow, L.A.; Rogers, V.A.; Riordan, C.J.; Eidson, G.W.; Herring, M.K.

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  20. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    SciTech Connect (OSTI)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Central Nevada Test Area March 2014 Approved for public release; further dissemination unlimited LMS/CNT/S01113 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Gnome-Coach, New Mexico, Site October 2013 LMS/GNO/S00113 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Project Shoal, Nevada, Site December 2013 LMS/SHL/S00513 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Shoal, Nevada, Site July 2014 LMS/SHL/S00514 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... whether a statistical outlier should be discarded or corrected within a data set. ... The application compares the new data set (in standard environmental database units) with ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. ... The former licensee attributed elevated radium-228 levels at the site to natural thorium ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... extremely large or small relative to the rest of the data and, therefore, are suspected ... values that are much smaller than the rest of the data (case 1) and extreme values ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... DVP-June 2014, Hallam, Nebraska U.S. Department of Energy RIN 14056211 September 2014 Page 12 Electronic Data Deliverable (EDD) File The EDD files arrived on July 21, 2014. The ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... levels at the site to natural thorium in the uranium ore. ... screened for radium-226 by gas flow proportional counting. ... Chromatography Peak Integration The integration of analyte ...

  10. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.