National Library of Energy BETA

Sample records for water reactor pwr

  1. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect (OSTI)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  2. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    SciTech Connect (OSTI)

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E

    1987-02-01

    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  3. Microstructural characteristics of PWR [pressurized water reactor] spent fuel relative to its leaching behavior

    SciTech Connect (OSTI)

    Wilson, C.N.

    1986-01-01

    Microstructural, compositional and thermochemical properties of spent nuclear fuel are discussed relative to its potential performance as a high-level waste form under proposed Nevada Nuclear Waste Storage Investigations Project tuff repository conditions. Pressurized water reactor spent fuel specimens with various artificially induced cladding defects were leach tested in deionized water and in a reference tuff groundwater under ambient hot cell air and temperature conditions. Greater fractional actinide release was observed with bare fuel than with clad fuel leached through a cladding defect. Congruent actinide release and preferential release of cesium and technetium were observed in both water types. Selected summary radionuclide release data are presented and correlated to pre- and post-test microstructural characterization data.

  4. The impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants: Case study, PWR (pressurized-water reactor) during an outage

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Kenoyer, J.L.

    1987-08-01

    This report is the second in a series of case studies designed to evaluate the magnitude of increase in occupational radiation exposures at commercial US nuclear power plants resulting from small incidents or abnormal events. The event evaluated is fuel cladding failure, which can result in elevated primary coolant activity and increased radiation exposure rates within a plant. For this case study, radiation measurements were made at a pressurized-water reactor (PWR) during a maintenance and refueling outage. The PWR had been operating for 22 months with fuel cladding failure characterized as 105 pin-hole leakers, the equivalent of 0.21% failed fuel. Gamma spectroscopy measurements, radiation exposure rate determinations, thermoluminescent dosimeter (TLD) assessments, and air sample analyses were made in the plant's radwaste, pipe penetration, and containment buildings. Based on the data collected, evaluations indicate that the relative contributions of activation products and fission products to the total exposure rates were constant over the duration of the outage. This constancy is due to the significant contribution from the longer-lived isotopes of cesium (a fission product) and cobalt (an activation product). For this reason, fuel cladding failure events remain as significant to occupational radiation exposure during an outage as during routine operations. As documented in the previous case study (NUREG/CR-4485 Vol. 1), fuel cladding failure events increased radiation exposure rates an estimated 540% at some locations of the plant during routine operations. Consequently, such events can result in significantly greater radiation exposure rates in many areas of the plant during the maintenance and refueling outages than would have been present under normal fuel conditions.

  5. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  6. CASL - PWR Reactor Vessel Multi-Physics CFD Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PWR Reactor Vessel Multi-Physics CFD Model Jin Yan*1, Yiban Xu1, Andrew Petrarca1, Zeses Karoutas1, Emre Tatli1, Emilio Baglietto2, Jess Gehin3 1Westinghouse Electric Company LLC 2Massachusetts Institute of Technology 3Oak Ridge National Lab *Correspondence to: yan3j@westinghouse.com A complete 3D SolidWorks CAD model of Watts Bar Unit 1 was constructed based on drawings. A single fuel assembly CAD model including all geometrical details was created based on the Westinghouse V5H 17x17 fuel

  7. Estimating pressurized water reactor decommissioning costs: A user`s manual for the PWR Cost Estimating Computer Program (CECP) software. Draft report for comment

    SciTech Connect (OSTI)

    Bierschbach, M.C.; Mencinsky, G.J.

    1993-10-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the US Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personnel computer, provides estimates for the cost of decommissioning PWR plant stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  8. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect (OSTI)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  9. Component failures that lead to reactor scrams. [PWR; BWR

    SciTech Connect (OSTI)

    Burns, E. T.; Wilson, R. J.; Lim, E. Y.

    1980-04-01

    This report summarizes the operating experience scram data compiled from 35 operating US light water reactors (LWRs) to identify the principal components/systems related to reactor scrams. The data base utilized to identify the scram causes is developed from a EPRI-utility sponsored survey conducted by SAI coupled with recent data from the USNRC Gray Books. The reactor population considered in this evaluation is limited to 23 PWRs and 12 BWRs because of the limited scope of the program. The population includes all the US NSSS vendors. It is judged that this population accurately characterizes the component-related scrams in LWRs over the first 10 years of plant operation.

  10. Initial Modeling of a Pressurized Water Reactor Completed Using RELAP-7 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Initial Modeling of a Pressurized Water Reactor Completed Using RELAP-7 Initial Modeling of a Pressurized Water Reactor Completed Using RELAP-7 January 29, 2013 - 12:06pm Addthis Schematic of the OECD PWR benchmark used in the initial RELAP-7 demonstration Schematic of the OECD PWR benchmark used in the initial RELAP-7 demonstration RELAP-7 is a nuclear reactor system safety analysis code. Development started in October 2011, and during the past quarter the initial

  11. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  12. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  13. Light Water Reactor Sustainability (LWRS) Program | Department...

    Energy Savers [EERE]

    Nuclear Reactor Technologies Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) ...

  14. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect (OSTI)

    Mardiansah, Deby; Takaki, Naoyuki

    2010-06-22

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  15. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOE Patents [OSTI]

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  16. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  17. Support arrangements for core modules of nuclear reactors. [PWR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  18. Light water reactor program

    SciTech Connect (OSTI)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  19. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  20. Radionuclide release from PWR fuels in a reference tuff repository groundwater subsquently changed to Radionuclide release from PWR fuels in J-13 well water

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1985-04-01

    The Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the welded devitrified Topopah Spring tuff at Yucca Mountain, Nye County, Nevada, for potential use as a high level nuclear waste repository. In support of the Waste Package task of NNWSI, tests have been conducted under ambient air environment to measure radionuclide release from two pressurized water reactor (PWR) spent fuels in water obtained from the J-13 well near the Yucca Mountain site. Four specimen types, representing a range of fuel physical conditions that may exist in a failed waste canister containing a limited amount of water were tested. The specimen types were: (1) fuel rod sections split open to expose bare fuel particles; (2) rod sections with water-tight end fittings with a 2.5-cm long by 150-{mu}m wide slit through the cladding; (3) rod sections with water-tight end fittings and two 200-{mu}m diameter holes through the cladding; and (4) undefected rod segments with water-tight end fittings. Radionuclide release results from the first 223-day test runs on H.B. Robinson spent fuel specimens in J-13 water are reported and compared to results from a previous test series in which similar Turkey Point reactor spent fuel specimens were tested in deionized water. Selected initial results are also given for Turkey Point fuel specimens tested in J-13 water. Results suggest that the actinides Pu, Am, Cm and Np are released congruently with U as the UO{sub 2} spent fuel matrix dissolves. Fractional release of {sup 137}Cs and {sup 99}Tc was greater than that measured for the actinides. Generally, lower radionuclide releases were measured for the H.B. Robinson fuel in J-13 water than for Turkey Point Fuel in deionized water.

  1. Electrochemistry of Water-Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  2. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect (OSTI)

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  3. WATER BOILER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  4. Impact of High Burnup on PWR Spent Fuel Characteristics (Journal...

    Office of Scientific and Technical Information (OSTI)

    Reducing the burden of management of spent nuclear fuel is important to the future of nuclear energy. The impact of higher pressurized water reactor (PWR) fuel burnup is examined ...

  5. Effects of Multiple Drying Cycles on HBU PWR Cladding Alloys

    Broader source: Energy.gov [DOE]

    The purpose of this research effort is to determine the effects of canister/cask vacuum drying and storage on radial hydride precipitation in high‐burnup (HBU) pressurized water reactor (PWR)...

  6. Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR

    SciTech Connect (OSTI)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

  7. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOE Patents [OSTI]

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  8. Effect of coolant chemistry on PWR radiation transport processes. Progress report on reactor loop studies

    SciTech Connect (OSTI)

    Brown, D.J.; Flynn, G.; Haynes, J.W.; Kitt, G.P.; Large, N.R.; Lawson, D.; Mead, A.P.; Nichols, J.L.; Woodwark, D.R.

    1986-05-01

    The effect of various PWR-type coolant chemistry regimes on the behavior of corrosion products has been studied in the DIDO Water Loop at Harwell. There are strong indications that the in-core deposition behavior of corrosion product species is not fully accounted for by the solubility model based on nickel ferrite; boric acid plays a role apart from its influence on pH, and corrosion products are adsorbed to some extent in the zirconium oxide film on the fuel cladding. In DWL, soluble species appear to be dominant in deposition processes. A most important factor governing deposition behavior is surface condition; the influence of weld regions and the effect of varying pretreatment conditions have both been demonstrated. 13 figs.

  9. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  10. Light Water Reactor Sustainability Nondestructive Evaluation...

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability ... A multitude of concrete-based structures are typically part of a light water reactor (LWR) ...

  11. Light Water Reactor Sustainability Program - Integrated Program...

    Office of Environmental Management (EM)

    Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and ...

  12. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect (OSTI)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  13. Light-water reactors: preliminary safety and environmental information document. Volume I

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning the reference PWR reactor system; once-through, low-enrichment uranium-235 fuel, 30 MWD per kilogram (PWR LEU(5)-OT); once-through, low-enrichment, high-burnup uranium fuel (PWR LEU(5)-Mod OT); self-generated plutonium spiked recycle (PWR LEU(5)-Pu-Spiked Recycle); denatured uranium-233/thorium cycle (PWR DU(3)-Th Recycle DU(3)); and plutonium/thorium cycle (Pu/ThO/sub 2/ Burner).

  14. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect (OSTI)

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  15. Experiment operations plan for the TH-2 experiment in the NRU reactor. [PWR; BWR

    SciTech Connect (OSTI)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for TH-2--the second experiment in the series of thermal-hydraulic tests conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The major objective of TH-2 was to develop the experiment reflood control parameters and the procedures to be used in subsequent experiments in this program. In this experiment, the data acquisition and control system was used to control the fuel cladding temperature during a simulated LOCA by using variable reflood coolant flow.

  16. CHIMNEY FOR BOILING WATER REACTOR

    DOE Patents [OSTI]

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  17. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    SciTech Connect (OSTI)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  18. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect (OSTI)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  19. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.

  20. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less

  1. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  2. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  3. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  4. Microheterogeneous Thoria-Urania Fuels for Pressurized Water Reactors

    SciTech Connect (OSTI)

    Shwageraus, Eugene; Zhao Xianfeng; Driscoll, Michael J.; Hejzlar, Pavel; Kazimi, Mujid S.; Herring, J. Stephen

    2004-07-15

    A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with {sup 235}U is necessary, and the {sup 235}U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO{sub 2}-UO{sub 2}) fuel cycle of no less than 25% uranium becomes necessary for normal pressurized water reactor (PWR) operating cycle lengths. Spatial separation of the uranium and thorium parts of the fuel can improve the achievable burnup of the thorium-uranium fuel designs through more effective breeding of {sup 233}U from the {sup 232}Th. Focus is on microheterogeneous fuel designs for PWRs, where the spatial separation of the uranium and thorium is on the order of a few millimetres to a few centimetres, including duplex pellet, axially microheterogeneous fuel, and a checkerboard of uranium and thorium pins. A special effort was made to understand the underlying reactor physics mechanisms responsible for enhancing the achievable burnup at spatial separation of the two fuels. The neutron spectral shift was identified as the primary reason for the enhancement of burnup capabilities. Mutual resonance shielding of uranium and thorium is also a factor; however, it is small in magnitude. It is shown that the microheterogeneous fuel can achieve higher burnups, by up to 15%, than the reference all-uranium fuel. However, denaturing of the {sup 233}U in the thorium portion of the fuel with small amounts of uranium significantly impairs this enhancement. The denaturing is also necessary to meet conventional PWR thermal limits by improving the power share of the thorium region at the beginning of fuel irradiation. Meeting thermal-hydraulic design requirements by some of the microheterogeneous fuels while still meeting or exceeding the burnup of the all-uranium case is shown to be potentially feasible

  5. SUPERHEATING IN A BOILING WATER REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  6. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  7. Neutronic Study of Slightly Modified Water Reactors and Application to Transition Scenarios

    SciTech Connect (OSTI)

    Chambon, Richard; Guillemin, Perrine; Nuttin, Alexis; Bidaud, A.

    2007-07-01

    In this paper we have studied slightly modified water reactors and their applications to transition scenarios. The PWR and CANDU reactors have been considered. New fuels based on Thorium have been tested: Thorium/Plutonium and Thorium/Uranium- 233, with different fissile isotope contents. Changes in the geometry of the assemblies were also explored to modify the moderation ratio, and consequently the neutron flux spectrum. A core equivalent assembly methodology was introduced as an exploratory approach and to reduce the computation time. Several basic safety analyses were also performed. We have finally developed a new scenario code, named OSCAR (Optimized Scenario Code for Advanced Reactors), to study the efficiency of these modified reactors in transition to Gen IV reactors or in symbiotic fleet. (authors)

  8. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect (OSTI)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  9. Leak before break application in French PWR plants under operation

    SciTech Connect (OSTI)

    Faidy, C.

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  10. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  11. PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP

    DOE Patents [OSTI]

    Puechl, K.H.

    1963-09-24

    A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

  12. Light-Water Breeder Reactor

    DOE Patents [OSTI]

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  13. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  14. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  15. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  16. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  17. Woo, H.H.; Chou, C.K. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED...

    Office of Scientific and Technical Information (OSTI)

    Piping-reliability analysis for pressurized-water-reactor feedwater lines Woo, H.H.; Chou, C.K. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; PIPES; CRACKS; RELIABILITY; PWR...

  18. Analysis of Pressurized Water Reactor Primary Coolant Leak Events Caused by Thermal Fatigue

    SciTech Connect (OSTI)

    C. L. Atwood; V. N. Shah; W. J. Galyean

    1999-09-01

    We present statistical analyses of pressurized water reactor (PWR) primary coolant leak events caused by thermal fatigue, and discuss their safety significance. Our worldwide data contain 13 leak events (through-wall cracking) in 3509 reactor-years, all in stainless steel piping with diameter less than 25 cm. Several types of data analysis show that the frequency of leak events (events per reactor-year) is increasing with plant age, and the increase is statistically significant. When an exponential trend model is assumed, the leak frequency is estimated to double every 8 years of reactor age, although this result should not be extrapolated to plants much older than 25 years. Difficulties in arresting this increase include lack of quantitative understanding of the phenomena causing thermal fatigue, lack of understanding of crack growth, and difficulty in detecting existing cracks.

  19. Influence of FRAPCON-1 evaluation models on fuel behavior calculations for commercial power reactors. [PWR; BWR

    SciTech Connect (OSTI)

    Chambers, R.; Laats, E.T.

    1981-01-01

    A preliminary set of nine evaluation models (EMs) was added to the FRAPCON-1 computer code, which is used to calculate fuel rod behavior in a nuclear reactor during steady-state operation. The intent was to provide an audit code to be used in the United States Nuclear Regulatory Commission (NRC) licensing activities when calculations of conservative fuel rod temperatures are required. The EMs place conservatisms on the calculation of rod temperature by modifying the calculation of rod power history, fuel and cladding behavior models, and materials properties correlations. Three of the nine EMs provide either input or model specifications, or set the reference temperature for stored energy calculations. The remaining six EMs were intended to add thermal conservatism through model changes. To determine the relative influence of these six EMs upon fuel behavior calculations for commercial power reactors, a sensitivity study was conducted. That study is the subject of this paper.

  20. FRAP-T5 predictions during reactor shutdown events. [PWR; BWR

    SciTech Connect (OSTI)

    Peeler, G.B.; Laats, E.T.

    1980-01-01

    The Transient Fuel Rod Analysis Program, FRAP-T5, was recently assessed by EG and G Idaho, Inc. As part of this assessment, the measured and FRAP-T5 predicted fuel centerline temperature response during reactor shutdown events were compared. For these events either forced convection or nucleate boiling boundary conditions existed, resulting in a negligible effect on fuel behavior from cladding temperature and deformation uncertainties. This allowed the assessment of internal heat transfer to be emphasized.

  1. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  2. Reactor Safety Research Programs. Quarterly report, July-September 1984. Volume 3. [PWR; BWR

    SciTech Connect (OSTI)

    Edler, S.K.

    1985-02-01

    This document summarizes work performed by Pacific Northwest Laboratory from July 1 through September 30, 1984, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Results from an instrumented fuel assembly irradiation program being performed at Halden, Norway, are reported. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Severe fuel damage accident tests are being conducted in the NRU Reactor, Chalk River, Canada.

  3. Reactor safety research programs. Quarterly report, January-March 1984. Vol. 1. [PWR; BWR

    SciTech Connect (OSTI)

    Edler, S.K.

    1984-06-01

    This document summarizes work performed by Pacific Northwest Laboratory from January 1 through March 31, 1984, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Results from an instrumented fuel assembly irradiation program being performed at Halden, Norway, are reported. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data on analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada.

  4. Pressurized-water reactor internals aging degradation study. Phase 1

    SciTech Connect (OSTI)

    Luk, K.H.

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  5. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  6. Boiling water reactor-full length emergency core cooling heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Boiling water reactor-full length emergency core cooling heat transfer ... Citation Details In-Document Search Title: Boiling water reactor-full length emergency ...

  7. Preliminary design study of small long life boiling water reactor...

    Office of Scientific and Technical Information (OSTI)

    boiling water reactor (BWR) with tight lattice thorium nitride fuel Citation Details In-Document Search Title: Preliminary design study of small long life boiling water reactor ...

  8. Partial Defect Testing of Pressurized Water Reactor Spent Fuel...

    Office of Scientific and Technical Information (OSTI)

    Partial Defect Testing of Pressurized Water Reactor Spent Fuel Assemblies Citation Details In-Document Search Title: Partial Defect Testing of Pressurized Water Reactor Spent Fuel ...

  9. Accident analysis of heavy water cooled thorium breeder reactor...

    Office of Scientific and Technical Information (OSTI)

    Accident analysis of heavy water cooled thorium breeder reactor Citation Details In-Document Search Title: Accident analysis of heavy water cooled thorium breeder reactor ...

  10. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ...

  11. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap...

    Office of Environmental Management (EM)

    Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability ...

  12. Light Water Reactor Sustainability Program - Non-Destructive...

    Office of Environmental Management (EM)

    Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for ... important information to the Light Water Reactor Sustainability (LWRS) program ...

  13. Light Water Reactor Sustainability (LWRS) Initiative Science...

    Energy Savers [EERE]

    disposed instead of untreated used fuel. April 29, 2010 Constituents of Used Light Water Reactor Nuclear Fuel (by mass) April 29, 2010 Descriptions from NE R&D Roadmap to...

  14. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    SciTech Connect (OSTI)

    Le Pape, Yann; Huang, Hai

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  15. Update to Risk-Informed Pressurized Water Reactor Vessel 10 to 20 Year Inspection Interval Extension

    SciTech Connect (OSTI)

    Palm, Nathan A.; Bishop, Bruce A.; Boggess, Cheryl L.

    2006-07-01

    The Pressurized Water Reactor Owners Group (formerly the Westinghouse Owners Group (WOG)) methodology for extending the inservice inspection interval for welds in pressurized water reactor (PWR) reactor pressure vessel (RPV) was introduced as ICONE12-49429. The paper presented a risk informed basis for extending the interval between inspections from the current interval of 10 years to 20 years. In the paper presented at ICONE-12, results of pilot studies on typical Westinghouse and Combustion Engineering Nuclear Steam Supply System (NSSS) designs of PWR vessels showed that the change in risk associated with the proposed inspection interval extension was within the guidelines specified in the United States Nuclear Regulatory Commission (NRC) Regulatory Guide 1.174 for an acceptably small change in risk. Since the methodology was originally presented, the evaluation has been updated to incorporate the latest changes in the NRC Pressurized Thermal Shock (PTS) Risk Reevaluation Program and expanded to include the Babcock and Wilcox NSSS RPV design. The results of these evaluations demonstrate that the proposed RPV inspection interval extension remains a viable option for the industry. The updates to the methodology and input, pilot plant evaluations, results, process for demonstrating applicability of the pilot plant analysis to non-pilot lead plants and lessons learned from the evaluations performed are summarized in this paper. (authors)

  16. Robotic inspection of PWR coolant pump casing welds

    SciTech Connect (OSTI)

    Pratt, W.R.; Alford, J.W.; Davis, J.B.

    1997-12-01

    As of January 1, 1995, the Swedish Nuclear Inspectorate began requiring more thorough inspections of cast stainless-steel components in nuclear power plants, including pressurized water reactor (PWR) reactor coolant pump (RCP) casings. The examination requirements are established by fracture mechanics analyses of component weldments and demonstrated test system detection capabilities. This may include full volumetric inspection or some portion thereof. Ringhals station is a four-unit nuclear power plant, owned and operated by the Swedish State Power Board, Vattenfall. Unit 1 is a boiling water reactor. Units 2, 3, and 4 are Westinghouse-designed PWRs, ranging in size from 795 to 925 MW. The RCP casings at the PWR units are made of cast stainless steel and contain four circumferential welds that require inspection. Due to the thickness of the casings at the weld locations and configuration and surface conditions on the outside diameter of the casings, remote inspection from the inside diameter of the pump casing was mandated.

  17. Shippingport operations with the Light Water Breeder Reactor core. (LWBR Development Program)

    SciTech Connect (OSTI)

    Budd, W.A.

    1986-03-01

    This report describes the operation of the Shippingport Atomic Power Station during the LWBR (Light Water Breeder Reactor) Core lifetime. It also summarizes the plant-oriented operations during the period preceding LWBR startup, which include the defueling of The Pressurized Water Reactor Core 2 (PWR-2) and the installation of the LWBR Core, and the operations associated with the defueling of LWBR. The intent of this report is to examine LWBR experience in retrospect and present pertinent and significant aspects of LWBR operations that relate primarily to the nuclear portion of the Station. The nonnuclear portion of the Station is discussed only as it relates to overall plant operation or to unusual problems which result from the use of conventional equipment in radioactive environments. 30 refs., 69 figs., 27 tabs.

  18. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect (OSTI)

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  19. Pressurized water reactor flow skirt apparatus

    DOE Patents [OSTI]

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  20. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  1. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  2. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOE Patents [OSTI]

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  3. Swing-Down of 21-PWR Waste Package

    SciTech Connect (OSTI)

    A.K. Scheider

    2001-05-04

    The objective of this calculation is to determine the structural response of the waste package (WP) swinging down from a horizontally suspended height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 13). AP-3.12Q, ''Calculations'' (Ref. 18) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 21-PWR WP design considered in this calculation and provides the potential dimensions and materials for the 21-PWR WP design.

  4. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    SciTech Connect (OSTI)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  5. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  6. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    SciTech Connect (OSTI)

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G; Salko, Robert K; Evans, Thomas M; Turner, John A; Belcourt, Kenneth; Hooper, Russell; Schmidt, Rodney

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly cases are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.

  7. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  8. Light-water reactor accident classification

    SciTech Connect (OSTI)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  9. Hydrogen and water reactor safety: proceedings

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  10. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect (OSTI)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  11. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOE Patents [OSTI]

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  12. The influence of dissolved hydrogen on primary water stress corrosion cracking of Alloy 600 at PWR steam generator operating temperatures

    SciTech Connect (OSTI)

    Jacko, R.J.; Economy, G.; Pement, F.W.

    1992-12-31

    PWR primary coolant chemistry uses an intentional dissolved hydrogen concentration of 20 to 50 ml (STP)/kg of water to effect a net suppression of oxygen-producing radiolysis, to minimize corrosion in primary loop materials and to maintain a low redox potential. Speculation has attended a possible influence of dissolved hydrogen on the kinetics of initiation of Primary Water Stress Corrosion Cracking (PWSCC) behavior of Alloy 600 steam generator tubing. Three series of experiments are presented for conditions in which the level of dissolved hydrogen was intentionally varied over the hydrogen and temperature ranges of interest for steam generator operation. No significant effect of dissolved hydrogen was found on PWSCC of Alloy 600.

  13. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect (OSTI)

    Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

    2004-05-15

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  14. A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide...

    Office of Scientific and Technical Information (OSTI)

    the CONFU assembly exhibits negative reactivity feedback coefficients comparable in ... NUCLEAR FUELS; PWR TYPE REACTORS; REACTIVITY COEFFICIENTS; REPROCESSING; SIMULATION; ...

  15. Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Saxey, David W.; Kruska, Karen; Moore, K. L.; Lozano-Perez, Sergio; Bruemmer, Stephen M.

    2013-06-01

    High-resolution characterizations of intergranular attack in alloy 600 (Ni-17Cr-9Fe) exposed to 325 C simulated pressurized water reactor (PWR) primary water have been conducted using a combination of scanning electron microscopy, NanoSIMS, analytical transmission electron microscopy and atom probe tomography. The intergranular attack exhibited a two-stage microstructure that consisted of continuous corrosion/oxidation to a depth of ~200 nm from the surface followed by discrete Cr-rich sulfides to a further depth of ~500 nm. The continuous oxidation region contained primarily nanocrystalline MO-structure oxide particles and ended at Ni-rich, Cr-depleted grain boundaries with spaced CrS precipitates. Three-dimensional characterization of the sulfidized region using site-specific atom probe tomography revealed extraordinary grain boundary composition changes, including total depletion of Cr across a several nm wide dealloyed zone as a result of grain boundary migration.

  16. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. Light Water Reactor Sustainability Program - Integrated Program Plan - Revision 3 (2.66 MB)

  17. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures.

  18. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented.

  19. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    SciTech Connect (OSTI)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  20. Light Water Reactor Sustainability Program: Materials Aging and...

    Office of Environmental Management (EM)

    Program: Materials Aging and Degradation Technical Program Plan Light Water Reactor ... Primary water stress corrosion cracking (PWSCC) is one key form of degradation in extended ...

  1. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  2. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  3. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2015 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research

  4. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect (OSTI)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  5. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect (OSTI)

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-22

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  6. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  7. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  8. Applicability of GALE-86 Codes to Integral Pressurized Water Reactor designs

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.; Rishel, Jeremy P.

    2012-06-01

    This report describes work that Pacific Northwest National Laboratory is doing to assist the U.S. Nuclear Regulatory Commission (NRC) Office of New Reactors (NRO) staff in their reviews of applications for nuclear power plants using new reactor core designs. These designs include small integral PWRs (IRIS, mPower, and NuScale reactor designs), HTGRs, (pebble-bed and prismatic-block modular reactor designs) and SFRs (4S and PRISM reactor designs). Under this specific task, PNNL will assist the NRC staff in reviewing the current versions of the GALE codes and identify features and limitations that would need to be modified to accommodate the technical review of iPWR and mPower® license applications and recommend specific changes to the code, NUREG-0017, and associated NRC guidance. This contract is necessary to support the licensing of iPWRs with a near-term focus on the B&W mPower® reactor design. While the focus of this review is on the mPower® reactor design, the review of the code and the scope of recommended changes consider a revision of the GALE codes that would make them universally applicable for other types of integral PWR designs. The results of a detailed comparison between PWR and iPWR designs are reported here. Also included is an investigation of the GALE code and its basis and a determination as to the applicability of each of the bases to an iPWR design. The issues investigated come from a list provided by NRC staff, the results of comparing the PWR and iPWR designs, the parameters identified as having a large impact on the code outputs from a recent sensitivity study and the main bases identified in NUREG-0017. This report will provide a summary of the gaps in the GALE codes as they relate to iPWR designs and for each gap will propose what work could be performed to fill that gap and create a version of GALE that is applicable to integral PWR designs.

  9. Development of Materials for Supercritical-Water-Cooled Reactor

    Broader source: Energy.gov [DOE]

    Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system...

  10. The 100K West Reactor Water Treatment Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demolition (D&D) work at the 100K West Reactor Water Treatment Facilities at the Hanford ... facilities and waste sites that supported reactor operations from the 1950s to the 1970s. ...

  11. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect (OSTI)

    A. G. Ware; C. Hsu; C. L. Atwood; M. B. Sattison; R. S. Hartley; V. N. Shah

    1999-02-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  12. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect (OSTI)

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-08-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  13. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  14. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect (OSTI)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  15. DESCRIPTION OF THE TRITIUM-PRODUCING BURNABLE ABSORBER ROD FOR THE COMMERCIAL LIGHT WATER REACTOR TTQP-1-015 Rev 19

    SciTech Connect (OSTI)

    Burns, Kimberly A.; Love, Edward F.; Thornhill, Cheryl K.

    2012-02-01

    Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy’s Tritium Readiness Program are designed to produce tritium when placed in a Westinghouse or Framatome 17x17 fuel assembly and irradiated in a pressurized water reactor (PWR). This document provides an unclassified description of the current design baseline for the TPBARs. This design baseline is currently valid only for Watts Bar reactor production cores. A description of the Lead Use TPBARs will not be covered in the text of the document, but the applicable drawings, specifications and test plan will be included in the appropriate appendices.

  16. Screening reactor steam/water piping systems for water hammer

    SciTech Connect (OSTI)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

  17. Materials Reliability Program Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors (MRP-111)

    SciTech Connect (OSTI)

    Xu, H.; Fyfitch, S.; Scott, P.; Foucault, M.; Kilian, R.; Winters, M.

    2004-03-01

    Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. Repairs and replacements have generally utilized wrought Alloy 690 material and its compatible weld metals (Alloy 152 and Alloy 52), which have been shown to be very highly resistant to PWSCC in laboratory experiments and have been free from cracking in operating reactors over periods already up to nearly 15 years. It is nevertheless prudent for the PWR industry to attempt to quantify the longevity of these materials with respect to aging degradation by corrosion in order to provide a sound technical basis for the development of future inspection requirements for repaired or replaced component items. This document first reviews numerous laboratory tests, conducted over the last two decades, that were performed with wrought Alloy 690 and Alloy 52 or Alloy 152 weld materials under various test conditions pertinent to corrosion resistance in PWR environments. The main focus of the present review is on PWSCC, but secondary-side conditions are also briefly considered.

  18. (Boiling water reactor (BWR) CORA experiments)

    SciTech Connect (OSTI)

    Ott, L.J.

    1990-10-16

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of the BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.

  19. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  20. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.C., CASL: Consortium for the Advanced Simulation of Light Water Reactors - A DOE Energy Innovation Hub, ANS MC2015 Joint Internation Conference on Mathematics and Computation...

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Environment for Scientific Collaboration Posted: April 30, 2013 The Consortium for Advanced Simulation of Light Water Reactors, the Department of Energy's first...

  3. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    SciTech Connect (OSTI)

    T. R. Allen and G. S. Was

    2008-12-12

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept.

  4. Maximim Accelerations On The Fuel Assemblies Of a 21-PWR Waste Package During End Impacts 

    SciTech Connect (OSTI)

    V. DeLa Brosse

    2003-03-27

    The objective of this calculation is to determine the acceleration of the fuel assemblies contained in a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities of the waste package is studied. The scope of this calculation is limited to estimating the acceleration of the fuel assemblies during the impact.

  5. Maximim Accelerations On The Fuel Assemblies Of a 21-PWR Waste Package During End Impacts 

    SciTech Connect (OSTI)

    T. Schmitt

    2005-08-17

    The objective of this calculation is to determine the acceleration of the fuel assemblies contained in a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities of the waste package is studied. The scope of this calculation is limited to estimating the acceleration of the fuel assemblies during the impact.

  6. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    SciTech Connect (OSTI)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  7. Commercial Light Water Reactor Tritium Extraction Facility

    SciTech Connect (OSTI)

    McHood, M D

    2000-10-12

    A geotechnical investigation program has been completed for the Commercial Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing, and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  8. Code System for Supercritical Water Cooled Reactor LOCA Analysis.

    Energy Science and Technology Software Center (OSTI)

    1999-10-13

    Version 00 The new SCRELA code was developed to analyze the LOCA of the supercritical water cooled reactor. Since the currently available LWR codes for LOCA analysis could not analyze the significant differences in reactor characteristics between the supercritical-water cooled reactor and the current LWR, the first objective of this code development was to analyze the uniqueness of this reactor. The behavior of the supercritical water in the blowdown phase and the reflood phase ismore » modeled.« less

  9. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect (OSTI)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  10. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  11. State space modeling of reactor core in a pressurized water reactor

    SciTech Connect (OSTI)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W.; Shamsuddin, Mustaffa; Abdullah, M. Adib

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  12. Stress-corrosion cracking of Inconel alloy 600 in high-temperature water: an update. [PWR

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    Inconel 600 has been tested in high-temperature aqueous media (without oxygen) in several tests. Data are presented to relate failure times to periods of crack initiation and propagation. Quantitative relationships have been developed from tests in which variations were made in temperature, applied load, strain rate, water chemistry, and the condition of the test alloy.

  13. Evaulation of power-reactor fuel-rod-analysis capabilities. Phase 1 topical report. Volume 2. Code evaluation. [PWR; BWR

    SciTech Connect (OSTI)

    Coleman, D.R.

    1983-09-01

    FRAPCON-2 (V1M4) was applied to generate fuel performance predictions for 60 rods of a recently evaluated power reactor data sample. Rod design, operational, and performance data was obtained from the RPRI Fuel Performance Data Base. The data was systematically processed to generate code input parameters. FRAPCON was initially applied for scoping studies to identify the best estimate mechanical response and fission gas release modeling options. Based on final scoping results, the balance of rods were analyzed with FRACAS-2 mechanics and FASTGRASS gas release models. Comparisons between measured and calculated fuel and cladding deformation, fission gas release, internal pressure, and gas composition are presented and interpreted relative to code error magnitudes, distributions, and trends versus rod design and operating parameters. The results indicate the FRAPCON-2 has best estimate capability for analysis of moderate duty fuel rod performance, provided that rod fabrication parameters are well characterized, and the fuel is dimensionally stable.

  14. Multi-Application Small Light Water Reactor Final Report

    SciTech Connect (OSTI)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-12-01

    cogeneration, water desalination or district heating were not addressed directly in the economic analyses since these depend more on local conditions, demand and economy and can not be easily generalized. Current economic performance experience and available cost data were used. The preliminary cost estimate, based on a concept that could be deployed in less than a decade, is: (1) Net Electrical Output--1050 MWe; (2) Net Station Efficiency--23%; (3) Number of Power Units--30; (4) Nominal Plant Capacity Factor--95%; (5) Total capital cost--$1241/kWe; and (6) Total busbar cost--3.4 cents/kWh. The project includes a testing program that has been conducted at Oregon State University (OSU). The test facility is a 1/3-height and 1/254.7 volume scaled design that will operate at full system pressure and temperature, and will be capable of operation at 600 kW. The design and construction of the facility have been completed. Testing is scheduled to begin in October 2002. The MASLWR conceptual design is simple, safe, and economical. It operates at NSSS parameters much lower than for a typical PWR plant, and has a much simplified power generation system. The individual reactor modules can be operated as on/off units, thereby limiting operational transients to startup and shutdown. In addition, a plant can be built in increments that match demand increases. The ''pull and replace'' concept offers automation of refueling and maintenance activities. Performing refueling in a single location improves proliferation resistance and eliminates the threat of diversion. Design certification based on testing is simplified because of the relatively low cost of a full-scale prototype facility. The overall conclusion is that while the efficiency of the power generation unit is much lower (23% versus 30%), the reduction in capital cost due to simplification of design more than makes up for the increased cost of nuclear fuel. The design concept complies with the safety requirements and criteria. It also

  15. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    SciTech Connect (OSTI)

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter {times} 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130{degree}F while the PWR is a high energy system with operating pressures near 2200 psig at 600{degree}F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing`s structural capacity, per the ASME Code, with its operating conditions/configuration.

  16. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    SciTech Connect (OSTI)

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter {times} 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130{degree}F while the PWR is a high energy system with operating pressures near 2200 psig at 600{degree}F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing's structural capacity, per the ASME Code, with its operating conditions/configuration.

  17. A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components

    Broader source: Energy.gov [DOE]

    In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the...

  18. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor water-gas-shift.pdf (597.03 KB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry CX-014220: Categorical Exclusion Determination

  19. Development of a model for predicting intergranular stress corrosion cracking of Alloy 600 tubes in PWR primary water. Final report

    SciTech Connect (OSTI)

    Garud, Y.S.

    1985-01-01

    A preliminary mathematical model developed in this study may make it possible to predict stress corrosion cracking on the primary side of PWR steam generator tubing. The study outlines a comprehensive testing program that will provide the operational and experimental data to further develop and verify the model.

  20. Advanced dry head-end reprocessing of light water reactor spent...

    Office of Scientific and Technical Information (OSTI)

    reprocessing of light water reactor spent nuclear fuel Citation Details In-Document Search Title: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel ...

  1. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  2. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  3. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect (OSTI)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  4. Improving Light Water Reactor Fuel Reliability Via Flow-Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Light Water Reactor Fuel Reliability Via Flow-Indu... Failures of the fuel rod elements used to power U.S. nuclear ... and a recognized bottleneck to optimal fuel utilization. ...

  5. Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1996 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

  6. Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

  7. Process for treating effluent from a supercritical water oxidation reactor

    DOE Patents [OSTI]

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  8. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensification with Integrated Water-Gas-Shift Membrane Reactor Hydrogen-Selective Membranes for High- Pressure Hydrogen Separation This project will develop hydrogen-selective membranes for an innovative water-gas-shift reactor that improves gas separation effciency, enabling reduced energy use and greenhouse gas emissions. Introduction The goal of process intensifcation is to reduce the equipment footprint, energy consumption, and environmental impact of manufacturing processes. One candidate

  9. Process for treating effluent from a supercritical water oxidation reactor

    DOE Patents [OSTI]

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  10. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. Technical progress report

    SciTech Connect (OSTI)

    Pimblott, S.M.

    2000-04-01

    OAK B188 Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. Technical progress report

  11. Practical combinations of light-water reactors and fast reactors for future actinide transmutation

    SciTech Connect (OSTI)

    Collins, Emory D.; Renier, John-Paul

    2007-07-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle. (authors)

  12. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    SciTech Connect (OSTI)

    Boucau, Joseph; Mirabella, C.; Nilsson, Lennart; Kreitman, Paul J.; Obert, Estelle

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Center for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French

  13. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  14. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    SciTech Connect (OSTI)

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  15. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect (OSTI)

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  16. PCI-related cladding failures during off-normal events - draft. [PWR; BWR

    SciTech Connect (OSTI)

    Van Houten, R.; Tokar, M.; MacDonald, P.E.

    1984-05-01

    Pellet-cladding interaction (PCI) has long been identified as a fuel rod failure mechanism during power increases in both pressurized and boiling water reactors, and commercial guidelines have practically eliminated such failures during standard operations. A question remains regarding the possible formation of through-wall cladding cracks during several types of postulated off-normal reactor events involving power increases. This report includes preliminary findings for reactor events of the type addressed by Chapter 15 of the NRC Standard Review Plan. Specifically, the BWR turbine trip without bypass, PWR control rod withdrawal error, subcritical PWR control rod withdrawal error, BWR control blade withdrawal error, and the PWR steamline break are analyzed on the joint bases of peak rod power, power increase, ramp rate, and duration at elevated power. These Chapter 15 events are compared to numerous test reactor results and to other relevant investigations, and tentative conclusions on transient severity and data base adequacy are presented. Progress in developing computer codes for predicting PCI-induced fuel rod failures is also discussed. 49 references.

  17. Design study of long-life PWR using thorium cycle

    SciTech Connect (OSTI)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  18. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... EPRI Battelle AREVA Westinghouse Global Nuclear Fuels Dominion Duke Energy EDF TVA ... Fuel Analysis 9 Analyze selected accident tolerant PWR fuel design 2018 BWR Safety ...

  19. Axial Burnup Profile Database for Pressurized Water Reactors.

    Energy Science and Technology Software Center (OSTI)

    2000-09-18

    Version: 00 The main objective of the database is to provide a detailed characterization of spent PWR fuel, specifically with respect to the axial burnup distribution.

  20. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    SciTech Connect (OSTI)

    Bahri, Che Nor Aniza Che Zainul Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  1. Analysis of a double-ended cold-leg break simulation: THTF Test 3. 05. 5B. [PWR

    SciTech Connect (OSTI)

    Craddick, W.G.; Pevey, R.E.

    1982-09-01

    On July 3, 1980, an experiment was performed in the Oak Ridge National Laboratory Thermal-Hydraulic Test Facility that simulated a double-ended cold-leg break pressurized-water reactor (PWR) accident. Analysis of the experiment revealed that nuclear fuel rods exposed to the same hydrodynamic environment as that which existed in the experiment would have departed from nucleate boiling both earlier and later than the fuel rod simulator (FRS), depending on the size of the gap between the nuclear fuel pellets and cladding and on the initial power of the nuclear fuel rod. Comparison of the results of the current experiment, which used an FRS bundle with geometry similar to 17 x 17 PWR fuel assemblies, to the results of earlier experiments, which used an FRS bundle with geometry similar to 15 x 15 PWR fuel assemblies, revealed no differences that can be attributed to the difference in geometries.

  2. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect (OSTI)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  3. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT facility. [PWR

    SciTech Connect (OSTI)

    Varacalle, D.J. Jr.; Koizumi, Y.; Giri, A.H.; Koske, J.E.; Sanchez-Pope, A.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAP5/MOD1 computer code showed good agreement with the experimental data.

  4. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Archive Energy Department Announces Five Year Renewal of Funding for First Energy Innovation Hub Consortium for Advanced Simulation of Light Water Reactors to Receive up to $121.5 Million Over Five Years. Posted: January 29, 2015 VERA-CS Coupled Multi-physics Capability demonstrated in a Full Core Simulation In December, CASL reported on the latest results from its Watts Bar reactor progression problem modeling. Posted: August 14, 2014 Westinghouse Completes its AP1000®

  5. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  6. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  7. Control of alkaline stress corrosion cracking in pressurized-water reactor steam generator tubing

    SciTech Connect (OSTI)

    Hwang, I.S. . Dept. of Nuclear Engineering); Park, I.G. . Div. of Materials Science and Engineering)

    1999-06-01

    Outer-diameter stress corrosion cracking (ODSCC) of alloy 600 (UNS N06600) tubings in steam generators of the Kori-1 pressurized-water reactor (PWR) caused an unscheduled outage in 1994. Failure analysis and remedy development studies were undertaken to avoid a recurrence. Destructive examination of a removed tube indicated axial intergranular cracks developed at the top of sludge caused by a boiling crevice geometry. A high ODSCC propagation rate was attributed to high local pH and increased corrosion potential resulting from oxidized copper presumably formed during the maintenance outage and plant heatup. Remedial measures included: (1) crevice neutralization by crevice flushing with boric acid (H[sub 3]BO[sub 3]) and molar ratio control using ammonium chloride (NH[sub 4]Cl), (2) corrosion potential reduction by hydrazine (H[sub 2]NNH[sub 2]) soaking and suppression of oxygen below 20 ppb to avoid copper oxide formation, (3) titanium dioxide (TiO[sub 2]) inhibitor soaking, and (4) temperature reduction of 5 C. Since application of the remedy program, no significant ODSCC has been observed, which clearly demonstrates the benefit of departing from an oxidizing alkaline environment. In addition, the TiO[sub 2] inhibitor appeared to have a positive effect, warranting further examination.

  8. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges

    Broader source: Energy.gov [DOE]

    The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR...

  9. Assessment of PWR waterside corrosion models and data. Final report

    SciTech Connect (OSTI)

    Cox, B.

    1985-10-01

    The published data on waterside corrosion of PWR fuel cladding and unfuelled components have been reviewed, and the models used to assess the data have been studied. All corrosion models use too simplified a view of the corrosion process to obtain other than a general trend for the actual oxidation data. The in-reactor post-transition oxidation of the Zircaloys appears to be heavily dependent on water chemistry variations both between reactors, and along the length of an individual fuel rod. Crud deposition may be one primary cause of this, perhaps by allowing the independent development of the water chemistry within the crud layer, as much as by its effect on cladding surface temperatures. However, the effect of the thickening of the oxide film, which permits the development of an independent water chemistry inside the oxide, leading to an accelerating oxidation rate at large oxide thicknesses, seems to be the most important factor. It is concluded that a spectrum of results ranging from essentially no in-reactor enhancement of the oxidation rate to a sizeable enhancement (>10) may be seen depending upon the thickness of the oxide films, the water chemistry of the reactor, and crud deposition. A post-irradiation test that may help to distinguish between the factors involved has been suggested. 105 refs., 38 figs.

  10. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  11. Self-Sustaining Thorium Boiling Water Reactors

    SciTech Connect (OSTI)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  12. High-Temperature Water-Gas Shift Membrane Reactor Study

    SciTech Connect (OSTI)

    Ciocco, M.V.; Iyoha, O.; Enick, R.M.; Killmeyer, R.P.

    2007-06-01

    NETL’s Office of Research and Development is exploring the integration of membrane reactors into coal gasification plants as a way of increasing efficiency and reducing costs. Water-Gas Shift Reaction experiments were conducted in membrane reactors at conditions similar to those encountered at the outlet of a coal gasifier. The changes in reactant conversion and product selectivity due to the removal of hydrogen via the membrane reactor were quantified. Research was conducted to determine the influence of residence time and H2S on CO conversion in both Pd and Pd80wt%Cu membrane reactors. Effects of the hydrogen sulfide-to-hydrogen ratio on palladium and a palladium-copper alloy at high-temperature were also investigated. These results were compared to thermodynamic calculations for the stability of palladium sulfides.

  13. PWR representative behavior during a LOCA

    SciTech Connect (OSTI)

    Allison, C.M.

    1981-01-01

    To date, there has been substantial analytical and experimental effort to define the margins between design basis loss-of-coolant accident (LOCA) behavior and regulatory limits on maximum fuel rod cladding temperature and deformation. As a result, there is extensive documentation on the modeling of fuel rod behavior in test reactors and design basis LOCA's. However, modeling of that behavior using representative, non-conservative, operating histories is not nearly as well documented in the public literature. Therefore, the objective of this paper is (a) to present calculations of LOCA induced behavior for Pressurized Water Reactor (PWR) core representative fuel rods, and (b) to discuss the variability in those calculations given the variability in fuel rod condition at the initiation of the LOCA. This analysis was limited to the study of changes in fuel rod behavior due to different power operating histories. The other two important parameters which affect that behavior, initial fuel rod design and LOCA coolant conditions were held invarient for all of the representative rods analyzed.

  14. Development of 1000 MWe Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    Kazuo Hisajima; Ken Uchida; Keiji Matsumoto; Koichi Kondo; Shigeki Yokoyama; Takuya Miyagawa [Toshiba Corporation (Japan)

    2006-07-01

    1000 MWe Advanced Boiling Water Reactor has only two main steam lines and six reactor internal pumps, whereas 1350 MWe ABWR has four main steam lines and ten reactor internal pumps. In order to confirm how the differences affect hydrodynamic conditions in the dome and lower plenum of the reactor pressure vessel, fluid analyses have been performed. The results indicate that there is not substantial difference between 1000 MWe ABWR and 1350 MWe ABWR. The primary containment vessel of the ABWR consists of the drywell and suppression chamber. The suppression chamber stores water to suppress pressure increase in the primary containment vessel and to be used as the source of water for the emergency core cooling system following a loss-of-coolant accident. Because the reactor pressure vessel of 1000 MWe ABWR is smaller than that of 1350 MWe ABWR, there is room to reduce the size of the primary containment vessel. It has been confirmed feasible to reduce inner diameter of the primary containment vessel from 29 m of 1350 MWe ABWR to 26.5 m. From an economic viewpoint, a shorter outage that results in higher availability of the plant is preferable. In order to achieve 20-day outage that results in 97% of availability, improvement of the systems for removal of decay heat is introduced that enables to stop all the safety-related decay heat removal systems except at the beginning of an outage. (authors)

  15. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  16. Assessment of light water reactor accident management programs and experience

    SciTech Connect (OSTI)

    Hammersley, R.J.

    1992-03-01

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation.

  17. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    SciTech Connect (OSTI)

    J.W. Davis

    1996-08-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  18. METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR

    DOE Patents [OSTI]

    Vernon, H.C.

    1962-08-14

    A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Water Reactors (CASL) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  20. Mechanical design of a light water breeder reactor

    DOE Patents [OSTI]

    Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.

    1976-01-01

    In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.

  1. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    SciTech Connect (OSTI)

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Maldonado, Ivan

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in the fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to

  2. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Maldonado, Ivan

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the

  3. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  4. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  5. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Kit CASL Acknowledgement This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. CASL Logo Files CASL Extended - CASL_word.jpg and CASL_word.png CASL without words - CASL.jpg and CASL.png CASL with words - CASL_word.jpg and CASL_word.png CASL Partners - partners.jpg

  6. Use of Thorium in Light Water Reactors (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Use of Thorium in Light Water Reactors Citation Details In-Document Search Title: Use of Thorium in Light Water Reactors Thorium-based fuels can be used to reduce concerns related ...

  7. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Office of Environmental Management (EM)

    DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and ...

  8. Code System to Calculate Reactor Coolant System Leak Rate.

    Energy Science and Technology Software Center (OSTI)

    1999-10-19

    Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report ofmore » the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.« less

  9. Upper internals arrangement for a pressurized water reactor

    DOE Patents [OSTI]

    Singleton, Norman R; Altman, David A; Yu, Ching; Rex, James A; Forsyth, David R

    2013-07-09

    In a pressurized water reactor with all of the in-core instrumentation gaining access to the core through the reactor head, each fuel assembly in which the instrumentation is introduced is aligned with an upper internals instrumentation guide-way. In the elevations above the upper internals upper support assembly, the instrumentation is protected and aligned by upper mounted instrumentation columns that are part of the instrumentation guide-way and extend from the upper support assembly towards the reactor head in hue with a corresponding head penetration. The upper mounted instrumentation columns are supported laterally at one end by an upper guide tube and at the other end by the upper support plate.

  10. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  11. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  12. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect (OSTI)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  13. Optimization of small long-life PWR based on thorium fuel

    SciTech Connect (OSTI)

    Subkhi, Moh Nurul; Suud, Zaki Waris, Abdul; Permana, Sidik

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {sup 231}Pa give low excess reactivity.

  14. Multi-Applications Small Light Water Reactor - NERI Final Report

    SciTech Connect (OSTI)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  15. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    Energy Science and Technology Software Center (OSTI)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These maymore » be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section

  16. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    SciTech Connect (OSTI)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in

  17. Analysis of scrams and forced outages at boiling water reactors

    SciTech Connect (OSTI)

    Earle, R. T.; Sullivan, W. P.; Miller, K. R.; Schwegman, W. J.

    1980-07-01

    This report documents the results of a study of scrams and forced outages at General Electric Boiling Water Reactors (BWRs) operating in the United States. This study was conducted for Sandia Laboratories under a Light Water Reactor Safety Program which it manages for the United States Department of Energy. Operating plant data were used to identify the causes of scrams and forced outages. Causes of scrams and forced outages have been summarized as a function of operating plant and plant age and also ranked according to the number of events per year, outage time per year, and outage time per event. From this ranking, identified potential improvement opportunities were evaluated to determine the associated benefits and impact on plant availability.

  18. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    SciTech Connect (OSTI)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinars Introduction to CASL Youtube snapshot Consortium for Advanced Simulation of Light Water Reactors Youtube snapshot CASL Dedication Youtube snapshot Energy Secretary Chu visits ORNL Youtube snapshot CASL's VERA: What is Possible? Youtube snapshot Andrew Godfrey - Nuclear Energy Technical Webcasts - VERA Methods Youtube snapshot Subchannel methods for the Thermal-Hydraulic Analysis of Nuclear Power Systems Youtube snapshot Surrogate Models for Uncertainty Quantification presented by Dr.

  20. Influence of stress intensity and loading mode on intergranular stress corrosion cracking of Alloy 600 in primary waters of pressurized water reactors

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z. . Fontana Corrosion Center)

    1994-05-01

    The steam generator in a pressurized water reactor (PWR) of a nuclear power plant consists mainly of a shell made of carbon (C) steel and tubes made of alloy 600 (UNS N06600). However, alloy 600 suffers environmentally induced cracking with exposure to high-temperature primary water. The susceptibility of alloy 600 to integranular stress corrosion cracking (IGSCC) was investigated as a function of the level of applied stresses and mode of loading. Constant load tests were conducted with specimens prepared from thin wall tubes, and constant deformation tests were conducted using specimens prepared from plates. With tubes exposed to primary water at 330 C, the crack propagation rate (CPR) was found to increase from 1 [times] 10[sup [minus]11] m/s at a stress intensity (K[sub i]) of 10 MPa[radical]m to 1 [times] 10[sup [minus]9] at K[sub i] = 60 MPa[radical]m. CPR obtained using compact specimens prepared from plates were 1 order of magnitude lower than values measured in tubes at the same temperature and in the same solution at each stress intensity. The corollary was that values of crack propagation and threshold stress intensities obtained using compact specimens could not be extrapolated to the behavior of thin wall tubes.

  1. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    DOE Patents [OSTI]

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  2. 21-PWR WASTE PACKAGE WITH ABSORBER PLATES LOADING CURVE EVALUATION

    SciTech Connect (OSTI)

    J.M. Scaglione

    2004-12-17

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of spent nuclear fuel into the 21 PWR waste package with absorber plates design as provided in Attachment IV. This calculation is an example of the application of the methodology presented in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent U-235, and a burnup range of 0 through 45 GWd/MTU. Higher burnups were not necessary because 45 GWd/MTU was high enough for the loading curve determination. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing PWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials. This calculation is subject to the ''Quality Assurance Requirements and Description'' (QARD) (DOE 2004) because it concerns engineered barriers that are included in the ''Q-List'' (BSC 2004k, Appendix A) as items important to safety and waste isolation.

  3. The role of Hydrogen and Creep in Intergranular Stress Corrosion Cracking of Alloy 600 and Alloy 690 in PWR Primary Water Environments ? a Review

    SciTech Connect (OSTI)

    Rebak, R B; Hua, F H

    2004-07-12

    Intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) of Alloy 600 in PWR steam generator environment has been extensively studied for over 30 years without rendering a clear understanding of the essential mechanisms. The lack of understanding of the IGSCC mechanism is due to a complex interaction of numerous variables such as microstructure, thermomechanical processing, strain rate, water chemistry and electrochemical potential. Hydrogen plays an important role in all these variables. The complexity, however, significantly hinders a clearer and more fundamental understanding of the mechanism of hydrogen in enhancing intergranular cracking via whatever mechanism. In this work, an attempt is made to review the role of hydrogen based on the current understanding of grain boundary structure and chemistry and intergranular fracture of nickel alloys, effect of hydrogen on electrochemical behavior of Alloy 600 and Alloy 690 (e.g. the passive film stability, polarization behavior and open-circuit potential) and effect of hydrogen on PWSCC behavior of Alloy 600 and Alloy 690. Mechanistic studies on the PWSCC are briefly reviewed. It is concluded that further studies on the role of hydrogen on intergranular cracking in both inert and primary side environments are needed. These studies should focus on the correlation of the results obtained at different laboratories by different methods on materials with different metallurgical and chemical parameters.

  4. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect (OSTI)

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  5. REACTOR

    DOE Patents [OSTI]

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  6. 21-PWR Waste Package Side and End Impacts

    SciTech Connect (OSTI)

    V. Delabrosse

    2003-02-27

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1.

  7. 21-PWR Waste Package Side and End Impacts

    SciTech Connect (OSTI)

    T. Schmitt

    2005-08-29

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1.

  8. Westinghouse VANTAGE+ fuel assembly to meet future PWR operating requirements

    SciTech Connect (OSTI)

    Doshi, P.K.; Chapin, D.L.; Scherpereel, L.R.

    1988-01-01

    Many utilities operating pressurized water reactors (PWRs) are implementing longer reload cycles. Westinghouse is addressing this trend with fuel products that increase fuel utilization through higher discharge burnups. Higher burnup helps to offset added enriched uranium costs necessary to enable the higher energy output of longer cycles. Current fuel products have burnup capabilities in the area of 40,000 MWd/tonne U or more. There are three main phenomena that must be addressed to achieve even higher burnup levels: accelerated cladding, waterside corrosion, and hydriding; increased fission gas production; and fuel rod growth. Long cycle lengths also require efficient burnable absorbers to control the excess reactivity associated with increased fuel enrichment while maintaining a low residual absorber penalty at the end of cycle. Westinghouse VANTAGE + PWR fuel incorporates features intended to enhance fuel performance at very high burnups, including advances in the three basic elements of the fuel assembly: fuel cladding, fuel rod, and fuel assembly skeleton. ZIRLO {sup TM} cladding, an advanced Zircaloy cladding that contains niobium, offers a significant improvement in corrosion resistance relative to Zircaloy-4. Another important Westinghouse PWR fuel feature that facilitates long cycles is the zirconium diboride integral fuel burnable absorber (ZrB{sub 2}IFBA).

  9. Containment pressurization and burning of combustible gases in a large, dry PWR containment during a station blackout sequence

    SciTech Connect (OSTI)

    Lee, M.; Fan, C.T. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu (TW))

    1992-07-01

    In this paper, responses of a large, dry pressurized water reactor (PWR) containment in a station blackout sequence are analyzed with the CONTAIN, MARCH3, and MAAP codes. Results show that the predicted containment responses in a station blackout sequence of these three codes are substantially different. Among these predictions, the MAAP code predicts the highest containment pressure because of the large amount of water made available to quench the debris upon vessel failure. The gradual water boiloff by debris pressurizes the containment. The combustible gas burning models in these codes are briefly described and compared.

  10. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  11. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  12. Transactions of the nineteenth water reactor safety information meeting

    SciTech Connect (OSTI)

    Weiss, A.J.

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

  13. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  14. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  15. Improving fuel-rod performance. [PWR; BWR

    SciTech Connect (OSTI)

    Ocken, H.; Knott, S.

    1981-03-01

    To reduce the risk of fuel-rod failures, utilities operate their nuclear reactors within conservative limits on power increases proposed by nuclear-fuel vendors. Of particular concern to US utilities is that adopting these limits results in an industrywide average plant capacity loss of 3% in BWR designs and 0.3% in PWR designs. To replace lost BWR capacity by other generating means currently costs the utilities $150 million annually, and losses for PWRs are about $20 million. Efforts are therefore being made to identify the factors responsible for Zircaloy degradation under PCI condition and to improve nuclear-fuel-rod design and reactor operation.

  16. Impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants. Case study: PWR during routine operations

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Haggard, D.L.

    1986-01-01

    The purpose of this report is to present data in support of evaluating the impact of fuel cladding failure events on occupational radiation exposure. To determine quantitatively whether fuel cladding failure contributes significantly to occupational radiation exposure, radiation exposure measurements were taken at comparable locations in two mirror-image pressurized-water reactors (PWRs) and their common auxiliary building. One reactor, Unit B, was experiencing degraded fuel characterized as 0.125% fuel pin-hole leakers and was operating at approximately 55% of the reactor's licensed maximum core power, while the other reactor, Unit A, was operating under normal conditions with less than 0.01% fuel pin-hole leakers at 100% of the reactor's licensed maximum core power. Measurements consisted of gamma spectral analyses, radiation exposure rates and airborne radionuclide concentrations. In addition, data from primary coolant sample results for the previous 20 months on both reactor coolant systems were analyzed. The results of the measurements and coolant sample analyses suggest that a 3560-megawatt-thermal (1100 MWe) PWR operating at full power with 0.125% failed fuel can experience an increase of 540% in radiation exposure rates as compared to a PWR operating with normal fuel. In specific plant areas, the degraded fuel may elevate radiation exposure rates even more.

  17. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    SciTech Connect (OSTI)

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-10-03

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation.

  18. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  19. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect (OSTI)

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  20. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  1. CASL-U-2015-0248-000 Modeling Boiling Water Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-000 Modeling Boiling Water Reactor Designs using MPACT Andrew P. Fitzgerald Brendan ... lattices from the Peach Bottom Unit 2 Reactor Cycles 1 and 2. ATRIUM TM 10 simulations ...

  2. Stress corrosion cracking of Alloy 600 and Alloy 690 in all volatile treated water at elevated temperatures. Final report. [PWR

    SciTech Connect (OSTI)

    Theus, G.J.; Emanuelson, R.H.

    1983-05-01

    This report describes a continuing study of stress corrosion cracking (SCC) of Inconel alloys 600 and 690 in all-volatile treated (AVT) water. Specimens of alloys 600 and 690 are being exposed to AVT water at 288/sup 0/, 332/sup 0/, 343/sup 0/, and 360/sup 0/C. Alloy 600 generally resists SCC in high-purity water under normal service conditions but is susceptible under other specific conditions. In general, mill-annealed alloy 600 is more susceptible than stress-relieved material. Susceptibility to SCC increases rapidly with increasing exposure temperature. Very high stresses (near or above yield) are required to induce cracking in AVT or other high-purity waters. Most of the data presented in this report are for alloy 600; alloy 690 has not yet cracked. However, the program is being continued and will subsequently characterize the high-purity water cracking behavior, if any, of alloy 690.

  3. Boiling-Water Reactor internals aging degradation study. Phase 1

    SciTech Connect (OSTI)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  4. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  5. Camera Inspection Arm for Boiling Water Reactors - 13330

    SciTech Connect (OSTI)

    Martin, Scott; Rood, Marc

    2013-07-01

    Boiling Water Reactor (BWR) outage maintenance tasks can be time-consuming and hazardous. Reactor facilities are continuously looking for quicker, safer, and more effective methods of performing routine inspection during these outages. In 2011, S.A. Technology (SAT) was approached by Energy Northwest to provide a remote system capable of increasing efficiencies related to Reactor Pressure Vessel (RPV) internal inspection activities. The specific intent of the system discussed was to inspect recirculation jet pumps in a manner that did not require manual tooling, and could be performed independently of other ongoing inspection activities. In 2012, SAT developed a compact, remote, camera inspection arm to create a safer, more efficient outage environment. This arm incorporates a compact and lightweight design along with the innovative use of bi-stable composite tubes to provide a six-degree of freedom inspection tool capable of reducing dose uptake, reducing crew size, and reducing the overall critical path for jet pump inspections. The prototype camera inspection arm unit is scheduled for final testing in early 2013 in preparation for the Columbia Generating Station refueling outage in the spring of 2013. (authors)

  6. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  7. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure...

  8. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  9. Self-Sustaining Thorium Boiling Water Reactors (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; ... Language: English Subject: 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; ...

  10. Comparison of GAPCON-THERMAL-3 and FRAPCON-2 fuel-performance codes to in-reactor measurement of elastic cladding deformation. [PWR; BWR

    SciTech Connect (OSTI)

    Lanning, D.D.; Rausch, W.N.; Williford, R.E.

    1981-01-01

    A revision of the GAPCON-3 computer code became part of the NRC-sponsored FRAPCON-2 code. This paper presents a comparison of both codes to in-reactor data from IFA-508, a 3-rod test rig in the Halden Reactor, Norway, which features simultaneous measurements of fuel temperature, power, axial elongation, and diametral strain. The modeling revisions included putting all regions of the fuel in contact with cladding at all time, but assigning non-linear, spatially dependent, anisotropic elastic moduli to the fuel on an incremental load step basis. The moduli are functions of the local available void within the cladding. These concepts bring demonstrable improvement to the code predictions.

  11. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    SciTech Connect (OSTI)

    Said Abdel-Khalik

    2005-07-02

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.

  12. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  13. Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2013-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

  14. Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2012-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

  15. Application of the MELCOR code to design basis PWR large dry containment analysis.

    SciTech Connect (OSTI)

    Phillips, Jesse; Notafrancesco, Allen (USNRC, Office of Nuclear Regulatory Research, Rockville, MD); Tills, Jack Lee (Jack Tills & Associates, Inc., Sandia Park, NM)

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  16. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  17. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    SciTech Connect (OSTI)

    Rempe, J. L.; Knudson, D. L.; Lutz, R. J.

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  18. Results and analysis of a loss-of-feedwater induced ATWS experiment in the LOFT facility. [PWR

    SciTech Connect (OSTI)

    Grush, W.H.; Woerth, S.C.; Koizumi, Y.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by a loss of feedwater, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a two-position actuator relief valve to simulate a scaled power-operated relief valve (PORV) and safety relief valve (SRV) representative of those in a commercial PWR. Auxiliary feedwater injection was delayed during the experiment until the plant recovery phase where long-term shutdown was achieved by an operator-controlled plant recovery procedure without inserting the control rods. The system transient response predicted by the RELAP5/MOD1 computer code showed good agreement with the experimental data.

  19. Reactor

    DOE Patents [OSTI]

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  20. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  1. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  2. Revised accident source terms for light-water reactors

    SciTech Connect (OSTI)

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  3. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  4. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  5. Initiation and propagation of stress-corrosion cracking of Alloy 600 in high-temperature water. [PWR

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    Results of stress-corrosion cracking data are presented for Inconel 600 steam-generator tubing. U-bend, constant-load, and slow extension-rate tests are included. Arrhenius plots are presented for failure times vs inverse temperature for crack initiation and propagation. Effect of applied load is expressed in terms of log-log curves for failure times vs stress, and variations in environment and cold work are included. Microstructure and composition of oxide films on Inconel 600 surfaces were examined after exposure to pure water at 365/sup 0/C, and stripping with the bromine-methanol method. Results are discussed in terms of transient creep, film rupture and a mass-transport-limited anodic process.

  6. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  7. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  8. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  9. Light-water breeder reactor (LWBR Development Program)

    DOE Patents [OSTI]

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  10. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.