National Library of Energy BETA

Sample records for water power nu

  1. NuPower LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota: EnergyOhio:GeothermalNuEdison Jump

  2. Background Study on nu_e Appearance from a nu_mu Beam in Very Long Baseline Neutrino Oscillation Experiments with a Large Water Cherenkov Detector

    E-Print Network [OSTI]

    Chiaki Yanagisawa; Chang Kee Jung; Trung Le; Brett Viren

    2011-02-23

    There is a growing interest in very long baseline neutrino oscillation experimentation using accelerator produced neutrino beam as a machinery to probe the last three unmeasured neutrino oscillation parameters: the mixing angle theta_13, the possible CP violating phase delta_CP and the mass hierarchy, namely, the sign of delta-m^2_32. Water Cherenkov detectors such as IMB, Kamiokande and Super-Kamiokande have shown to be very successful at detecting neutrino interactions. Scaling up this technology may continue to provide the required performance for the next generation of experiments. This report presents the latest effort to demonstrate that a next generation (> 100 kton) water Cherenkov detector can be used effectively for the rather difficult task of detecting nu_e events from the neutrino oscillation nu_mu -> nu_e despite the large expected potential background resulting from pi^0 events produced via neutral current interactions.

  3. NuSTAR observations of the powerful radio-galaxy Cygnus A

    E-Print Network [OSTI]

    Reynolds, Christopher S; Ogle, Patrick M; Harrison, Fiona A; Madsen, Kristin K; Fabian, Andrew C; Wik, Daniel R; Madejski, Grzegorz; Ballantyne, David R; Boggs, Steven E; Christensen, Finn E; Craig, William W; Fuerst, Felix; Hailey, Charles J; Lanz, Lauranne; Miller, Jon M; Saez, Cristian; Stern, Daniel; Walton, Dominic J; Zhang, William

    2015-01-01

    We present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium (ICM) components. NuSTAR gives a source-dominated spectrum of the AGN out to >70keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law (Gamma~1.6-1.7) absorbed by a neutral column density of N_H~1.6x10^23 cm^-2. However, we also detect curvature in the hard (>10keV) spectrum resulting from reflection by Compton-thick matter out of our line-of-sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cutoff in the continuum source; the limit on the cutoff energy is E_cut>111keV (90% confidence). Interestingly, the absorbed power-law plus reflection model leaves residuals suggesting...

  4. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  5. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  6. Federal Incentives for Water Power

    SciTech Connect (OSTI)

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  7. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  8. NuT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |Cafés November 12,|NuT NuT NuT is a

  9. Sandia Energy - NuMAD License and Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License and Disclaimer Home Stationary Power Energy Conversion Efficiency Wind Energy Rotor Innovation Numerical Manufacturing And Design Tool (NuMAD) NuMAD License and Disclaimer...

  10. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  11. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    Electrokinetic Power Generation from Liquid Water MicrojetsElectrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.

  12. Water Scarcity and Energy: Water and Power Efficiency of

    E-Print Network [OSTI]

    Scott, Christopher

    ) #12;Water Scarcity = Power Scarcity Lower water availability Lower hydro power availabilityWater Scarcity and Energy: Water and Power Efficiency of Recycled Water Arizona Hydrological and Population Growth · Types of Reuse · Water Efficiency of Reuse · Power Efficiency of Reuse #12;Water Scarcity

  13. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  14. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWater Monitoring

  15. Water Power Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer Reviews WaterAbout

  16. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities GeneralWake-ImagingNot SoConcentrating

  17. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities GeneralWake-ImagingNot

  18. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos HomePower Home Events

  19. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  20. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  2. Phoenix Water ServicesPhoenix Water Services We need more power!We need more power!

    E-Print Network [OSTI]

    Scott, Christopher

    Phoenix Water ServicesPhoenix Water Services We need more power!We need more power! #12;Stolen from Acre Foot of WaterkWh per Acre Foot of Water EPRI (2000), Water Desal Task Force (2003) #12;PhoenixPhoenix TreatmentWater Treatment PlantPlant #12;Phoenix New Water PlantPhoenix New Water Plant Power Requirement

  3. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater

  4. 2009 Water Power Peer Review Report

    SciTech Connect (OSTI)

    Murphy, Michael; Higgins, Mark; Reed, Mike

    2011-04-01

    This report contains the findings of the 2009 Water Power Peer Review Panel, as well as the Water Power Program's responses to those findings. This Peer Review focused on the Program's marine and hydrokinetic energy projects.

  5. Water Power: 2009 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind and Water Power Program 2009 Peer Review Report November 2009 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program 2009...

  6. Federal Incentives for Water Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

  7. Marietta Power & Water- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Marietta Power & Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a...

  8. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  9. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  10. 2014 Water Power Program Peer Review Report

    SciTech Connect (OSTI)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  11. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    Water Power Program Market Report Highlights the Success of American Hydropower Market Report Highlights the Success of American Hydropower The Energy Department recently released...

  12. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    Water Power Program New Report Highlights the Success of American Hydropower New Report Highlights the Success of American Hydropower The Energy Department recently released the...

  13. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    AND WATER POWER TECHNOLOGIES OFFICE August 20, 2014 2 2013 Wind Technologies Market Report Purpose, Scope, and Data: * Publicly available annual report summarizing key trends in...

  14. Funding Opportunity Announcement for Water Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Water Power Program About the Program Research & Development...

  15. 2011 Water Power Technologies Peer Review Report

    SciTech Connect (OSTI)

    Zayas, Jose; Reed, Michael

    2012-06-01

    This report provides findings from the peer review meeting held in November 2011 to review the progress and accomplishments of the Energy Department Water Power Program.

  16. nu0001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National1-2130nsc | National

  17. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  18. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  19. Loveland Water & Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  20. NuDE: Development Environment for Safety-Critical Software of

    E-Print Network [OSTI]

    NuDE: Development Environment for Safety-Critical Software of Nuclear Power Plant Jong-Hoon Lee #12;Overview of NuDE NuDE: Development Environment for Safety-Critical Software of Nuclear Power PlantDE: Development Environment for Safety-Critical Software of Nuclear Power Plant 14 #12;· FTA for Requirements

  1. Letter of Intent for KASKA: High Accuracy Neutrino Oscillation Measurements with anti-nu_es from Kashiwazaki-Kariwa Nuclear Power Station

    E-Print Network [OSTI]

    M. Aoki; K. Akiyama; Y. Fukuda; A. Fukui; Y. Funaki; H. Furuta; T. Hara; T. Haruna; N. Ishihara; T. Iwabuchi; M. Katsumata; T. Kawasaki; M. Kuze; J. Maeda; T. Matsubara; T. Matsumoto; H. Minakata; H. Miyata; Y. Nagasaka; T. Nakagawa; N. Nakajima; H. Nakano; K. Nitta; M. Nomachi; K. Sakai; Y. Sakamoto; K. Sakuma; M. Sasaki; F. Suekane; H. Sugiyama; T. Sumiyoshi; H. Tabata; N. Tamura; M. Tanimoto; Y. Tsuchiya; R. Watanabe; O. Yasuda

    2006-07-11

    One of the current most-demanded experiments in neutrino physics is to measure the last mixing angle theta_13. KASKA is an experiment to detect new type of reactor neutrino oscillation and to measure sin^2 2theta_13 accurately using the world's most powerful nuclear reactor complex; Kashiwazaki-Kariwa nuclear power station. KASKA utilizes near and far detectors of identical structure at nearly optimized baselines and underground depths to cancel most of the systematics and reduce backgrounds. The expected sensitivity is sin^2 2theta_13~0.015, which is 10 times better sensitivity than the current upper limit measured by CHOOZ reactor experiment. Extension of KASKA project has potential to accurately measure other anti-nu_e oscillation parameters. Intense and precisely known neutrino flux measured by the KASKA-theta_13 phase can be used to pin down sin^2 2theta_12 at a baseline ~50km and to measure Dm^2_13 for the first time at a baseline ~5km. This Letter of Intent describes physics motivation, detector system and expected performance of the KASKA experiment.

  2. Letter of Intent for KASKA: High Accuracy Neutrino Oscillation Measurements with anti-nu_es from Kashiwazaki-Kariwa Nuclear Power Station

    E-Print Network [OSTI]

    Aoki, M; Fukuda, Y; Fukui, A; Funaki, Y; Furuta, H; Hara, T; Haruna, T; Ishihara, N; Iwabuchi, T; Katsumata, M; Kawasaki, T; Kuze, M; Maeda, J; Matsubara, T; Matsumoto, T; Minakata, H; Miyata, H; Nagasaka, Y; Nakagawa, T; Nakajima, N; Nakano, H; Nitta, K; Nomachi, M; Sakai, K; Sakamoto, Y; Sakuma, K; Sasaki, M; Suekane, F; Sugiyama, H; Sumiyoshi, T; Tabata, H; Tamura, N; Tanimoto, M; Tsuchiya, Y; Watanabe, R; Yasuda, O

    2006-01-01

    One of the current most-demanded experiments in neutrino physics is to measure the last mixing angle theta_13. KASKA is an experiment to detect new type of reactor neutrino oscillation and to measure sin^2 2theta_13 accurately using the world's most powerful nuclear reactor complex; Kashiwazaki-Kariwa nuclear power station. KASKA utilizes near and far detectors of identical structure at nearly optimized baselines and underground depths to cancel most of the systematics and reduce backgrounds. The expected sensitivity is sin^2 2theta_13~0.015, which is 10 times better sensitivity than the current upper limit measured by CHOOZ reactor experiment. Extension of KASKA project has potential to accurately measure other anti-nu_e oscillation parameters. Intense and precisely known neutrino flux measured by the KASKA-theta_13 phase can be used to pin down sin^2 2theta_12 at a baseline ~50km and to measure Dm^2_13 for the first time at a baseline ~5km. This Letter of Intent describes physics motivation, detector system...

  3. 2014 Water Power Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Water Power Peer Review Report 2014 Water Power Peer Review Report The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators...

  4. 2014 Water Power Peer Review Report Cover | Department of Energy

    Office of Environmental Management (EM)

    Peer Review Report Cover 2014 Water Power Peer Review Report Cover 2014 Water Power Peer Review Report Cover.JPG More Documents & Publications NOWEGIS Report Cover Water Power For...

  5. Water Power Program: Marine and Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  6. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater PowerWater

  7. 2014 Water Power Program Peer Review Compiled Presentations:...

    Energy Savers [EERE]

    2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies The U.S....

  8. The Subcommittee on Water, Power, and Oceans House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of...

  9. Before The Subcommittee on Water and Power - House Energy and...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee...

  10. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  11. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Environmental Management (EM)

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  12. Before House Subcommittee on Water and Power - Committee on Natural...

    Energy Savers [EERE]

    House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on...

  13. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of...

  14. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Elliot E....

  15. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    the Subcommittee on Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of William K....

  16. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  17. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    Los Angeles Department of Water & Power Jump to: navigation, search Name: Los Angeles Department of Water & Power Place: California Phone Number: 800-342-5397 Website:...

  18. NREL: Water Power Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models and

  19. NREL: Water Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models

  20. NREL: Water Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement ModelsPublications Access

  1. NREL: Water Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement ModelsPublicationsWebmaster

  2. Sandia Energy » Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013 DomeniciTwo SandiansPaper and

  3. Sandia Energy - Water Power Personnel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos HomePower Home

  4. Water Use in the Development and Operation of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters....

  5. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters....

  6. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum HomeWater Power

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater Power

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum HomeWaterWater

  10. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation and Water Use Data Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  11. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater PowerWater

  12. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWaterWater Power

  13. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home > Water

  14. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home >Water

  15. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum HomeWater

  16. Water Power Program: 2010 Peer Review Report | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Program: 2010 Peer Review Report Water Power Program: 2010 Peer Review Report This document contains the peer review panel's observations and findings, responses from the...

  17. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Broader source: Energy.gov [DOE]

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  18. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA or service at least 3 days before the meeting. Requests should be sent to: Power and Water Resources Pooling

  19. Aalborg Universitet Water cooling of high power light emitting diode

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Water cooling of high power light emitting diode Sørensen, Henrik Published in Citation for published version (APA): Sørensen, H. (2012). Water cooling of high power light emitting diode from vbn.aau.dk on: juli 07, 2015 #12;Water Cooling of High Power Light Emitting Diode Henrik Sørensen

  20. Assessment of radiological releases from the NuMI facility during MINOS and NOvA operations

    SciTech Connect (OSTI)

    Martens, Mike; /Fermilab

    2007-04-01

    This report makes projections of the radiological releases from the NuMI facility during operations for the MINOS and NO ?A experiments. It includes an estimate of the radionuclide levels released into the atmosphere and the estimated tritium and sodium-22 concentrations in the NuMI sump water and Fermilab pond system. The analysis was performed for NuMI operations with a beam power on target increased from the present 400 kW design up to a possible 1500 kW with future upgrades. The total number of protons on target was assumed to be 18 x 10{sup 20} after the completion of MINOS and 78 x 10{sup 20} after the completion of NO ?A.

  1. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger...

  2. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater Power Forum

  3. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater Power

  4. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home >

  5. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home

  6. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power Forum Home >

  8. Water Power Program Budget | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste IsolationofWatchBudget Water Power

  9. Search For B --> K* Nu Anti-Nu Decays

    SciTech Connect (OSTI)

    Aubert, B.

    2008-08-15

    We present a search for the decays B {yields} K* {nu}{bar {nu}} using 454 x 10{sup 6} B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the SLAC PEP-II B-Factory. We first select an event sample where one B is reconstructed in a semileptonic or hadronic mode with one charmed meson. The remaining particles in the event are then examined to search for a B {yields} K* {nu}{bar {nu}} decay. The charged K* is reconstructed as K*{sup +} {yields} K{sub S}{sup 0}{pi}{sup +} or K*{sup +} {yields} K{sup +}{pi}{sup 0}; the neutral K* is identified in K*{sup 0} {yields} K{sup +}{pi}{sup -} mode. We establish upper limits at 90% confidence level of {Beta}(B{sup +} {yields} K*{sup +} {nu}{bar {nu}}) < 8 x 10{sup -5}, {Beta}(B{sup 0} {yields} K*{sup 0} {nu}{bar {nu}}) < 12 x 10{sup -5}, and {Beta}(B {yields} K* {nu}{bar {nu}}) < 8 x 10{sup -5}.

  10. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  11. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  12. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

  13. Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals

    E-Print Network [OSTI]

    Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals Louisiana New Hampshire Florida Idaho Washington Oregon Nevada California New,000 9,000 to 13,000 Thermoelectric-power withdrawals by water quality and State, 2005. Estimated Use

  14. Before the Subcommittee on Water, Power, and Oceans - House Natural...

    Office of Environmental Management (EM)

    - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator Southeastern...

  15. Before the Subcommittee on Water and Power - House Natural Resources...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator SEPA...

  16. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville...

  17. Marine & Hydrokinetic Technologies, Wind and Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and evaluate various technology types. Technology Development, Testing & Deployment Water Power Program projects support the marine and hydro- kinetic technology industry in its...

  18. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Christopher M. Turner, Administrator SWPA Before the...

  19. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  20. Powering Your Water Heater Using Solar Energy 

    E-Print Network [OSTI]

    Miller, Daniel

    2013-02-13

    This report is a detailed overview of my research on solar water heating. Solar water heaters may be used to either supplement or even replace a standard water heater. In addition to being environmentally friendly, solar ...

  1. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  2. Water, Electric Power and Growth in Southern Arizona

    E-Print Network [OSTI]

    Scott, Christopher

    . #12;Growth City of Tucson: Department of Urban Planning and Design. 2008. Pima County Population and Regional Development University of Arizona #12;The Water-Energy Nexus Goldstein, Robert. 2006. Electric Power/Water Sustainability. Western Region Energy-Water Needs Assessment Workshop, Salt Lake City. #12

  3. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  4. Water value in power generation: Experts distinguish water use and consumption 

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01

    stream_source_info Water value in power generation.pdf.txt stream_content_type text/plain stream_size 10063 Content-Encoding windows-1252 stream_name Water value in power generation.pdf.txt Content-Type text/plain; charset...=windows-1252 Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts...

  5. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

  6. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  7. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how the down-hole CO 2 plumes may evolve over time (geomodeling with TOUGH2), what engineering and other resources would be required to develop a water extraction and...

  8. Water Power. 2010 Peer Review Report

    SciTech Connect (OSTI)

    Murphy, Michael; Higgins, Mark; Reed, Michael

    2010-10-01

    This document is the peer review panel’s observations and findings, response from the Water Program to these, and supporting meeting materials including an agenda and participants list.

  9. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    Installation September 18, 2015 9:00AM EDT to September 19, 2015 1:00PM EDT 2015 NHA Hydraulic Power Committee (HPC) Fall Retreat October 4, 2015 5:00PM CDT to October 7, 2015...

  10. Use of reclaimed water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.

  11. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  12. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  13. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  14. Corona Department of Water & Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water & Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2015 is $0.78 per watt up to $2,340 for residential...

  15. High speed electrical power takeoff for oscillating water columns 

    E-Print Network [OSTI]

    Hodgins, Neil

    2010-01-01

    This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator ...

  16. Fiscal Year 2011 Water Power Program Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic...

  17. Loveland Water & Power- Home Energy Audit Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power (LWP) is providing an incentive for customers living in single-family detached homes or attached townhouses that wish to upgrade the energy efficiency of eligible homes....

  18. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWaterWater

  19. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWaterWaterOpenEI

  20. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWarana GroupWashington:WaterWater

  1. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  2. Measurement of the Ds(+) -> eta l(+)nu and Ds(+) ? eta'l(+)nu branching ratios

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1995-11-01

    Using the CLEO II detector we measure B(D-s(+) --> eta e(+)nu)/B(D-s(+) --> phi e(+)nu) = 1.24 +/- 0.12 +/- 0.15, B(D-s(+) --> eta'e(+)nu)/B(D-s(+) --> phi e(+)nu) = 0.43 +/- 0.11 +/- 0.07, and B(D-s(+) --> eta'e(+)nu)/B(D-s(+) --> eta e(+)nu) = 0...

  3. Pasadena Water and Power - Solar Power Installation Rebate | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P -Particle ReceiverEnergy Pasadena Water

  4. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy

  5. Analysis of nu(2), nu(4) infarared Hot Bands of (SO3)-S-32-O-16: Resolution of the Puzzle of the nu(1) CARS Spectrum

    SciTech Connect (OSTI)

    Barber, James R.; Chrysostom, Engelene; Masiello, Tony; Nibler, Joseph W.; Maki, A. R.; Weber, A. M.; Blake, Thomas A.; Sams, Robert L.

    2002-11-01

    Further analysis of the high-resolution (0.0015 cm(-1) infrared spectrum of S-32(16) 03 has led to the assignment of more than 3100 hot band transitions from the nu(2) and nu(4) levels to the states 2nu(2) (1=0), nu(2) + nu(4) (1=+/-1), and 2nu(4) (1=0, +/-2).

  6. Water Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating

  7. NREL: Water Power Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement

  8. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Broader source: Energy.gov (indexed) [DOE]

    fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. 51315.pdf More Documents & Publications Marine &...

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState Grid JV JumpWKScandinaviaWater

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater

  11. Case Study - Glendale Water and Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA)civilEnergy Water Heaters

  12. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating Products

  13. Water Power Information Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating ProductsInformation

  14. Water Power News | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating

  15. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water HeatingAbout the

  16. NREL: Water Power Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement ModelsPublications

  17. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4Study of the Use of

  18. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4Study of the Use

  19. Discharge waters from a power plant as an influent of phytoplankton in adjacent estuarine waters 

    E-Print Network [OSTI]

    Strong, Clyde B

    1977-01-01

    DISCHARGE WATERS FROM A POWER PLANT AS AN 1NFLUENT OF PHYTOPLANKTON IN ADJACENT ESTUARINE WATERS A Thesis 'by CLYDE B. STRONG, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1977 Major Su'bject: Wildlife and Fisheries Sciences DISCHARGE WATERS FROM A POWER PLANT AS AN INFLUEN'I' OF PHYTOPLANKTON IN ADJACENT ESTUARINE WATERS A Thesis by CLYDE B. STRONG, JR. Approved as to sty...

  20. NuSTAR: Nuclear Spectroscopic Telescope Array

    SciTech Connect (OSTI)

    Craig, Bill

    2012-06-13

    Bill Craig, an astrophysicist at Lawrence Livermore National Laboratory, describes the NASA NuSTAR mission, launched June 13, 2012.

  1. NuSTAR: Nuclear Spectroscopic Telescope Array

    ScienceCinema (OSTI)

    Craig, Bill

    2014-06-24

    Bill Craig, an astrophysicist at Lawrence Livermore National Laboratory, describes the NASA NuSTAR mission, launched June 13, 2012.

  2. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater HeatingWater Power

  3. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  4. Water Power Program: 2011 Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWater PowerWater

  5. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    M.A. , 2009, Estimated use of water in the United States ins Thirst for Renewable Power: Water Implications of China’ss Thirst For Renewable Power: Water Implications of China’s

  6. Search for B ->tau nu and B -> K nu(nu)over-bar

    E-Print Network [OSTI]

    Ammar, Raymond G.; Bean, Alice; Besson, David Zeke; Davis, Robin E. P.; Kwak, Nowhan; Zhao, X.

    2001-04-01

    We report results of a search for B --> tau nu in a sample of 9.7 x 10(6) charged B meson decays. We exclusively reconstruct the companion B decay to suppress background. We set an upper limit on the branching fraction B(B ...

  7. Energy/Water Sustainability and the Electric Power

    E-Print Network [OSTI]

    Keller, Arturo A.

    are using wet cooling tower) Water Use by Plant Type 0 100 200 300 400 500 600 700 800 900 Nuclear Coal Oil Power Research Institute, Inc. All rights reserved. Dry Cooling Matimba 6x665MW Coal Courtesy of Eskom

  8. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  9. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  10. Neutrinos from Stored Muons nuSTORM: Expression of Interest

    E-Print Network [OSTI]

    D. Adey; S. K. Agarwalla; C. M. Ankenbrandt; R. Asfandiyarov; J. J. Back; G. Barker; E. Baussan; R. Bayes; S. Bhadra; V. Blackmore; A. Blondel; S. A. Bogacz; C. Booth; S. B. Boyd; A. Bravar; S. J. Brice; A. D. Bross; F. Cadoux; H. Cease; A. Cervera; J. Cobb; D. Colling; L. Coney; A. Dobbs; J. Dobson; A. Donini; P. J. Dornan; M. Dracos; F. Dufour; R. Edgecock; J. Evans; M. A. George; T. Ghosh; A. deGouvea; J. J. Gomez-Cadenas; A. Haesler; G. Hanson; M. Geelhoed; P. F. Harrison; M. Hartz; P. Hernandez; J. A. Hernando-Morata; P. J. Hodgson; P. Huber; A. Izmaylov; Y. Karadhzov; T. Kobilarcik; J. Kopp; L. Kormos; A. Korzenev; A. Kurup; Y. Kuno; P. Kyberd; J. P. Lagrange; A. M. Laing; J. Link; A. Liu; K. R. Long; N. McCauley; K. T. McDonald; K. Mahn; C. Martin; J. Martin; O. Mena; S. R. Mishra; N. Mokhov; J. Morfin; Y. Mori; W. Murray; D. Neuffer; R. Nichol; E. Noah; M. A. Palmer; S. Parke; S. Pascoli; J. Pasternak; M. Popovic; P. Ratoff; M. Ravonel; M. Rayner; S. Ricciardi; C. Rogers; P. Rubinov; E. Santos; A. Sato; E. Scantamburlo; J. K. Sedgbeer; D. R. Smith; P. J. Smith; J. T. Sobczyk; S. Soldner-Rembold; F. J. P. Soler; M. Sorel; A. Stahl; L. Stanco; P. Stamoulis; S. Striganov; H. Tanaka; I. J. Taylor; C. Touramanis; C. D. Tunnel; Y. Uchida; N. Vassilopoulos; M. O. Wascko; A. Weber; E. Wildner; M. J. Wilking; W. Winter; U. K. Yang

    2013-05-07

    The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report.

  11. Data Release for NuTeV nu_e Disappearance Analysis

    E-Print Network [OSTI]

    Conrad, J.M.

    2012-07-23

    Data Release for the NuTeV electron flavor disappearance study. See this document for instructions on incorporating the NuteV nu_e disappearance data into oscillation global fits.

  12. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWater

  13. Progress in an experiment to measure elastic nu. mu. e. -->. nu. mu. e scattering

    SciTech Connect (OSTI)

    Abe, K.; Ahrens, L.A.; Amako, K.

    1983-01-01

    The experimental setup and preliminary results of nu..mu.. + e elastic scattering measurements are described. (WHK)

  14. NuFact03, June 04 -11, New York Funneling pions and muons.

    E-Print Network [OSTI]

    McDonald, Kirk

    9/9/2004 NuFact03, June 04 -11, New York Funneling pions and muons. 1 Funneling 's and µ's Bruno, New York Funneling pions and muons. 2 Proton Beam Parameters 4Beam power [MW] 50Repetition frequency bunch 140Number of bunches #12;9/9/2004 NuFact03, June 04 -11, New York Funneling pions and muons. 3 Why

  15. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    Patent: PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash...

  16. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash A...

  17. Fish-Friendly Turbine Making a Splash in Water Power | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Making a Splash in Water Power Fish-Friendly Turbine Making a Splash in Water Power October 21, 2011 - 10:29am Addthis A computer simulation of the Alden...

  18. Love That Dirty Water (It Can Power Your Home) by Susan Kruglinski

    E-Print Network [OSTI]

    and Green Tech Love That Dirty Water (It Can Power Your Home) | Pollution | DISCOV... httpLove That Dirty Water (It Can Power Your Home) by Susan Kruglinski published online September 30, 2004 A quarter of the people in the world still drink filthy water and live miles from electrical power

  19. CSP and NU(4) Libor Barto

    E-Print Network [OSTI]

    Barto, Libor

    CSP and NU(4) Libor Barto joint work with Marcin Kozik Department of Algebra, Charles University of Algebra, Charles University in Prague, Czech Republic CSP and NU(4) #12;Everything is finite Everything is finite Libor Barto, Marcin Kozik Department of Algebra, Charles University in Prague, Czech Republic CSP

  20. Safe Harbor Water Power Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon Development |SMCHarbor Water Power Corp Jump

  1. Western Water and Power Production WWPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWeVirginiaElectric AssnWater and Power

  2. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan1986) |Water and Power LLC Jump to:

  3. Water Power: 2009 Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWaterPower: 2009

  4. Wind and Water Power Program Realignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.ProjectsLeaders |3 0 0 N S T Rand Water Power

  5. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Citation Details In-Document Search Title: The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission You are...

  6. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Citation Details In-Document Search Title: The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Authors: Harrison,...

  7. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission (Journal...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Citation Details In-Document Search Title: The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Authors: Harrison,...

  8. MINER{nu}A Test Beam Commissioning

    SciTech Connect (OSTI)

    Higuera, A.; Castorena, J.; Urrutia, Z.; Felix, J.; Zavala, G.

    2009-12-17

    MINER{nu}A Main INjector ExpeRiment {nu}-A is a high-statistic neutrino scattering experiment that will ran in the NuMI Beam Hall at Fermilab. To calibrate the energy response of the MINER{nu}A detector, a beamline is being designed for the MINER{nu}A Test Beam Detector (TBD). The TBD is a replica of the full MINER{nu}A detector at small scale for calibration studies of the main detector. The beamline design consists of the following parts: a copper target, used to generate tertiaries from an incoming secondary beam; a steel collimator for tertiaries, which also serves as a dump for the incoming beam; a time of fight system (scintillator planes); four wire chambers, for angle measurements and tracking; and two dipole magnets, used as an spectrometer. During last October, the first commissioning run of the MINER{nu}A Test Beam took place in the Meson Test Beam Facility at Fermilab. We commissioned the target and collimator of the new tertiary beamline.

  9. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING AND AGENDA

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING AND AGENDA Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA) will be held on November 25, 2013 at 10:00 a.m., at the Westlands Water District, 3130

  10. rom the beginning of time, the power of water has captured the human imagination and influenced

    E-Print Network [OSTI]

    the mighty Colorado River -- providing hydro-electrical power to millions of people. It also canF rom the beginning of time, the power of water has captured the human imagination and influenced the power of flowing water across a road! It's an incredibly senseless way to die and is completely

  11. Neutrinos from Stored Muons nuSTORM: Expression of Interest

    E-Print Network [OSTI]

    Adey, D; Ankenbrandt, C M; Asfandiyarov, R; Back, J J; Barker, G; Baussan, E; Bayes, R; Bhadra, S; Blackmore, V; Blondel, A; Bogacz, S A; Booth, C; Boyd, S B; Bravar, A; Brice, S J; Bross, A D; Cadoux, F; Cease, H; Cervera, A; Cobb, J; Colling, D; Coney, L; Dobbs, A; Dobson, J; Donini, A; Dornan, P J; Dracos, M; Dufour, F; Edgecock, R; Evans, J; Geelhoed, M; George, M A; Ghosh, T; de Gouvea, A; Gomez-Cadenas, J J; Haesler, A; Hanson, G; Harrison, P F; Hartz, M; Hernandez, P; Hernando-Morata, J A; Hodgson, P J; Huber, P; Izmaylov, A; Karadhzov, Y; Kobilarcik, T; Kopp, J; Kormos, L; Korzenev, A; Kurup, A; Kuno, Y; Kyberd, P; Lagrange, J P; Laing, A M; Link, J; Liu, A; Long, K R; McCauley, N; McDonald, K T; Mahn, K; Martin, C; Martin, J; Mena, O; Mishra, S R; Mokhov, N; Morfin, J; Mori, Y; Murray, W; Neuffer, D; Nichol, R; Noah, E; Palmer, M A; Parke, S; Pascoli, S; Pasternak, J; Popovic, M; Ratoff, P; Ravonel, M; Rayner, M; Ricciardi, S; Rogers, C; Rubinov, P; Santos, E; Sato, A; Scantamburlo, E; Sedgbeer, J K; Smith, D R; Smith, P J; Sobczyk, J T; Soldner-Rembold, S; Soler, F J P; Sorel, M; Stahl, A; Stanco, L; Stamoulis, P; Striganov, S; Tanaka, H; Taylor, I J; Touramanis, C; Tunnell, C D; Uchida, Y; Vassilopoulos, N; Wascko, M O; Wilking, M J; Weber, A; Wildner, E; Winter, W; Yang, U K

    2013-01-01

    The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contrib...

  12. The NuMI Neutrino Beam

    E-Print Network [OSTI]

    P. Adamson; K. Anderson; M. Andrews; R. Andrews; I. Anghel; D. Augustine; A. Aurisano; S. Avvakumov; D. S. Ayres; B. Baller; B. Barish; G. Barr; W. L. Barrett; R. H. Bernstein; J. Biggs; M. Bishai; A. Blake; V. Bocean; G. J. Bock; D. J. Boehnlein; D. Bogert; K. Bourkland; S. V. Cao; C. M. Castromonte; S. Childress; B. C. Choudhary; J. A. B. Coelho; J. H. Cobb; L. Corwin; D. Crane; J. P. Cravens; D. Cronin-Hennessy; R. J. Ducar; J. K. de Jong; A. V. Devan; N. E. Devenish; M. V. Diwan; A. R. Erwin; C. O. Escobar; J. J. Evans; E. Falk; G. J. Feldman; T. H. Fields; R. Ford; M. V. Frohne; H. R. Gallagher; V. Garkusha; R. A. Gomes; M. C. Goodman; P. Gouffon; N. Graf; R. Gran; N. Grossman; K. Grzelak; A. Habig; S. R. Hahn; D. Harding; D. Harris; P. G. Harris; J. Hartnell; R. Hatcher; S. Hays; K. Heller; A. Holin; J. Huang; J. Hylen; A. Ibrahim; D. Indurthy; G. M. Irwin; Z. Isvan; D. E. Jaffe; C. James; D. Jensen; J. Johnstone; T. Kafka; S. M. S. Kasahara; G. Koizumi; S. Kopp; M. Kordosky; A. Kreymer; K. Lang; C. Laughton; G. Lefeuvre; J. Ling; P. J. Litchfield; L. Loiacono; P. Lucas; W. A. Mann; A. Marchionni; M. L. Marshak; N. Mayer; C. McGivern; M. M. Medeiros; R. Mehdiyev; J. R. Meier; M. D. Messier; D. G. Michael; R. H. Milburn; J. L. Miller; W. H. Miller; S. R. Mishra; S. Moed Sher; C. D. Moore; J. Morfin; L. Mualem; S. Mufson; S. Murgia; M. Murtagh; J. Musser; D. Naples; J. K. Nelson; H. B. Newman; R. J. Nichol; J. A. Nowak; J. O Connor; W. P. Oliver; M. Olsen; M. Orchanian; S. Osprey; R. B. Pahlka; J. Paley; A. Para; R. B. Patterson; T. Patzak; Z. Pavlovic; G. Pawloski; A. Perch; E. A. Peterson; D. A. Petyt; M. M. Pfutzner; S. Phan-Budd; R. K. Plunkett; N. Poonthottathil; P. Prieto; D. Pushka; X. Qiu; A. Radovic; R. A. Rameika; J. Ratchford; B. Rebel; R. Reilly; C. Rosenfeld; H. A. Rubin; K. Ruddick; M. C. Sanchez; N. Saoulidou; L. Sauer; J. Schneps; D. Schoo; A. Schreckenberger; P. Schreiner; P. Shanahan; R. Sharma; W. Smart; C. Smith; A. Sousa; A. Stefanik; N. Tagg; R. L. Talaga; G. Tassotto; J. Thomas; J. Thompson; M. A. Thomson; X. Tian; A. Timmons; D. Tinsley; S. C. Tognini; R. Toner; D. Torretta; I. Trostin; G. Tzanakos; J. Urheim; P. Vahle; K. Vaziri; E. Villegas; B. Viren; G. Vogel; R. C. Webber; A. Weber; R. C. Webb; A. Wehmann; C. White; L. Whitehead; L. H. Whitehead; S. G. Wojcicki; M. L. Wong-Squires; T. Yang; F. X. Yumiceva; V. Zarucheisky; R. Zwaska

    2015-07-29

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  13. The NuMI Neutrino Beam

    E-Print Network [OSTI]

    Adamson, P; Andrews, M; Andrews, R; Anghel, I; Augustine, D; Aurisano, A; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barr, G; Barrett, W L; Bernstein, R H; Biggs, J; Bishai, M; Blake, A; Bocean, V; Bock, G J; Boehnlein, D J; Bogert, D; Bourkland, K; Cao, S V; Castromonte, C M; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Corwin, L; Crane, D; Cravens, J P; Cronin-Hennessy, D; Ducar, R J; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Garkusha, V; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grossman, N; Grzelak, K; Habig, A; Hahn, S R; Harding, D; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Hays, S; Heller, K; Holin, A; Huang, J; Hylen, J; Ibrahim, A; Indurthy, D; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Johnstone, J; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Laughton, C; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Murtagh, M; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Oliver, W P; Olsen, M; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlovic, Z; Pawloski, G; Perch, A; Peterson, E A; Petyt, D A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Prieto, P; Pushka, D; Qiu, X; Radovic, A; Rameika, R A; Ratchford, J; Rebel, B; Reilly, R; Rosenfeld, C; Rubin, H A; Ruddick, K; Sanchez, M C; Saoulidou, N; Sauer, L; Schneps, J; Schoo, D; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Smart, W; Smith, C; Sousa, A; Stefanik, A; Tagg, N; Talaga, R L; Tassotto, G; Thomas, J; Thompson, J; Thomson, M A; Tian, X; Timmons, A; Tinsley, D; Tognini, S C; Toner, R; Torretta, D; Trostin, I; Tzanakos, G; Urheim, J; Vahle, P; Vaziri, K; Villegas, E; Viren, B; Vogel, G; Webber, R C; Weber, A; Webb, R C; Wehmann, A; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Wong-Squires, M L; Yang, T; Yumiceva, F X; Zarucheisky, V; Zwaska, R

    2015-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  14. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  15. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  16. Hand powered portable ultraviolet sterilizing water bottle with active UV dose sensing

    E-Print Network [OSTI]

    Das, Chandan (Chandan K.)

    2007-01-01

    A portable hand powered water sterilization device was created to address a portion of the growing epidemic of global water contamination. As being more supply chain independent and having an active dose sensing component ...

  17. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi. ” Renewable and Sustainable EnergyChina’s Thirst for Renewable Power: Water Implications of

  18. Model-Free Based Water Level Control for Hydroelectric Power Plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

  19. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guarantee its technical correctness. Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES...

  20. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

  1. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  2. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  3. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  4. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  5. Optimization of the axial power shape in pressurized water reactors

    E-Print Network [OSTI]

    Malik, Mushtaq Ahmad

    1981-01-01

    Analytical and numerical methods have been applied to find the optimum axial power profile in a PWR with respect to uranium utilization. The preferred shape was found to have a large central region of uniform power density, ...

  6. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  7. A Search for B -> tau nu Recoiling Against B- -> D0 l- nu X

    SciTech Connect (OSTI)

    Aubert, B.

    2009-12-17

    The authors present a search for the decay B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}} ({ell} = {tau}, {mu}, or e) in (458.9 {+-} 5.1) x 10{sup 6} B{bar B} pairs recorded with the BABAR detector at the PEP-II B-Factory. They search for these B decays in a sample of B{sup +}B{sup -} events where one B-meson is reconstructed as B{sup -} {yields} D{sup 0}{ell}{sup -}{bar {nu}}X. Using the method of Feldman and Cousins, they obtain {Beta}(B{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) = (1.7 {+-} 0.8 {+-} 0.2) x 10{sup -4}, which excludes zero at 2.3{sigma}. They interpret the central value in the context of the Standard Model and find the B meson decay constant to be f{sub B}{sup 2} = (62 {+-} 31) x 10{sup 3} MeV{sup 2}. They find no evidence for B{sup +} {yields} e{sup +}{nu}{sub e} and B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}} and set upper limits at the 90% C.L. {Beta}(B{sup +} {yields} e{sup +}{nu}{sub e}) < 0.8 x 10{sup -5} and {Beta}(B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}) < 1.1 x 10{sup -5}.

  8. Contracts for First-Class Classes Technical Report NU-CCIS-10-04

    E-Print Network [OSTI]

    Tobin-Hochstadt, Sam

    Contracts for First-Class Classes Technical Report NU-CCIS-10-04 T. Stephen Strickland Matthias Felleisen PLT @ Northeastern University {sstrickl,matthias}@ccs.neu.edu Abstract First-class classes add expressive power to class-based object- oriented languages. Most importantly, programmers can abstract over

  9. Study of gamma gamma Background in e+e- -> W+W- nu nu -> H nu nu Events at the Tesla e+e- Linear Collider

    E-Print Network [OSTI]

    Marco Battaglia; Daniel Schulte

    2000-11-27

    The effect of the overlap of gamma gamma -> hadrons to H nu nu events has been studied for the case of the Tesla e+e- linear collider at 350 GeV. It was found that, due to the significant bunch length and the track extrapolation accuracy provided by the Vertex Tracker, the gamma gamma background to physics events can be substantially reduced, with moderate loss in reconstruction efficiency, by a combination of kinematical and vertex topology observables. The remaining background, being confined to very forward hadron production, does not significantly interfere with the event reconstruction.

  10. NuVant Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota: EnergyOhio:GeothermalNuEdison JumpNuVant

  11. Advanced Power Plant Modeling with Applications to an Advanced Boiling Water

    E-Print Network [OSTI]

    Mitchell, John E.

    Advanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat and an Advanced Boiling Water Reactor (ABWR). The continuity wave equa- tions for single and two-phase flow advanced method, are shown. These both are applied to a simplified model of the Advanced Boil- ing Water

  12. Wind Power Answer In Times of Water Scarcity (Presentation)

    SciTech Connect (OSTI)

    Flowers, L.; Reategui, S.

    2010-05-25

    Strategic energy planning is paramount during times of dramatic population growth, global warming, increasing energy demands, and concerns over energy security, food security, and economic development. Recent concerns over water scarcity have moved the energy-water issue to the forefront of energy options discussions. This presentation describes the current water challenges in the United States and presents a case for wind energy as one way to mitigate the problem of water scarcity in several U.S. regions while providing a clean and sustainable economic future for America.

  13. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  14. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  15. Water energy nexus in biofuels production and renewable based power

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    is the FT-fuels, with other options being second generation bioethanol via gasification and catalytic that transform them into power and a number of common fuels, not restricted to bioethanol and biodiesel

  16. Redlands Water & Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield Campus Geothermal AreaRedlands Water

  17. Water Power Program Contacts and Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating WaterYou are

  18. Title 16 USC 796 Regulation of the Development of Water Power...

    Open Energy Info (EERE)

    6 Regulation of the Development of Water Power and Resources Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16...

  19. Thermal desalination : structural optimization and integration in clean power and water

    E-Print Network [OSTI]

    Zak, Gina Marie

    2012-01-01

    A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

  20. Application of 2D-Nonlinear Shallow Water Model of Tsunami by using Adomian Decomposition Method

    SciTech Connect (OSTI)

    Waewcharoen, Sribudh; Boonyapibanwong, Supachai; Koonprasert, Sanoe [Department of Mathematics, King Mongkut's University of Technology, North Bangkok (Thailand)

    2008-09-01

    One of the most important questions in tsunami modeling is the estimation of tsunami run-up heights at different points along a coastline. Methods for numerical simulation of tsunami wave propagation in deep and shallow seas are well developed and have been widely used by many scientists (2001-2008). In this paper, we consider a two-dimensional nonlinear shallow water model of tsunami given by Tivon Jacobson is work [1]. u{sub t}+uu{sub x}+{nu}u{sub y} -c{sup 2}(h{sub x}+(h{sub b}){sub x}) {nu}{sub t}+u{nu}{sub x}+{nu}{nu}{sub y} = -c{sup 2}(h{sub y}+(h{sub b}){sub y}) h{sub t}+(hu){sub x}+(h{nu}){sub y} = 0 g-shore, h is surface elevation and s, t is time, u is velocity of cross-shore, {nu} is velocity of along-shore, h is surface elevation and h{sub b} is function of shore. This is a nondimensionalized model with the gravity g and constant reference depth H factored into c = {radical}(gH). We apply the Adomian Decompostion Method (ADM) to solve the tsunami model. This powerful method has been used to obtain explicit and numerical solutions of three types of diffusion-convection-reaction (DECR) equations. The ADM results for the tsunami model yield analytical solutions in terms of a rapidly convergent infinite power series. Symbolic computation, numerical results and graphs of solutions are obtained by Maple program.

  1. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  2. Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements

    SciTech Connect (OSTI)

    Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)

    2011-12-16

    A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.

  3. NuMAD User's Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |Cafés November 12,| SAND2015-XXXX028

  4. Studies of Nu-mu to Nu-e Oscillation Appearance in the MINOS Experiment

    SciTech Connect (OSTI)

    Pereira e Sousa, Alexandre Bruno

    2005-12-01

    The MINOS experiment uses a long baseline neutrino beam, measured 1 km downstream from its origin in the Near Detector at Fermilab, and 734 km later in the large underground Far Detector in the Soudan mine. By comparing these two measurements, MINOS can probe the atmospheric domain of the neutrino oscillation phenomenology with unprecedented precision. Besides the ability to perform a world leading determination of the {Delta}m{sub 23}{sup 2} and {theta}{sub 23} parameters, via {nu}{sub {mu}} flux disappearance, MINOS has the potential to make a leading measurement of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations in the atmospheric sector by looking for {nu}{sub e} appearance at the Far Detector. The observation of {nu}{sub e} appearance, tantamount to establishing a non-zero value of the {theta}{sub 13} mixing angle, opens the way to studies of CP violation in the leptonic sector, the neutrino spectral mass pattern ordering and neutrino oscillations in matter, the driving motivations of the next generation of neutrino experiments. In this thesis, we study the MINOS potential for measuring {theta}{sub 13} in the context of the MINOS Mock Data Challenge using a multivariate discriminant analysis method. We show the method's validity in the application to {nu}{sub e} event classification and background identification, as well as in its ability to identify a {nu}{sub e} signal in a Mock Data sample generated with undisclosed parameters. An independent shower reconstruction method based on three-dimensional hit matching and clustering was developed, providing several useful discriminator variables used in the multivariate analysis method. We also demonstrate that within 2 years of running, MINOS has the potential to improve the current best limit on {theta}{sub 13}, from the CHOOZ experiment, by a factor of 2.

  5. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  6. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  7. The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    WIND AND WATER POWER PROGRAM The Impact of Wind Developmentmay be required. WIND AND WATER POWER PROGRAM Methods TheNREL). The U.S. DOE (Wind & Water Power Program) funded

  8. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-Print Network [OSTI]

    Wu, Mingshen

    The development of a solar thermal water purification, heating, and power generation system: A case parabolic solar troughs. A flow control valve adjustable for temperature and pressure, allowed the pressure within the troughs to build, thus increasing the boiling point of the water. At a temperature greater

  9. Journal of Power Sources 124 (2003) 9098 In situ water distribution measurements in a

    E-Print Network [OSTI]

    Mench, Matthew M.

    2003-01-01

    distribution; Water distribution; PEFC; Flooding; Solid polymer electrolyte 1. Introduction The hydrogenJournal of Power Sources 124 (2003) 90­98 In situ water distribution measurements in a polymer in the flow channels is a critical phenomenon affecting polymer electrolyte fuelcell

  10. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  11. 384 Power plant waste water sampling and analysis plan

    SciTech Connect (OSTI)

    Hagerty, K.J.; Knotek, H.M.

    1995-01-01

    This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

  12. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  13. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    None

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  14. Water Power Program: 2010 Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer Reviews Water

  15. Before the Subcommittee on Water and Power - House Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville EnergyDepartmenton ContractingCommittee

  16. Properties of AGN coronae in the NuSTAR era

    E-Print Network [OSTI]

    Fabian, A C; Kara, E; Parker, M L; Vasudevan, R; Reynolds, C S

    2015-01-01

    The focussing optics of NuSTAR have enabled high signal-to-noise spectra to be obtained from many X-ray bright Active Galactic Nuclei (AGN) and Galactic Black Hole Binaries (BHB). Spectral modelling then allows robust characterization of the spectral index and upper energy cutoff of the coronal power-law continuum, after accounting for reflection and absorption effects. Spectral-timing studies, such as reverberation and broad iron line fitting, of these sources yield coronal sizes, often showing them to be small and in the range of 3 to 10 gravitational radii in size. Our results indicate that coronae are hot and radiatively compact, lying close to the boundary of the region in the compactness - temperature diagram which is forbidden due to runaway pair production. The coincidence suggests that pair production and annihilation are essential ingredients in the coronae of AGN and BHB and that they control the shape of the observed spectra.

  17. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emergi

  18. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

  19. Burbank Water and Power Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: EnergyGHGsBuildingsBumlaiWater and

  20. Superior Water, Light and Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy InformationSunrain JumpSuperior Water, Light

  1. Water Power Forum - Q & A | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWarana GroupWashington:Water

  2. About the Water Power Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:was created in 1950 by theWhat WeTheWater

  3. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranchLongweiLos AlamosPower (Redirected

  4. Los Angeles Department of Water Power LADWP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranchLongweiLos AlamosPower

  5. Microsoft PowerPoint - Water Control Issues LRD.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReport ARM28Greg BallVirginia Smart

  6. Microsoft PowerPoint - epa_clean_water_act.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReportJ. Conti Director OfficeSurveyOverview

  7. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models andInstrumentation,

  8. City of Glendale Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, Iowa (Utility Company)Glen Elder, KansasPower

  9. Direct Power and Water Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind Farm Jump to:

  10. Microsoft PowerPoint - Air Soil Water rev3 - Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavy nanowires with anDale

  11. The development of a subsea power transmission system for deep water boosting applications

    SciTech Connect (OSTI)

    Godinho, C.A.; Campagnac, L.A.; Nicholson, A.; Magalhaes, W.M.

    1996-12-31

    This paper presents the development of a subsea power transmission in medium voltage and variable frequency, as a key system for application of Boosting Technology and, more particularly, for Electrical Submersible Pumping in deep water wells. The focuses of this paper are mainly on the design and manufacture of subsea power cables and transformers for 1,000 m water depth. The production from a subsea well equipped with ESP`s is a fact since October/94, with the first installation in the Campos Basin, Brazil. The development of the subsea power transmission in medium voltage and variable frequency will allow the installation of a Boosting System in deep water at long distance (25 km or more) from the production platform. The design and manufacture of subsea power cables and subsea power transformers, as well as the integration of the complete power system is a result of a Technological Cooperation Agreement with Tronic, Pirelli, Siemens A.G. and Siemens Brazil. As a result from this agreement subsea power cables up to 12/20 kV voltage level, conductor sizes from 35 to 150 mm{sup 2}, oil filled subsea power transformer rated at 750 kVA, nominal voltage ratio 10,000/3,000 V and the electrical connectors to X-tree will be developed and manufactured.

  12. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    SciTech Connect (OSTI)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  13. Measurement of the B+--> omega l+ nu and B+--> eta l+ nu branching fractions

    E-Print Network [OSTI]

    Fisher, Peter H.

    We present a study of the charmless semileptonic B-meson decays B+-->omega?+? and B+-->eta?+nu. The analysis is based on 3.83×108 BB[over-bar] pairs recorded at the ?(4S) resonance with the BABAR detector. The ? mesons ...

  14. NuSCR Quick Checker Reformation of Quick Checker for verifying NuSCR

    E-Print Network [OSTI]

    FOD, FSM, TTS, SDT . 1 KNICS RPS(Reactor Protection System) BP (Bistable Process) g_VAR_OVER_PWR . . , . , . , . . 1 g_VAR_OVER_PWR FOD FSM history variable node . FSM . NuSCR . FSM . . . Timed history variable node TTS . TTS FSM . . 2 Waiting Trip k_VAR_OVER_PWR

  15. NuEdison | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota: EnergyOhio:GeothermalNuEdison Jump to:

  16. Nu Element Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK Ltd JumpNstar Jump to:Nu

  17. NuOil Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK Ltd JumpNstarNuOil Inc

  18. NuDE 2.0: A Model-based Software Development Environment for the PLC & FPGA based Digital

    E-Print Network [OSTI]

    , such as RPS (Reactor Protection System) and ESF-CCS (Engineered Safety Features - Components Control System in Nuclear Power Plants Junbeom Yoo , Eui-Sub Kim , Dong-Ah Lee Computer Science and Enginering Konkuk426, jslee}@kaeri.re.kr Abstract--NuDE 2.0 (Nuclear Development Environment) is a model-based software

  19. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect (OSTI)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  20. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  1. Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1

    E-Print Network [OSTI]

    , the predicted thermal energy efficiency of the reactor is 53%. Keywords: Biomass, gasification, supercritical, biomass is a hydrogen lean feedstock and has a lower specific energy content than CH4. Accordingly moreModelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1 , John D Pye2

  2. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  3. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore »FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  4. Natural gas powered rotary water chiller development. Phase 1. Final report, September 1991-June 1993

    SciTech Connect (OSTI)

    Sanborn, D.F.; Lakowske, R.L.; Byars, M.

    1993-06-01

    Objectives of the project were to evaluate performance and marketability of a rotary engine driven screw compressor for water chiller applications. Choice of a rotary engine was aimed at rotary compressor. Initial testing done with modified stock 13B rotary engine and experimental open compressor. Engine torque not sufficient for 70 ton compressor. Analysis concluded 50 ton best match for air cooled applications and 60 ton best for water cooled to get highest gas COP. Market analysis covered total water chiller market assuming relative costs of power would lead to gas cooling sales. Allowable cost premium for 3 yr payback determined for areas of country. Premium cost of 100 ton air cooled unit estimated and compared to market allowable premiums. Concluded product acceptance will be primarily in niche markets with high local electric power demand charges.

  5. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  6. NuSTAR OBSERVATIONS OF THE MAGNETAR 1E 2259+586

    SciTech Connect (OSTI)

    Vogel, Julia K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hascoët, Romain [Columbia Univ., New York, NY (United States); Kaspi, Victoria M. [Univ. of Montreal, Quebec (Canada); An, Hongjun [Univ. of Montreal, Quebec (Canada); Archibald, Robert [Univ. of Montreal, Quebec (Canada); Beloborodov, Andrei M. [Columbia Univ., New York, NY (United States); Boggs, Steven E. [Univ. of California, Berkeley, CA (United States); Christensen, Finn E. [Technical Univ. of Denmark, Lyngby (Denmark); Craig, William W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gotthelf, Eric V. [Columbia Univ., New York, NY (United States); Grefenstette, Brian W. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hailey, Charles J. [Columbia Univ., New York, NY (United States); Harrison, Fiona A. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kennea, Jamie A. [Pennsylvania State Univ., State College, PA (United States); Madsen, Kristin K. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pivovaroff, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhang, William W. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2014-07-01

    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.

  7. NuSTAR observations of the young, energetic radio pulsar PSR B1509-58

    E-Print Network [OSTI]

    Chen, Ge; Kaspi, Victoria M; Harrison, Fiona; Madsen, Kristen; Stern, Daniel

    2015-01-01

    We report on Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of the young rotation-powered radio pulsar PSR B1509$-$58 in the supernova remnant MSH 15$-$52. We confirm the previously reported curvature in the hard X-ray spectrum, showing that a log parabolic model provides a statistically superior fit to the spectrum compared with the standard power law. The log parabolic model describes the NuSTAR data, as well as previously published gamma-ray data obtained with COMPTEL and AGILE, all together spanning 3 keV through 500 MeV. Our spectral modelling allows us to constrain the peak of the broadband high energy spectrum to be at 2.6$\\pm$0.8 MeV, an improvement of nearly an order of magnitude over previous measurements. In addition, we calculate NuSTAR spectra in 26 pulse phase bins and confirm previously reported variations of photon indices with phase. Finally, we measure the pulsed fraction of PSR B1509$-$58 in the hard X-ray energy band for the first time. Using the energy resolved pul...

  8. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  9. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  10. Selection of a suitable reactor type for water desalination and power generation in Saudi Arabia

    SciTech Connect (OSTI)

    Hussein, F.M.

    1988-03-01

    Selection of a reactor type suitable for water desalination and power generation is a complex process that involves the evaluation of many criteria and requires the professional judgment of many experts in different fields. A reactor type that is suitable for one country might not be suitable for another. This is especially true in the case of Saudi Arabia because of its strategic location, the nature of its land and people, and its moderate technological situation. A detailed study using a computer code based on Saaty's mathematical pairwise comparison technique and developed in a previous study was carried out to find the most suitable reactor for water desalination and power generation in Saudi Arabia from among five potential types: boiling water reactors (BWRs), pressurized water reactors, CANDU heavy water reactors (HWRs), steam-generating heavy water reactors (SGHWRs), and high-temperature gas-cooled reactors. It was concluded that the CANDU HWR is the most suitable type for this purpose followed first by the BWR, then the SGHWR.

  11. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  12. A study of out-of-phase power instabilities in boiling water reactors

    SciTech Connect (OSTI)

    March-Leuba, J.; Blakeman, E.D.

    1988-06-20

    This paper presents a study of the stability of subcritical neutronic modes in boiling water reactors that can result in out-of-phase power oscillations. A mechanism has been identified for this type of oscillation, and LAPUR code has been modified to account for it. Numerical results show that there is a region in the power-flow operating map where an out-or-phase stability mode is likely even if the core-wide mode is stable. 4 refs., 7 figs.

  13. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    water-quality-water-pollution-water-resources. Liu, Jianguo,Xue; Devra Lee Davis. “Water Pollution and Human Health inof cities, and severe water pollution— in order to mitigate

  14. Water Power For a Clean Energy Future Cover Photo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at Armyusing FueleffectiveWater Power

  15. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  16. The culture of marine fish and their use as biological monitors of water quality in ponds receiving heated discharge water from a power station 

    E-Print Network [OSTI]

    Linder, Donald Ray

    1974-01-01

    For Individual Fish Tables 1 through 12. Length-Weight and Standard Length-Total Length Relationships for Each Sample Of Fish Tables 1 through 9 173 174 247 332 345 xx LIST OF TABLES Table Page Distribution of experimental fish populations... were periodically sampled to determine growth, survival, snd condi- tion. LITERATURE REVIEW Effects of Power Station Effluents Power stations normaljy discharge water which is 6 to 9 C above ambient water temperature (Davidson and Bradshaw 1967; de...

  17. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  18. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    and political means to control water were in many casesfind ways to control and manipulate water to ensure a stableamong legitimacy, water control, and political-economic

  19. Water use in the development and operation of geothermal power plants.

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary significantly both among and within geothermal fields. Seven main chemical constituents were found to

  20. NuMI Target Station AHIPA09 10/19/09

    E-Print Network [OSTI]

    McDonald, Kirk

    MI Target Station AHIPA09 10/19/09 Jim Hylen/FNAL Page 11Remote 5-axis lift table Numi target+baffle on liftNuMI Target Station AHIPA09 10/19/09 Jim Hylen/FNAL Page 1 Target Station Infrastructure: The Nu slide overview of NuMI #12;NuMI Target Station AHIPA09 10/19/09 Jim Hylen/FNAL Page 2 NuMI produces

  1. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  2. Water footprint of electric power generation : modeling its use and analyzing options for a water-scarce future

    E-Print Network [OSTI]

    Delgado Martín, Anna

    2012-01-01

    The interdependency between water and energy, sometimes called the water-energy nexus, is growing in importance as demand for both water and energy increases. Energy is required for water treatment and supply, while virtually ...

  3. Measurement of the B -> Omega l Nu and B -> Eta l Nu Branching Fractions Using Neutrino Reconstruction

    SciTech Connect (OSTI)

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, Vincent; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, Antimo; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, Bjarne; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-09-09

    The authors present a study of the charmless semileptonic B-meson decays B{sup +} {yields} {omega}{ell}{sup +}{nu} and B{sup +} {yields} {eta}{ell}{sup +}{nu}. The analysis is based on 383 million B{bar B} pairs recorded at the {Upsilon}(4S) resonance with the BABAR detector. The {omega} mesons are reconstructed in the channel {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} and the {eta} mesons in the channels {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} and {eta} {yields} {gamma}{gamma}. They measure the branching fractions {Beta}(B{sup +} {yields} {omega}{ell}{sup +}{nu}) = (1.14 {+-} 0.16{sub stat} {+-} 0.08{sub syst}) x 10{sup -4} and {Beta}(B{sup +} {yields} {eta}{ell}{sup +}{nu}) = (0.31 {+-} 0.06{sub stat} {+-} 0.08{sub syst}) x 10{sup -4}.

  4. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  5. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps

    SciTech Connect (OSTI)

    Dudley, K.F.

    1992-03-17

    This patent describes a method of operating an integrated heat pump and hot water system that is capable of providing heating or cooling to an environmental comfort zone. The heat pump and hot water system including a variable speed compressor whose operating speed is substantially linearly related to the difference between outdoor air temperature and indoor air temperature in the comfort zone, and also including means to receive a utility peak demand limit signal to initiate automatic power limiting to reduce the power demand imposed by the heat pump and hot water system, the method comprising sensing the outdoor temperature T{sub OD}; sensing the indoor temperature T{sub ID} in the comfort zone; sensing the speed S{sub 1} of the variable speed compressor; and in response to receiving the utility peak demand limit signal DLS calculating a reference speed S{sub R} for the compressor as a function of the speed S{sub 1}, the outdoor temperature T{sub OD}, the indoor temperature T{sub ID}, and predetermined values that correspond to a reference indoor temperature T{sub ID} and a zero-load temperature difference {Delta}T{sub Z} that corresponds to the difference between the outdoor and indoor temperatures that result in a zero load requirement on the compressor; and during occurrence of the signal DLS operating the compressor at a reduced operating speed limited to a predetermined fraction, less than unity, times the reference speed S{sub R}.

  6. R. Tayloe, Indiana U. NuInt07 1 Measuring Neutrino Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on Global Technology OUTSIDE FRONT COVER 2Leifer.NuInt07 1

  7. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  8. Water Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWater Power

  9. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    Spatial-Geographic Models of Water Scarcity and Supply inBS""hijkg,l+ !" +2011m)g 2030 Water Resources Group (WRG). “Charting Our Water Future: Economic frameworks to inform

  10. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  11. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  12. Journal of Power Sources 139 (2005) 106114 Real-time water distribution in a polymer electrolyte fuel cell

    E-Print Network [OSTI]

    Mench, Matthew M.

    2005-01-01

    ; Water; Fuel cell; Flooding; Solid polymer electrolyte 1. Introduction Many researchers haveJournal of Power Sources 139 (2005) 106­114 Real-time water distribution in a polymer electrolyte Abstract Knowledge of the species distribution within a polymer electrolyte fuel cell (PEFC) is critical

  13. 736 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 6, DECEMBER 2002 A Water-Powered Osmotic Microactuator

    E-Print Network [OSTI]

    Lin, Liwei

    -Powered Osmotic Microactuator Yu-Chuan Su, Liwei Lin, Member, IEEE, and Albert P. Pisano Abstract--This paper in diameter and of 200 to 1000 m in depth. Sodium chloride is chosen as the osmotic driving agent to be placed diaphragm. Using the principle of osmosis, this water-powered, osmotic microactuator can employ high osmotic

  14. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  15. Reaction rate uncertainties and the {nu}p-process

    SciTech Connect (OSTI)

    Froehlich, C.; Rauscher, T. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Dept. of Physics, University of Basel, 4056 Basel (Switzerland)

    2012-11-12

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the {nu}p-process. The detailed nucleosynthesis patterns of the {nu}p-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the {nu}p-process nucleosynthesis.

  16. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  17. As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal

    E-Print Network [OSTI]

    plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal powerAs the demand for power increases in populated areas, so will the demand for water. Current power the cooling power from radiation were developed and run. The results showed a cooling power of 35 W/m2

  18. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  19. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY...

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION Citation Details In-Document Search Title: THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY...

  20. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    lifecycle analyses of water and energy inputs to each typein recognizing the water-energy nexus, or in this case, theavailability between water and renewable energy. Both wind

  1. NuSTAR and Swift observations of the black hole candidate XTE J1908+094 during its 2013 outburst

    E-Print Network [OSTI]

    Tao, Lian; Walton, Dominic J; Furst, Felix; Kennea, Jamie; Miller, Jon M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Gandhi, Poshak; Grefenstette, Brian W; Hailey, Charles J; Harrison, Fiona A; Krimm, Hans A; Pottschmidt, Katja; Stern, Daniel; Tendulkar, Shriharsh P; Zhang, William W

    2015-01-01

    The black hole candidate XTE J1908+094 went into outburst for the first time since 2003 in October 2013. We report on an observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) and monitoring observations with Swift during the outburst. NuSTAR caught the source in the soft state: the spectra show a broad relativistic iron line, and the light curves reveal a ~40 ks flare with the count rate peaking about 40% above the non-flare level and with significant spectral variation. A model combining a multi-temperature thermal component, a power-law, and a reflection component with an iron line provides a good description of the NuSTAR spectrum. Although relativistic broadening of the iron line is observed, it is not possible to constrain the black hole spin with these data. The variability of the power-law component, which can also be modeled as a Comptonization component, is responsible for the flux and spectral change during the flare, suggesting that changes in the corona (or possibly continued jet act...

  2. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  3. LWR (Light Water Reactor) power plant simulations using the AD10 and AD100 systems

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J. (Brookhaven National Lab., Upton, NY (USA); Institute of Nuclear Energy Research, Lung-Tan (Taiwan); Tawian Power Co., Taipei (Taiwan); Brookhaven National Lab., Upton, NY (USA); Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab.

  4. Los Angeles Department of Water and Power Electric and Hybrid Vehicle Program site operator program

    SciTech Connect (OSTI)

    1998-02-01

    During the term of the above mentioned agreement, the Los Angeles Department of Water and Power (LADWP), a municipal utility serving the citizens of Los Angeles, marked its tenth year of involvement in testing and promoting electric vehicles as part of Los Angeles` overall air quality improvement program, and as a means of improving the regions` economic competitiveness through the creation of new industries. LADWP maintained and operated twenty electric vehicles (EVs) during the test period. These vehicles consisted of six G-Vans, four Chrysler TEVans, five U.S. Electricar pickup trucks, and five U.S. Electricar Prizms. LADWP`s electric transportation program also included infrastructure, public transit development, public and awareness, and legislative and regulatory activities.

  5. St. Anthony Falls Laboratory, College of Science & Engineering, University of Minnesota, Minneapolis, MN 55414, USA Energy-Water-Ecosystems Engineering, Wind and Water Power Technologies, Environmental Sciences Division, Oak Ridge National Laboratory, Oak

    E-Print Network [OSTI]

    Siefert, Chris

    , Minneapolis, MN 55414, USA 2 Energy-Water-Ecosystems Engineering, Wind and Water Power Technologies the assistance of SAFL Engineers Chris Ellis and Jim Mullin with design and instrumentation of the turbine power by Verdant Power and U.S. Department of Energy under Contract DE-AC05-00OR22725. We would like to also thank

  6. nuSTORM and A Path to a Muon Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a ?+?- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years agomore »in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the ?+?-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  7. New QCD results from NuTeV

    SciTech Connect (OSTI)

    M. Tzanov et al.

    2003-09-18

    Preliminary results from next-to-leading order strange sea fits to the NuTeV's deep inelastic scattering charged-current dimuon cross section data are presented. Preliminary neutrino and antineutrino inclusive charged-current differential cross sections and preliminary structure function F{sub 2}(x, Q{sup 2}) are presented.

  8. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  9. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect (OSTI)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  10. Solar-powered electrodialysis. Part 2. Design of a solar-powered, electrodialysis system for desalting remote, brackish water sources. Final report

    SciTech Connect (OSTI)

    Lundstrom, J.E.; Socha, M.M.; Lynch, J.D.

    1983-04-01

    The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumps and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.

  11. Climate mitigation’s impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sector’s use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sector’s water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  12. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    will- be-fought-over-water. Kuznets, Simon. “Modern economicas a staged process (Kuznets 1973; Rostow 1956) in whicha teleological process (see Kuznets 1973 and Rostow 1956 for

  13. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    shaping the geography of freshwater resources through watergeography, political science, political ecology, STS, and resourceon the geography of China’s water resources traced back to

  14. A broadband X-ray study of the Geminga pulsar with NuSTAR And XMM-Newton

    SciTech Connect (OSTI)

    Mori, Kaya; Gotthelf, Eric V.; Halpern, Jules P.; Beloborodov, Andrei M.; Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Dufour, Francois; Kaspi, Victoria M.; An, Hongjun [Department of Physics, McGill University, Montreal, QC H3A2T8 (Canada); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kouveliotou, Chryssa [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pivovaroff, Michael J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: kaya@astro.columbia.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-10-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above ?5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT {sub 1} ? 42 eV) with a broken power law (?{sub 1} ? 2.0, ?{sub 2} ? 1.4 and E {sub break} ? 3.4 keV) and (2) two blackbody components (kT {sub 1} ? 44 eV and kT {sub 2} ? 195 eV) with a power-law component (? ? 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ? 0.05-0.5 keV. While strong phase variation of the power-law index is present below ?5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with ? ? 1.3 emerges above ?5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.

  15. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect (OSTI)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

  16. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFact 2007 NuFact

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  18. NuSTAR Hard X-ray Survey of the Galactic Center Region I: Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    E-Print Network [OSTI]

    Mori, Kaya; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A; Alexander, David M; Baganoff, Frederick K; Barret, Didier; Barriere, Nicolas; Boggs, Steven E; Canipe, Alicia M; Christensen, Finn E; Craig, William W; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E; Luu, Vy; Madsen, Kristen K; Mao, Peter H; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J; Zhang, William W; Zoglauer, Andreas

    2015-01-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with $\\Gamma\\sim1.3$-$2.3$ up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe K$\\alpha$ fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density ($\\sim10^{23}$ cm$^{-2}$), primary X-ray spectra (power-laws wi...

  19. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    rare earth metal mining on water and air quality are gainingrare earth metal mining on water and air quality are gainingeven Priuses, severe air and water pollution problems with

  20. Jonathan Link, Columbia NuCosmo '02

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducingJobs HumanImaging NSRC Workshop5 127-19, 2002

  1. The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination 

    E-Print Network [OSTI]

    Park, Gavin L.; Schäfer, Andrea; Richards, Bryce S.

    2011-01-01

    A wind-powered reverse osmosis membrane (wind-membrane) system without energy storage was tested using synthetic brackish water (2750 and 5500 mg/L NaCl) over a range of simulated wind speeds under both steady-state and ...

  2. Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

    2003-01-01

    The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

  3. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  4. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  5. Search for rare events in [the square root of sigma nu nu] = 200 GeV Au+Au PHOBOS data

    E-Print Network [OSTI]

    Mott, Alexander (Alexander Robert)

    2009-01-01

    In this analysis, we set an upper bound on the rate of rare events: events whose dN/dn distribution deviates more than statistically from the ensemble average dN/dn distribution for s [the square root of sigma nu nu] = 200 ...

  6. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect (OSTI)

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  7. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  8. Determining the neutrino mass hierarchy and CP-violation in NO{nu}A with a second off-axis detector

    SciTech Connect (OSTI)

    Mena, Olga [Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States); Palomares-Ruiz, Sergio [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Pascoli, Silvia [Physics Department, Theory Division, CERN, CH-1211 Geneva 23 (Switzerland); IPPP, Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

    2006-04-01

    We consider a Super-NO{nu}A-like experimental configuration based on the use of two detectors in a long-baseline experiment as NO{nu}A. We take the far detector as in the present NO{nu}A proposal and add a second detector at a shorter baseline. The location of the second off-axis detector is chosen such that the ratio L/E is the same for both detectors, being L the baseline and E the neutrino energy. We consider liquid argon and water-Cerenkov techniques for the second off-axis detector and study, for different experimental setups, the detector mass required for the determination of the neutrino mass hierarchy, for different values of {theta}{sub 13}. We also study the capabilities of such an experimental setup for determining CP-violation in the neutrino sector. Our results show that by adding a second off-axis detector a remarkable enhancement on the capabilities of the current NO{nu}A experiment could be achieved.

  9. Journal of Power Sources 160 (2006) 11951203 Quantification of liquid water accumulation and distribution in a

    E-Print Network [OSTI]

    Mench, Matthew M.

    2006-01-01

    water content. © 2006 Elsevier B.V. All rights reserved. Keywords: Flooding; Polymer electrolyte fuel and distribution in a polymer electrolyte fuel cell using neutron imaging A. Turhan, K. Heller, J.S. Brenizer, M cell; Solid polymer electrolyte; Neutron imaging; Water storage; Residual water 1. Introduction

  10. Preliminary results of nu/sub e/e/sup -/ scattering at LAMPF

    SciTech Connect (OSTI)

    Allen, R.C.; Bharadwaj, V.; Brooks, G.A.; Chen, H.H.; Doe, P.J.; Hausammann, R.; Mahler, H.J.; Rushton, A.M.; Wang, K.C.; Bowles, T.J.

    1984-08-01

    We present preliminary results of a neutrino experiment in progress at LAMPF by an Irvine-Los Alamos-Maryland collaboration. We have observed a signal consistent with nu/sub e/e/sup -/ elastic scattering, with a 15-ton sandwich detector. The number of these nu/sub e/e/sup -/ candidates agrees with that predicted by the Weinberg-Salam electroweak theory. The corresponding sin/sup 2/theta/sub w/ and total cross section are reported. This study shows that the interference of weak charged-current and weak neutral-current in nu/sub e/e/sup -/ scattering is not constructive. We also searched for anomalous appearance of anti nu/sub e/ from the LAMPF beam stop. An upper limit for the multiplicative lepton number conservation law, and limits for anti nu/sub ..mu../ ..-->.. anti nu/sub e/ oscillation are given. 15 references.

  11. 3-103 The power that could be produced by a water wheel is to be determined. Properties The density of water is taken to be 1000 m3

    E-Print Network [OSTI]

    Bahrami, Majid

    3-52 3-103 The power that could be produced by a water wheel is to be determined. Properties The density of water is taken to be 1000 m3 /kg (Table A-3). Analysis The power production is determined from The mass flow rate through the wind mill is kg/s7.457 /kg)m4(0.8409 m/s)(10m)7( 3 2 11 S v VA m The power

  12. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    SciTech Connect (OSTI)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y., E-mail: lilirayhk@gmail.com, E-mail: akong@phys.nthu.edu.tw, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ?79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  13. Test of Lepton Flavour Universality in K+ --> l+nu Decays

    E-Print Network [OSTI]

    C. Lazzeroni et al.

    2011-03-01

    A precision test of lepton flavour universality has been performed by measuring the ratio RK of kaon leptonic decay rates K+ --> e+nu and K+ --> mu+nu in a sample of 59813 reconstructed K+ --> e+nu candidates with (8.71 +- 0.24)% background contamination. The result RK = (2.487 +- 0.013) * 10^{-5} is in agreement with the Standard Model expectation.

  14. NuSTAR Observations of the Bullet Cluster: Constraints on Inverse...

    Office of Scientific and Technical Information (OSTI)

    Observations of the Bullet Cluster: Constraints on Inverse Compton Emission Citation Details In-Document Search Title: NuSTAR Observations of the Bullet Cluster: Constraints on...

  15. NuTeV cross-section and structure function measurements

    SciTech Connect (OSTI)

    Donna Naples et al.

    2003-12-10

    The NuTeV experiment has obtained a unique high statistics sample of neutrino and antineutrino interactions using its high-energy sign-selected beam. Charged-current {nu} and {bar {nu}} differential cross sections are extracted. Neutrino-Iron structure functions, F{sub 2}(x, Q{sup 2}) and xF{sub 3}(x, Q{sup 2}), are determined by fitting the y-dependence of the differential cross sections. NuTeV has precise understanding of its hadron and muon energy scales, which improves the systematic precision of this measurement.

  16. Light Water Reactor Sustainability Program Power Uprate Research and Development Strategy

    SciTech Connect (OSTI)

    Hongbin Zhang

    2011-09-01

    The economic incentives for low-cost electricity generation will continue to drive more plant owners to identify safe and reliable methods to increase the electrical power output of the current nuclear power plant fleet. A power uprate enables a nuclear power plant to increase its electrical output with low cost. However, power uprates brought new challenges to plant owners and operators. These include equipment damage or degraded performance, and unanticipated responses to plant conditions, etc. These problems have arisen mainly from using dated design and safety analysis tools and insufficient understanding of the full implications of the proposed power uprate or from insufficient attention to detail during the design and implementation phase. It is essential to demonstrate that all required safety margins have been properly retained and the existing safety level has been maintained or even increased, with consideration of all the conditions and parameters that have an influence on plant safety. The impact of the power uprate on plant life management for long term operation is also an important issue. Significant capital investments are required to extend the lifetime of an aging nuclear power plant. Power uprates can help the plant owner to recover the investment costs. However, plant aging issues may be aggravated by the power uprate due to plant conditions. More rigorous analyses, inspections and monitoring systems are required.

  17. Groundwater protection for the NuMI project

    SciTech Connect (OSTI)

    Wehmann, A.; Smart, W.; Menary, S.; Hylen, J.; Childress, S.

    1997-10-01

    The physics requirements for the long base line neutrino oscillation experiment MINOS dictate that the NuMI beamline be located in the aquifer at Fermilab. A methodology is described for calculating the level of radioactivation of groundwater caused by operation of this beamline. A conceptual shielding design for the 750 meter long decay pipe is investigated which would reduce radioactivation of the groundwater to below government standards. More economical shielding designs to meet these requirements are being explored. Also, information on local geology, hydrogeology, government standards, and a glossary have been included.

  18. NUE Pty Ltd aka NU Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas:NGEN PartnersNUE Pty Ltd aka NU

  19. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Project Description AREVA and a team of investigators surveyed 33 operators of electric power systems in 18 countries about wind integration, their operating policies, best...

  20. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Project Location Northern Power Systems, Inc. Advanced Manufacturing and Supply Chain Automation 683,388 FY09: American Recovery and Reinvestment Act (part of the 20% Wind by...

  1. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  2. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  3. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    None

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  4. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    E-Print Network [OSTI]

    Chakrabarty, Deepto

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of ...

  5. Water Power Technologies Oak Ridge National Laboratory (ORNL) supports the Department of Energy's mission to research,

    E-Print Network [OSTI]

    ://nhaap.ornl.gov) is an integrated research effort to advance sustainable hydroelectricity generation and water management. The NHAAP the potential for new hydropower development in U.S. stream segments that do not currently have hydroelectric

  6. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  7. A hybrid energy cell for self-powered water splitting Hulin Zhang,a

    E-Print Network [OSTI]

    Wang, Zhong L.

    reformation of natural gas, which not only consumes natural resources but also generates carbon dioxide to develop a cost-effective technology for mass production of H2.3 Photo- catalytic splitting of water into H

  8. PowerProjections2003(avgusing5-03water,BrokerPrices)(amended...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jections2003(avgusing5-03water,BrokerPrices)(amended).xls SLIP Energy WY Gross Gen from Hydro LP Dolores Gen. Total SLIP Gross Gen Avg. Plant Use SLIP Net Gen @ Plant Losses SLIP...

  9. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect (OSTI)

    Auty, David John; /Sussex U.

    2010-05-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0% {bar {nu}}{sub {mu}}, which can be separated from the {nu}{sub {mu}} because the MINOS detectors are magnetized. This makes it possible to study {bar {nu}}{sub {mu}} oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the {bar {nu}}{sub {mu}} oscillation parameters and comparing them with those for {nu}{sub {mu}}, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam {bar {nu}}{sub {mu}} before. It is also possible to produce an almost pure {bar {nu}}{sub {mu}} beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% {bar {nu}}{sub {mu}} component of the forward horn current NuMI beam. The {bar {nu}}{sub {mu}} of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3{sub -7.6}{sup +7.6}(stat.){sub -3.6}{sup +3.6}(syst.) events. This corresponds to a 1.9 {sigma} deficit, and a best fit value of {Delta}{bar m}{sub 32}{sup 2} = 18 x 10{sup -3} eV{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23} = 0.55. This thesis focuses particularly on the selection of {bar {nu}}{sub {mu}} events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The thesis also investigates how the systematic errors affect the precision of {Delta}{bar m}{sub 32}{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23}. Furthermore, it describes a study to determine the gains of the PMTs via the single-photoelectron spectrum. The results were used as a crosscheck of the gains determined at higher intensities by an LED-based light-injection system.

  10. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  11. Power of the people: Restoring impaired water bodies with stakeholder-driven WPPs 

    E-Print Network [OSTI]

    Foust, Margaret

    2010-01-01

    Story by Margaret Foust txH2O | pg. 15 Watershed protection plans (WPPs) are one of the approaches stakeholders are using to protect and restore water bodies and watersheds in Texas. WPPs are voluntary and actively involve local... Board (TSSWCB) through a Clean Water Act Nonpoint Source Grant from the U.S. Environmental Protection Agency (EPA). Through the Watershed Protection Plan Development for Buck Creek, the project team has identified specific sources of E. coli...

  12. Power of the people: Restoring impaired water bodies with stakeholder-driven WPPs 

    E-Print Network [OSTI]

    Foust, Maragaret

    2011-01-01

    Story by Margaret Foust txH2O | pg. 15 Watershed protection plans (WPPs) are one of the approaches stakeholders are using to protect and restore water bodies and watersheds in Texas. WPPs are voluntary and actively involve local... Board (TSSWCB) through a Clean Water Act Nonpoint Source Grant from the U.S. Environmental Protection Agency (EPA). Through the Watershed Protection Plan Development for Buck Creek, the project team has identified specific sources of E. coli...

  13. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWaterDepartment

  14. Water Power Program FY 2016 Budget At-A-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating WaterYou

  15. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  16. Perturbative QCD effects and the search for a H->WW->l nu l nu signal at the Tevatron

    E-Print Network [OSTI]

    Charalampos Anastasiou; Guenther Dissertori; Massimiliano Grazzini; Fabian Stoeckli; Bryan R. Webber

    2009-07-21

    The Tevatron experiments have recently excluded a Standard Model Higgs boson in the mass range 160 - 170 GeV at the 95% confidence level. This result is based on sophisticated analyses designed to maximize the ratio of signal and background cross-sections. In this paper we study the production of a Higgs boson of mass 160 GeV in the gg -> H -> WW -> l nu l nu channel. We choose a set of cuts like those adopted in the experimental analysis and compare kinematical distributions of the final state leptons computed in NNLO QCD to lower-order calculations and to those obtained with the event generators PYTHIA, HERWIG and MC@NLO. We also show that the distribution of the output from an Artificial Neural Network obtained with the different tools does not show significant differences. However, the final acceptance computed with PYTHIA is smaller than those obtained at NNLO and with HERWIG and MC@NLO. We also investigate the impact of the underlying event and hadronization on our results.

  17. NuSTAR study of hard X-ray morphology and spectroscopy of PWN G21.5–0.9

    SciTech Connect (OSTI)

    Nynka, Melania; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Perez, Kerstin [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Reynolds, Stephen P. [Physics Department, NC State University, Raleigh, NC 27695 (United States); An, Hongjun [Department of Physics, McGill University, Rutherford Physics Building, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Baganoff, Frederick K. [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Boggs, Steven E.; Krivonos, Roman; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Craig, William W. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5–0.9. We detect integrated emission from the nebula up to ?40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies, NuSTAR clearly detects non-thermal emission up to ?20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at ?9 keV that cannot be reproduced by current spectral energy distribution models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, L(E)?E{sup m} with m = –0.21 ± 0.01. We find this to be inconsistent with the model for the morphological evolution with energy described by Kennel and Coroniti. This value, along with the observed steepening in power-law index between radio and X-ray, can be quantitatively explained as an energy-loss spectral break in the simple scaling model of Reynolds, assuming particle advection dominates over diffusion. This interpretation requires a substantial departure from spherical magnetohydrodynamic, magnetic-flux-conserving outflow, most plausibly in the form of turbulent magnetic-field amplification.

  18. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  19. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan)] [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)] [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it was used for the column testing to obtain breakthrough curves under various conditions of pH and brine concentration. The breakthrough point had a dependency on pH and the brine concentration. We found that when the pH was higher or the brine concentration was lower, the longer it took to reach the breakthrough point. The inhibition of strontium adsorption by alkali earth metals would be diminished for conditions of higher pH and lower brine concentration. (authors)

  20. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    SciTech Connect (OSTI)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  1. Water Use in the Development and Operation of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWaterDepartment of

  2. Water Use in the Development and Operations of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWaterDepartment of2

  3. Water Power Program FY 2015 Budget At-A-Glance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste IsolationofWatchBudget WaterWater

  4. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  5. Long distance nu_e -> nu_mu transitions and CP-violation with high intensity beta-beams

    E-Print Network [OSTI]

    Carlo Rubbia

    2013-06-10

    The recent experimental determinations of a large theta_13 angle have opened the way to a determination of the mass hierarchy and of the CP-violating phase. Experiments based on horn produced (anti-)neutrino conventional beams are presently under development. The event rates are marginal for a definitive search, since they require very intense beams and extremely large detector masses. Zucchelli has proposed a method in which pure (anti-)nu_e beams are generated by the beta-decay of relativistic radio-nuclides stored in a high energy storage ring pointing towards a far away neutrino detector. Since they have a much smaller transverse momentum distribution, the neutrino flux will be much more narrowly concentrated than with a horn. The isomeric doublet Li-8 (anti-nu_e, tau_1/2=0.84s) and B-8 (nu_e, tau_1/2=0.77s) has been studied. Neutrino and antineutrino beams are produced with an average transverse momentum of about 6.5 MeV/c. Radioactive ions may be generated with a dedicated table-top storage ring to supply a suitable ion source to be accelerated at high energies either at FNAL or at CERN. Ions should then extracted from the accelerator and accumulated in a decay storage ring with a long straight section pointing toward the neutrino detector. A massive detector based on liquid Argon technology is probably offering the best opportunities for such future programme. The present ICARUS LAr-TPC experiment has already collected at LNGS events in the relevant neutrino energy region. They should provide a first evidence for a conclusive experimental study of the competing signals and more generally for the actual feasibility of the beta-beam option in a search of the CP violating phase. Additional data may be provided in the near future with the ICARUS and MicroBooNe neutrino experiments located at a short distance neutrino beam and that will collect a much larger number of neutrino events.

  6. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

  7. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  17. NuSTAR Reveals Relativistic Reflection But No Ultra-Fast Outflow In The Quasar PG 1211+143

    E-Print Network [OSTI]

    Zoghbi, A; Walton, D J; Harrison, F A; Fabian, A C; Reynolds, C S; Boggs, S E; Christensen, F E; Craig, W; Hailey, C J; Stern, D; Zhang, W W

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an 'ultra-fast outflow' (or, UFO) in the Fe K band, with a velocity of approximately 0.1c. The putative flow would carry away a high mass flux and kinetic power, with broad implications for feedback and black hole-galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed, via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFO's show no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars,...

  18. A NuSTAR observation of disk reflection from close to the neutron star in 4U 1608-52

    E-Print Network [OSTI]

    Degenaar, N; Chakrabarty, D; Harrison, F; Kara, E; Fabian, A C

    2015-01-01

    Studying the reflection of X-rays off the inner edge of the accretion disk in a neutron star low-mass X-ray binary, allows us to investigate the accretion geometry and to constrain the radius of the neutron star. We report on a NuSTAR observation of 4U 1608-52 obtained during a faint outburst in 2014 when the neutron star, which has a known spin frequency of 620 Hz, was accreting at ~1-2% of the Eddington limit. The 3-79 keV continuum emission was dominated by a Gamma~2 power law, with a ~1-2% contribution from a kTbb~0.3-0.6 keV black body component. The high-quality NuSTAR spectrum reveals the hallmarks of disk reflection; a broad iron line peaking near 7~keV and a Compton back-scattering hump around ~20-30 keV. Modeling the disk reflection spectrum points to a binary inclination of i~30-40 degrees and a small `coronal' height of h0.12, for a mass of M=1.5 Msun and a spin parameter of a=0.29.

  19. Simultaneous NuSTAR/Chandra observations of the Bursting Pulsar GRO J1744-28 during its third reactivation

    E-Print Network [OSTI]

    Younes, G; Grefenstette, B W; Tomsick, J A; Tennant, A; Finger, M H; Furst, F; Pottschmidt, K; Bhalerao, V; Boggs, S E; Boirin, L; Chakrabarty, D; Christensen, F E; Craig, W W; Degenaar, N; Fabian, A C; Gandhi, P; Gogus, E; Hailey, C J; Harrison, F A; Kennea, J A; Miller, J M; Stern, D; Zhang, W W

    2015-01-01

    We report on a 10 ks simultaneous Chandra/HETG-NuSTAR observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 years of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors, and well described by a blackbody (BB), a power-law with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disc, we estimate its inner (magnetospheric) radius to be about 4x10^7 cm, which translates to a surface dipole field B~9x10^10 G. The Chandra/HETG spectrum resolves the 6.7 keV ...

  20. The culture of some marine fishes in ponds receiving heated discharge water from a power plant 

    E-Print Network [OSTI]

    Luebke, Richard William

    1973-01-01

    / l 0 O I- ILI CIS CII CIS O Ill IL CL O C I- III O O Ict C3 U. IL O 1 its origin. A 75 hp pump (Worthington Corporation) supplied the pond water. This water entered the intake end of each pond through a inventories and final... Cd (~dd) N39AXO 03A10SSIO ( Ol & I&/ccl(cldI AIIAILDOONOO (Od 38lllIIN3dN3d. 27 ONI AlINI1VS JJI O ICI oJ IIJ ID IU CJ UI o I?: OI 9 OI ) CI IK IJJ III 0 I CJ 0 CL VJ IIJ O. III CJJ I 0 't5 ~ td 0 0 g 0 ld W e 40 oo 0 0 E...

  1. MI high power operation and future plans

    SciTech Connect (OSTI)

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  2. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department ofIntroductionDepartmentWasteWater

  3. Before the Subcommittee on Water and Power - Committee on Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville EnergyDepartmenton ContractingCommittee ||

  4. Standard model explanations for the NuTeV electroweak measurements

    SciTech Connect (OSTI)

    R. H. Bernstein

    2003-12-23

    The NuTeV Collaboration has measured the electroweak parameters sin{sup 2} {theta}{sub W} and {rho} in neutrino-nucleon deep-inelastic scattering using a sign-selected beam. The nearly pure {nu} or {bar {nu}} beams that result provide many of the cancellations of systematics associated with the Paschos-Wolfenstein relation. The extracted result for sin{sup 2} {theta}{sub W}(on-shell) = 1 - M{sub W}{sup 2}/M{sub Z}{sup 2} is three standard deviations from prediction. We discuss Standard Model explanations for the puzzle.

  5. Contested Nationalism: Ethnic Identity and State Power in the Republic of Vietnam, 1954-1963

    E-Print Network [OSTI]

    Tran, Nu-Anh

    2012-01-01

    giao thông” (“Roadmap of Vietnam”) Source: $%a l& Vi#t NamThe Highland People of South Vietnam: Social and EconomicPower in the Republic of Vietnam, 1954-1963 by Nu-Anh Tran

  6. PH adjustment of power plant cooling water with flue gas/fly ash

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  7. Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development Co Ltd

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock| Open Energy Information Water

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    R. P. Allison, "High Water Recovery with Electrodialysis12] GE Power & Water, "Electrodialysis Reversal (EDR)," 02ARABIA," in The Value of Water in the 21st Century, San

  9. Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, By

  10. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serialIndustrialSenior8Rick StevensA Megawatt

  11. Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThe U.S. Department of Energy's (DOE's) 20%

  12. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fm f m Tomega( ( ( ( ( ( (

  13. Microsoft PowerPoint - Aluminum Concentrations in Storm Water_w_lighter_photo_for_pdf.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavy nanowires with anDaleStudies

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  15. Z' Bosons, the NuTeV Anomaly, and the Higgs Boson Mass

    E-Print Network [OSTI]

    Chanowitz, Michael S

    2009-01-01

    NuTeV Anomaly, and the Higgs Boson Mass Michael S. Chanowitzpredicted value of the Higgs boson mass, from ? 60 to ? 120from an increase in the Higgs boson mass. There is a vast

  16. NuFact'11 Aug. 4, 2011 1 Simulation of Dynamic Interaction of

    E-Print Network [OSTI]

    McDonald, Kirk

    : Modeling of cavitation bubbles during disruption of the Hg Jet/Pool LS-Dyna simulations: #12;NuFact'11 Aug described numerically (user input into LS-DYNA) Incorporate all effects (hydrodynamic, beam, solenoid field

  17. NuFact'11 Aug. 3, 2011 1 Simulation of Dynamic Interaction of

    E-Print Network [OSTI]

    McDonald, Kirk

    Challenge: Modeling of cavitation bubbles during disruption of the Hg Jet/Pool LS-Dyna simulations: #12;Nu described numerically (user input into LS-DYNA) Incorporate all effects (hydrodynamic, beam, solenoid field

  18. Fundamental processes in the interacting boson model: 0{nu}{beta}{beta} decay

    SciTech Connect (OSTI)

    Iachello, F. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Barea, J. [Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-05-06

    A program to calculate nuclear matrix elements for fundamental processes in the interacting boson model has been initiated. Results for the nuclear matrix elements in neutrinoless double beta decay 0{nu}{beta}{beta} are presented.

  19. Fighting cheaters: How and how much to invest Juan Carlos Nu~no 1

    E-Print Network [OSTI]

    Primicerio, Mario

    Fighting cheaters: How and how much to invest Juan Carlos Nu~no 1 , Miguel A. Herrero 2 and Mario wealth and deplete resources which are always limited and often scarce. To fight cheaters, a society can

  20. Cumulative biophysical impact of small and large hydropower development, Nu River, China

    E-Print Network [OSTI]

    Tullos, Desiree

    Cumulative biophysical impact of small and large hydropower development, Nu River, China Authors hydropower facilities. This support is manifested in national and international energy and development policies designed to incentivize growth in the small hydropower sector while curtailing large dam

  1. Development of Cryogenic Bolometer for 0{nu}{beta}{beta} in {sup 124}Sn

    SciTech Connect (OSTI)

    Singh, Vivek; Mathimalar, S.; Dokania, Neha [INO, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Yashwant, G.; Nanal, V.; Pillay, R. G. [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Datar, V. M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-11-23

    Cryogenic bolometer detectors, with their high resolution spectroscopy capability, are ideal for neutrino mass experiments as well as for search of rare processes like neutrinoless double beta decay (0{nu}{beta}{beta}) and dark matter. A feasibility study for investigation of 0{nu}{beta}{beta} in {sup 124}Sn at the upcoming underground facility of India based Neutrino Observatory (INO) has been initiated. This paper describes endeavors towards cryogenic tin bolometer development.

  2. NuFact'01 March 24-30, 2001 F. Sergiampietri LANNDD 1 F. Sergiampietri

    E-Print Network [OSTI]

    McDonald, Kirk

    discrimination for electrons (high field) Underground location 70 kTon Magnetized LAr TPC at the WIPP site near Carlsbad (NM) #12;NuFact'01 ­ March 24-30, 2001 F. Sergiampietri LANNDD 6 LANNDD at the WIPP site / RECONDENSER WIPP SITE LAT: 32.25°° N LONG: 103.75°°W #12;NuFact'01 ­ March 24-30, 2001 F. Sergiampietri LANNDD

  3. NuWro Monte Carlo generator of neutrino interactions - first electron scattering results

    E-Print Network [OSTI]

    Jakub Zmuda; Krzysztof M. Graczyk; Cezary Juszczak; Jan T. Sobczyk

    2015-11-05

    NuWro Monte Carlo generator of events is presented. It is a numerical environment containing all necessary ingredients to simulate interactions of neutrinos with nucleons and nuclei in realistic experimental situation in wide neutrino energy range. It can be used both for data analysis as well as studies of nuclear effects in neutrino interactions. The first results and functionalities of eWro - module of NuWro dedicated to electron nucleus scattering - are also presented.

  4. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  5. Search for Free Decay of Negative Pions in Water and Light Materials

    E-Print Network [OSTI]

    T. Numao; Yu. I. Davydov; J-M. Poutissou; T. C. Awes; V. Cianciolo; S. Berridge; W. Bugg; Yu. Efremenko; R. Gearhart; S. Ovchinnikov

    2006-05-30

    We report on a search for the free decay component of pi- stopped in water and light materials. A non-zero value of this would be an indication of anomalous nu_e contamination to the nu_e and nu_mu_bar production at stopped-pion neutrino facilities. No free decay component of pi- was observed in water, Beryllium, and Aluminum, for which upper limits were established at 8.2E-4, 3.2E-3, and 7.7E-3, respectively.

  6. Light sterile neutrino sensitivity at the nuSTORM facility

    E-Print Network [OSTI]

    Adey, D; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bramsiepe, S.G.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M.A.; Ghosh, T.; Gomez-Cadenas, J.J.; de Gouvea, A.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando Morata, J.A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J.B.; Laing, A.; Liu, A.; Link, J.M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K.T.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M.A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Sby, L.; Soler, F.J.P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H.A.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Weber, A.; Wilking, M.J.; Wildner, E.; Winter, W.

    2014-01-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simulta...

  7. Thin power law film flow down an inclined plane: consistent shallow water models and stability under large scale perturbations

    E-Print Network [OSTI]

    Noble, Pascal

    2012-01-01

    In this paper we derive consistent shallow water equations for thin films of power law fluids down an incline. These models account for the streamwise diffusion of momentum which is important to describe accurately the full dynamic of the thin film flows when instabilities like roll-waves arise. These models are validated through a comparison with Orr Sommerfeld equations for large scale perturbations. We only consider laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of thin film and its relation with long wave asymptotic leads naturally to flow conditions around a uniform free surface Poiseuille flow. The apparent viscosity diverges at the free surface which, in turn, introduces a singularity in the formulation of the Orr-Sommerfeld equations and in the derivation of shallow water models. We remove this singularity by introducing a weaker formulation of Cauc...

  8. WATER POWER SOLAR POWER WIND POWER

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency &Report- April 2012 |VoteWATCH

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  11. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  12. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  13. Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly Awaiting Exploitation-Cold Water!! 

    E-Print Network [OSTI]

    Burger, R.

    1990-01-01

    TOWER PERFORMANCE REFRIGERATION SYSTEMS, CHEMICAL PLANTS, AND POWER PLANTS ALL HAVE A RESOURCE QUIETLY AWAITING EXPLOITATION - COLD WATER!! ROBERT BURGER President Burger and Associates, Inc. Dallas, Texas Cooling towers, because... of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty...

  14. The culture of selected marine fish in ponds receiving thermal effluent from a power station and their use as biological monitors of water quality 

    E-Print Network [OSTI]

    Pane, Joseph John

    1976-01-01

    THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE AS BIOLOGICAL MONITORS OF WATER QUALITY A Thesis by JOSEPH JOHN PANE Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject: Wildlife and Fisheries Sciences THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE...

  15. A Model-Independent Search for the decay B->l nu gamma

    SciTech Connect (OSTI)

    Aubert, Bernard; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, David Nathan; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS; /more authors..

    2012-10-09

    The authors present a search for the radiative leptonic decay B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}}{gamma}, where {ell} = e, {mu}, using a data sample of 465 million B{bar B} pairs collected by the BABAR experiment. In this analysis, they fully reconstruct the hadronic decay of one of the B mesons in {Upsilon}(4S) {yields} B{sup +}B{sup -} decays, then search for evidence of B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}}{gamma} in the rest of the event. They observe no significant evidence of signal decays and report model-independent branching fraction upper limits of {Beta}(B{sup +} {yields} e{sup +}{nu}{sub e}{gamma}) < 17 x 10{sup -6}, {Beta}(B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}{gamma}) < 24 x 10{sup -6}, and {Beta}(B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}}{gamma}) < 15.6 x 10{sup -6} ({ell} = e or {mu}), all at the 90% confidence level.

  16. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  17. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  18. Toward the full test of the nuMSM sterile neutrino dark matter model with Athena

    E-Print Network [OSTI]

    Neronov, A

    2015-01-01

    We discuss the potential of Athena X-ray telescope, in particular of its X-ray Integral Field Unit (X-IFU), for detection of the signal from the light-weight decaying dark matter with mass in the keV range. We show that high energy resolution and large collection area of X-IFU will provide an improvement of sensitivity which will be sufficient for the full test of the neutrino Minimal extension of the Standard Model (nuMSM). Search for the narrow spectral line produced by the decay of the dark matter sterile neutrino in the spectra of dwarf spheroidal galaxies with X-IFU will explore the whole allowed range masses and mixing angles of the nuMSM lightest sterile neutrino and in this way either to find the dark matter signal or rule out the nuMSM model.

  19. Water Power News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | DepartmentResidentialJeannie Saur

  20. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    on water quality issues including water recycling, operation of wastewater treatment facilities, wind-powered

  1. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  2. Estimate of B(K -> pi nu nubar) from Standard Model fits to lambda_t

    E-Print Network [OSTI]

    S. H. Kettell; L. G. Landsberg; H. Nguyen

    2003-05-19

    We estimate B(K -> pi nu nubar) in the context of the Standard Model by fitting for lambda_t = Vtd x V*ts of the `kaon unitarity triangle' relation. We fit data from epsilon_K, the CP-violating parameter describing K-mixing, and a_{psi K}, the CP-violating asymmetry in B -> J/psi K decays. Our estimate is independent of the CKM matrix element Vcb and of the ratio of Bs to Bd mixing frequencies. The measured value of B(K+ -> pi+ nu nubar) can be compared both to this estimate and to predictions made from the ratio of B mixing frequencies.

  3. Expression of Interest for Neutrinos Scattering on Glass: NuSOnG

    E-Print Network [OSTI]

    NuSOnG Collaboration; T. Adams; L. Buge; J. M. Conrad; P. H. Fisher; J. A. Formaggio; A. de Gouvêa; W. A. Loinaz1; G. Karagiorgi; T. R. Kobilarcik; S. Kopp; G. Kyle; D. A. Mason; R. Milner; J. G. Morfín; M. Nakamura; D. Naples; P. Nienaber; F. I Olness; J. F. Owens; W. G. Seligman; M. H. Shaevitz; H. Schellman; M. J. Syphers; C. Y. Tan; R. G. Van de Water; R. K. Yamamoto; G. P. Zeller

    2009-07-28

    We propose a 3500 ton (3000 ton fiducial volume) SiO_2 neutrino detector with sampling calorimetry, charged particle tracking, and muon spectrometers to run in a Tevatron Fixed Target Program. Improvements to the Fermilab accelerator complex should allow substantial increases in the neutrino flux over the previous NuTeV quad triplet beamline. With 4E19 protons on target/year, a 5 year run would achieve event statistics more than 100 times higher than NuTeV. With 100 times the statistics of previous high energy neutrino experiments, the purely weak processes [\

  4. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; Bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  5. NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK

    E-Print Network [OSTI]

    Parker, M. L.

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, ...

  6. NuEditor A Tool Suite for Specification and Verification of NuSCR Jaemyung Cho, Junbeom Yoo, Sungdeok Cha

    E-Print Network [OSTI]

    proposed to ensure safety. In nuclear power plant control systems, software safety became a critical issue system for nuclear power plant. SCR almost exclusively depended on fine-grained tabular notationsEditor to specify a trip logic of RPS(Reactor Protection System) BP(Bistable Processor) and verify its correctness

  7. 5.95.NuBook4pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecules in body tissue. When the concentration of water is low, as it is inside the lungs, MRI is of limited value. One pro- posed work-around is to have a patient inhale a...

  8. Clean water from clean energy: removal of dissolved contaminants from brackish groundwater using wind energy powered electrodialysis 

    E-Print Network [OSTI]

    Malek, Payam

    2015-06-29

    Around 770 million people lack access to improved drinking water sources (WHO 2013), urgently necessitating implementation of contaminant removal by e.g. desalination systems on a large scale. To improve water quality ...

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFact 2007

  10. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFact

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFactEvent

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFactEventν μ

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFactEventν

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½  OscillationNuFactEventνPenn

  15. NuScale Power Request for Extension of Public Comment Period | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e Office of Health,Responseof

  16. Measurement of B(D+->(K)over-bar(*0)l(+)nu(l))

    E-Print Network [OSTI]

    Ammar, Raymond G.; Besson, David Zeke; Zhao, X.

    2002-11-01

    Using 13.53 fb(-1) of CLEO data, we have measured the ratios of the branching fractions R-e(+),R-mu(+) and the combined branching fraction ratio R-l(+), defined by R-l(+)=[B(D+-->(K) over bar (*0)l(+)nu(l))]/[B(D+-->K(-) ...

  17. Roadmap: Nursing Bachelor of Science in Nursing [NU-BSN-NURS

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Nursing ­ Bachelor of Science in Nursing [NU-BSN-NURS] College of Nursing Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 22-Apr-13/JS This roadmap is a recommended semester Kent Core Requirement 3 See Kent Core Summary on page 2 #12;Roadmap: Nursing ­ Bachelor of Science

  18. July 26 NuFACT Target Meeting 1 Simulation of Dynamic Interaction of the Neutrino Factory

    E-Print Network [OSTI]

    McDonald, Kirk

    pulses will be arriving, interacting with Hg jet and Hg pool (+ Jet interacting with pool How does the Hg phase diagram and introduce it to codes such as LS-DYNA Energy Deposition introduction into Hg jet/pool Dynamics and Hg Jet/Pool #12;July 26 NuFACT Target Meeting 13 Local pressure outside formed bubble can

  19. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    SciTech Connect (OSTI)

    Craig, Bill

    2013-09-10

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week

  20. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    ScienceCinema (OSTI)

    Craig, Bill

    2014-05-22

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week

  1. Analysis of the charmed semileptonic decay D+ ---> rho0 mu+ nu

    SciTech Connect (OSTI)

    Luiggi, Eduardo E.; /Vanderbilt U.; ,

    2008-12-01

    The search for the fundamental constituents of matter has been pursued and studied since the dawn of civilization. As early as the fourth century BCE, Democritus, expanding the teachings of Leucippus, proposed small, indivisible entities called atoms, interacting with each other to form the Universe. Democritus was convinced of this by observing the environment around him. He observed, for example, how a collection of tiny grains of sand can make out smooth beaches. Today, following the lead set by Democritus more than 2500 years ago, at the heart of particle physics is the hypothesis that everything we can observe in the Universe is made of a small number of fundamental particles interacting with each other. In contrast to Democritus, for the last hundred years we have been able to perform experiments that probe deeper and deeper into matter in the search for the fundamental particles of nature. Today's knowledge is encapsulated in the Standard Model of particle physics, a model describing the fundamental particles and their interactions. It is within this model that the work in this thesis is presented. This work attempts to add to the understanding of the Standard Model by measuring the relative branching fraction of the charmed semileptonic decay D{sup +} {yields} {rho}{sup 0}{mu}{sup +}{nu} with respect to D{sup +} {yields} {bar K}*{sup 0} {mu}{sup +}{nu}. Many theoretical models that describe hadronic interactions predict the value of this relative branching fraction, but only a handful of experiments have been able to measure it with any precision. By making a precise measurement of this relative branching fraction theorists can distinguish between viable models as well as refine existing ones. In this thesis we presented the measurement of the branching fraction ratio of the Cabibbo suppressed semileptonic decay mode D{sup +} {yields} {rho}{sup 0}{mu}{sup +}{nu} with respect to the Cabibbo favored mode D{sup +} {yields} {bar K}*{sup 0} {mu}{sup +}{nu} using data collected by the FOCUS collaboration. We used a binned maximum log-likelihood fit that included all known semileptonic backgrounds as well as combinatorial and muonmisidentification backgrounds to extract the yields for both the signal and normalization modes. We reconstructed 320 {+-} 44 D{sup +} {yields} {rho}{sup 0}{mu}{sup +}{nu} events and 11372 {+-} 161 D{sup +} {yields} K{sup -}{pi}{sup +}{mu}{sup +}{nu} events. Taking into account the non-resonant contribution to the D{sup +} {yields} K{sup -}{pi}{sup +}{mu}{sup +}{nu} yield due to a s-wave interference first measured by FOCUS the branching fraction ratio is: {Lambda}(D{sup +} {yields} {rho}{sup 0}{mu}{sup +}{nu}) = 0.0412 {+-} 0.0057 {+-} 0.0040 (VII.1) where the first error is statistical and the second error is the systematic uncertainty. This represents a substantial improvement over the previous world average. More importantly, the new world average for {Lambda}(D{sup +}{yields}{rho}{sup 0}{mu}{sup +}{nu})/{Lambda}(D{sup +}{yields}{bar K}*{sup 0}{mu}{sup +}{nu}) along with the improved measurements in the electronic mode can be used to discriminate among different theoretical approaches that aim to understand the hadronic current involved in the charm to light quark decay process. The average of the electronic and muonic modes indicate that predictions for the partial decay width {Lambda}(D{sup +} {yields} {rho}{sup 0}{ell}{sup +}{nu}) and the ratio {Lambda}(D{sup +}{yields}{rho}{sup 0}{ell}{sup +}{nu})/{Lambda}(D{sup +}{yields}{bar K}*{sup 0}{ell}{sup +}{nu}) based on Sum Rules are too low. Using the same data used to extract {Lambda}(D{sup +}{yields}{rho}{sup 0}{mu}{sup +}{nu})/{Lambda}(D{sup +}{yields}{bar K}*{sup 0}{mu}{sup +}{nu}) we studied the feasibility of measuring the form factors for the D{sup +} {yields} {rho}{sup 0}{mu}{sup +}{nu} decay. We found that the need to further reduce the combinatorial and muon misidentification backgrounds left us with a much smaller sample of 52 {+-} 12 D{sup +} {yields} {rho}{sup 0}{mu}{sup +}{mu} events; not enough to make a statistically significa

  2. Production and Separation of T = 1/2 Nuclides for {beta}--{nu} angular correlation measurements

    SciTech Connect (OSTI)

    Delahaye, P.; Bajeat, O.; Saint Laurent, M. G.; Thomas, J. C.; Traykov, E.; Lienard, E.; Ban, G.; Durand, D.; Flechard, X.; Naviliat-Cuncic, O.; Stora, T.; Collaboration: GANISOL Group

    2011-11-30

    The SPIRAL facility at GANIL, which uses the so-called ISOL method to produce radioactive ion beams, is being upgraded to extend its production capabilities to the metallic beams of neutron deficient isotopes. We discuss here the potentialities offered by this upgrade for the measurement of the {beta}--{nu} angular correlation in the {beta}--decay of mirror nuclides.

  3. Study of the decay tau(-)->2 pi(-)pi(+)3 pi(0)nu(tau)

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1997-11-01

    The decay tau(-) --> 2 pi(-)pi(+)3 pi(0) nu(tau) has been studied with the CLEO II detector at the Cornell Electron Storage Ring. The branching fraction is measured to be (2.85 +/- 0.56 +/- 0.51) x 10(-4). The result is ...

  4. Measurement of the decay tau(-) -> pi(-) pi(+) pi(-) 2pi(0)nu-tau

    E-Print Network [OSTI]

    Ammar, Raymond G.; Ball, S.; Baringer, Philip S.; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kelly, M.; Kwak, Nowhan; Lam, H.

    1993-09-01

    The decay tau- --> pi-pi+pi-2pi0nu(tau) has been observed in e+e- annihilation using the CLEO II detector at the Cornell Electron Storage Ring. In a data sample collected at square-root s is similar to 10.6 GeV, 668 +/- ...

  5. Minimally allowed beta beata 0_nu rates from approximate flavor symmetries

    SciTech Connect (OSTI)

    Jenkins, James [Los Alamos National Laboratory

    2008-01-01

    Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee} , the e - e element of the Majorana mass matrix. This is expected to hold true for small {beta}{beta}{nu} rates ({Gamma}{sub {beta}{beta}0{nu}}), even in the presence of new physics. Naively, current data allows for vanishing m{sub ee} , but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. Hence, Majorana neutrinos imply nonzero {Gamma}{sub {beta}{beta}0{nu}}. I perform a spurion analysis to break all possible abelian symmetries that guarantee {Gamma}{sub {beta}{beta}0{nu}} = 0 and search for minimally allowed m{sub ee} values. Specifically, I survey 259 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee} > 4 x 10{sup -6} eV at 99% confidence. Bounds below this value would indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. This limit can be raised by improvements in neutrino parameter measurements, particularly of the reactor mixing angle, depending on the best fit parameter values. Such improvements will also significantly constrain the available model space and aid in future constructions.

  6. Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants

    SciTech Connect (OSTI)

    Douglas G. Hall

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  7. Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants: Main report and Appendix A

    SciTech Connect (OSTI)

    Hall, Douglas G.; Reeves, Kelly S.; Brizzee, Julie; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  8. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  9. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  10. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; Coney, L.; Pascoli, S.; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  11. Sandia Energy - NuMAD License and Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database ReceivesNewNewsSandia

  12. Sandia Energy - NuMAD v2.0 FAQ's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database ReceivesNewNewsSandiav2.0

  13. Sandia Energy - Numerical Manufacturing And Design Tool (NuMAD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW DatabaseNuclear FuelsNuclearNumerical

  14. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetectionBenchmarkResults and Follow-OnMiniBooNE's6Up

  15. Nu2010_MiniBooNE_Osc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |Cafés November 12,| SAND2015-XXXX

  16. R. Tayloe, NuFact'09 Chicago, IL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on Global Technology OUTSIDE FRONT COVERQuasielastic

  17. Djurcic_MiniBooNE_NuFact2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown Hallfrom MiniBooNE

  18. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown Hallfrom MiniBooNEReport

  19. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect (OSTI)

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  20. 24. Nuclear? Nuclear power comes in two flavours

    E-Print Network [OSTI]

    Ernst, Damien

    24. Nuclear? Nuclear power comes in two flavours: 1. Nuclear fission. Split up heavy nuclei into medium-sized nu- clei, thereby releasing energy. 2. Nuclear fusion. Fuse light nuclei into medium-sized nuclei, thereby releasing energy. 1 #12;Nuclear energy available per atom is roughly one mil- lion times

  1. Observation of the decay Xi0 ---> Sigma+ mu- anti-nu(mu)

    SciTech Connect (OSTI)

    Alavi-Harati, A.; Alexopoulos, T.; Arenton, M.; Barbosa, R.F.; Barker, A.R.; Barrio, M.; Bellantoni, L.; Bellavance, A.; Blucher, E.; Bock, G.J.; Bown, C.; Bright, S.; Cheu, E.; Coleman, R.; Corcoran, M.D.; Cox, B.; Erwin, A.R.; Escobar, C.O.; Ford, R.; Glazov, A.; Golossanov, A.; /Arizona U. /UCLA /UC, San Diego /Campinas State U. /Chicago U., EFI /Colorado U. /Elmhurst Coll. /Fermilab /Osaka U. /Rice U. /Sao Paulo U. /Virginia U. /Wisconsin U., Madison

    2005-04-01

    The {Xi}{sup 0} muon semi-leptonic decay has been observed for the first time with nine identified events using the KTeV beam line and detector at Fermilab. The decay is normalized to the {Xi}{sup 0} beta decay mode and yields a value for the ratio of decay rates {Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +}{mu}{sup -}{bar {nu}}{sub {mu}})/{Lambda}({Xi}{sup 0} {yields} {Sigma}{sup +}e{sup -} {bar {nu}}{sub e}) of (1.8{sub -0.5}{sup +0.7}(stat.) {+-} 0.2(syst.)) x 10{sup -2} at the 68% confidence level. This is in agreement with the SU(3) flavor symmetric quark model.

  2. Off the mass shell: Electroweak physics at Nu TeV

    SciTech Connect (OSTI)

    Kevin S. McFarland et al.

    2003-01-23

    The NuTeV collaboration has performed precision measurements of the ratio of neutral current to charged current cross-sections in high rate, high energy neutrino and anti-neutrino beams on a dense, primarily steel, target. The separate neutrino and anti-neutrino beams, high statistics, and improved control of other experimental systematics, allow the determination of electroweak parameters with significantly greater precision than past {nu}N scattering experiments. Our null hypothesis test of the standard model prediction measures sin{sup 2} {theta}{sub W}{sup (on-shell)} = 0.2277 {+-} 0.0013(stat) {+-} 0.0009(syst), a value which is 3.0{sigma} above the prediction. We discuss possible explanations for and implications of this discrepancy.

  3. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  4. The growth and survival of brown shrimp (Penaeus aztecus) and blue crabs (Callinectes sapidus) in ponds receiving heated bay water from an electric power plant 

    E-Print Network [OSTI]

    Gould, Robert Andrew

    1973-01-01

    ) J IU CA IS UI SI CA CS I S ! 0 l2 IS 18 20 SURFACE BOTTOM P. M. R 2 4 0 I R 8 ~ 22 JULY A U G. SEI'T. TIME (NEEEG) FIGURE 5. ? Hydrological data for pond 8. Ao ED I 2 So Uf 2' SURFACE SDEEDII 20 PUIAP OFF Z J 10 UI 10... HEATED BAY WATER PROM AN ELECTRIC POWER PLAI JT A Thesis by ROBERT ANDREW GOULD Approved as to style and content by: (Chairman of Committee) (Head of Deoartment) (Member) (Member) IMay 19 73 436659 ABSTRACT Yh G* th dS ' l fB Sh' P(P t* ) d...

  5. Measurement of Pi-K Ratios from the NuMI Target

    SciTech Connect (OSTI)

    Seun, Sin Man; /Harvard U.

    2007-07-01

    Interactions of protons (p) with the NuMI (Neutrinos at the Main Injector) target are used to create the neutrino beam for the MINOS (Main Injector Neutrino Oscillation Search) Experiment. Using the MIPP (Main Injector Particle Production) experimental apparatus, the production of charged pions and kaons in p+NuMI interactions is studied. The data come from a sample of 2 x 10{sup 6} events obtained by MIPP using the 120 GeV/c proton beam from the Main Injector at Fermi National Accelerator Laboratory in Illinois, USA. Pions and kaons are identified by measurement in a Ring Imaging Cherenkov detector. Presented are measurements of {pi}{sup -}/{pi}{sup +}, K{sup -}/K{sup +}, {pi}{sup +}/K{sup +} and {pi}{sup -}/K{sup -} production ratios in the momentum range p{sub T} < 2 GeV/c transversely and 20 GeV/c < p{sub z} < 90 GeV/c longitudinally. Also provided are detailed comparisons of the MIPP NuMI data with the MIPP Thin Carbon data, the MIPP Monte Carlo simulation and the current MINOS models in the relevant momentum ranges.

  6. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  7. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect (OSTI)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  8. Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos

    E-Print Network [OSTI]

    Yvonne Y. Y. Wong

    2008-10-06

    We present the first systematic derivation of the one-loop correction to the large scale matter power spectrum in a mixed cold+hot dark matter cosmology with subdominant massive neutrino hot dark matter. Starting with the equations of motion for the density and velocity fields, we derive perturbative solutions to these quantities and construct recursion relations for the interaction kernels, noting and justifying all approximations along the way. We find interaction kernels similar to those for a cold dark matter-only universe, but with additional dependences on the neutrino energy density fraction f_nu and the linear growth functions of the incoming wavevectors. Compared with the f_nu=0 case, the one-loop corrected matter power spectrum for a mixed dark matter cosmology exhibits a decrease in small scale power exceeding the canonical ~8 f_nu suppression predicted by linear theory, a feature also seen in multi-component N-body simulations.

  9. Providing quality water, power and service at a competitive price that our customers value 2320 California Street Everett, WA 98201 / Mailing Address: P.O. Box 1107 Everett, WA 98206-1107

    E-Print Network [OSTI]

    levels with our retailers if we withdraw from the lighting market. 2. Residential behavior: We haveProviding quality water, power and service at a competitive price that our customers value 2320-783-1000 · Toll-free in Western Washington at 1-877-783-1000 · www.snopud.com October 30, 2014 Northwest Power

  10. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  11. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet), NREL(National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurementWindSystemWindofWind

  12. Water Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    emissions-free, and cost-effective water power open new possibilities for this reliable, renewable resource. Explore EERE's water power success stories below. July 29, 2015 The...

  13. The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

  14. Study of the Decay Ds+ to K+K-e+nu

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, R.N.; Jacobsen, R.G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /INFN, Naples /Naples U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Princeton U. /INFN, Rome /Rome U. /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-07-25

    Using 214 fb{sup -1} of data recorded by the BABAR detector at the PEPII electron-positron collider, they study the decay D{sub s}{sup +} {yields} K{sup +}K{sup -}e{sup +}{nu}{sub e}. Except for a small S-wave contribution, the events with K{sup +}K{sup -} masses in the range 1.01-1.03 GeV/c{sup 2} correspond to {phi} mesons. For D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e} decays, they measure the relative normalization of the Lorentz invariant form factors at q{sup 2} = 0, r{sub V} = V(0)/A{sub 1}(0) = 1.849 {+-} 0.060 {+-} 0.095, r{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.763 {+-} 0.071 {+-} 0.065 and the pole mass of the axial-vector form factors m{sub A} = (2.28{sub -0.18}{sup +0.23} {+-} 0.18) GeV/c{sup 2}. Within the same K{sup +}K{sup -} mass range, they also measure the relative branching fractions {Beta}(D{sub s}{sup +} {yields} K{sup +}K{sup -}e{sup +}{nu}{sub e})/{Beta}(D{sub s}{sup +} {yields} K{sup +}K{sup -}{pi}{sup +}) - 0.558 {+-} 0.007 {+-} 0.016, from which they obtain the total branching fraction {Beta}(D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e}) = (2.61 {+-} 0.03 {+-} 0.08 {+-} 0.15) x 10{sup -2}. By comparing this value with the predicted decay rate, they extract A{sub 1}(0) = 0.607 {+-} 0.011 {+-} 0.019 {+-} 0.018. The stated uncertainties are statistical, systematic, and from external inputs.

  15. Neutrino-induced nucleosynthesis of A>64 nuclei: The nu p-process

    E-Print Network [OSTI]

    C. Fröhlich; G. Martínez-Pinedo; M. Liebendörfer; F. -K. Thielemann; E. Bravo; W. R. Hix; K. Langanke; N. T. Zinner

    2005-11-12

    We present a new nucleosynthesis process, that we denote nu p-process, which occurs in supernovae (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immediately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass numbers A >64. Making this process a possible candidate to explain the origin of the solar abundances of 92,94Mo and 96,98Ru. This process also offers a natural explanation for the large abundance of Sr seen in an hyper-metal-poor star.

  16. Chi-Nu "Gate Review" (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission,TextitSciTechin ComplexChi-Nu "Gate Review"

  17. HIGHLY DEPLETED ETHANE AND MILDLY DEPLETED METHANOL IN COMET 21P/GIACOBINI-ZINNER: APPLICATION OF A NEW EMPIRICAL {nu}{sub 2}-BAND MODEL FOR CH{sub 3}OH NEAR 50 K

    SciTech Connect (OSTI)

    DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Mumma, M. J.

    2013-01-20

    We obtained infrared spectra of Comet 21P/Giacobini-Zinner (hereafter 21P/GZ) using NIRSPEC at Keck II on UT 2005 June 3, approximately one month before perihelion, that simultaneously sampled H{sub 2}O, C{sub 2}H{sub 6}, and CH{sub 3}OH. Our production rate for H{sub 2}O (3.885 {+-} 0.074 Multiplication-Sign 10{sup 28} molecules s{sup -1}) was consistent with that measured during other apparitions of 21P/GZ as retrieved from optical, infrared, and radio observations. Our analysis also provided values for rotational temperature (T {sub rot} = 51 {+-} 3 K) and the abundance ratio of ortho and para spin populations for water (OPR = 2.99 {+-} 0.23, implying a spin temperature exceeding 50 K). Six Q-branches in the {nu}{sub 7} band of C{sub 2}H{sub 6} provided a production rate (5.27 {+-} 0.90 Multiplication-Sign 10{sup 25} s{sup -1}) that corresponded to an abundance ratio of 0.136 {+-} 0.023 Multiplication-Sign 10{sup -2} relative to H{sub 2}O, confirming the previously reported strong depletion of C{sub 2}H{sub 6} from IR observations during the 1998 apparition, and in qualitative agreement with the depletion of C{sub 2} known from optical studies of 21P/GZ. For CH{sub 3}OH, we applied our recently published quantum model for the {nu}{sub 3} band to obtain a rotational temperature (48{sup +10}/{sub -7} K) consistent with that obtained for H{sub 2}O. In addition, we developed a new empirical model for the CH{sub 3}OH {nu}{sub 2} band, based on observations of Comet 8P/Tuttle with NIRSPEC. The application of our {nu}{sub 2} model to 21P/GZ yielded a production rate in agreement with that obtained from the {nu}{sub 3} band. Combining results from both {nu}{sub 2} and {nu}{sub 3} bands provided a production rate (47.5 {+-} 4.4 Multiplication-Sign 10{sup 25} s{sup -1}) that corresponded to an abundance ratio of 1.22 {+-} 0.11 Multiplication-Sign 10{sup -2} relative to H{sub 2}O in 21P/GZ, indicating mild depletion of CH{sub 3}OH. Together with observations of 21P/GZ in 1998, our study provides a measure of primary volatile production rates for this Jupiter family comet over multiple apparitions using high-resolution IR spectroscopy.

  18. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    SciTech Connect (OSTI)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  19. Current and Future High Power Operation of Fermilab Main Injector

    SciTech Connect (OSTI)

    Kourbanis, I.; Adamson, P.; Brown, B.; Capista, D.; Chou, W.; Morris, D.; Seyia, K.; Wu, G.; Yang, M.J.; /Fermilab

    2009-04-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing the MI beam power at 120 GeV to 400KW. The current high power MI operation will be described along with the plans to increase the power to 700KW for NOvA and to 2.1 MW for project X.

  20. Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run

    E-Print Network [OSTI]

    William Badgett; Steve R. Hahn; Donatella Torretta; Jerry Meier; Jeffrey Gunderson; Denise Osterholm; David Saranen

    2015-06-06

    The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with the extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet TCP/IP communication to implement the event building and concatenation of data from many front-end VME readout crates. The simplicity and partitionability of the new system greatly eases the debugging and diagnosing process. The new system improves throughput by about a factor of three compared to the old system, up to 800 megabits per second, and has proven robust and reliable in the current run.

  1. Design Concept for nu-STORM: An Initial Very Low-Energy Neutrino Factory

    SciTech Connect (OSTI)

    Bross, A.; Geer, S.; Liu, A.; Neuffer, D.; Popovic, M.; /Fermilab; Ankenbrandt, C.; Roberts, T.; /MUONS Inc., Batavia

    2012-05-01

    We present a design concept for a {nu} source from a STORage ring for Muons ({nu}STORM). In this initial design a high-intensity proton beam produces {approx}5 GeV pions that provide muons that are captured using 'stochastic injection' within a 3.6 GeV racetrack storage ring. In 'stochastic injection', the {approx}5 GeV pion beam is transported from the target into the storage ring, dispersion-matched into a long straight section. (Circulating and injection orbits are separated by momentum.) Decays within that straight section provide muons that are within the {approx}3.6 GeV/c ring momentum acceptance and are stored for the muon lifetime of {approx}1000 turns. Muon (and pion) decays in the long straight sections provide neutrino beams of precisely known flux and flavor that can be used for precision measurements of electron and muon neutrino interactions, and neutrino oscillations or disappearance at L/E = {approx}1m/MeV. The facility is described, and variations are discussed.

  2. Determining the covering factor of Compton-thick active galactic nuclei with NuSTAR

    E-Print Network [OSTI]

    Brightman, M; Stern, D; Arevalo, P; Ballantyne, D R; Bauer, F E; Boggs, S E; Craig, W W; Christensen, F E; Comastri, A; Fuerst, F; Gandhi, P; Hailey, C J; Harrison, F A; Hickox, R C; Koss, M; LaMassa, S; Puccetti, S; Rivers, E; Vasudevan, R; Walton, D J; Zhang, W W

    2015-01-01

    The covering factor of Compton-thick obscuring material associated with the torus in active galactic nuclei (AGN) is at present best understood through the fraction of sources exhibiting Compton-thick absorption along the line of sight ($N_{H}>1.5\\times10^{24}$ cm$^{-2}$) in the X-ray band, which reveals the average covering factor. Determining this Compton-thick fraction is difficult however, due to the extreme obscuration. With its spectral coverage at hard X-rays ($>$10 keV), NuSTAR is sensitive to the AGN covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGN observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so called Compton-thick (CT) AGN. We use the torus models of Brightman & Nandra which predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the Compton-thick gas i...

  3. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  4. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs of water consumed by concentrating solar power systems." Because of the huge solar resource available

  5. Integrated Policy and Planning for Water and

    E-Print Network [OSTI]

    Delaware, University of

    ....................................................................... 24 II.1.3. Water Consumption by Hydroelectric Power Plants................................ 25 II.1

  6. Wess-Zumino current and the structure of the decay tau(-)-> K-pi K--(+)nu(tau)

    E-Print Network [OSTI]

    Besson, David Zeke

    2004-06-01

    We present the first study of the vector (Wess-Zumino) current in tau(-)-->K(-)pi(-)K(+)nu(tau) decay using data collected with the CLEO III detector at the Cornell Electron Storage Ring. We determine the quantitative contributions to the decay...

  7. NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5–0.9

    E-Print Network [OSTI]

    Nynka, Melania

    We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5–0.9. We detect integrated emission from the nebula up to ~40 keV, and resolve individual spatial features over a broad ...

  8. The hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    E-Print Network [OSTI]

    Puccetti, S; Bauer, F E; Brandt, W N; Fiore, F; Harrison, F A; Luo, B; Stern, D; Urry, C M; Alexander, D M; Annuar, A; Arévalo, P; Balokovi?, M; Boggs, S E; Brightman, M; Christensen, F E; Craig, W W; Gandhi, P; Hailey, C J; Koss, M J; La Massa, S; Marinucci, A; Ricci, C; Walton, D J; Zappacosta, L; Zhang, W

    2015-01-01

    We present a broad-band (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240, combined with archival Chandra, XMM-Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1."5. Previous Chandra observations have resolved the two nuclei, showing that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, thanks to the unprecedented quality of the NuSTAR data at energies >10 keV, we clearly detect, for the first time, both the primary and the reflection continuum components. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau ~ 1.2, N_H ~ 1.5 x 10^(24) cm^-2). We detect moderate hard X-ray (> 10 keV) flux variability up to 20% on short (15-20 ksec) timescales. The amplitude of the variability is maximum at ~30 keV and is like...

  9. NuSTAR OBSERVATIONS OF THE STATE TRANSITION OF MILLISECOND PULSAR BINARY PSR J1023+0038

    E-Print Network [OSTI]

    Chakrabarty, Deepto

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. ...

  10. The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR...

    Office of Scientific and Technical Information (OSTI)

    The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick AGN Citation Details In-Document Search Title: The 2-79 keV X-ray...

  11. Search for tau- ---> 4pi- 3pi+ (pi0) nu/tau Decays

    SciTech Connect (OSTI)

    Ter-Antonian, R.; Kass, R.; Allmendinger, T.; /Ohio State U.; Hast, C.; /SLAC

    2005-06-21

    A search for the decay of the {tau} lepton to seven charged pions and at most one {pi}{sup 0} was performed using the BABAR detector at the PEP-II e{sup +}e{sup -} collider. The analysis uses data recorded on and near the {Upsilon}(4S) resonance between 1999 and 2003, a total of 124.3 fb{sup -1}. They observe 7 events with an expected background of 11.9 {+-} 2.2 events and calculate a preliminary upper limit of BR({tau}{sup -} {yields} 4{pi}{sup -} 3{pi}{sup +}({pi}{sup 0}){nu}{sub {tau}}) < 2.7 x 10{sup -7} at 90% CL. This is a significant improvement over the previous limit established by the CLEO Collaboration.

  12. The PEANUT experiment in the NuMI beam at Fermilab

    SciTech Connect (OSTI)

    Russo, A. [Dipartimento di Scienze Fisiche, Universita Federico II di Napoli, 80125 Napoli (Italy)

    2010-03-30

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMI beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino targets. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions that occurred in the PEANUT detector and the measurement of the quasielastic, resonance and deep-inelastic contributions to the total charged-current cross section. This technique could be applied for the beam monitoring at future neutrino facilities.

  13. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  14. A gathering of water

    E-Print Network [OSTI]

    Horowitz, Naomi Leah, 1970-

    2005-01-01

    The act of immersion is a powerful catalyst for the affirmation or transformation of identity. How we place ourselves in water expresses cultural valuations of our bodies, water, and social relations, as well as categories ...

  15. Journal of Power Sources, Vol.170, issue 2, July 2007, pp.376-386. Water distribution measurement for a PEMFC through

    E-Print Network [OSTI]

    Peng, Huei

    for a PEMFC through neutron radiography Yong-Song Chena , Huei Penga *, Daniel S. Husseyb , David L. Jacobsonb membrane fuel cell (PEMFC). In an attempt to differentiate water distribution in the anode side from and water distribution. Keywords: PEMFC; Water visualization; Water Management; Neutron Radiography #12

  16. Cloud Liquid Water Measurements

    E-Print Network [OSTI]

    Delene, David J.

    of heat to vaporize drops. Power is supplied to coil to maintain a constant temperature. P ­ Total Power #12;Wet Power Term Energy is transferred to heat droplets to to the boiling point and vaporize;Liquid Water Content Formula Combine the Wet and Dry Power Terms PC Ts-TaPv x Mldv[Lvcw Tv-Ta] · M

  17. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View New Pages Recent Changes All

  18. Water Power Program Budget History

    SciTech Connect (OSTI)

    2012-01-19

    On this page you can learn more about the Program's budget for this current fiscal year, as well as budgets in previous fiscal years.

  19. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    SciTech Connect (OSTI)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  20. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  1. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  2. The impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants: Case study, PWR (pressurized-water reactor) during an outage

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Kenoyer, J.L.

    1987-08-01

    This report is the second in a series of case studies designed to evaluate the magnitude of increase in occupational radiation exposures at commercial US nuclear power plants resulting from small incidents or abnormal events. The event evaluated is fuel cladding failure, which can result in elevated primary coolant activity and increased radiation exposure rates within a plant. For this case study, radiation measurements were made at a pressurized-water reactor (PWR) during a maintenance and refueling outage. The PWR had been operating for 22 months with fuel cladding failure characterized as 105 pin-hole leakers, the equivalent of 0.21% failed fuel. Gamma spectroscopy measurements, radiation exposure rate determinations, thermoluminescent dosimeter (TLD) assessments, and air sample analyses were made in the plant's radwaste, pipe penetration, and containment buildings. Based on the data collected, evaluations indicate that the relative contributions of activation products and fission products to the total exposure rates were constant over the duration of the outage. This constancy is due to the significant contribution from the longer-lived isotopes of cesium (a fission product) and cobalt (an activation product). For this reason, fuel cladding failure events remain as significant to occupational radiation exposure during an outage as during routine operations. As documented in the previous case study (NUREG/CR-4485 Vol. 1), fuel cladding failure events increased radiation exposure rates an estimated 540% at some locations of the plant during routine operations. Consequently, such events can result in significantly greater radiation exposure rates in many areas of the plant during the maintenance and refueling outages than would have been present under normal fuel conditions.

  3. California’s Water Footprint: recent trends and framework for a sustainable transition

    E-Print Network [OSTI]

    Fulton, Julian

    2015-01-01

    combined-cycle natural gas power plants, wind turbines, andNatural gas direct use water consumption Power plant thermalgas electricity generation water consumption Power plant

  4. Pas afgestudeerd aan de VUB en nu reeds te CERN! Isis Van Parijs en Lieselotte Moreels zijn op 5 juli geproclameerd als Master in de

    E-Print Network [OSTI]

    Steels, Luc

    Pas afgestudeerd aan de VUB en nu reeds te CERN! Isis Van Parijs en://cms.web.cern.ch/ ) Foto's: Lieselotte (links) en Isis (rechts) voor hun detector. Foto's: Isis aan het werk in de CMS detector. #12;

  5. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect (OSTI)

    Adams, T.; /Florida State U.; Batra, P.; /Columbia U.; Bugel, Leonard G.; /Columbia U.; Camilleri, Leslie Loris; /Columbia U.; Conrad, Janet Marie; /MIT; de Gouvea, A.; /Northwestern U.; Fisher, Peter H.; /MIT; Formaggio, Joseph Angelo; /MIT; Jenkins, J.; /Northwestern U.; Karagiorgi, Georgia S.; /MIT; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  6. Preliminary Measurement of B(tau- ---> K- pi0 nu/tau) Using the BaBar Detector

    SciTech Connect (OSTI)

    Salvatore, F.; /Royal Holloway, U. of London; Lyon, A.J.; /Manchester U.

    2005-07-08

    A preliminary measurement of the branching fraction {Beta}({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) is made using 124.4 fb{sup -1} of e{sup +}e{sup -} collision data provided by the PEP-II accelerator, operating primarily at {radical}s = 10.58 GeV, and recorded using the BABAR detector. They measure: {Beta}({tau}{sup -} {yields} K{sup -} {pi}{sup 0}{nu}{sub {tau}}) = (0.438 {+-} 0.004(stat) {+-} 0.022(syst))%. This result is the world's most precise measurement of this branching fraction to date and is consistent with the world average.

  7. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    E-Print Network [OSTI]

    T. Adams; P. Batra; L. Bugel; L. Camilleri; J. M. Conrad; A. de Gouvêa; P. H. Fisher; J. A. Formaggio; J. Jenkins; G. Karagiorgi; T. R. Kobilarcik; S. Kopp; G. Kyle; W. A. Loinaz; D. A. Mason; R. Milner; R. Moore; J. G. Morfín; M. Nakamura; D. Naples; P. Nienaber; F. I. Olness; J. F. Owens; S. F. Pate; A. Pronin; W. G. Seligman; M. H. Shaevitz; H. Schellman; I. Schienbein; M. J. Syphers; T. M. P. Tait; T. Takeuchi; C. Y. Tan; R. G. Van de Water; R. K. Yamamoto; J. Y. Yu

    2009-06-19

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  8. Abiotic: water !, Soil, Sunlight, wind, air, weather,

    E-Print Network [OSTI]

    Lawrence, Deborah

    Generate power: Hydro-electric power Biodiversity change or loss Invasive species Organism interactions, food webs Power, recreation, drinking, agriculture, irrigation, aesthetics, housing, industry, food, Habitat? Climate/Weather Flood control Water diversion- dam Geologic Processes Create power

  9. Model-Independent Results for the Decay B \\to L Nu(L) Gamma at BaBar

    SciTech Connect (OSTI)

    Lindemann, D.M.; /McGill U.

    2012-04-09

    We present a search for the radiative leptonic decays B{sub +} {yields} e{sup +} {nu}{sub e}{gamma} and B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}{gamma} using data collected by the BABAR detector at the PEP-II B factory. We fully reconstruct the hadronic decay of one of the B mesons in {Upsilon}(4S) {yields} B{sup +}B{sup -} and then search for evidence of the signal decay within the rest of the event. This method provides clean kinematic information on the signal's missing energy and high momentum photon and lepton, and allows for a model-independent analysis of this decay. Using a data sample of 465 million B-meson pairs, we obtain sensitivity to branching fractions of the same order as predicted by the Standard Model. We report a model-independent branching fraction upper limit of {Beta}(B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}}{gamma}) < 15.6 x 10{sup -6} ({ell} = e or {mu}) at the 90% confidence level.

  10. High-Statistics Study of the tau^- -> pi^- pi^0 nu_tau Decay

    E-Print Network [OSTI]

    M. Fujikawa; H. Hayashii; S. Eidelman; for the Belle Collaboration

    2008-10-29

    We report a high-statistics measurement of the branching fraction for tau^- --> pi^- pi^0 nu_tau and the invariant mass spectrum of the produced pi^- pi^0 system using 72.2 fb^-1 of data recorded with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider. The branching fraction obtained is (25.24 +/- 0.01 +/- 0.39)%, where the first error is statistical and the second is systematic. The unfolded pi^- pi^0 mass spectrum is used to determine resonance parameters for the rho(770), rho'(1450), and rho"(1700) mesons. We also use this spectrum to estimate the hadronic (2pi) contribution to the anomalous magnetic moment of the muon (a_{mu}^{pipi}). Our result for a_{mu}^{pipi} integrated over the mass range sqrt{s} = 2m_{pi} - 1.8 GeV/c^2 is a_{mu}^{pipi} = (523.5 +/- 1.5 (exp) +/- 2.6 (Br) +/- 2.5 (isospin))x 10^{-10}, where the first error is due to the experimental uncertainties, the second is due to the uncertainties in the branching fractions and the third is due to the uncertainties in the isospin-violating corrections.

  11. Measurement of the Hadronic Form Factors in Ds to phi e nu Decays

    SciTech Connect (OSTI)

    Serrano, J

    2006-09-26

    Based on the measured four-dimensional rate for D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e} decays, they have determined the ratios of the three hadronic form factors, {tau}{sub V} = V(0)/A{sub 1}(0) = 1.636 {+-} 0.067 {+-} 0.038 and {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.705 {+-} 0.056 {+-} 0.029, using a simple pole ansatz for the q{sup 2} dependence, with fixed values of the pole masses for both the vector and axial form factors. By a separate fit to the same data, they have also extracted the pole mass for the axial form factors, m{sub A}: {tau}{sub V} = V(0)/A{sub 1}(0) = 1.633 {+-} 0.081 {+-} 0.068, {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.711 {+-} 0.111 {+-} 0.096 and m{sub A} = (2.53{sub -0.35}{sup +0.54} {+-} 0.54)GeV/c{sup 2}.

  12. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  13. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

  14. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    SciTech Connect (OSTI)

    Marshall, John Stuart; /Cambridge U.

    2008-06-01

    This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0.953 (68% confidence level). The models of neutrino decoherence and decay are disfavored at the 5.0{sigma} and 3.2{sigma} levels respectively, while the no oscillation model is excluded at the 9.4{sigma} level.

  15. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as ...

  16. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  17. All Over the Map: The Diversity of Western Water Plans

    E-Print Network [OSTI]

    Casado-Pérez, Vanessa; Cain, Bruce E.; Hui, Iris; Abbott, Coral; Doson, Kaley; Lebow, Shane

    2015-01-01

    local jurisdictions, effective water planning and managementfragmentation. State water plans are the main focus of thisStates have power over water rights (i.e. , the quantitative

  18. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    101, 1975. for Electric Power Generation, in 23. Teknekron,electric section power generation in Nevada in a subsequentin the table are water power generation Table and steam-

  19. Snow water equivalent estimation using blackbox optimization

    E-Print Network [OSTI]

    Stéphane Alarie

    2011-03-07

    Mar 7, 2011 ... Abstract: Accurate measurements of snow water equivalent (SWE) is an important factor in managing water resources for hydroelectric power ...

  20. North City Water Reclamation Plant

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -Site Cogeneration Methane Power Plant Methane piped in from: Miramar LandfillMiramar Landfill Metropolitan BiosolidsNorth City Water Reclamation Plant Maja Caroee Diana Lee Niko Salvador #12;What is Water% for plant operation 25% sold to local power grid #12;Technical Issues & Innovations COMNET Clean water