National Library of Energy BETA

Sample records for water resources board

  1. California State Water Resources Control Board Storm Water Homepage...

    Open Energy Info (EERE)

    State Water Resources Control Board Storm Water Homepage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State Water Resources Control Board...

  2. California State Water Resources Control Board 401 Water Quality...

    Open Energy Info (EERE)

    401 Water Quality Certification Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State Water Resources Control Board 401 Water...

  3. California State Water Resources Control Board | Open Energy...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. California State Water Resources Control Board is an organization based in Sacramento, California. References "SWRCB...

  4. State Water Resources Control Board | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: State Water Resource Control Board1 This article is a stub. You can help OpenEI by expanding it....

  5. State Water Resources Control Board Order No. 2009-009-DWQ |...

    Open Energy Info (EERE)

    Water Resources Control Board Order No. 2009-009-DWQ Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: State Water Resources Control...

  6. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  7. California Environmental Protection Agency Water Resources Control...

    Open Energy Info (EERE)

    Water Resources Control Board Jump to: navigation, search Name: California Environmental Protection Agency Water Resources Control Board Place: Sacramento, California Coordinates:...

  8. Texas Water Development Board | Open Energy Information

    Open Energy Info (EERE)

    Development Board Jump to: navigation, search Logo: Texas Water Development Board Name: Texas Water Development Board Abbreviation: TWDB Address: 1700 North Congress Avenue Place:...

  9. Newberry Water & Light Board | Open Energy Information

    Open Energy Info (EERE)

    Water & Light Board Jump to: navigation, search Name: Newberry Water & Light Board Place: Michigan Phone Number: (906) 293-5681 Outage Hotline: (906) 293-5681 References: EIA Form...

  10. Fermilab | Directorate | LBNF/DUNE Resources Review Boards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate chairs the boards and organize regular meetings to ensure the flow of resources needed for the smooth progress of the enterprise and for its successful...

  11. Eugene Water and Electric Board | Open Energy Information

    Open Energy Info (EERE)

    Eugene Water and Electric Board Jump to: navigation, search Logo: Eugene Water and Electric Board Name: Eugene Water and Electric Board Address: 500 East 4th Avenue Place: Eugene,...

  12. Regional Water Board NPDES Program Manager | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Regional Water Board NPDES Program ManagerLegal Abstract Regional Water Board NPDES Program Manager,...

  13. Regional Water Quality Control Boards | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Regional Water Quality Control BoardsLegal Abstract California Regional Water Quality Control Boards,...

  14. Water Science and Technology Board annual report 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broader scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.

  15. Water Science and Technology Board. Annual report 1991

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1991. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Restoration of aquatic ecosystems - science, technologies and public policy; Water transfers in the West - efficiency, equity and the environment; Opportunities in the hydrologic sciences; and Ground water models - scientific and regulatory applications. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  16. Water Science and Technology Board. Annual report 1993-1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1993-1994. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Alternatives for ground water cleanup; Managing wastewater in coastal urban areas; and, Water transfers in the West - efficiency, equity and the environment. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  17. Water Science and Technology Board. Annual report 1992-1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1992. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Managing wastewater in coastal urban areas; Ground water vulnerability assessment; Water transfers in the West - efficiency, equity and the environment; and Opportunities in the hydrologic sciences. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  18. Oregon Water Resources Department | Open Energy Information

    Open Energy Info (EERE)

    Resources Department Jump to: navigation, search Logo: Oregon Water Resources Department Name: Oregon Water Resources Department Address: 725 Summer Street NE, Suite A Place:...

  19. Montana Board of Water Well Contractors Handbook | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Board of Water Well Contractors HandbookPermittingRegulatory...

  20. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  1. RCW 90.80 Water Conservancy Boards | Open Energy Information

    Open Energy Info (EERE)

    implementing water conservancy boards in Washington, allowing for the expedited administrative process of voluntary transfers. Published NA Year Signed or Took Effect...

  2. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  3. Water Efficient Energy Production for Geothermal Resources |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources PDF icon Primer FINAL.PDF More Documents & Publications Water ...

  4. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  5. Water Efficient Energy Production for Geothermal Resources |...

    Broader source: Energy.gov (indexed) [DOE]

    Water Efficient Energy Production for Geothermal Resources.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the ...

  6. Montana Board of Water Well Contractors Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Board of Water Well Contractors Webpage Abstract Provides information on water well...

  7. Oregon Water Resources Commission | Open Energy Information

    Open Energy Info (EERE)

    Water Resources Commission Jump to: navigation, search Name: Oregon Water Resources Commission Abbreviation: OWRC Address: 725 Summer Street NE, Suite A Place: Salem, Oregon Zip:...

  8. Water Resources Council FLOODPLAIN MANAGEMENT GUIDELINES For...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Resources Council FLOODPLAIN MANAGEMENT GUIDELINES For Implementing E.O. 11988 43 FR 6030 February 10, 1978 (Second Reprinting) i- ' 1': : 8410-01 WATER RESOURCES COUNCIL...

  9. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Energy Positive Water Resource Recovery Workshop Presentations ...ositiveWorkshopReuse.pdf (2.28 MB) NearyWaterResourceWorkshoppresentaion2015.pdf ...

  10. Water Science and Technology Board annual report, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  11. Water Science and Technology Board annual report, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  12. Future Perfect Partnering with California Air Resources Board...

    Open Energy Info (EERE)

    Board (CARB) AgencyCompany Organization: Future Perfect Sector: Climate Focus Area: GHG Inventory Development, Greenhouse Gas Topics: GHG inventory, Low emission development...

  13. Water Science and Technology Board annual report 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This annual report of the Water Science and Technology Board (WSTB) summarizes the activities of the Board and its subgroups during 1988, its sixth year of existence. Included are descriptions of current and recently completed projects, new activities scheduled to begin in 1989, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is intended to provide an introduction to the WSTB and summary of its program for the year.

  14. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  15. California Construction Storm Water Program Website | Open Energy...

    Open Energy Info (EERE)

    California's Construction Storm Water Program. Author California State Water Resources Control Board Published California State Water Resources Control Board, Date Not Provided DOI...

  16. Colorado Division of Water Resources Substitute Water Supply...

    Open Energy Info (EERE)

    Substitute Water Supply Plans Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Substitute Water Supply...

  17. WSDE Water Resources website | Open Energy Information

    Open Energy Info (EERE)

    Water Resources website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: WSDE Water Resources websiteLegal Abstract The Washington...

  18. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL williamsbiomass2014.pdf (1.26 MB) More ...

  19. Idaho Department of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Water Resources Jump to: navigation, search Logo: Idaho Department of Water Resources Name: Idaho Department of Water Resources Address: 322 East Front Street, PO Box 83720 Place:...

  20. Colorado Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Resources Jump to: navigation, search Logo: Colorado Division of Water Resources Name: Colorado Division of Water Resources Address: 1313 Sherman St., Suite 818...

  1. Energy Positive Water Resource Recovery Workshop Report | Department...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Report Energy Positive Water Resource Recovery Workshop Report View the workshop presentations. Workshop Report: Water Resource ...

  2. Life Cycle Water Consumption and Water Resource Assessment for...

    Office of Scientific and Technical Information (OSTI)

    Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details ...

  3. ARM 36.21 - Board of Water Well Contractors | Open Energy Information

    Open Energy Info (EERE)

    ARM 36.21 - Board of Water Well Contractors Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 36.21 - Board of Water Well...

  4. Water Power Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database on OpenEI The DOE Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy. Read more The following resources about water power technologies

  5. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  6. Energy Positive Water Resource Recovery Workshop Related Documents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Documents Energy Positive Water Resource Recovery Workshop Related Documents ... Workshop Report Energy-Positive Water Resource Recovery Workshop Report ...

  7. Water resources and the urban environment

    SciTech Connect (OSTI)

    Loucks, E.D.

    1998-07-01

    140 abstracts from the conference cover topics such as urban stormwater management; geographic information systems, hydrologic and hydraulic computer modeling; groundwater analysis and management; drinking water supply and quality; and international water resources issues.

  8. DOE Publications and Data Resources Related to Water-Energy ...

    Office of Environmental Management (EM)

    Publications and Data Resources Related to Water-Energy DOE Publications and Data Resources Related to Water-Energy Department of Energy Publications Water-Energy Nexus: Challenges ...

  9. MCA 75-5-401 - Water Quality Permits: Board Rules for Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 75-5-401 - Water Quality Permits: Board Rules for PermitsLegal Abstract Sets forth board...

  10. Life Cycle Water Consumption and Water Resource Assessment for

    Office of Scientific and Technical Information (OSTI)

    Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects (Technical Report) | SciTech Connect Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details In-Document Search Title: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS

  11. Xiaojin County Xinghua Water Resource and Hydropower Development...

    Open Energy Info (EERE)

    Xinghua Water Resource and Hydropower Development Co Ltd Jump to: navigation, search Name: Xiaojin County Xinghua Water Resource and Hydropower Development Co., Ltd. Place: Aba...

  12. Nevada Division of Water Resources Forms Webpage | Open Energy...

    Open Energy Info (EERE)

    library Web Site: Nevada Division of Water Resources Forms Webpage Abstract Provides access to State of Nevada Division of Water Resources forms. Author State of Nevada Division...

  13. Oregon Water Resource Department Forms Webpage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Resource Department Forms Webpage Abstract Provides access to water resource...

  14. Wetlands, Floodplains, and Other Water Resources Guidance and...

    Office of Environmental Management (EM)

    Wetlands, Floodplains, and Other Water Resources Guidance and Requirements Wetlands, Floodplains, and Other Water Resources Guidance and Requirements Guidance Revised Guidelines ...

  15. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (71.99 KB) More Documents & Publications Before the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power

  16. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Before the Senate Energy and Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power Before...

  17. Energy-Positive Water Resource Recovery Workshop Report Executive...

    Office of Environmental Management (EM)

    Report Executive Summary Energy-Positive Water Resource Recovery Workshop Report Executive Summary Executive summary workshop report for the for the Energy-Positive Water Resource ...

  18. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    the Subcommittee on Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Christopher M. ...

  19. Kangding Hualong Water Resources Electric Power Investment Co...

    Open Energy Info (EERE)

    Hualong Water Resources Electric Power Investment Co Ltd Jump to: navigation, search Name: Kangding Hualong Water Resources & Electric Power Investment Co., Ltd. Place: Ganzi...

  20. Gansu Linhai Water Resource and Hydropower Investment Co Ltd...

    Open Energy Info (EERE)

    Water Resource and Hydropower Investment Co Ltd Jump to: navigation, search Name: Gansu Linhai Water Resource and Hydropower Investment Co., Ltd. Place: Lanzhou, Gansu Province,...

  1. Energy-Positive Water Resource Recovery Workshop Report | Department...

    Office of Environmental Management (EM)

    Report Energy-Positive Water Resource Recovery Workshop Report Workshop report for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, ...

  2. NREL: Water Power Research - Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Characterization Building on its success in wind resource characterization and assessment, the National Renewable Energy Laboratory (NREL) has extended its capabilities to the field of water power. NREL's team of scientists, engineers and computer experts has broad experience in physical oceanography, meteorology, modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate

  3. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  4. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  5. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect (OSTI)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  6. Sustainable Energy Resources for Consumers Webinar on Solar Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar ... More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar ...

  7. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript | Department of Energy Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications solar_water_heating_webinar.pdf (152.62 KB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Water Heaters Sustainable

  8. Nevada Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Resources Name: Nevada Division of Water Resources Address: 901 S. Stewart St., Suite 2002 Place: Carson city, Nevada Zip: 89701 Phone Number: 775-684-2800...

  9. ORS 536 - Water Resources Administration | Open Energy Information

    Open Energy Info (EERE)

    36 - Water Resources Administration Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 536 - Water Resources AdministrationLegal...

  10. Feasibility Assessment of the Water Energy Resources of the United...

    Broader source: Energy.gov (indexed) [DOE]

    ID-11263 January 2006 Feasibility Assessment of the Water Energy Resources of the United ... The term "available" as used to refer to water energy resource sites or a category of ...

  11. Vermont Agency of Natural Resources Section 401 Water Quality...

    Open Energy Info (EERE)

    document outlines the Agency of Natural Resources coordination process with respect to Clean Water Act Section 401 water quality certification decisions. Author Vermont...

  12. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testimony28SEPA2928Legg29.pdf More Documents & Publications Before the Subcommittee on Water and Power - Committee on Natural Resources Before The Subcommittee on Water and...

  13. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Before the House Natural Resources Subcommittee on Water and Power Before House Subcommittee on Water and Power - Committee on Natural...

  14. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    House Natural Resources Committee Before the Subcommittee on Water and Power - House ... More Documents & Publications Before The Subcommittee on Water and Power - House Energy ...

  15. Sandia, the Atlantic Council, and NM Water Resource Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ...

  16. Before the House Natural Resources Subcommittee on Water and Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power By: Jon Worthington, Administrator, SWPA Subject: DOE Fiscal Year 2012 Budget Request 3-15-11_Final_Testimony_(Worthington)_(SWPA).pdf (48.62 KB) More Documents & Publications Before The Subcommittee on Water and Power - House Committee on Natural Resources Before the Subcommittee on

  17. Before the Subcommittee on Water and Power - House Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee | Department of Energy Kenneth E. Legg, Administrator SEPA 4-16-13_Kenneth_Legg FT HNR (47.42 KB) More Documents & Publications Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before the Subcommittee on Water and Power - Committee on Natural Resources Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee

  18. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Hot Water. solar_thermal_presentation.pdf (1.45 MB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Success Story: Montana Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat

  19. Regulators, Boards, Councils - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense...

  20. Current Practices of the Department of Water Resources in Supervision...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Current Practices of the Department of Water Resources in Supervision of...

  1. Feasibility Assessment of the Water Energy Resources of the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants: Main Report and Appendix A Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: ...

  2. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement Before the Subcommittee on Water and Power, Committee on Natural Resources, U.S. House of Representatives By: Stephen J. Wright, Administrator Bonneville Power ...

  3. Before the Subcommittee on Water and Power - House Natural Resources...

    Broader source: Energy.gov (indexed) [DOE]

    K. Drummond, Administrator, Bonneville Power Administration Before the Subcommittee on Water and Power - House Natural Resources Committee 4-16-13WilliamDrummond FT HNR More...

  4. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement Before the Subcommittee on Water and Power, Committee on Natural Resources, U.S. House of Representatives By: Mr. Stephen J. Wright, Administrator BPA Subject: DOE Fiscal...

  5. California Department of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @CADWR Facebook: https:www.facebook.compagesCalifornia-Department-of-Water-Resources Outage Hotline: (916) 845-8911 References: EIA Form EIA-861 Final Data...

  6. Feasibility Assessment of the Water Energy Resources of the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A Feasibility...

  7. Hawaii Commission on Water Resource Management Webpage | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Commission on Water Resource Management Webpage Citation State of...

  8. Assessing Impact of Biofuel Production on Regional Water Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biofuel Production on Regional Water Resource Use and Availability May Wu Ph.D. ... 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic ...

  9. Technologies for water resources management: an integrated approach to manage global and regional water resources

    SciTech Connect (OSTI)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  10. Capturing the Benefits of Integrated Resource Management for Water &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Utilities and their Partners | Department of Energy Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners The water and energy sectors have traditionally been studied independently, regulated by separate oversight agencies, and delivered to customers by separate utilities. Yet it is undeniable that there are

  11. NREL: Water Power Research - Resource Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources are represented by a color range from blue to red depending on the intensity of the waves. NREL's Marine and Hydrokinetic Atlas displaying the wave power density for ...

  12. Colorado Division of Water Resources Denver Basin Webpage | Open...

    Open Energy Info (EERE)

    Denver Basin Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Denver Basin Webpage Abstract This is the...

  13. 18 CFR Conservation of Power and Water Resources | Open Energy...

    Open Energy Info (EERE)

    Conservation of Power and Water Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 18 CFR Conservation of Power and...

  14. Title 10 Chapter 37 Wetlands Protection and Water Resources Management...

    Open Energy Info (EERE)

    37 Wetlands Protection and Water Resources Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 10 Chapter 37...

  15. Energy Positive Water Resource Recovery Workshop Related Documents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Related Documents Energy Positive Water Resource Recovery Workshop Related Documents WTE-Workshop-Report-Executive-Summary-DRAFT.pdf (51.84 KB) WERF.ENER1C12-Executive-Summary.pdf (877.19 KB) FCTO-BETO-2015-Workshop-Summary-Outline.pdf (332 KB) More Documents & Publications Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Report Energy-Positive Water Resource Recovery Workshop Report Waste

  16. Sandia, the Atlantic Council, and NM Water Resource Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsor Roundtable on Western Water Scarcity the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy

  17. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect (OSTI)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  18. Resource Recovery Opportunities at America’s Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  19. Oversight Hearing Before the House Natural Resources Subcommittee on Water,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power, and Oceans | Department of Energy Oversight Hearing Before the House Natural Resources Subcommittee on Water, Power, and Oceans Oversight Hearing Before the House Natural Resources Subcommittee on Water, Power, and Oceans 03-22-16_WAPA_Gabriel_Final_Testimony (580.62 KB) 03-22-16_BPA_Andrews_Final_Testimony (113.14 KB) 03-22-16_SEPA_Legg_Final_Statement (30.92 KB) 03-22-16_SWPA_Carpenter_Final_Statement (43.84 KB) More Documents & Publications Before the House Natural Resources

  20. Review of Water Resources and Desalination Technologies

    SciTech Connect (OSTI)

    MILLER, JAMES E.

    2003-03-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, and inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.

  1. New Report Outlines Potential of Future Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    A new report from a workshop held jointly by the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF) outlines a range of research and actions needed to transform today’s water treatment plants into water resource recovery facilities.

  2. Sustainable Energy Resources for Consumers Webinar on Residential Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters | Department of Energy Water Heaters Sustainable Energy Resources for Consumers Webinar on Residential Water Heaters 20110222_webinar_transcript.pdf (117.27 KB) More Documents & Publications Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships overcoming_persistent_barriers_energy_efficiency_multifamily_housing.doc Recording of SERC Monitoring Technologies - Solar Photovoltaics

  3. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect (OSTI)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  4. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect (OSTI)

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  5. Resource Recovery OpportunitiesatAmericas Water Resource Recovery Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 by CH2M HILL, Inc. CH2MHILL® Resource Recovery Opportunities at America's Water Resource Recovery Facilities By Todd Williams, PE, BCEE Wastewater Global Service Team Deputy Leader Biomass 2014: Growing the Future Bioeconomy Washington, DC July 30, 2014 CH2MHILL Today  Operations on all continents  Approximately 28,000 employees  100 percent owned by our employees  Broadly diversified across multiple business sectors  US$7 billion in revenue We are an industry leader in

  6. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    SciTech Connect (OSTI)

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  7. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  8. Energy-Positive Water Resource Recovery Workshop Report Executive Summary

    Broader source: Energy.gov [DOE]

    Executive summary workshop report for the for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, the U.S. Environmental Protection Agency, and the U.S. Department of Energy on April 28–29, 2015, in Arlington, Virginia.

  9. Systems Dynamic ToolBox for Water Resource Planning

    Energy Science and Technology Software Center (OSTI)

    2006-08-01

    The Fully Integrated System Dynamics Tookbox for Water Resources Planning (Toolbox) is a library of generic modules intended to assist in water management planning and decision making in watersheds around the world. The modules - built in a commercially available modeling environment called Powersim Studio Expert, represent the different sub-systems ina watershed, including population, agriculture, economics, climate, reservoirs, stream flows, and fish populations, and provides generic building blocks with which complex models of complex modelsmore » of complex watersheds can be assembled. The resulting models provide a tool for observing how research management decision made in one sector of a basin can affect other sectors. Improved water resource management contributes to improved public health, economic development, ecological sustainability, and overall security and stability.« less

  10. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  11. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    SciTech Connect (OSTI)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  12. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    SciTech Connect (OSTI)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  13. Water resources data for Louisiana, water year 1995. Water data report (Annual), 1 October 1994-30 September 1995

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1996-05-01

    Water resources data for the 1995 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 65 gaging stations; stage only for 40 gaging stations and 6 lakes; water quality for 45 surface-water stations (including 23 gage stations) and 76 wells; and water levels for 217 observation wells. Also included are data for 113 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  14. Water resources data for Louisiana, water year 1994. Water-data report (Annual), 1 October 1993-30 September 1994

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1995-03-01

    Water resources data for the 1994 water year for Louisiana consists of records for stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 64 gaging stations; stage only for 45 gaging stations and 6 lakes; water quality for 51 surface-water stations (including 24 gage stations) and 84 wells; and water levels for 209 observations wells. Also included are data for 115 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  15. Environmental Tracers for Determining Water Resource Vulnerability to Climate Change

    SciTech Connect (OSTI)

    Singleton, M

    2009-07-08

    Predicted changes in the climate will have profound impacts on water availability in the Western US, but large uncertainties exist in our ability to predict how natural and engineered hydrological systems will respond. Most predictions suggest that the impacts of climate change on California water resources are likely to include a decrease in the percentage of precipitation that falls as snow, earlier onset of snow-pack melting, and an increase in the number of rain on snow events. These processes will require changes in infrastructure for water storage and flood control, since much of our current water supply system is built around the storage of winter precipitation as mountain snow pack. Alpine aquifers play a critical role by storing and releasing snowmelt as baseflow to streams long after seasonal precipitation and the disappearance of the snow pack, and in this manner significantly impact the stream flow that drives our water distribution systems. Mountain groundwater recharge and, in particular, the contribution of snowmelt to recharge and baseflow, has been identified as a potentially significant effect missing from current climate change impact studies. The goal of this work is to understand the behavior of critical hydrologic systems, with an emphasis on providing ground truth for next generation models of climate-water system interactions by implementing LLNL capabilities in environmental tracer and isotopic science. We are using noble gas concentrations and multiple isotopic tracers ({sup 3}H/{sup 3}He, {sup 35}S, {sup 222}Rn, {sup 2}H/{sup 1}H, {sup 18}O/{sup 16}O, and {sup 13}C/{sup 12}C) in groundwater and stream water in a small alpine catchment to (1) provide a snapshot of temperature, altitude, and physical processes at the time of recharge, (2) determine subsurface residence times (over time scales ranging from months to decades) of different groundwater age components, and (3) deconvolve the contribution of these different groundwater components

  16. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  17. Before the Senate Energy and Natural Resources Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: Water Resources Bills, S. 499 and S. 519 By: Derrick Moe, Regional Manager Western Area Power Administration

  18. North Slope Decision Support for Water Resource Planning and Management

    SciTech Connect (OSTI)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  19. Using FRAMES to Manage Environmental and Water Resources

    SciTech Connect (OSTI)

    Whelan, Gene; Millard, W. David; Gelston, Gariann M.; Khangaonkar, Tarang P.; Pelton, Mitch A.; Strenge, Dennis L.; Yang, Zhaoqing; Lee, Cheegwan; Sivaraman, Chitra; Stephan, Alex J.; Hoopes, Bonnie L.; Castleton, Karl J.

    2007-05-16

    The Framework for Risk Analysis in Multimedia Environmental Systems FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercialoff-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include 1) an unconventional radioactive release into a large potable water body, 2) a conventional contaminant (oil) release into navigable waters, and 3) an instantaneous atmospheric radioactive release.

  20. Energy Positive Water Resource Recovery Workshop Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Presentations Energy Positive Water Resource Recovery Workshop Presentations McCormick_4-28-2015.pdf (4.37 MB) Luthy_NSF-EPA-DOE_Luthy_workshop_4-28_v2.pdf (1.76 MB) Giles_Washington_DC_April_2015_WW.pdf (1.66 MB) Kartik_Chandran_DOE_EPA_NSF_Workshop_Presentation_Slides.pdf (1.68 MB) Kohl_2014-04-28_Kohl_NSF_slides_for_Tom_Speth.pdf (1.01 MB) Fillmore_WERF_NSF_panel.4.29.2015.pdf (1.14 MB) Shuman_NSF_Conference_2015.pdf (584.7 KB)

  1. HAB Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAB Hanford Advisory Board Annual Report 2014 On the cover: Demolition at Hanford's 300 Area. Hanford Advisory Board 2014 The Hanford Advisory Board would like to acknowledge the following resources used for the content of the Board's Annual Report: * Washington State Department of Ecology website (www.ecy.wa.gov/programs/nwp/index.html) * U.S. Department of Energy Hanford Site website (www.hanford.gov) * Hanford Facebook page (www.facebook.com/HanfordSite) * Tri-Party Agreement agency

  2. Proceedings of the Radionuclide Contamination in Water Resources Workshop

    SciTech Connect (OSTI)

    Richardson, J H; Duisebayev, B; Janecky, D R; Knapp, R; Rosenburg, N D; Smith, D K; Tompson, A F B; Tyupkina, O; Veselov, V V

    2001-07-26

    A workshop entitled ''Radionuclide Contamination in Water Resources'' was held in Almaty, Kazakhstan from Tuesday 29 May through Friday 1 June. This workshop was co-sponsored by the U.S. Department of Energy, Lawrence Livermore National Laboratory, and three organizations from the Republic of Kazakhstan: the Institute of Nonproliferation, the Institute of Hydrogeology and Hydrophysics, and KazAtomProm. Representatives from the U.S. Department of Energy, three national laboratories, and 13 different organizations from the Republic of Kazakhstan attended the workshop. A complete list of attendees, the workshop program, and information on the background and motivation for this workshop are provided in this report. The objective of the workshop was to identify critical problems, discover what is known about the problems related to radionuclide contamination of groundwater resources, form collaborative teams, and produce a small number proposals that both address further characterization and assess risk via contaminant fate and transport modeling. We plan to present these proposals to U.S. government agencies and international sponsors for funding.

  3. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  4. Developing a cost effective environmental solution for produced water and creating a ''new'' water resource

    SciTech Connect (OSTI)

    Doran, Glenn; Leong, Lawrence Y.C.

    2000-05-01

    The project goal is to convert a currently usable by-product of oil production, produced water, into a valuable drinking water resource. The project was located at the Placate Oil Field in Santa Clarita, California, approximately 25 miles north of Los Angeles. The project included a literature review of treatment technologies; preliminary bench-scale studies to refine a planning level cost estimate; and a 10-100 gpm pilot study to develop the conceptual design and cost estimate for a 44,000 bpd treatment facility. A reverse osmosis system was constructed, pilot tested, and the data used to develop a conceptual design and operation of four operational scenarios, two industrial waters levels and two irrigation/potable water.

  5. Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.

    Broader source: Energy.gov [DOE]

    Produced in 2008 by DOE and updated in 2010, this report focuses on the key issues as well as advantages and disadvantages associated with using the reaction between aluminum metal and water for on-board vehicular hydrogen storage.

  6. Before the Subcommittee on Water and Power - Committee on Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Kenneth Legg, Administrator, Southeastern Area Power Administration Subject: Subject: FY 2013 Spending and Missions of the Power Marketing Administrations 3-20-12_Legg_SEPA_FT_1.pdf (41.28 KB) More Documents & Publications Before the Subcommittee on Water and Power - House Natural Resources Committee Before the House Natural Resources Subcommittee on Water and Power Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee

  7. Getting into hot water: the law of geothermal resources in Colorado...

    Open Energy Info (EERE)

    Getting into hot water: the law of geothermal resources in Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Getting into hot water: the law...

  8. DOE Publications and Data Resources Related to Water-Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Publications and Data Resources Related to Water-Energy DOE Publications and Data Resources Related to Water-Energy Department of Energy Publications Water-Energy Nexus: Challenges and Opportunities 2014 This report describes connections between the Nation's energy and water systems. It presents opportunities to address systems efficiency and resilience through technology, data, modeling, and analysis. Federal Building Energy Use Benchmarking Guidance 2014 The Department of Energy has

  9. Water Resources Data Nevada Water Year 2002 Water-Data Report...

    National Nuclear Security Administration (NNSA)

    D. Joyner, and Roslyn Ryan Water-Data Report NV-02-1 Prepared in cooperation with the ... may be considered as partial records, but they are presented separately in this report. ...

  10. Before the Subcommittee on Water and Power - Committee on Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy James McDonald Administrator, Southwestern Area Power Administration Subject: Subject: FY 2013 Spending and Missions of the Power Marketing Administrations 3-20-12_McDonald_SWPA_FT_0.pdf (50.68 KB) More Documents & Publications Before the Subcommittee on Water and Power - House Natural Resources Committee Before The Subcommittee on Water and Power - House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural

  11. Assessing Impact of Biofuel Production on Regional Water Resource Use and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability | Department of Energy Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Dr. May Wu, ANL, 8/15/12 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wu_webinar.pdf (4.26 MB) More Documents & Publications Achieving Water-Sustainable Bioenergy Production 2013 Peer Review Presentations-Analysis and

  12. DOE Publications and Data Resources Related to Water-Energy ...

    Broader source: Energy.gov (indexed) [DOE]

    This report describes connections between the Nation's energy and water systems. It presents opportunities to address systems efficiency and resilience through technology, data, ...

  13. New Report Outlines Potential of Future Water Resource Recovery...

    Energy Savers [EERE]

    Such a shift offers the potential to reduce the financial burdens on municipalities, decrease stress on energy systems, cut air and water pollution, improve system resiliency to ...

  14. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy solar_thermal_transcript.pdf (148.79 KB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps SERC Photovoltaics for Residential Buildings Webinar Transcript Recording of SERC Monitoring Technologies - Solar Photovoltaics

  15. Colorado Division of Water Resources Policy 2010-4 | Open Energy...

    Open Energy Info (EERE)

    Policy 2010-4 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Colorado Division of Water Resources Policy 2010-4Legal Published NA...

  16. Superseded- Floodplain Management Guidelines for Implementing EO 11988 (Water Resources Council, 1978)

    Broader source: Energy.gov [DOE]

    The Water Resources Council adopted these guidelines in 1978 following the signing of Executive Order 11988.  The guidelines provide an introduction to key terms and concepts in floodplain...

  17. 2 C.C.R. 402 - Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 2 C.C.R. 402 - Division of Water ResourcesLegal Abstract Under this article of the Colorado...

  18. South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia

    SciTech Connect (OSTI)

    RAJEN,GAURAV; BIRINGER,KENT L.; BETSILL,J. DAVID

    2000-04-01

    To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

  19. Water resources protection strategy: Revision 1, Attachment 4

    SciTech Connect (OSTI)

    1996-12-10

    The US Department of Energy (DOE) must provide a demonstration of compliance with the final US Environmental Protection Agency (EPA) ground water protection standards for inactive mill sites pursuant to 40 CFR Part 192. This plan outlines the proposed strategy to demonstrate compliance with the ground water standards at the Maybell, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This demonstration consists of (1) the ground water protection standard, (2) a performance assessment, (3) a closure performance demonstration, and (4) a performance monitoring and corrective action program.

  20. Managing Nicaraguan Water Resources Definition and Relative Importance of Information Needs

    SciTech Connect (OSTI)

    Engi, D.; Guillen, S.M.; Vammen, K.

    1999-01-01

    This report provides an overview of the results of the Vital the Nicaraguan Water Resources Management Initiative, Issues process as implemented for a collaborative effort between the Nicaraguan Ministry of Environment and Natural Resources and Sandia National Laboratories. This initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Nicamgua. The Vital Issues process was used to provide information for developing a project that will develop and implement an advanced information system for managing Nicaragua's water resources. Three Vital Issues panel meetings were convened to 1) develop a mission statement and evaluation criteria for identifying and ranking the issues vital to water resources management in Nicaragua 2) define and rank the vital issues; and 3) identify a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives- government, industiy, academe, and citizens' groups (through nongovernmental organizations (NGOs))-ensured a high level of stakeholder representation on the panels. The already existing need for a water resource management information system has been magnified in the aftemnath of Hurricane Mitch. This information system would be beneficial for an early warning system in emergencies, and the modeling and simulation capabilities of the system would allow for advanced planning. Additionally, the outreach program will provide education to help Nicaraguan improve their water hygiene practices.

  1. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  2. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  3. Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 CONTENTS EXECUTIVE SUMMARY .......................................................................... 3 INTRODUCTION .................................................................................... 5 BACKGROUND ...................................................................................... 5

  4. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    Board members and participants will hear a presentation and updates about the "Y-12 Mercury Cleanup Strategy and Plan for a Y-12 Water Treatment Plant." The meeting is open to the public.

  5. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  6. STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION

    National Nuclear Security Administration (NNSA)

    STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION MISSOURI STATE OPERATING PERMIT In compliance with the Missouri Clean Water Law, (Chapter 644 R.S. Mo. as amended, hereinafter, the Law), and the Federal Water Pollution Control Act (Public Law 92-500, 92 nd Congress) as amended, Permit No.: MO-0004863 Owner: United States Department of Energy (USDOE) Address: P.O. Box 410202, Kansas City, MO 64141-0202 Continuing Authority: United States Department of Energy

  7. VIRTUAL HYDROPOWER PROSPECTING: A FOUNDATION FOR WATER ENERGY RESOURCE PLANNING AND DEVELOPMENT

    SciTech Connect (OSTI)

    Randy Lee; Sera White; Julie Brizzee; Shane Cherry; Douglas Hall

    2008-06-01

    A comprehensive assessment of the gross power potential of the natural stream water energy resources of the United States was performed using state-of-the-art digital elevation models (DEMs) and geographic information system (GIS) tools. Water energy resource sites (stream segments) assessed in the basic resource assessment were further evaluated to identify which can be developed using a set of feasibility criteria. The gross power potential of each site was refined to determine its developable hydropower potential using a set of development criteria corresponding to a damless low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) project. The methodologies for performing the basic resource assessment and subsequent feasibility assessment are described and the summary results for the nation are presented.

  8. New Student Liaison Gets on Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 10, 2014 New Student Liaison Gets on Board The Nevada Site Specific Advisory Board recently welcomed new student liaison Matty Hodapp to the Board. A junior at the Meadows School in Las Vegas, Hodapp will work with the Board to design an appealing, effective resource for educating high school students about the important Environmental Management work at the Nevada National Security Site (NNSS). This educational resource-which can take the form of a brochure, app, video, presentation,

  9. Multi-resolution integrated modeling for basin-scale water resources management and policy analysis

    SciTech Connect (OSTI)

    Gupta, Hoshin V. (Hoshin Vijai),; Brookshire, David S.; Springer, E. P.; Wagener, Thorsten

    2004-01-01

    Approximately one-third of the land surface of the Earth is considered to be arid or semi-arid with an annual average of less than 12-14 inches of rainfall. The availability of water in such regions is of course, particularly sensitive to climate variability while the demand for water is experiencing explosive population growth. The competition for available water is exerting considerable pressure on the water resources management. Policy and decision makers in the southwestern U.S. increasingly have to cope with over-stressed rivers and aquifers as population and water demands grow. Other factors such as endangered species and Native American water rights further complicate the management problems. Further, as groundwater tables are drawn down due to pumping in excess of natural recharge, considerable (potentially irreversible) environmental impacts begin to be felt as, for example, rivers run dry for significant portions of the year, riparian habitats disappear (with consequent effects on the bio-diversity of the region), aquifers compact resulting in large scale subsidence, and water quality begins to suffer. The current drought (1999-2002) in the southwestern U.S. is raising new concerns about how to sustain the combination of agricultural, urban and in-stream uses of water that underlie the socio-economic and ecological structure in the region. The water stressed nature of arid and semi-arid environments means that competing water uses of various kinds vie for access to a highly limited resource. If basin-scale water sustainability is to be achieved, managers must somehow achieve a balance between supply and demand throughout the basin, not just for the surface water or stream. The need to move water around a basin such as the Rio Grande or Colorado River to achieve this balance has created the stimulus for water transfers and water markets, and for accurate hydrologic information to sustain such institutions [Matthews et al. 2002; Brookshire et al 2003

  10. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A evaluate water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low...

  11. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  12. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    SciTech Connect (OSTI)

    Reynolds, Jesse L.; Narasimhan, T.N.

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and treatment

  13. A Coupled Modeling System to Simulate Water Resources in the Rio Grande Basin

    SciTech Connect (OSTI)

    Bossert, J.E.; Breshears, D.D.; Campbell, K.; Costigan, K.R.; Greene, R.K.; Keating, E.H.; Kleifgen, L.M.; Langley, D.L.; Martens, S.N.; Sanderson, J.G.; Springer, E.P.; Stalker, J.R.; Tartakovsky, D.M.; Winter, C.L.; Zyvoloski, G.A.

    1999-01-11

    Limited availability of fresh water in arid and semi-arid regions of the world requires prudent management strategies from accurate, science-based assessments. These assessments demand a thorough understanding of the hydrologic cycle over long time periods within the individual water-sheds that comprise large river basins. Measurement and simulation of the hydrologic cycle is a tremendous challenge, involving a coupling between global to regional-scale atmospheric precipitation processes with regional to local-scale land surface and subsurface water transport. Los Alamos National Laboratory is developing a detailed modeling system of the hydrologic cycle and applying this tool at high resolution to assess the water balance within the upper Rio Grande river basin. The Rio Grande is a prime example of a river system in a semiarid environment, with a high demand from agricultural, industrial, recreational, and municipal interests for its water supply. Within this river basin, groundwater supplies often augment surface water. With increasing growth projected throughout the river basin, however, these multiple water users have the potential to significantly deplete groundwater resources, thereby increasing the dependence on surface water resources.

  14. Board Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHAIRS ROUND ROBIN TOPICS, ACTIVITIES, & ACCOMPLISHMENTS EM SSAB Chairs Meeting ● Oak Ridge, Tennessee April 20, 2016 Hanford Advisory Board Hanford Advisory Board (HAB) Changes as a Result of: * Efforts to improve diversity * Shrinking budgets * Board commitments and responsibilities 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 0 5 10 15 20 25 30 35 Advice Per Year Idaho National Laboratory Site Environmental Management

  15. Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisory Board Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart XBD201510-00405-small The Regents of the University of California (UC) are responsible for the University's management and operation of the Lawrence Berkeley National Laboratory (LBNL) under a contract with the U.S. Department of Energy. The Regents have delegated to the UC President authority

  16. Water resources

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The Corps of Engineers built and operates six dams and lakes on the upper Missouri River in Montana, North Dakota, South Dakota, and Nebraska for the purposes of flood control, hydropower, irrigation, and navigation. The Corps did not evaluate streambank erosion problems when the dams were planned because it was not required to study, before construction, such problems that the project might create. Corps studies show that bank erosion between Garrison Dam and Lake Oahe is less now than before the dam was built but since construction of the dam there now is a continuous net loss of lands. Among other streambank erosion problems, this report notes that the river banks will continue to erode, but at lesser rate than in the past, between Garrison Dam and Lake Oahe. The Corps has authority to provide erosion protection structures but these have to be economically justified and environmentally acceptable.

  17. Ion exchange resins: Water purification. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The bibliography contains citations concerning the use of ion exchange resins for purification or treatment of water or wastewater. The citations cover both treatment and pretreatment of municipal and industrial wastewater, often for the purpose of reusing the treated water in an industrial process. Desalination and remediation of groundwater and other water supplies is also examined. Some instances of recovery of rare elements, such as radioactive species, from process water are included. (Contains a minimum of 98 citations and includes a subject term index and title list.)

  18. Ion exchange resins: Water purification. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of ion exchange resins for purification or treatment of water or wastewater. The citations cover both treatment and pretreatment of municipal and industrial wastewater, often for the purpose of reusing the treated water in an industrial process. Desalination and remediation of groundwater and other water supplies is also examined. Some instances of recovery of rare elements, such as radioactive species, from process water are included. (Contains a minimum of 100 citations and includes a subject term index and title list.)

  19. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix C - Validation Study

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated.

  20. NNMCAB Board Minutes: May 2000 Santa Fe

    Broader source: Energy.gov [DOE]

    Minutes of the May 24, 2000 Board meeting at NM Energy Minerals and Natural Resources Department Presentation LANL, Environmental Safety and Health, Lee McAtee

  1. NNMCAB Board Minutes: November 2013 Ohkay Owingeh

    Broader source: Energy.gov [DOE]

    Minutes of the November 20, 2013 Board meeting at Ohkay Conference Center Presentation DOE, Overview of Natural Resource Damage Assessment, Mike Gardipe

  2. Water resources data for Louisiana, water year 1996. Water-data report (Annual), 1 October 1995-30 September 1996

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1997-05-01

    The report contains records for water discharge at 64 gaging stations; stage only for 41 gaging stations and 5 lakes; water quality for 38 surface-water stations (including 22 gage stations) and 100 wells; and water levels for 235 observation wells. Also included are data for 117 crest-stage and flood-profile partial-record stations.

  3. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  4. Effects of climate change on Pacific Northwest water-related resources: Summary of preliminary findings

    SciTech Connect (OSTI)

    Scott, M.J.; Sands, R.D.; Vail, L.W.; Chatters, J.C.; Neitzel, D.A.; Shankle, S.A.

    1993-12-01

    The Pacific Northwest Case Study is a multi-agency analysis of atmospheric/climatic change impacts on the Pacific Northwest (which includes Washington, Oregon, Idaho, and portions of the Columbia River Basin in Western Montana). The purpose of the case study, which began in fiscal year 1991, was to develop and test analytical tools, as well as to develop an assessment of the effects of climate change on climate-sensitive natural resources of the Pacific Northwest and economic sectors dependent on them. The overall study, jointly funded by the US Department of Energy (DOE) and the US Environmental Protection Agency, was a broad-based, reconnaissance-level study to identify potential climate impacts on agriculture, coastal resources, forest resources, and irrigation in the Pacific Northwest. DOE participated in the reconnaissance study, with responsibility for hydroelectric and water supply issues. While this report briefly discusses a broader array of water issues, attention is mainly focused on three aspects of the water study: (1) the effects of the region`s higher temperatures on the demand for electric power (which in turn puts additional demand on hydroelectric resources of the region); (2) the effects of higher temperatures and changes, both in precipitation amounts and seasonality, on river flows and hydroelectric supply; and (3) the effect of higher temperatures and changed precipitation amounts and seasonality on salmonid resources -- particularly the rearing conditions in tributaries of the Columbia River Basin. Because the meaning of regional climate forecasts is still quite uncertain, most of the preliminary findings are based on sensitivity analyses and historical analog climate scenarios.

  5. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    SciTech Connect (OSTI)

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of

  6. California Building Industry Association et al. v. State Water...

    Open Energy Info (EERE)

    Building Industry Association et al. v. State Water Resources Control Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: California...

  7. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  8. Board Title

    Office of Environmental Management (EM)

    Northern New Mexico Citizens' Advisory Board 2017 Project Prioritization Meeting ... 1,500 2,000 2,500 3,000 3,500 4,000 Forecast Actual On-site Actual Off-site Volume ...

  9. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    SciTech Connect (OSTI)

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  10. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect (OSTI)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  11. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  12. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  13. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  14. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    SciTech Connect (OSTI)

    Jackman, Thomas; Minor, Timothy; Pohll, Gregory

    2013-07-22

    Water is unquestionably a critical resource throughout the United States. In the semi-arid west -- an area stressed by increase in human population and sprawl of the built environment -- water is the most important limiting resource. Crucially, science must understand factors that affect availability and distribution of water. To sustain growing consumptive demand, science needs to translate understanding into reliable and robust predictions of availability under weather conditions that could be average but might be extreme. These predictions are needed to support current and long-term planning. Similar to the role of weather forecast and climate prediction, water prediction over short and long temporal scales can contribute to resource strategy, governmental policy and municipal infrastructure decisions, which are arguably tied to the natural variability and unnatural change to climate. Change in seasonal and annual temperature, precipitation, snowmelt, and runoff affect the distribution of water over large temporal and spatial scales, which impact the risk of flooding and the groundwater recharge. Anthropogenic influences and impacts increase the complexity and urgency of the challenge. The goal of this project has been to develop a decision support framework of data acquisition, digital modeling, and 3D visualization. This integrated framework consists of tools for compiling, discovering and projecting our understanding of processes that control the availability and distribution of water. The framework is intended to support the analysis of the complex interactions between processes that affect water supply, from controlled availability to either scarcity or deluge. The developed framework enables DRI to promote excellence in water resource management, particularly within the Lake Tahoe basin. In principle, this framework could be replicated for other watersheds throughout the United States. Phase II of this project builds upon the research conducted during

  15. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  16. Board Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site-Specific Advisory Board Topics and Accomplishments EM SSAB Chairs Meeting ● Santa Fe, New Mexico September 2, 2015  Consent Order  Entered into discussions with DOE and NMED concerning hearings and meetings on the Consent Order to address modifications necessary before December 31, 2015. I. The NNMCAB would like the opportunity to provide input into the priorities and sequencing of the Consent Order work. II. NNMCAB could facilitate discussions with DOE and NMED in a public format.

  17. Board/Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BoardCommittee BoardCommittee Since the inception of the MaRIE concept, we value the importance of external review. External Advisory Board The MaRIE External Advisory Board was...

  18. Data collection for cooperative water resources modeling in the Lower Rio Grande Basin, Fort Quitman to the Gulf of Mexico.

    SciTech Connect (OSTI)

    Passell, Howard David; Pallachula, Kiran; Tidwell, Vincent Carroll; Villalobos, Joshua; Piccinni, Giovanni; Brainard, James Robert; Gerik, Thomas; Morrison, Wendy; Serrat-Capdevila, Aleix; Valdes, Juan; Sheng, Zhuping; Lovato, Rene; Guitron, Alberto; Ennis, Martha Lee; Aparicio, Javier; Newman, Gretchen Carr; Michelsen, Ari M.

    2004-10-01

    Water resource scarcity around the world is driving the need for the development of simulation models that can assist in water resources management. Transboundary water resources are receiving special attention because of the potential for conflict over scarce shared water resources. The Rio Grande/Rio Bravo along the U.S./Mexican border is an example of a scarce, transboundary water resource over which conflict has already begun. The data collection and modeling effort described in this report aims at developing methods for international collaboration, data collection, data integration and modeling for simulating geographically large and diverse international watersheds, with a special focus on the Rio Grande/Rio Bravo. This report describes the basin, and the data collected. This data collection effort was spatially aggregated across five reaches consisting of Fort Quitman to Presidio, the Rio Conchos, Presidio to Amistad Dam, Amistad Dam to Falcon Dam, and Falcon Dam to the Gulf of Mexico. This report represents a nine-month effort made in FY04, during which time the model was not completed.

  19. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    SciTech Connect (OSTI)

    April Hill

    2007-12-01

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  20. Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources

    SciTech Connect (OSTI)

    Brown, Richard S.; Colotelo, Alison HA; Pflugrath, Brett D.; Boys, Craig A.; Baumgartner, Lee J.; Deng, Zhiqun; Silva, Luiz G.; Brauner, Colin J.; Mallen-Cooper, Martin; Phonekhampeng, Oudom; Thorncraft, Garry; Singhanouvong, Douangkham

    2014-03-24

    Freshwater fishes are one of the most imperiled groups of vertebrates and species declines have been linked to a number of anthropogenic influences. This is alarming as the diversity and stability of populations are at risk. In addition, freshwater fish serve as important protein sources, particularly in developing countries. One of the focal activities thought to influence freshwater fish population declines is water resource development, which is anticipated to increase over the next several decades. For fish encountering hydro structures, such as passing through hydroturbines, there may be a rapid decrease in pressure which can lead to injuries commonly referred to as barotraumas. The authors summarize the research to date that has examined the effects of rapid pressure changes on fish and outline the most important factors to consider (i.e., swim bladder morphology, depth of acclimation, migration pattern and life stage) when examining the susceptibility of barotraumas for fish of interest.

  1. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    SciTech Connect (OSTI)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  2. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  3. Summary Report on CO{sub 2} Geologic Sequestration & Water Resources Workshop

    SciTech Connect (OSTI)

    Varadharajan, C.; Birkholzer, J.; Kraemer, S.; Porse, S.; Carroll, S.; Wilkin, R.; Maxwell, R.; Bachu, S.; Havorka, S.; Daley, T.; Digiulio, D.; Carey, W.; Strasizar, B.; Huerta, N.; Gasda, S.; Crow, W.

    2012-02-15

    The United States Environmental Protection Agency (EPA) and Lawrence Berkeley National Laboratory (LBNL) jointly hosted a workshop on “CO{sub 2} Geologic Sequestration and Water Resources” in Berkeley, June 1–2, 2011. The focus of the workshop was to evaluate R&D needs related to geological storage of CO{sub 2} and potential impacts on water resources. The objectives were to assess the current status of R&D, to identify key knowledge gaps, and to define specific research areas with relevance to EPA’s mission. About 70 experts from EPA, the DOE National Laboratories, industry, and academia came to Berkeley for two days of intensive discussions. Participants were split into four breakout session groups organized around the following themes: Water Quality and Impact Assessment/Risk Prediction; Modeling and Mapping of Area of Potential Impact; Monitoring and Mitigation; Wells as Leakage Pathways. In each breakout group, participants identified and addressed several key science issues. All groups developed lists of specific research needs; some groups prioritized them, others developed short-term vs. long-term recommendations for research directions. Several crosscutting issues came up. Most participants agreed that the risk of CO{sub 2} leakage from sequestration sites that are properly selected and monitored is expected to be low. However, it also became clear that more work needs to be done to be able to predict and detect potential environmental impacts of CO{sub 2} storage in cases where the storage formation may not provide for perfect containment and leakage of CO{sub 2}–brine might occur.

  4. NNMCAB Board Minutes: January 2010 Santa Fe

    Broader source: Energy.gov [DOE]

    Minutes of the January 27, 2010 Board meeting at Holiday Inn Presentation LANL, Status of Corrective Actions, Dave McInroy Presentation DOE, Natural Resource Damage Assessment, Nancy Werdel

  5. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    SciTech Connect (OSTI)

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    ) methodology to assess the shifting and alteration of the flow regime within the river and streams of the study area. 2) Evaluate the effect of measurable land use changes related to gas development (well-pad placement, access road completion, etc.) on surface water flow in the region (Task/Section 3.7). Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the region have increase by 78%. This change in land-cover in comparison with other land-cover classes such as forest, urban, pasture, agricultural and water indicates the highest rate of change in any land-cover category for the study period. A Soil and Water Assessment Tool (SWAT) flow model of the Little Red River watershed simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario based on the assumption that 2010 land-cover does not see any significant change over the forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further analyses showed that this change in the stream-flow regime for the forecast period is attributable to the increase in land-cover as introduced by the shale-gas infrastructure. 3) Upgrade the Fayetteville Shale Information System to include information on watershed status. (Tasks/Sections 2.1 and 2.2). This development occurred early in the project period, and technological improvements in web-map API’s have made it possible to further improve the map. The current sites (http://lingo.cast.uark.edu) is available but is currently being upgraded to a more modern interface and robust mapping engine using funds outside this project. 4) Incorporate the methodologies developed in Tasks/Sections 3.5 and 3.7 into a Spatial Decision Support System for use by regulatory agencies and producers in the play. The resulting system is available at http://fayshale.cast.uark.edu and is under review the Arkansas Natural Resources Commission.

  6. Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 8-9, 2016 Attachment 7: Transcript of Sounding Board comments The following paragraphs are transcribed member responses from Hanford Advisory Board's (HAB or Board) June Safety Culture Sounding Board. The follow responses do not represent consensus views of the Board. Each Board seat was provided with up to four minutes to respond to two safety culture framing questions: Q1: What does safety culture mean to you? Q2: Given the information provided at the April Board meeting, are there any

  7. NNMCAB Board Minutes: September 2010 Taos

    Broader source: Energy.gov [DOE]

    Minutes of the September 29, 2010 Board meeting at Sagebrush Inn Conference Center Presentation LANL, Storm Water Monitoring at LANL and Status of the Storm Water Permit, Steve Veenis Presentation LANL, Air Monitoring at LANL, Andrew Green

  8. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  9. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  10. Addressing trend-related changes within cumulative effects studies in water resources planning

    SciTech Connect (OSTI)

    Canter, L.W.; Chawla, M.K.; Swor, C.T.

    2014-01-15

    Summarized herein are 28 case studies wherein trend-related causative physical, social, or institutional changes were connected to consequential changes in runoff, water quality, and riparian and aquatic ecological features. The reviewed cases were systematically evaluated relative to their identified environmental effects; usage of analytical frameworks, and appropriate models, methods, and technologies; and the attention given to mitigation and/or management of the resultant causative and consequential changes. These changes also represent important considerations in project design and operation, and in cumulative effects studies associated therewith. The cases were grouped into five categories: institutional changes associated with legislation and policies (seven cases); physical changes from land use changes in urbanizing watersheds (eight cases); physical changes from land use changes and development projects in watersheds (four cases); physical, institutional, and social changes from land use and related policy changes in river basins (three cases); and multiple changes within a comprehensive study of land use and policy changes in the Willamette River Basin in Oregon (six cases). A tabulation of 110 models, methods and technologies used in the studies is also presented. General observations from this review were that the features were unique for each case; the consequential changes were logically based on the causative changes; the analytical frameworks provided relevant structures for the studies, and the identified methods and technologies were pertinent for addressing both the causative and consequential changes. One key lesson was that the cases provide useful, “real-world” illustrations of the importance of addressing trend-related changes in cumulative effects studies within water resources planning. Accordingly, they could be used as an “initial tool kit” for addressing trend-related changes.

  11. Reconnaissance of ground-water quality in the Papio-Missouri river natural resources district, Eastern Nebraska, July through September 1992. Water resources investigation

    SciTech Connect (OSTI)

    Verstraeten, I.M.; Ellis, M.J.

    1995-12-31

    The purpose of this report is to describe the water quality of the principal aquifers in the study area. Wells representative of the geology and land use in the study area were selected for water-quality sampling. Variations in constituent concentration among aquifers are discussed. The report describes the spatial distributions of dissolved nitrite plus-nitrate as nitrogen and triazine and other acetanilide herbicides and evaluates the effects of cropland application of nitrogen and herbicides on the ground-water quality within the study area. The report also summarizes the concentrations of dissolved major and trace constituents including radionuclide activity and concentration.

  12. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect (OSTI)

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  13. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  15. ORSSAB Monthly Board Meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meetingis open to the public. The board will receive an update on the Transuranic Waste Processing Center.

  16. ESnet Policy Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board Larry Smarr Jagdeep Singh Kristin Rauschenbach Cees de Laat David Foster David...

  17. Evaluation of the US Geological Survey ground-water data-collection program in Hawaii, 1992. Water-resources investigations

    SciTech Connect (OSTI)

    Anthony, S.S.

    1997-12-31

    This report describes an evaluation of the 1992 USGS ground-water data-collection program in Hawaii. The occurrence of ground water in the Hawaiian islands is briefly described. Objectives for the data-collection program are identified followed by a description of well networks needed to prepare maps of water levels and chloride concentrations. For the islands of Oahu, Kauai, Maui, Molokai, and Hawaii, the wells in the 1992 ground-water data-collection program are described followed by maps showing the distribution and magnitude of pumpage, and the distribution of proposed pumped wells. Wells in the 1992 USGS ground-water data-collection program that provide useful data for mapping water levels and chloride concentrations are identified followed by locations where additional wells are needed for water-level and chloride-concentration data. In addition, a procedure to store and review data is described.

  18. Using a watershed-based approach to manage and protect water resources in the Bear Canyon Watershed, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Roth, F.J.

    1995-12-31

    Depending upon how people use land in a watershed, whether it be farming, livestock grazing, timber harvesting, mining, urbanization, or even recreation, all have significant impacts on the water moving through that watershed. This paper will focus on the urban watershed and how stormwater runoff from urbanization affects erosion, sedimentation, and water quality. It also will explore the potential of a watershed as the basis for managing and protecting water resources. Watershed-based management offers a clear look at how land-use changes affect not only water quality but also erosion and sedimentation; in addition, this approach develops preventive strategies to restore those affected water and land resources. The preventive strategies the author uses for this watershed can be applied to other New Mexico urban watersheds. This paper is divided into three parts. The first part shows how past and present land-use activities affect erosion, sedimentation, and water quality in the Bear Canyon arroyo system. The second part provides solutions to the problems of soil erosion and stormwater pollution in the urban areas through government intervention. The third part discusses how Best Management Practices (BMPs) can be used to limit or reduce stormwater pollution in residential and industrial areas.

  19. DOE State Energy Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Advisory Board August 12, 2008 Lakewood, Colorado * Energy Markets and Infrastructure Planning & Assessment * Energy - "Environment" (including air, water, food vs. fuel, sustainabilty issues) Integration * Policy and Program Design * Economic Development, Innovation & Workforce Scale-up * Public Awareness and Support * Transition Planning * Other Topics? Acceleration of State Energy Transformation Possible Topics for Discussion Questions and Comments For Each

  20. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type

  1. Spinning Reserve from Pump Load: A Technical Findings Report to the California Department of Water Resources

    SciTech Connect (OSTI)

    Kirby, BJ

    2005-05-06

    The Oak Ridge National Laboratory (ORNL), at the request of the California Energy Commission and the U.S. Department of Energy, is investigating opportunities for electrical load to provide the ancillary service of spinning reserve to the electric grid. The load would provide this service by stopping for a short time when there is a contingency on the grid such as a transmission line or generator outage. There is a possibility that a significant portion of the California Independent System Operator's (CAISO's) spinning reserve requirement could be supplied from the California Department of Water Resources (CDWR) pumping load. Spinning reserve has never been supplied from load before, and rule changes would be needed to allow it. In this report, we are presenting technical findings on the possibility of supplying spinning reserve from pumping system load. In parallel, we are pursuing the needed rule changes with the North American Electric Reliability Council (NERC), the Federal Energy Regulatory Commission (FERC), the Western Electricity Coordinating Council (WECC), and the CAISO. NERC and FERC have agreed that they have no prohibition against supplying spinning reserve from load. The WECC Minimum Operability Reliability Criteria working group has agreed that the concept should be considered, and they are presently discussing the needed tariff and rule changes. Presently, spinning reserve is provided by generation that is actually spinning but is operating at low power levels and can be ramped up quickly to provide reserve power. In a sense, this is an inefficient and environmentally unfriendly way of providing reserves because it requires the generator to operate at a low power level that may be inefficient and may discharge more pollutants per kW than operating at rated power. It would be better if this generation capacity were in a position to bid into the energy market. Providing an additional supply of spinning reserve would tend to reduce prices for both

  2. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  3. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  4. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  5. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  6. The Water-Energy Nexus: Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners

    Broader source: Energy.gov [DOE]

    On May 28th and 29th, a joint workshop organized by Department of Energy’s (DOE) Office of Energy Policy and Systems Analysis (EPSA) and University of California - Irvine’s (UCI) Water UC Irvine was held at the UCI campus. The workshop participants, which included university researchers, utility providers, state and federal agencies, and non-profit organizations, distilled lessons from Western U.S. states and developed recommendations to enable water & electrical utilities, regulators, and other stakeholders to enhance effectiveness and efficiency in both water and electricity use.

  7. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

  8. Electric Power Board- Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric Power Board provides a financial incentive for residential customers to replace old water heaters with new ones which meet the minimum standards set forth by the DOE. The rebate is worth ...

  9. Environmental Management Advisory Board (EMAB) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board ...

  10. Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

  11. Wastewater and water treatment: Anion exchange. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning the theory and methods of anion exchange in the treatment of potable water and wastewaters. Citations discuss anion exchange resins and membranes, desalination techniques, and process evaluations. Methods for anion analysis using chromatographic techniques are also considered. (Contains a minimum of 74 citations and includes a subject term index and title list.)

  12. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  13. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  14. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  15. Polyelectrolytes: Wastewater and sewage treatment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning polyelectrolytes in wastewater and water treatment. Topics include flocculation, coagulation, separation techniques, pollutant identification, water pollution sources, and sludge dehydration. Hospital wastewater processing, methods of synthesizing polyelectrolyte complexes, and performance evaluations of polyelectrolytes are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  16. QER- Comment of California Air Resources Board

    Broader source: Energy.gov [DOE]

    Good evening - Attached is a letter regarding the subject above. If you have any questions or concerns, please contact me at 916.322.5840 or via email at mnichols@arb.ca.gov. Thank you

  17. HANFORD ADVISORY BOARD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... She also announced that Hillary Johnson, EnviroIssues, would be filling in for Susan while ... the Board meeting and for Hillary doing a great job facilitating her first Board meeting. ...

  18. Quality Assurance Corporate Board

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management (EM) Quality Assurance Corporate Board is an executive board that includes both senior U.S. Department of Energy (DOE) and contractor representatives who are...

  19. ARM - ARM Science Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Members An eleven-member Facility Board has been selected to serve as an independent review body for the ARM Facility and ensure it is used to conduct the highest quality ...

  20. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meeting is open to the public. The board will receive an update on the Community Reuse Organization of East Tennessee efforts at the East Tennessee Technology Park.

  1. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The Oak Ridge Site Specific Advisory Board's monthly board Meeting is open to the public. This month, DOE will discuss its Vision 2020. The presentation and conversation will focus on planning for...

  2. ORSSAB monthly board meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ORSSAB monthly board meeting is open to the public. The board will hear a presentation and discuss the development of a comprehensive mercury strategy for the Oak Ridge Reservation.

  3. Promoting plumbing fixture and fitting replacement: Recommendations and review for state and local water resource authorities

    SciTech Connect (OSTI)

    Dunham, C.; Lutz, J.D.; Pickle, S.J.

    1995-06-01

    Lawrence Berkeley National Laboratory (LBNL) has prepared this report to facilitate compliance with the requirements of Section 123 of the Energy Policy Act of 1992 (EPACT). Section 123 requires the Department of Energy to issue recommendations for establishing state and local incentive programs to encourage acceleration of voluntary consumer replacement of existing water closets, urinals, showerheads and faucets with water-saving products meeting EPACT standards. The authors recommend that state and local authorities working together and also with utilities: (A) investigate the cost-effectiveness of voluntary replacement of plumbing fixtures and fittings as an effective component of a water efficiency incentive program; (B) allow utilities to distribute the costs of water saving products by billing at pre-installation rates until devices have been paid for; (C) encourage decreased water usage by establishing rate structures such as increasing block rates or seasonal pricing; (D) add additional incentive to rebate programs by making the rebates untaxable income. (E) require municipalities or utilities to exhaust every reasonable method of water conservation before applying for permits to construct water supply or water treatment systems; (F) require high-efficiency toilets, urinals, showerheads, and faucets in new construction and changing plumbing codes to incorporate different pipe sizing needs; and (G) and mandate installation of meters to correctly measure water consumption. Following the introduction, a general overview of these recommendations is presented. Each recommendation is discussed briefly. After determining the cost-effectiveness of a plumbing replacement program (or plumbing replacement aspect of a larger program) states can encourage replacement of toilets, urinals, showerheads, and faucets in a number of ways. This report lists both legislative and economic measures that can be implemented on the state level that impact local programs.

  4. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  5. Sensitivity Analysis of Parameters Affecting Protection of Water Resources at Hanford WA

    SciTech Connect (OSTI)

    DAVIS, J.D.

    2002-02-08

    The scope of this analysis was to assess the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters, some of which can be controlled by operational considerations.

  6. Hanford Advisory Board Excerpt from Draft December Board Meeting Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excerpt from Draft December Board Meeting Summary Hanford Advisory Board Page 1 Draft Sounding Board Summary December 12, 2013 Sounding Board - Hanford Tank Waste Retrieval, Treatment and Disposition Framework Introduction of process Susan Hayman, EnviroIssues, reviewed the sounding board procedures and noted that each Hanford Advisory Board (Board or HAB) member and alternate is allotted two minutes to share the perspective of the seat and constituency represented. Once all Board members and

  7. Hanford Advisory Board Guidelines for Public Comment at Board Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .22.15 Hanford Advisory Board Guidelines for Public Comment at Board Meetings Welcome to this Hanford Advisory Board meeting. The Board appreciates this opportunity to hear your views and comments on Hanford cleanup activities. Your comments will be summarized in the Board meeting minutes. Board meetings are also routinely audio-recorded. If you wish, you may at any time provide written comments to the Board at: Hanford Advisory Board c/o EnviroIssues Hanford Project Office 713 Jadwin #3

  8. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development

  9. Before the Subcommittee on Water, Power, and Oceans House Natural Resources

    Office of Environmental Management (EM)

    Energy Melanie Kenderdine, Director of the Office of Energy Policy and Systems Analysis, and Energy Counselor to the Secretary of Energy Before the Senate Energy and Natural Resources Committee 5-1-14_Melanie_Kenderdine FT SENR.pdf (614.4 KB) More Documents & Publications An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce QER - Comment of Katy Eiseman 1

  10. Coal mine wastes. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning coal mining wastes, refuse dumps, and spoil. The disposal, environmental impact, waste treatment, utilization, and pollution control of these wastes are discussed. The revegetation of mined lands using waste water sludge is also considered. (Contains a minimum of 138 citations and includes a subject term index and title list.)

  11. Sandia Energy - Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  12. Hanford Advisory Board Guidelines for Public Comment at Board Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guidelines for Public Comment at Board Meetings Welcome to this Hanford Advisory Board meeting. The Board appreciates this opportunity to hear your views and comments on Hanford cleanup activities. Your comments will be summarized in the Board meeting minutes. Board meetings are also routinely audio-recorded. If you wish, you may at any time provide written comments to the Board at: Hanford Advisory Board c/o EnviroIssues Hanford Project Office 713 Jadwin #3 Richland, Washington 99352

  13. Advisory Board Meets to Discuss EM Cleanup’s Future

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Principal Deputy Assistant Secretary Tracy Mustin this week sought guidance from the Environmental Management Advisory Board (EMAB) on several topics, including optimizing resources for EM’s technology challenges.

  14. ORSSAB monthly board meeting

    Broader source: Energy.gov [DOE]

    The ORSSAB monthly board meeting is open to the public. This month, participants will receive an updateon the U-233 Project.

  15. ORSSAB Monthly Board Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ORSSAB MonthlyBoard meeting is open to the public. This month, participants will be briefed on the East Tennessee Technology Park Zone 1 Soils Proposed Plan.

  16. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Conduit Utility Sounding Board Residential Segmentation Six Going On Seven The USB was created to inform BPA on the implementation of energy efficiency programs...

  17. Hanford Advisory Board HAB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisory Board HAB Annual Report 2010 Hanford Advisory Board Mission-oriented Policy-focused Diverse Dedicated Robust Inviting Collaborative Hardworking Respectful Creative I n d e p e n d e n t Non-partisan Balanced Involved Communicative Well-informed Pa s s i o n a t e On the cover: Aerial view of the Waste Treatment and Immobilization Plant (WTP) construction site. Hanford Advisory Board 2010 Hanford Advisory Board at a Glance Chair's Message Follow Hanford Cleanup! 2010 Accomplishments In

  18. HANFORD ADVISORY BOARD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Shelley said DOE Headquarters (HQ) is holding a stewardship workshop in Grand Junction, Colorado, in November. She thought Board leadership will most likely participate in the ...

  19. ORSSAB monthly board meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Board members and participants will hear a presentation and updates about the "Oak Ridge ReservationGroundwater Strategic Plan." The meeting is open to the public.

  20. ORSSAB monthly board meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Board members and participants will hear a presentation and updates about "Sufficient Waste Disposal Capacity on the Oak Ridge Reservation." The meeting is open to the public.

  1. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  2. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change

  3. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    SciTech Connect (OSTI)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact

  4. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    SciTech Connect (OSTI)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    Abstract In this study, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change

  5. University of Delaware | CCEI Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Advisory Board Our advisory board is comprised of the following distinguished board members: Image Name Affiliation BACK TO TOP

  6. Water-based coatings pass recycling test

    SciTech Connect (OSTI)

    Holt, L.

    1990-11-01

    Water based coatings can greatly enhance the natural water resistance, grease resistance, MVTR, and many other properties of corrugated board.

  7. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  8. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agencies, and will result in eliminating current Board members who fall within demographics that DOE headquarters has stated they are trying to strengthen The Board recognizes...

  9. Experimental test of airplane boarding methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steffen, Jason H.; Hotchkiss, Jon

    2011-10-26

    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies. The process of boarding an airplane is of interest to a variety of groups. The public is interested both as a curiosity,more » as it is something that they may regularly experience, and as a consumer, as their experiences good or bad can affect their loyalties. Airline companies and their employees also have a stake in an efficient boarding procedure as time saved in the boarding process may result is monetary savings, in the quality of interactions with passengers, and in the application of human resources to the general process of preparing an airplane for departure. A recent study (Nyquist and McFadden, 2008) indicates that the average cost to an airline company for each minute of time spent at the terminal is roughly $30. Thus, each minute saved in the turn-around time of a flight has the potential to generate over $16,000,000 in annual savings (assuming an average of 1500 flights per day). While the boarding process may not be the primary source of delay in returning an airplane to the skies, reducing the boarding time may effectively eliminate passenger boarding as a contributor in any meaningful measure. Consequently, subsequent efforts to streamline the other necessary tasks, such as refueling and maintenance, would be rewarded with a material reduction in time at the gate for each flight.« less

  10. Experimental test of airplane boarding methods

    SciTech Connect (OSTI)

    Steffen, Jason H.; Hotchkiss, Jon

    2011-10-26

    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies. The process of boarding an airplane is of interest to a variety of groups. The public is interested both as a curiosity, as it is something that they may regularly experience, and as a consumer, as their experiences good or bad can affect their loyalties. Airline companies and their employees also have a stake in an efficient boarding procedure as time saved in the boarding process may result is monetary savings, in the quality of interactions with passengers, and in the application of human resources to the general process of preparing an airplane for departure. A recent study (Nyquist and McFadden, 2008) indicates that the average cost to an airline company for each minute of time spent at the terminal is roughly $30. Thus, each minute saved in the turn-around time of a flight has the potential to generate over $16,000,000 in annual savings (assuming an average of 1500 flights per day). While the boarding process may not be the primary source of delay in returning an airplane to the skies, reducing the boarding time may effectively eliminate passenger boarding as a contributor in any meaningful measure. Consequently, subsequent efforts to streamline the other necessary tasks, such as refueling and maintenance, would be rewarded with a material reduction in time at the gate for each flight.