Sample records for water power solar

  1. WATER POWER SOLAR POWER WIND POWER

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water Heat Water

  2. Burbank Water and Power- Solar Water Heater Rebate Program (California)

    Broader source: Energy.gov [DOE]

    Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one...

  3. Powering Your Water Heater Using Solar Energy 

    E-Print Network [OSTI]

    Miller, Daniel

    2013-02-13T23:59:59.000Z

    This report is a detailed overview of my research on solar water heating. Solar water heaters may be used to either supplement or even replace a standard water heater. In addition to being environmentally friendly, solar heaters can save a homeowner...

  4. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  5. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  6. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  7. Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

  8. Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1

    E-Print Network [OSTI]

    the waste heat (steam) of a downstream Fischer- Tropsch process. An intermediate heat exchange unitModelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1 , John D Pye2 exercise to design a solar supercritical water gasification (SCWG) reactor. A formative reactor concept

  9. Corona Department of Water and Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water and Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2013 is $1.22 per watt up to $3,660 for residential systems...

  10. Corona Department of Water & Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water & Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2015 is $0.78 per watt up to $2,340 for residential...

  11. FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

  12. home power 114 / august & september 2006 in Solar Hot Water

    E-Print Network [OSTI]

    Knowles, David William

    : Heliotrope Thermal DTT-84 Solar Collectors: Two Heliodyne Gobi 410, 4 x 10 ft. Cold Supply In Hot to House

  13. City Water Light and Power- Solar Rewards Program

    Broader source: Energy.gov [DOE]

    Funding for the SOLAR REWARDS Rebate program has been exhausted for the current fiscal year. Please check back after March 1, 2015, to see if funding has been reinstated.

  14. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  15. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  16. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  17. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  18. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  19. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovationPriorityImpulseSolarThermal

  20. Solar Water Heating Incentive Program

    Broader source: Energy.gov [DOE]

    Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who...

  1. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    Solar Water Heater power systems that rely on batteries. Solar Water HeaterSolar water heater is becoming more popular because they are

  2. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  3. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

  4. Consumers Power, Inc.- Solar Energy System Rebate

    Broader source: Energy.gov [DOE]

    Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

  5. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01T23:59:59.000Z

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  6. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar power Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC,...

  7. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08T23:59:59.000Z

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  8. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07T23:59:59.000Z

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  9. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  10. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  11. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy This report is being of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106

  12. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power National Solar Thermal Testing Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June...

  13. Sandia National Laboratories: multiscale concentrated solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

  14. The solar electric power outlook

    SciTech Connect (OSTI)

    Kemp, J.W.

    1995-12-31T23:59:59.000Z

    The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

  15. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  16. Waverly Light and Power- Residential Solar Thermal Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

  17. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Office of Environmental Management (EM)

    Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium...

  18. Concentrating Solar Power Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect...

  19. Sandia National Laboratories: Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News,...

  20. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Sandia Wins Funding for High-Temperature Falling-Particle Solar-Energy Receiver On August 8, 2012, in Concentrating Solar Power, Energy, Facilities,...

  1. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  3. Gulf Power- Solar PV Program

    Broader source: Energy.gov [DOE]

    '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more...

  4. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  5. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    direct solar radiation onto the PEC cell and tracking isTracking Concentration…………………….39 Figure 1.20: PV-RO System……………………………………………………………..42 Figure 1.21: Solar

  6. Georgia Power- Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Georgia Power, the state's largest utility, has established a green power program, that allows the company to purchase limited solar generation at a premium price based on other customers volunta...

  7. Molded polymer solar water heater

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09T23:59:59.000Z

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  8. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  9. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  10. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  11. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  12. Sandia National Laboratories: Solar Power International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power International Sandia to host PV Bankability workshop at Solar Power International (SPI) 2013 On September 24, 2013, in Conferences, Energy, Events, News & Events,...

  13. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    from serious water shortages, and expected to increase topopulations. Not only is water shortage a problem, but thewith a devastating water shortage. 1.2.1 Desalination

  15. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  16. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  17. Concentrated solar power on demand

    E-Print Network [OSTI]

    Codd, Daniel Shawn

    2011-01-01T23:59:59.000Z

    This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions ...

  18. One Panel One Roof, DOE Powering Solar Workforce | Department...

    Broader source: Energy.gov (indexed) [DOE]

    One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

  19. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  20. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  1. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  2. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal...

  3. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  4. Solar Water Heating Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

  5. Solar Powered Classroom

    SciTech Connect (OSTI)

    none

    2013-06-13T23:59:59.000Z

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  6. Solar Powered Classroom

    ScienceCinema (OSTI)

    none

    2013-06-27T23:59:59.000Z

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  7. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) JumpAirWork (Water Right)Solar One Solar Power

  8. The Solarex Solar Power Industrial Facility

    E-Print Network [OSTI]

    Macomber, H. L.; Bumb, D. R.

    1984-01-01T23:59:59.000Z

    The Solarex Corporation has designed, built and operated an industrial facility which is totally powered by a Solarex solar electric power system. The solar power system, energy-conserving building and manufacturing operations were treated as a...

  9. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  10. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

  11. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

  12. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molten Salt Test Loop Pump Installed On August 30, 2012, in Concentrating Solar Power, Energy, Energy Storage Systems, News, Renewable Energy, Solar The pump was delivered and...

  13. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar Recently, personnel from the Air Force Research Laboratory in Albuquerque...

  14. Sandia National Laboratories: Concentrating Solar Power: Efficiently...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

  15. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  16. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

  17. Solar powered dehumidifier apparatus

    DOE Patents [OSTI]

    Jebens, Robert W. (Skillman, NJ)

    1980-12-30T23:59:59.000Z

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  18. GMP Solar Power

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  19. Solar thermionic power plant (II)

    SciTech Connect (OSTI)

    Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

    1981-01-01T23:59:59.000Z

    It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

  20. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  1. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    is the fraction of available solar power incident on theoutput per available solar power and characterizes theintegral of available solar power over the operational time

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  3. Do You Have a Solar Water Heater?

    Broader source: Energy.gov [DOE]

    Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

  4. SOLAR ROOF POWERS THE NJIT CAMPUS CENTER

    E-Print Network [OSTI]

    Bieber, Michael

    SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF, ARE 160 SOLAR PANELS, SOME OF WHICH AUTOMATICALLY FOLLOW THE PATH OF THE SUN. 10 NJITMAGAZINE COVER STORY'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says

  5. Solar energy at Forest Research Solar Power at Alice Holt

    E-Print Network [OSTI]

    Solar energy at Forest Research Solar Power at Alice Holt research station provides a renewable to install a solar photovoltaic system to meet some of the research station's energy needs. #12;In January dioxide emissions, when compared with traditional forms of energy generation. · The solar installation

  6. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, NV July 1, 2010 DOI-BLM-NV-S010-2010-0149-EA: Bureau of Land Management's Final Environmental Assessment Fotowatio Nevada Solar, LLC's APEX Solar Power Project in Clark...

  7. Lake Worth Utilities- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A...

  8. Columbia Water and Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light (CWL) offers rebates to its commercial and residential customers for the purchase of solar water heaters and solar photovoltaic systems. These rebates are available for...

  9. SMUD- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

  10. Clark Public Utilities- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed...

  11. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar...

  12. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02T23:59:59.000Z

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  13. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Riverside County, CA December 10, 2010 EIS-0449: Notice of Adoption of the Final Environmental Impact Statement Blythe Solar Power Project December 10, 2010 EIS-0449:...

  14. Multi-objective optimization of solar tower power plants

    E-Print Network [OSTI]

    Ábrahåm, Erika

    Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 of the solar tower Pascal Richter · Optimization of solar tower power plants 2/20 #12;Model of solar tower

  15. Columbia Water & Light- Solar Energy Loans

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  16. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01T23:59:59.000Z

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  17. Mandating Solar Hot Water by California Local Governments: Legal Issues

    E-Print Network [OSTI]

    Hoffman,, Peter C.

    1981-01-01T23:59:59.000Z

    and counties the power to require dedication of solar accessthe power to re- quire dedication of solar easements as a

  18. Santa Clara Water and Sewer- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies,...

  19. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  20. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance. The total federal...

  1. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measuring the effects of aerodynamicheating on radar transmissions ... Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software &...

  2. Concentrating Solar Power Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

  3. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  4. Solar Decathlon: Powered by the Sun (Revised)

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    The Solar Decathlon is a collegiate competition to design and build the most energy efficient, solar-powered house. It is also an event on the National Mall in Washington D.C. to which the public is invited. This gatefold brochure describes the Solar Decathlon 2005 competition and event, including a schedule of activities.

  5. Union Training Future Electricians in Solar Power

    Broader source: Energy.gov [DOE]

    Electricians in Indiana believe solar power is the future, and they are preparing for it. The International Brotherhood of Electrical Workers Local 725 (IBEW 725) in Terre Haute, Ind., purchased 60 solar panels and plans to train its members in solar installation.

  6. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  7. Grays Harbor PUD- Solar Water Heater Loan

    Broader source: Energy.gov [DOE]

    Since October 2001, Grays Harbor PUD has offered a low-interest loan program (currently 4.0%) for the installation of solar water heaters. Loans are available for the installation of solar...

  8. Grays Harbor PUD- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square...

  9. Solar Power as a Source of Noise-free Power for Research

    E-Print Network [OSTI]

    Dutta, Akshita; Chorescu, Irinel

    2011-01-01T23:59:59.000Z

    Solar Power as a Source of Noise-free Power for ResearchState University Keywords: solar energy, reducing backgroundhas been increasing interest in solar convertors, mostly for

  10. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13T23:59:59.000Z

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  11. The Sacramento power utility experience in solar

    SciTech Connect (OSTI)

    Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

    1993-12-31T23:59:59.000Z

    An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

  12. Solar-Powered Smart Wireless Camera Network for Outdoor Monitoring

    E-Print Network [OSTI]

    Abas, Kevin Mathys

    2015-01-01T23:59:59.000Z

    Solar-Powered Wireless Visual SensorProtocols . . . . . . . . . . . . . Solar HarvestingCard B MSP430 Firmware Source C Solar Harvesting Efficiency

  13. Concentrating Solar Power: Best Practices Handbook for the Collection...

    Open Energy Info (EERE)

    Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar...

  14. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    High-temperature, Solar Collectors for Mass Production.by tracking type solar collectors and the power productionvi List of Symbols solar collector inlet aperture area (m

  15. Innovative solar thermochemical water splitting.

    SciTech Connect (OSTI)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  16. Solar Hot Water Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

  17. Monitoring SERC Technologies — Solar Hot Water

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

  18. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  19. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  1. Water Power Program: Publications

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart, andThomasWaste HeatWater PowerInformation

  2. Solar-powered aroma generator

    SciTech Connect (OSTI)

    Spector, D.

    1986-02-04T23:59:59.000Z

    In combination with a switch-controlled electric light bulb having a threaded plug and a threaded socket disposed in a room which is also subject to natural ambient light, a switchless aroma generator is installed in the room which is automatically activated only when the electric light bulb is switched on. The activated generator functions to discharge an air current into the room which conveys an aromatic vapor to modify the atmosphere. The generator described in this patent consists of: A.) an air-permeable cartridge containing an aroma supply which is exuded into the atmosphere at a relatively rapid rate as an air current is forced through the cartridge; B.) a fan driven by a low-voltage, direct-current motor having predetermined power requirements, the fan being arranged to force an air current through the cartridge; C.) a housing incorporating the cartridge and the motordriven fan, the housing containing an apparatus for mounting it on a wall in the room; and D.) a solar cell assembly producing a direct-current output placed in close proximity to the bulb in the room and irradiated when the bulb is switched on. The assembly is connected to the motor to supply power, the electrical relationship of the assembly to the motor being such that the cell output is sufficient to power the motor only when the bulb is switched on to irradiate the assembly, and is insufficient when the bulb is switched off. The cell output then depends on ambient light in the room, and the operation of the generator is coordinated with that of the bulb despite the absence of a wired connection between and an aroma is generated only when the bulb is switched on.

  3. Solar Powering Your Community: A Guide for Local Governments; Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    DOE/EERE Solar America Cities Fact Sheet - Solar Powering Your Community: A Guide for Local Governments, July 2009.

  4. High-Temperatuer Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was...

  5. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

  6. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  7. National Laboratory Concentrating Solar Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

  8. Hanford Solar Power: Cost Effective and Mobile | Department of...

    Office of Environmental Management (EM)

    Solar Power: Cost Effective and Mobile Hanford Solar Power: Cost Effective and Mobile February 26, 2014 - 12:00pm Addthis EMs Richland Operations Office and its contractors...

  9. Solar Powering America by Recognizing Communities Funding Opportunity...

    Energy Savers [EERE]

    Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

  10. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    solar powered cooling system by producing a seamless output of cooling powersolar COP is the ratio of cooling output per available solar power

  11. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

  12. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    Cooling: First Ever Non-tracking solar collectors powering aCooling: First Ever Non-tracking solar collectors powering athe first ever non-tracking solar powered double effect

  13. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  14. Maximizing Efficiency of Solar-Powered Systems by Load Matching

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

  15. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  16. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide...

  17. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    to buffer the incoming solar power to the glycol loop so asarea the available power to the solar thermal collector was

  18. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  19. Solar Power Industries SPI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolar Power

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  1. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  2. Solar Hot Water Contractor Licensing

    Broader source: Energy.gov [DOE]

    In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North...

  3. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    reliability evaluation of generation systems including Photovoltaic (PV) and Concentrated Solar Power (CSP) plants. Unit models of PV and CSP are developed first, and then generation system model is constructed to evaluate the reliability of generation systems...

  4. Solar Power Systems Web Monitoring

    E-Print Network [OSTI]

    Kumar, Bimal Aklesh

    2011-01-01T23:59:59.000Z

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  5. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

  6. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect (OSTI)

    Randy C. Gee

    2004-11-15T23:59:59.000Z

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  7. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  8. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  9. Piedmont EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

  10. CPS Energy- Solar Hot Water Rebate Program

    Broader source: Energy.gov [DOE]

    As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

  11. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30T23:59:59.000Z

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  12. Sandia National Laboratories: solar thermal power plant components

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  13. Sandia National Laboratories: reduce the cost of solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  14. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  16. Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power

    SciTech Connect (OSTI)

    Kennedy, C. E.; Terwilliger, K.

    2007-01-01T23:59:59.000Z

    Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

  17. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

  18. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar Farm Solar Power Plant

  19. Green Mountain Power- Solar GMP

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  1. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14T23:59:59.000Z

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  2. Solar Hot Water Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of...

  3. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  4. Implications of geographic diversity for short-term variability and predictability of solar power.

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    Term variability of solar power,” Lawrence Berkeley Nationaldue to wind and solar power,” Environmental Science &and Predictability of Solar Power Andrew D. Mills and Ryan

  5. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  6. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submitted

  7. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  8. Solar thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E. (Boeing Aerospace Co., Seattle, WA); Day, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL)

    1980-01-01T23:59:59.000Z

    A study has been performed on the technical feasibility and cost of a TPV system for an alternative space power supply. An analysis of six previous studies has been performed and a consistent optical, thermal, and electrical model developed. A search of the literature for materials data has been augmented by an experimental test program on materials and breadboard subsystems of the TPV. These data have been used in the model to determine the technical feasibility and the degree of performance that might be expected from such a system. A system design study was then conducted to optimize the launch configuration, the weight, and the cost of the TPV space power system. Results from this study were used to define a specific design which could be used in a detailed cost analysis. A cost analysis was then performed to determine the relative costs of the TPV power system. It appears that a system having a specific power greater than 150 W/kg can be produced for approximately 30 dollars per watt.

  9. Application of solar-powered desalination in a remote town in South Australia 

    E-Print Network [OSTI]

    De Munari, Annalisa; Capăo, D.P.S; Richards, B.S.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    Coober Pedy is a remote town in South Australia with abundant solar radiation and scarce and low quality water, where a reverse osmosis plant has been operating since 1967. This paper evaluates the feasibility of powering ...

  10. Concentrated Solar Power Generation Systems: The SAIC Dish

    E-Print Network [OSTI]

    Hemmers, Oliver

    Concentrated Solar Power Generation Systems: The SAIC Dish Center for Energy Research at UNLV #12;Concentrating Solar Dishes Work has been underway at UNLV's Center for Energy Research since 2001 in the use of concentrating solar dishes for electrical power generation. One of these solar dishes was marketed by Science

  11. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

  12. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  13. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy...

  14. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  15. Energy 101: Concentrating Solar Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    101: Concentrating Solar Power Energy 101: Concentrating Solar Power August 6, 2010 - 12:58pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs How...

  16. Solar-powered carousel for hands-on teaching

    E-Print Network [OSTI]

    Shea, Erin C. (Erin Colleen)

    2005-01-01T23:59:59.000Z

    This thesis is the design of a solar-powered carousel that informs the public about the setup and capabilities of solar-powered systems. It is designed as a mobile tool that can be moved among college campuses, businesses, ...

  17. Practical Solar Thermal Chilled Water 

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  18. Practical Solar Thermal Chilled Water

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  19. Solar Powering America by Recognizing Communities Funding Opportunity

    Broader source: Energy.gov [DOE]

    DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

  20. PV vs. Solar Water Heating- Simple Solar Payback

    Broader source: Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

  1. A Novel Solar-Fossil Hybrid Power Plant

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2014-01-01T23:59:59.000Z

    This is a short article prepared for Power Magazine about our development of a solar-powered steam-methane reformer.

  2. SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey

    E-Print Network [OSTI]

    SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey Lori Bird Christy are still developing, participation in these programs is supporting a significant amount of new solar energy in part through green power marketing. This paper describes the use of solar energy in green power

  3. NREL Develops Sub-Hour Solar Power Data Set

    E-Print Network [OSTI]

    from photovoltaic and concentrating solar power plants of various sizes. Researchers measure global into their electric power systems. Large-scale deployment of solar energy requires a favorable environment and requirements. Utilities need tools and data to study and enable high solar penetrations on their power systems

  4. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

  5. Solar Power Systems Find A Professional Solar Energy Installer For Any

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power Systems Find A Professional Solar Energy Installer For Any Type Of System www.CleanEnergyAuthority.com Install Solar Panels Enter Your Zip Code & Connect To Pre-Screened Solar Panel Installers www.ServiceMagic.com Biomass Pumps Reliable metering for apps from microflow to scale-up & pilot plant www.isco.com The Solar

  6. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  7. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01T23:59:59.000Z

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  8. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

  9. Solar Hot Water Creates Savings for Homeless Shelters | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts?...

  10. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  11. Economic Analysis of Solar Water Heaters in GuangZhou 

    E-Print Network [OSTI]

    Wang, Y.; Zhao, L.

    2006-01-01T23:59:59.000Z

    As a mature applied technology, the largest obstacle to the promotion of the solar water heater is the high initial investment that makes an impact on consumers' choices. The initial investment and maintenance cost of the solar water heater...

  12. Economic Analysis of Solar Water Heaters in GuangZhou

    E-Print Network [OSTI]

    Wang, Y.; Zhao, L.

    2006-01-01T23:59:59.000Z

    As a mature applied technology, the largest obstacle to the promotion of the solar water heater is the high initial investment that makes an impact on consumers' choices. The initial investment and maintenance cost of the solar water heater...

  13. U.S. Virgin Islands- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    A household can receive a maximum of two solar water heater rebates. Rebate amounts vary slightly based upon installed equipment. Rebates will be $1,250 for solar water heaters with an OG-300 rat...

  14. Solar Farm Going Strong at Water Treatment Plant in Pennsylvania...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua...

  15. Solar Water Heater Rebate Program (U.S. Virgin Islands)

    Broader source: Energy.gov [DOE]

    The Virgin Islands Energy Office currently offers rebates to residents for purchasing solar water heaters from local vendors. The program will cover residential, solar water heaters of 120 gallons...

  16. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    None

    2012-01-11T23:59:59.000Z

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  17. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Review Article Solar-Thermal Powered Desalination: Its Significant

    E-Print Network [OSTI]

    Reif, John H.

    @kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

  20. PV/thermal solar power assembly | OSTI, US Dept of Energy, Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVthermal solar power assembly Re-direct Destination: A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar...

  1. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Janoutput of a solar photovoltaic (PV) plant was presented andsimulating solar photovoltaic (PV) power plant output given

  2. Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

    E-Print Network [OSTI]

    Ábrahåm, Erika

    , Germany 2 Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Abstract. The exploitation of solar power for energy supply is of in- creasing importance. While technical development mainly takes, wind, and biomass energy. Among such tech- nologies, concentrating solar thermal power (CSP) plants

  3. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  4. Sandia National Laboratories: Electric Power Generation and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InterconnectsElectric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and...

  5. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat can also be efficiently and cheaply stored to produce electricity when the sun ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar...

  6. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01T23:59:59.000Z

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  7. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  8. Peak power tracking for a solar buck charger

    E-Print Network [OSTI]

    Cohen, Jeremy Michael, M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis discusses the design, implementation, and testing of a buck converter with peak power tracking. The peak power tracker uses a perturb and observe algorithm to actively track the solar panel's peak power point ...

  9. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  10. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Customer-generators enrolled in the Madison Gas & Electric (MGE) green power purchase program (Green Power Tomorrow) are eligible to receive a special rate for the power produced from solar p...

  11. Sandia National Laboratories: Water Power Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Personnel Water Power in the News Geothermal Advanced Bit Development Geothermal Energy & Drilling Technology Hydrogen and Fuel Cells Program Materials & Components...

  12. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to find linkages between water power grid services and water availability. All balancing areas have the same basic needs for responsive resources (generation and sometimes...

  13. Concentrating Solar Power | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer SimulationsConcentrating Solar Power

  14. Sandia Energy - Solar Power International (SPI) Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolar GlarePower

  15. SunShot Concentrating Solar Power Research

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint |EnergyEnergyofSummary:Seats Solar Power

  16. Concentrating Solar Power Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/Receiver Characterization We use a variety ofSolar

  17. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar Power Basics (The following text is derived

  18. Spheral Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy Resources JumpSpheral Solar Power

  19. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of Solar Resource Data | Open

  20. Protecting Solar Rights in California Through an Exploration of the California Water Doctrine

    E-Print Network [OSTI]

    Fedman, Anna

    2011-01-01T23:59:59.000Z

    Nevertheless water and solar energy share many similar to realizing additional solar energy generation throughout installation of a  solar energy systems.    Solar Easement 

  1. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  2. ePOWER Seminar AC solar cells: A new breed of PV power generation

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    -noon Walter Light Hall, Room 302 Abstract: A solar cell inside a photovoltaic (PV) panel inherently produces ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant will provide a guideline for solar cell designers to fabricate various discrete components in a power converter

  3. Water Power Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Budget Water Power Budget The U.S. Department of Energy (DOE) has allocated 58.6 million in fiscal year 2014 funds for the Water Power Program to research and develop marine and...

  4. Case Study - Glendale Water and Power

    Office of Environmental Management (EM)

    Glendale Water and Power March 19, 2012 1 A digital photo frame is part of Glendale Water and Power's (GWP's) in-home display pilot that is enabling customers to track their usage...

  5. Solar Two is a concentrating solar power plant that can supply electric power "on demand"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled to about 285°C (550°F) in producing the steam, it is again pumped to the top of the tower to be heated

  6. Federal Incentives for Water Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

  7. NREL: News - NREL Teams with SolarCity to Maximize Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    114 NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids Both are working together with the Hawaiian Electric Companies to analyze and enable higher penetrations...

  8. STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)

    E-Print Network [OSTI]

    attached CEC F-Chart) # of Collectors in System Collector Size Solar Tank Volume (gallons) §150(j)1B piping shall be insulated. §150(j)4: Solar water-heating system and/or/collectors are certifiedSTATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08

  9. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    2015-04-08T23:59:59.000Z

    Apr 8, 2015 ... Solar Power Tower (SPT) systems are known as one of the most promising ...... An appropriate control is required to adapt the mass flow in the ...

  10. Funding Opportunity Announcement: Solar Powering America by Recognizin...

    Office of Environmental Management (EM)

    support, contact SPARC@ee.doe.gov. SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

  11. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Office of Environmental Management (EM)

    Integration Subprogram Overview SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

  12. World's Largest Concentrating Solar Power Plant Opens in California...

    Office of Environmental Management (EM)

    Guarantees for BrightSource Energy SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

  13. NREL: Concentrating Solar Power Research - NREL Forges Foundation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Forges Foundation for Advanced Concentrating Solar Power Receivers September 16, 2014 As part of DOE's SunShot effort, NREL's Thermal Systems Group is performing research and...

  14. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Energy Technical...

  15. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  16. Solar Powering Your Community: A Guide for Local Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Guide for Local Governments (Book), Energy Efficiency & Renewable Energy (EERE) Solar Powering Your Community: A Guide for Local Governments (Book), Energy Efficiency &...

  17. Sandia National Laboratories: character-izing solar-power-plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  18. Sandia National Laboratories: simulating solar-power-plant output...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulating solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  19. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    Emilio Carrizosa

    2015-03-26T23:59:59.000Z

    Mar 26, 2015 ... Abstract: In this article a new procedure to optimize the design of a Multiple Receivers Solar Power Tower system is presented. The proposed ...

  20. Sandia National Laboratories: PNM Distributed Energy Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

  1. Drivers and Barriers in the Current Concentrated Solar Power...

    Open Energy Info (EERE)

    the four major types of concentrating solar power technologies (CSP): parabolic trough, tower concentrators, linear Fresnel lenses and dish engine systems. It also provides an...

  2. The energy market is diversifying. In addition to traditional power sources, decision makers can choose among solar, wind, and

    E-Print Network [OSTI]

    the steps of analyzing the energy outputs and economics of a solar, wind, or geothermal project. NREL power towers. SAM even calculates the value of saved energy from a domestic solar water heating systeminnovati n The energy market is diversifying. In addition to traditional power sources, decision

  3. Marietta Power & Water- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Marietta Power & Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a...

  4. Solar Powering America Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    megawatts of solar on federally-assisted housing. Featured Videos Inside the White House: Solar Panels SunShot Tech to Market SunShot Solar PV SunShot Identity Video Community...

  5. A stock water solar heating system

    SciTech Connect (OSTI)

    Nydahl, J.; Carlson, B.

    1999-07-01T23:59:59.000Z

    This paper reports on the progress in the development of an inexpensive but rugged solar system to heat stock water. Insulation encased in fiber reinforced concrete is the main structural component for the collector and the partition between the unheated stock tank and the heated section. A fully wetted, drain-back collector was designed to produce a high optical efficiency and to permit its water passage to be opened for cleaning. A unique double-glazed design is used in which the inner glazing is a film with a large thermal expansion coefficient. This causes a significant drop in the stagnation temperatures since a single glazed configuration is approached at high temperatures. The collector and the partially covered insulated tank prevented freezing, and held the average water temperature at 6.4 C (44 F) during the day while the mean daily ambient temperature was {minus}5.4 C (22 F) over a nine day test.

  6. South River EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

  7. Lumbee River EMC- Solar Water Heating Loan Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering 1.50% loans to residential customers for the installation of solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings...

  8. Lumbee River EMC- Solar Water Heating Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  9. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Through a partnership with the Orlando Federal Credit Union (OFCU), OUC also offers a Residential Solar Loan Program to finance the solar hot water system. Customers who choose to finance through...

  10. Lumbee River EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  11. Lumbee River EMC- Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering 1.50% loans to residential customers for the installation of solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings...

  12. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation, search Name:Waste2EnergyandWater Power

  13. Sandia Energy - Water Power Personnel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater Power Personnel Home

  14. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater Power Forum

  15. Solar Power Purchase Agreements | Department of Energy

    Office of Environmental Management (EM)

    NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency" Tool to Compare Solar Energy Program Financing Options Tucson's Solar Experience: Developing PV with RFPs...

  16. Connective Power: Solar Electrification and Social Change in Kenya

    E-Print Network [OSTI]

    Jacobson, Arne

    Connective Power: Solar Electrification and Social Change in Kenya ARNE JACOBSON * Humboldt State development, Africa, Kenya 1. INTRODUCTION Solar electrification has emerged as a leading alternative to grid technology advocates, but my research in Kenya indicates that solar electrification is, at best, only loosely

  17. PS10 Solar Power Tower Xi Jing, Fang

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    area equivalent of 17 American Football Tower Solar receiver 4 vertical panels 18ft*39ft Steam turbinePS10 Solar Power Tower Xi Jing, Fang #12;Overview Magnitudes , Cost & TechnologiesMagnitudes , Cost Government . #12;Further ExplanationFurther Explanation Plataforma Solar de SanlĂșcar la Mayor,PSSM Megawatts

  18. Water delivery in the Early Solar System

    E-Print Network [OSTI]

    Dvorak, Rudolf; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

    2015-01-01T23:59:59.000Z

    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content i...

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemcombined heat and power systems . . . . . . . Verificationmyth eight – worldwide power systems are economically and

  20. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    modeling of solar steam- generators, solar water heating systems, Heating Ventilating and Air Conditioning (HVAC) systems, wind speed predictions, control in power generation systems,

  1. Strategies in tower solar power plant optimization

    E-Print Network [OSTI]

    Ramos, A

    2012-01-01T23:59:59.000Z

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  2. JANUARY 2008 SOLAR DESALINATION OF BRACKISH WATER USING MEMBRANE

    E-Print Network [OSTI]

    Johnson, Eric E.

    solar collectors as water heaters and to determine the process parameters of the membrane distillationJANUARY 2008 SOLAR DESALINATION OF BRACKISH WATER USING MEMBRANE DISTILLATION PROCESS WRRI Technical Completion Report No. 342 Shuguang Deng NEW MEXICO WATER RESOURCES RESEARCH INSTITUTE MSC 3167 New

  3. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycle Selection andSolar Water

  4. Installation package for a Sunspot Cascade Solar Water Heating System

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  5. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  6. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

  7. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  8. NV Energy (Northern Nevada)- Solar Hot Water Incentive Program

    Broader source: Energy.gov [DOE]

    NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

  9. Non-Residential Solar Water Heating Site Assessment at Milwaukee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Residential Solar Water Heating Site Assessment at Milwaukee Apartment Buildings The Midwest Renewable Energy Association's certified site assessors conducted 25 site...

  10. Duquesne Light Company- Residential Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying...

  11. Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)

    Broader source: Energy.gov [DOE]

    '''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

  12. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  13. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    with. Comparing tracking solar CHP systems to stationary PVratios of tracking collector solar CHP to stationary PV isprovided by a tracking concentrating solar collector, water

  14. Opportunities for utility involvement with solar domestic hot water

    SciTech Connect (OSTI)

    Carlisle, N.; Christensen, C. (National Renewable Energy Lab., Golden, CO (United States)); Barrett, L. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

    1992-05-01T23:59:59.000Z

    Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

  15. The Solarex Solar Power Industrial Facility 

    E-Print Network [OSTI]

    Macomber, H. L.; Bumb, D. R.

    1984-01-01T23:59:59.000Z

    building is 50 with serne areas as high as R-70. The waste heat fran production equipment is collected and distributed by a specially design d system to heat the building during the winter. A DC powered ground-water-to-air heat pump provid~ back...-up for heating. The cooling load of the .I building is low due to the efficient energy des~gn; however, an air conditioner will assist cooling reqUired. 2. ELEMENTS OF THE PV SYSI'EM 2.1 PV Array The Photovoltaic (PV) array consists of 52 series strings...

  16. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Term Variability of Solar Power," LBNL Report No. 3884E,High penetration of solar power is highly desirable from ansimilarity to the shape of solar power fluctuations [11].

  17. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01T23:59:59.000Z

    due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power” Andrew Mills, ? , †due to wind and solar power. Environ. Sci. Technol. (2)

  18. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  19. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  20. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  1. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  2. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect (OSTI)

    Castellano, Felix N. [Bowling Green State University

    2013-08-05T23:59:59.000Z

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 ?s in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a ?s lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon chromophores poised for upconversion photochemistry are also presented.

  3. How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

  4. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  5. Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks

    E-Print Network [OSTI]

    Culler, David E.

    design guidelines for micro-solar power systems. Keywords-- Micro-Solar Power Systems, Solar Energy Har of the four components of a micro- solar power system models various design choices. Based on this modelDesign and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks Jaein Jeong, Xiaofan

  6. Sandia National Laboratories: Concentrating Solar Power (CSP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies andor validating technological concepts using Sandia's expertise and infrastructure, including the National Solar Thermal Test Facility. Areas of possible...

  7. Florida Power and Light- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Note: This program will not be offered after 2015. More information is available on FPL's solar rebate web site.

  8. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report August 2010 DOE...

  9. Solar Water Heating: What's Hot and What's Not 

    E-Print Network [OSTI]

    Stein, J.

    1992-01-01T23:59:59.000Z

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  10. Solar Water Heating: What's Hot and What's Not

    E-Print Network [OSTI]

    Stein, J.

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  11. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  12. enhanced) in water vapor. The distribution of water ice throughout the solar nebula may

    E-Print Network [OSTI]

    Utrecht, Universiteit

    enhanced) in water vapor. The distribution of water ice throughout the solar nebula may have varied Solar System (Univ. of Arizona Press, Tucson, AZ, 1988), p. 348. The time scale for settling of solids that are a few hundred times greater than that of the canonical solar nebula (14). Turbulent

  13. Protecting Solar Rights in California Through an Exploration of the California Water Doctrine

    E-Print Network [OSTI]

    Fedman, Anna

    2011-01-01T23:59:59.000Z

    Nevertheless water and solar energy share many similar resource.  Water and solar energy share several  properties that both water and solar energy share that  make the 

  14. Solar Power Innovations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolar

  15. Solar Power Prospector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolarJump to:

  16. Solar Power | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolarJump

  17. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    Solar thermal powered desalination: membrane versus distillation technologies G. Burgess and K Canberra ACT 0200 AUSTRALIA E-mail: greg.burgess@anu.edu.au Multiple Effect Distillation (MED) is generally assisted) desalination has been conducted. Solar thermal driven Multiple Effect Distillation (MED) has been

  18. Florida Power and Light- Solar Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the standby list will be contacted in the numerical...

  19. Solar-thermal hybridization of Advanced Zero Emissions Power Plants

    E-Print Network [OSTI]

    El Khaja, Ragheb Mohamad Fawaz

    2012-01-01T23:59:59.000Z

    Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

  20. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    E-Print Network [OSTI]

    description Figure 1 shows the system block diagram. Maximum output power of the solar cell is extractedPower Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking

  1. EPIC-RoofNet: An Experimental Testbed for Solar-powered Wireless Sensor Networks

    E-Print Network [OSTI]

    Nasipuri, Asis

    EPIC-RoofNet: An Experimental Testbed for Solar-powered Wireless Sensor Networks Amitangshu Pal experiments on solar-powered sensor nodes. Due to constraints in cost and size, the solar panels of solar energy available at such solar-powered sensor nodes can be highly unpredictable and at times

  2. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01T23:59:59.000Z

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  3. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23T23:59:59.000Z

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  4. Design package for solar domestic hot water system

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  5. Water Scarcity and Energy: Water and Power Efficiency of

    E-Print Network [OSTI]

    Scott, Christopher

    Water Scarcity and Energy: Water and Power Efficiency of Recycled Water Arizona Hydrological Society ­ 21st Annual Symposium 3rd International Professional Geologic Conference Graham Symmonds, P Total Percentage Growth 2007-2030 67.2% Population projections for Arizona (U.S. Census Bureau

  6. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  7. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    power to the host-customers under long- term power sales agreements. Duke Energy North Carolina Solar

  8. Parabolic Trough Solar Power for Competitive U.S. Markets

    SciTech Connect (OSTI)

    Henry W. Price

    1998-11-01T23:59:59.000Z

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market.

  9. Consolidated Water Power Company CWPCo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidatedConsolidated Water Power

  10. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect (OSTI)

    Speer, J.H. Jr.

    1981-01-01T23:59:59.000Z

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  11. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31T23:59:59.000Z

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  12. Real-Time Water Quality Management in the Grassland Water District

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Grassland Water District. Solar Panel with 12-volt batteryWater District. Power Solar Panel with 12-volt batteryWater District. Power Solar Panel with 12-volt battery

  13. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    power to local residences or businesses. Although it may seem that the decreased efficiency of solar-

  14. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    research focused on solar powered cooling which has amounted to systemscooling system in 2009, the year I graduated with my B.S. and I chose to continue this research

  15. Sandia National Laboratories: Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration for DTOcean, a project aimed at accelerating the industrial development of ocean-energy power-generation knowledge and providing design tools for deploying the first...

  16. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  17. Power generation considerations in a solar biomodal receiver

    SciTech Connect (OSTI)

    Rochow, R.F. [NovaTech, Lynchburg, VA (United States); Miles, B.J. [Babcock and Wilcox, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    The Integrated Solar Upper Stage (ISUS), or solar bimodal stage provides both propulsive thrust for efficient orbital transfer(s) and electrical power generation for the spacecraft. The combined propulsive and power systems allow the solar bimodal system to effectively compete for a variety of missions. Once on station, thermionic converters are used to supply continuous electrical power to the satellite, even during periods when the spacecraft is in the Earth`s shadow. The key to continuous power supply is thermal energy storage. The ISUS propulsion system also benefits through the use of thermal storage. By utilizing a graphite receiver, large amounts of sensible heat can be stored for later power generation. Waste heat is radiated to space through the use of heat pipes. Clearly, the graphite mass must be minimized without sacrificing electrical power capability. Voltage and current characteristics are carefully designed to operate within acceptable ranges. The detailed design of the receiver/absorber/converter (RAC) power system must meet these requirements with as little impact to the remainder of the bimodal system as possible. This paper addresses the key design considerations of a solar bimodal receiver as a power plant. Factors including the thermal storage and heat transfer from the graphite receiver to the thermionic converters, the support structures, electrical insulation and converter string design will be discussed.

  18. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  19. Update on the Solar Power Satellite transmitter design

    SciTech Connect (OSTI)

    Brown, W.C.

    1986-01-01T23:59:59.000Z

    A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.

  20. Water Pollution Control Plant Solar Site Evaluation: San José

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  1. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, AlaskaASEMAV Solar

  2. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to: navigation, searchSidingEnergy

  3. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation, searchMillenium Palen Solar

  4. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand FocusSCSENDECO2 JumpSolar Three

  5. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County, Texas:Starwood Solar

  6. Niland Solar Farm LLC Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: Energy ResourcesNiland Solar Farm

  7. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWind FarmSolar Farm

  8. City of Tallahassee Utilities- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    The homeowner must allow the City of Tallahassee to conduct an energy audit on the home in order to make a preliminary assessment of sun exposure and to provide program guidance. All solar water...

  9. Entergy New Orleans- Residential Solar Water Heating Program (Louisiana)

    Broader source: Energy.gov [DOE]

    Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first...

  10. New Hampshire Electric Co-Op- Solar Hot Water

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum...

  11. Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

  12. Beaches Energy Services- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and...

  13. Creating a Comprehensive Solar Water Heating Deployment Strategy

    SciTech Connect (OSTI)

    Focus Marketing Services

    1999-08-18T23:59:59.000Z

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  14. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  15. Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)

    Broader source: Energy.gov [DOE]

    Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

  16. Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  17. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

  18. NV Energy (Southern Nevada)- Solar Hot Water Incentive Program

    Broader source: Energy.gov [DOE]

    NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

  19. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  20. Theoretical investigation of solar energy conversion and water oxidation catalysis

    E-Print Network [OSTI]

    Wang, Lee-Ping

    2011-01-01T23:59:59.000Z

    Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

  1. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  2. New Braunfels Utilities- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available...

  3. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates: 39.90601, 116.387909 Show...

  4. Loveland Water and Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator...

  5. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  6. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  7. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16T23:59:59.000Z

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  8. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  9. SolarPower Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic MalaysiaSolarLabSolarPACES

  10. A comprehensive review of market research on solar water heaters

    SciTech Connect (OSTI)

    Ghent, P.; Keller, C.

    1999-11-01T23:59:59.000Z

    This is the second report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. The objective of this task is to identify key elements in previous studies on the marketing of solar water heaters in the new home industry. This review includes studies performed by FOCUS Marketing Services, the National Association of Home Builders Research Center, Symmetrics Marketing Corporation, and the California Energy Commission.

  11. The Phases of Water Ice in the Solar Nebula

    E-Print Network [OSTI]

    Ciesla, Fred J

    2014-01-01T23:59:59.000Z

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures ice to form. This processing would be a natural consequence of ice dynamics, and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  12. Gulf Power- Solar Thermal Water Heating Program

    Broader source: Energy.gov [DOE]

    A limited amount of funding is still available for 2015. The program website will be updated if more fund become available. 

  13. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    solar CHP system supplying arbitrary heat and power outputs.e Electrical power output of system Q Solar CHP to PV yearlysolar Rankine CHP system, sized equally in terms of peak power output,

  14. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    2010. Quantifying PV power output variability. Solar EnergyOutput power correlation between adjacent wind power plants. Journal of Solarpower system demonstrate that scaling the output from an individual solar

  15. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  16. Solar two: A molten salt power tower demonstration

    SciTech Connect (OSTI)

    Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sutherland, J.P. [Southern California Edison, Rosemead, CA (United States); Gould, W.R. Jr. [Bechtel Corp., San Francisco, CA (United States)

    1995-08-01T23:59:59.000Z

    A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.

  17. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript

    Broader source: Energy.gov [DOE]

    Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

  18. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  19. Gain Scheduled Control of a Solar Power Plant Tor A. Johansen1

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Gain Scheduled Control of a Solar Power Plant Tor A. Johansen1 , Kenneth J. Hunt2 and Idar Petersen to a pilot-scale solar power plant is described. A eld of parabolic collectors focus the solar radiation onto. Solar power plant, nonlinear control, gain scheduling, system identi cation. 1 Introduction

  20. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  1. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of...

  2. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Elliot E....

  3. Before Subcommittee on Water and Power - House Committee on Natural...

    Energy Savers [EERE]

    Subcommittee on Water and Power - House Committee on Natural Resources Before Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Mark Gabriel,...

  4. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    the Subcommittee on Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of William K....

  5. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Mark A....

  6. Before House Subcommittee on Water and Power - Committee on Natural...

    Energy Savers [EERE]

    House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on...

  7. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator SEPA...

  8. Water Use in the Development and Operations of Geothermal Power...

    Energy Savers [EERE]

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  9. Before The Subcommittee on Water and Power - House Energy and...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee...

  10. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Energy Savers [EERE]

    Water, Power, and Oceans House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer,...

  11. Water Power R&D Opportunity: Energy Department Announces $125...

    Energy Savers [EERE]

    Water Power R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Water Power R&D Opportunity: Energy Department Announces 125 Million for...

  12. Before the Subcommittee on Water, Power, and Oceans - House Natural...

    Energy Savers [EERE]

    Water, Power, and Oceans - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg,...

  13. Water Use in the Development and Operation of Geothermal Power...

    Energy Savers [EERE]

    Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water...

  14. The Subcommittee on Water, Power, and Oceans House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of...

  15. Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Installations

    E-Print Network [OSTI]

    Bozonnat, C.

    The extent, availability and reliability of solar power generation are assessed over Europe, and—following a previously developed methodology—special attention is given to the intermittency of solar power. Combined with ...

  16. Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area

    Broader source: Energy.gov [DOE]

    Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C.

  17. A solar powered distillation plant and pump station for use in ocean side desert areas

    SciTech Connect (OSTI)

    Dearien, J.A.; Priebe, S.J.

    1994-12-31T23:59:59.000Z

    There are thousands of miles of ocean shoreline which could sustain a productive human existence if sufficient fresh water were available for human consumption and for irrigation of crops. While solar stills can be built to produce fresh water at or close to sea level, raising water to a height sufficient to irrigate crops, even with minimum water usage crops, requires a significant amount of energy. This paper describes a ``no-external power`` process by which seawater can be purified and raised to a height above sea level sufficient to carry on a productive living in certain areas of the world. This device, the Solar Evaporation and Pumping System (SEAPS) is described as to function and areas of use.

  18. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01T23:59:59.000Z

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  19. Concentrating Solar Power Facilities and Solar Potential | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010

  20. Prescott Airport Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas- CovePresciencePrescott

  1. NREL: Concentrating Solar Power Research - Southwest Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat IsThermalReceiverResearchPower

  2. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControlInnovation PortalEnergy

  3. Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna

    E-Print Network [OSTI]

    All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

  4. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29T23:59:59.000Z

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  5. Concentrated Solar Thermoelectric Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Massachusetts Institute of Technology (MIT) is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  6. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01T23:59:59.000Z

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  7. Solar Powering America Home | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Metersof Energy LEDMarketReadySolar

  8. Aditya Solar Power Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy955°,6671°,MultiphaseAditya Solar

  9. Prosperity Solar Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip Jump to: navigation,Prosperity Solar

  10. Sandia Energy - Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloudConcentrating Solar

  11. Solar Powering America Home | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3Decathlon:of EnergySolar

  12. Stateline Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield,WindForeignForest

  13. Jupiter Solar Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co LtdJinzhouJoeSolar,Junco

  14. South West Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouthNew Jersey:South

  15. Texas Solar Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformation TengchongTex-La ElectricTexas RetailSolar

  16. Solar Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot Solar Manufacturing TechnologyofReady

  17. Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi

    E-Print Network [OSTI]

    Johnson, Eric E.

    environment for El Salvador · Create partnerships with leading U.S. solar industry companies · SelectTitle: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating

  18. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01T23:59:59.000Z

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  19. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    communication providing data on solar hot water collectorwithout a separate cap for the solar set-aside. These statesseparate caps for their solar and DG set-asides. References

  20. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01T23:59:59.000Z

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  1. EWEB- Residential Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  2. Solar water heaters | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sroWiki Page Solar and WindHot

  3. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01T23:59:59.000Z

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  4. Characterization of the Solar Power Resource in Europe and

    E-Print Network [OSTI]

    Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co to mitigate and adapt to unavoidable global environmental changes. Being data-driven, the Program uses for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR

  5. Diabetes hope P7 Solar energy powers on P12

    E-Print Network [OSTI]

    Liley, David

    Diabetes hope P7 Solar energy powers on P12 Post Designer stamps her cultural identity www destined way Kellie Penfold collaBoration is the currency in our Knowledge-Based econoMy australia australia's economic and social capacities. deputy vice-chancellor (research) Professor andrew Flitman 03

  6. Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur to install more PV modules, but it also results in severe performance degradation due to inherent partial

  7. Minnesota Power- Solar-Electric (PV) Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  8. Why did the solar power sector develop quickly in Japan?

    E-Print Network [OSTI]

    Rogol, Michael G

    2007-01-01T23:59:59.000Z

    The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW ...

  9. Mountain Association for Community Economic Development- Solar Water Heater Loan Program

    Broader source: Energy.gov [DOE]

    The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans...

  10. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15T23:59:59.000Z

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  11. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  12. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  13. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1WastesWaterWaterWater Power

  14. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01T23:59:59.000Z

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  15. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01T23:59:59.000Z

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  16. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  17. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01T23:59:59.000Z

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  18. Commercial Solar Hot Water Financing Program

    Broader source: Energy.gov [DOE]

    A variety of financing options will be available depending on the project, including power purchase agreements or energy service agreements. A third party will finance the construction, maintenan...

  19. Consolidated Water Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated

  20. Sierra Solar Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower PartnersSiEnergyDevelopment at 12 and

  1. Solar Thin Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassource HistoryPower Place:

  2. Bay Solar Power Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower SystemsRhode Island:BatteryBatticBay

  3. Solar Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet outlines the content of the second edition of the DOE publication Solar Powering Your Local Community: A Guide for Local Governments.

  4. Implications of geographic diversity for short-term variability and predictability of solar power.

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    Output power correlation between adjacent wind power plants,” Journal of Solarpower system demonstrate that scaling the output from an individual solar

  5. A comparison of reversible chemical reactions for solar thermochemical power generation

    E-Print Network [OSTI]

    Boyer, Edmond

    453 A comparison of reversible chemical reactions for solar thermochemical power generation O. M storage of the reaction products. A number of reactions have been proposed for solar thermochemical power to be a good choice for first generation solar thermochemical power generation. Revue Phys. Appl. 15 (1980) 453

  6. UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless nature of the circuit and providing operational autonomy by harvesting solar power without affecting, solar power harvesting. I. INTRODUCTION The increasing use of RFIDs and wireless sensor networks

  7. Solar power conversion efficiency in modulated silicon nanowire photonic Alexei Deinega and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinega://jap.aip.org/about/rights_and_permissions #12;Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinegaa that using only 1 lm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power

  8. A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems

    E-Print Network [OSTI]

    California at Berkeley, University of

    9 A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems DAVID CULLER, University of California, Berkeley Building a micro-solar power system is challenging because it must address develop a practical theory of micro-solar power systems that is materialized in a simulation suite

  9. Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub, Benjamin Nyffenegger

    E-Print Network [OSTI]

    Braun, Torsten

    Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub the development and experiencesof a solar-power driven wirelessmesh network for connectingsensorsin rural is available. II. SOLAR-POWER DRIVEN WIRELESS MESH NETWORK DEPLYOMENT AND OPERATION In a technology project

  10. Design and Analysis of Micro-Solar Power Systems for Wireless

    E-Print Network [OSTI]

    California at Berkeley, University of

    Design and Analysis of Micro- Solar Power Systems for Wireless Sensor Networks Jaein Jeong UC in Richmond Field Station Trio Heliomote #12;3 Our Contributions · Model for micro-solar power system guideline for micro-solar power systems. #12;4 Organization · System Architecture · Model for Each Component

  11. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  12. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

  13. Solar Power Forecasting at UC San Diego Jan Kleissl, Dept of Mechanical & Aerospace Engineering, UCSD

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    show 2 cloud layers. Vaisala Fig. 4: Observed solar power output (black line) and simulation (Fig. 4). Tier 3: Power output forecast As cloud related solar radiation reductions are observed algorithm to determine actual expected solar power output at each PV array over the hour ahead. #12;

  14. 2007 IEEE Canada Electrical Power Conference Solar Photovoltaic Array's Shadow Evaluation

    E-Print Network [OSTI]

    Lehman, Brad

    whether the maximum output power of the solar photovoltaic arrays under the system is sufficiently cost, and the the "shading factor," which is defined as the ratio of the non- maximum output power of the solar photovoltaic solar PV arrays: effects on performance, and in particular the output power of * In the numerical method

  15. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M. [LAAR Laboratory-Physics Department-USTOMB 31000 Oran (Algeria); Boudjemaa, F.; Akil, S. Kouider [Genie Climatic Department-CUKM 44000-Khemis Miliana (Algeria)

    2011-01-17T23:59:59.000Z

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  16. Solar Gamma Rays Powered by Secluded Dark Matter

    E-Print Network [OSTI]

    Brian Batell; Maxim Pospelov; Adam Ritz; Yanwen Shang

    2009-10-08T23:59:59.000Z

    Secluded dark matter models, in which WIMPs annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the solar system, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.

  17. Salem Electric- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

  18. Solar Hot Water Heater Industry in Barbados

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergyEnergy ResourceSolar Hot

  19. A solar photovoltaic power system for use in Antarctica

    SciTech Connect (OSTI)

    Kohout, L.L.; Merolla, A.; Colozza, A.

    1993-12-01T23:59:59.000Z

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  20. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  1. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect (OSTI)

    Greer, Charles R.

    1980-09-01T23:59:59.000Z

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  2. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    E-Print Network [OSTI]

    McLinko, Ryan M.

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

  3. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  4. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01T23:59:59.000Z

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  5. Marketing and promoting solar water heaters to home builders

    SciTech Connect (OSTI)

    Keller, C.; Ghent, P.

    1999-12-06T23:59:59.000Z

    This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

  6. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting

    E-Print Network [OSTI]

    Javey, Ali

    Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting Le Chen,, Esther of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720 has remained relatively underexplored. Here, we report the synthesis of BiVO4 thin films by reactive

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1WastesWaterWater Power

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater Power Forum HomeWater

  9. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home National Program encourages, but does not require,...

  10. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01T23:59:59.000Z

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  11. Solar Powering Your Community: A Guide for Local Governments; Second Edition

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    DOE designed this guide "Solar Powering Your Community: A Guide for Local Governments" to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

  12. Loveland Water & Power- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric...

  13. Water Use in the Development and Operations of Geothermal Power...

    Energy Savers [EERE]

    Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle...

  14. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    Based Performance Analysis of a Solar Absorption Cooling andExperimental Investigation of a Solar Adsorption ChillerKreith, Jan F. Kreider. "Solar Cooling." Principles of Solar

  15. Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

  16. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  17. innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power

    E-Print Network [OSTI]

    innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest a database of potential wind power sites and detailed, time-dependent estimates of the power that would the nation's bountiful wind and solar resources, it is critical to know how much electrical power from

  18. Solar Water Heating System Maintenance and Repair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening Decision Tree SolarSolar Water

  19. Pasadena Water and Power - Solar Power Installation Rebate | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part B 1 Part B -Energy Local

  20. Study of the thermochemistry for oxygen production for a solar sulfur-ammonia

    E-Print Network [OSTI]

    Wang, Mimi Kai Wai

    2012-01-01T23:59:59.000Z

    Power-Photovoltaics or Solar Thermal Power? ” Proceedings ofA.W. , “Likely Near-Term Solar-Thermal Water Splittingto use concentrated solar thermal energy to power a cost

  1. Solar-Driven Microbial Photoelectrochemical System for Energy Conversion

    E-Print Network [OSTI]

    Wang, Hanyu

    2015-01-01T23:59:59.000Z

    S. S. , A Perspective on Solar-Driven Water Splitting withI. S. ; Kim, I. S. , A Solar-Powered Microbial ElectrolysisD. R. , Development of a Solar-Powered Microbial Fuel Cell.

  2. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    A.W. , “Likely Near-Term Solar-Thermal Water SplittingFundamentals of s Solar-thermal Mn 2 O 3 /MnO ThermochemicalPower-Photovaltaics or Solar Thermal Power? ” Proceedings of

  3. A 927 MHz Solar Powered Active Antenna Oscillator Beacon Signal Generator

    E-Print Network [OSTI]

    Tentzeris, Manos

    . Properly placed solar cells and a regulator are used to bias the device by scavenging solar energy from technology, which scavenges through solar energy the power necessary for operation. Starting from a folded the radiation performances. After that, solar cells were properly inserted for energy scavenging purposes

  4. Pasadena Water and Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Prior to purchasing equipment, contact Pasadena Water & Power for incentive availability information on the Energy Efficiency Partnering Program.

  5. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Broader source: Energy.gov [DOE]

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  6. Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones

    E-Print Network [OSTI]

    Pedram, Massoud

    chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We excludeMaximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life poor capacity utilization during solar energy harvesting. In this paper, we propose and demonstrate

  7. Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy

    E-Print Network [OSTI]

    Delaware, University of

    Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

  8. Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller

    E-Print Network [OSTI]

    Voigt, Thiemo

    Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over propose and evaluate two protocols that perform solar- aware routing. The presented simulation results

  9. Solar Powering Your Community: A Guide for Local Governments...

    Broader source: Energy.gov (indexed) [DOE]

    * Solar mapping tools * Developing solar-ready building guidelines * Hosting of wholesale PV systems * Identifying optimal solar installation sites PIX 08466 and 14898...

  10. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Linear Fresnel Solar Plant……………………………………………………..20 Figure5 – Linear Fresnel Solar Plant parabolic concentrators (Bermejo, 2010, Solar absorption cooling plant in Seiville,

  11. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01T23:59:59.000Z

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  12. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  13. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA or service at least 3 days before the meeting. Requests should be sent to: Power and Water Resources Pooling

  14. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    output P e Electrical power output of system Q Solar CHP to1.5, the CHP system cost of electrical power is obtained.thermal to electrical power output R of this system is (1 ?

  15. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01T23:59:59.000Z

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  16. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  17. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    of a solar-thermal-assisted HVAC system, Energy andsolar thermal absorption cooling system with a cold store, Solar energy,solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  18. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Distributed solar-thermal/electric generation. Technicalthermal load to absorb the energy rejected from the electric power generationthermal efficiency, (2) solar-electric efficiency, (3) fraction of Carnot efficiency for electrical generation, (

  20. Dual-temperature Kalina cycle for geothermal-solar hybrid power systems

    E-Print Network [OSTI]

    Boghossian, John G

    2011-01-01T23:59:59.000Z

    This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

  1. Testing and modeling of a solar thermophotovoltaic power system

    SciTech Connect (OSTI)

    Stone, K.W. [McDonnell Douglas, 5301 Bolsa Ave, Huntington Bch., California 92647 (United States); Chubb, D.L.; Wilt, D.M. [NASA Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Wanlass, M.W. [National Renewable Energy Lab, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    1996-02-01T23:59:59.000Z

    A solar thermophotovoltaic (STPV) power system has attractive attributes for both space and terrestrial applications. This paper presents the results of testing by McDonnell Douglas Aerospace (MDA) over the last year with components furnished by the NASA Lewis Research Center (LeRC) and the National Renewable Energy Lab (NREL). The testing has included a large scale solar TPV testbed system and small scale laboratory STPV simulator using a small furnace. The testing apparatus, instrumentation, and operation are discussed, including a description of the emitters and photovoltaic devices that have been tested. Over 50 on-sun tests have been conducted with the testbed system. It has accumulated over 300 hours of on-sun time, and 1.5 MWh of thermal energy incident on the receiver material while temperatures and I-V measurements were taken. A summary of the resulting test data is presented that shows the measured performance at temperatures up to 1220{degree}C. The receiver materials and PV cells have endured the high temperature operation with no major problems. The results of this investigation support MDA belief that STPV is a viable power system for both space and terrestrial power applications. {copyright} {ital 1996 American Institute of Physics.}

  2. Water Power Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks |VisualizingWarmEnergyWater Power

  3. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1WastesWater Power Forum

  4. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1WastesWater Power

  5. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1WastesWater PowerDOE Type

  6. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1WastesWater PowerDOE

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater Power Forum Home >

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater Power Forum Home

  9. Water Power Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart, andThomasWaste HeatWater Power Program

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power Forum - Q & A

  11. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power Forum - Q & Aterm

  12. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power Forum - Q &

  13. Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    E-Print Network [OSTI]

    Leitgab, M

    2014-01-01T23:59:59.000Z

    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...

  14. Measurement and verification for solar water heating performance contracts

    SciTech Connect (OSTI)

    Walker, A.; Azerbegi, R.J.

    1999-07-01T23:59:59.000Z

    Solar water heating is a hardware intensive and therefore capital intensive, energy conservation measure. Energy Savings Performance Contracting (ESPC) offers a solution to the financing barrier by using third-party funds to install a system, and then paying the financier back out of the energy cost savings over the term of the contract. Measurement and Verification (M and V) of system performance is key to this kind of contract, and for Federal government ESPC projects, measurement and verification of energy cost savings is required by statute. The design of an M and V program has very important implications for customers and project developers alike. This paper presents detailed discussion of solar water heating M and V options developed for the US Department of Energy Federal Energy Management Program (FEMP), but with general application for all solar water heating performance contracting arrangements, public and private. The options described in the paper are: stipulation with inspection; metering; utility bill analysis; and renormalized computer models. In addition to contrasting the cost, benefits and appropriate application of each option, this paper discusses issues common to all options, such as the statistical design of M and V programs. The paper concludes with recommended options based on the size and type of project, the cost of the M and V program, and the allocation of risk between the contracting parties.

  15. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe Water Power Program, part ofWater Power

  16. Sea Solar Power International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, New York: EnergySea Solar Power

  17. Sandia Energy - Concentrating Solar Power Technical Management Position

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong LifetimeConcentrating Solar Power

  18. SEGS I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotec Internacional ltdaSEGS I Solar Power

  19. Space-Based Solar Power | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015Space-Based Solar Power

  20. Project Profile: Solar Power Tower Improvements with the Potential to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar PowerBostonModule