National Library of Energy BETA

Sample records for water power forum

  1. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater PowerWater

  2. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum HomeWater Power

  3. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater Power

  4. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum HomeWaterWater

  5. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home > Water

  6. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home >Water

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum HomeWater

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater Power Forum

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home >

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum Home

  11. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power Forum

  12. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power Forum Home >

  13. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater PowerWater

  14. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWaterWater Power

  15. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater Power

  16. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWaterWater

  17. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWaterWaterOpenEI

  18. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWarana GroupWashington:WaterWater

  19. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState Grid JV JumpWKScandinaviaWater

  20. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastesWater

  1. Water Power Forum - Q & A | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWarana GroupWashington:Water

  2. The Sacramento Area Water Forum: A Case Study

    E-Print Network [OSTI]

    Connick, Sarah

    2006-01-01

    CCOMWP). April 8, 1993. Sacramento Area Water Plan ForumProcess (Draft). Sacramento, California. Emphasis inWorking Paper 2006-06 The Sacramento Area Water Forum: A

  3. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    (1987 - 1998) ...Leads to Subsidence in the Central City #12;Colorado River Water Renewable GroundwaterFirst Western Forum on Energy & Water Sustainability March 22, 2007 WATER PLAN: 2000-2050 CITY Provide Service Which Meets Our Customers' Expectations Maximize Use of Renewable Water Supplies Achieve

  4. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    First Western Forum on Energy & Water Sustainability University of California, Santa Barbara John R/Business Support for Comprehensive Energy/Water Program Objective: Support development of water sustainability ­ boils down to economics. Water drives technology and price of energy." "Looking to move to dry or hybrid

  5. Rev. 4/1/2009 Second Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    Rev. 4/1/2009 Second Forum on Energy & Water Sustainability Bren School of Environmental Science (Tibaquira et al.) 9:45 Energy/Water Sustainability and the Electric Power Industry (R. Goldstein et al.) 10 Reductions Related to Energy-Water Sustainability in Sonoma County (G. Keating and D. Pasqualini) 16

  6. TECH FORUM: [VERIFIED RTL TO GATES] Efficient RC power grid

    E-Print Network [OSTI]

    Najm, Farid N.

    TECH FORUM: [VERIFIED RTL TO GATES] Efficient RC power grid verification using node elimination proposes a novel approach to systematically reduce the power grid and accurately compute an upper bound on the voltage drops at power grid nodes that are retained. Furthermore, acriterion for the safety of nodes

  7. Second Forum on Energy & Water Sustainability: Increasing Resource Productivity

    E-Print Network [OSTI]

    Keller, Arturo A.

    in resource efficiency, for energy and water? · What are the co-benefits of implementing these technologiesSecond Forum on Energy & Water Sustainability: Increasing Resource Productivity April 10, 2009 of energy and water sustainability, considering the important linkages between these two resources

  8. Microsoft PowerPoint - Public Information Forum Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 1 Transmission & Ancillary Services Formula Rates Public Information Forums November 19, 2014 - Omaha, NE November 20, 2014 - Fargo, ND Introductions * Lloyd Linke - Operations...

  9. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit

  11. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWarana

  12. The Sacramento Area Water Forum: A Case Study

    E-Print Network [OSTI]

    Connick, Sarah

    2006-01-01

    quality, reservoir operations, ground water, water reclamation, water needs of jurisdictions outside the Sacramento area, and water management

  13. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect (OSTI)

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  14. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  15. Power Business Line Decision Forums, as of March 14, 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlinesPotentialReactor

  16. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  17. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    SciTech Connect (OSTI)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  18. Federal Incentives for Water Power

    SciTech Connect (OSTI)

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  19. Forum: Let there be light Jay Apt and Lester Lave say power blackouts are too frequent, dangerous

    E-Print Network [OSTI]

    Forum: Let there be light Jay Apt and Lester Lave say power blackouts are too frequent, dangerous blamed the pilot -- for inadequate training, not inspecting the aircraft thoroughly, flying in dangerous conditions or not reacting properly to the danger. Rather than have many erring pilots and dead passengers

  20. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  1. Microsoft PowerPoint - Tribal Leader Forum Waste to Energy Introductio...

    Office of Environmental Management (EM)

    Energy operated by the Alliance for Sustainable Energy, LLC Tribal Leader Forum: Waste-to-Energy Introduction July 24, 2014 Randy Hunsberger Waste-to-energy Introduction...

  2. Foreign offshore worker injuries in foreign waters: why a United States forum

    SciTech Connect (OSTI)

    Sutterfield, J.R.

    1981-07-01

    When foreigners are injured or killed in offshore oil operations in foreign jurisdictional waters, US laws do not always apply as they would if the plaintiffs are American or resident aliens. The courts must first consider whether the Jones Act, Death on the High Seas Act, general maritime law, or a combination of laws applies and whether the court should assume jurisdiction or use the doctrine of forum non conveniens. Cases involving foreign offshore workers are used to illustrate the factors involved in each application and to consider the foreign-policy implication when foreign nationals assume that American laws and morality accompany multinational business. Congress has yet to resolve the issues, although a bill was proposed in 1980. 75 references. (DCK)

  3. Recent content in Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)OptionsEquivalent URIGum Pvt Ltd RGPL

  4. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  5. Customer Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding inCustomer-Comments Sign In About | CareersCustomerForum

  6. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  7. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    Electrokinetic Power Generation from Liquid Water MicrojetsElectrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.

  8. Water Scarcity and Energy: Water and Power Efficiency of

    E-Print Network [OSTI]

    Scott, Christopher

    ) #12;Water Scarcity = Power Scarcity Lower water availability Lower hydro power availabilityWater Scarcity and Energy: Water and Power Efficiency of Recycled Water Arizona Hydrological and Population Growth · Types of Reuse · Water Efficiency of Reuse · Power Efficiency of Reuse #12;Water Scarcity

  9. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  10. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  11. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWater Monitoring

  12. Water Power Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer Reviews WaterAbout

  13. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities GeneralWake-ImagingNot SoConcentrating

  14. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilities GeneralWake-ImagingNot

  15. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos HomePower Home Events

  16. 2015 Tribal Lands and Environment Forum

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) are hosting the annual Tribal Lands and Environment Forum. The four-day forum will feature special trainings, field trips, and breakout sessions focused on tribal water programs.

  17. A Resurgence of United Kingdom Nuclear Power Research (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Grimes, Robin W. (Imperial College, London, UK)

    2012-03-14

    Robin W. Grimes, Professor at Imperial College, London,was the third speaker in the the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Grimes discussed recent research endeavors in advanced nuclear energy systems being pursued in the UK. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  18. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  19. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  20. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. Phoenix Water ServicesPhoenix Water Services We need more power!We need more power!

    E-Print Network [OSTI]

    Scott, Christopher

    Phoenix Water ServicesPhoenix Water Services We need more power!We need more power! #12;Stolen from Acre Foot of WaterkWh per Acre Foot of Water EPRI (2000), Water Desal Task Force (2003) #12;PhoenixPhoenix TreatmentWater Treatment PlantPlant #12;Phoenix New Water PlantPhoenix New Water Plant Power Requirement

  2. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  3. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  4. 2009 Water Power Peer Review Report

    SciTech Connect (OSTI)

    Murphy, Michael; Higgins, Mark; Reed, Mike

    2011-04-01

    This report contains the findings of the 2009 Water Power Peer Review Panel, as well as the Water Power Program's responses to those findings. This Peer Review focused on the Program's marine and hydrokinetic energy projects.

  5. Water Power: 2009 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind and Water Power Program 2009 Peer Review Report November 2009 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program 2009...

  6. Federal Incentives for Water Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

  7. New Mexico Forum on Reclaiming Produced/Brackish Water for Beneficial Uses New Mexico Junior College

    E-Print Network [OSTI]

    Johnson, Eric E.

    Produced Water Treatment and Desalination Studies in New Mexico: 1:30 PM Water in the Desert and Bohannon Huston, Albuquerque) 3:00 PM Break #12;3:15 PM The Yates Petroleum Produced Water Treatment Pilot Project (11) (Jerry Fanning, Yates Petroleum) 3:45 PM Produced Water Treatment Evaluation in Southern NM

  8. Native Women's Leadership Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 11th Annual Native Women's Leadership Forum & Enduring Spirit Awards will feature keynote speakers, workshops, and education forums.

  9. Marietta Power & Water- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Marietta Power & Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a...

  10. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  11. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  12. Microsoft PowerPoint - SRSCRO_Forum_01_27_2011R1.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnow widelySmallBPARegulatingDimitriAlgorithm1SRS

  13. 2014 Water Power Program Peer Review Report

    SciTech Connect (OSTI)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  14. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    Water Power Program Market Report Highlights the Success of American Hydropower Market Report Highlights the Success of American Hydropower The Energy Department recently released...

  15. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    Water Power Program New Report Highlights the Success of American Hydropower New Report Highlights the Success of American Hydropower The Energy Department recently released the...

  16. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    AND WATER POWER TECHNOLOGIES OFFICE August 20, 2014 2 2013 Wind Technologies Market Report Purpose, Scope, and Data: * Publicly available annual report summarizing key trends in...

  17. Funding Opportunity Announcement for Water Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Water Power Program About the Program Research & Development...

  18. 2011 Water Power Technologies Peer Review Report

    SciTech Connect (OSTI)

    Zayas, Jose; Reed, Michael

    2012-06-01

    This report provides findings from the peer review meeting held in November 2011 to review the progress and accomplishments of the Energy Department Water Power Program.

  19. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  20. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  1. Loveland Water & Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  2. 2014 Water Power Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Water Power Peer Review Report 2014 Water Power Peer Review Report The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators...

  3. 2014 Water Power Peer Review Report Cover | Department of Energy

    Office of Environmental Management (EM)

    Peer Review Report Cover 2014 Water Power Peer Review Report Cover 2014 Water Power Peer Review Report Cover.JPG More Documents & Publications NOWEGIS Report Cover Water Power For...

  4. Water Power Program: Marine and Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  5. 2014 Water Power Program Peer Review Compiled Presentations:...

    Energy Savers [EERE]

    2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies The U.S....

  6. The Subcommittee on Water, Power, and Oceans House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of...

  7. Before The Subcommittee on Water and Power - House Energy and...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee...

  8. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  9. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Environmental Management (EM)

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  10. Before House Subcommittee on Water and Power - Committee on Natural...

    Energy Savers [EERE]

    House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on...

  11. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of...

  12. Before The Subcommittee on Water and Power - House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Elliot E....

  13. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    the Subcommittee on Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of William K....

  14. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  15. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    Los Angeles Department of Water & Power Jump to: navigation, search Name: Los Angeles Department of Water & Power Place: California Phone Number: 800-342-5397 Website:...

  16. NREL: Water Power Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models and

  17. NREL: Water Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models

  18. NREL: Water Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement ModelsPublications Access

  19. NREL: Water Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement ModelsPublicationsWebmaster

  20. Sandia Energy » Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013 DomeniciTwo SandiansPaper and

  1. Sandia Energy - Water Power Personnel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos HomePower Home

  2. Water Use in the Development and Operation of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters....

  3. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters....

  4. Sandia Energy - Sandia Co-Hosts "Climate Risk Forum: Bridging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Co-Hosts "Climate Risk Forum: Bridging Climate Science and Actuarial Practice" Home Climate Water Security Facilities News Global Climate & Energy NISAC News & Events Analysis...

  5. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  6. OpenEI launches new Water Power Gateway and Community Forum | OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDate RecCompetition andCommunity OpenEI

  7. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation and Water Use Data Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  8. IT Open Forum Information Technology Services

    E-Print Network [OSTI]

    Su, Xiao

    IT Open Forum Information Technology Services Engineering 285/287 3/21/2013 Powering Agility Powering Agility Through Technology #12;ITS Organization Terry Vahey AVP & Deputy CIO, Information Technology Services Powering Agility Through Technology #12;5 Information Technology Services March 21, 2013

  9. Water Power Program: 2010 Peer Review Report | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Program: 2010 Peer Review Report Water Power Program: 2010 Peer Review Report This document contains the peer review panel's observations and findings, responses from the...

  10. LLW Forum meeting report

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  11. Ideas Forum 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forum will be available for remote participation from collaborators. The following are options for viewing the meeting content: Presenters' slides will be shared in real time...

  12. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Broader source: Energy.gov [DOE]

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  13. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA or service at least 3 days before the meeting. Requests should be sent to: Power and Water Resources Pooling

  14. Aalborg Universitet Water cooling of high power light emitting diode

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Water cooling of high power light emitting diode Sørensen, Henrik Published in Citation for published version (APA): Sørensen, H. (2012). Water cooling of high power light emitting diode from vbn.aau.dk on: juli 07, 2015 #12;Water Cooling of High Power Light Emitting Diode Henrik Sørensen

  15. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger...

  16. Water Power Program Budget | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste IsolationofWatchBudget Water Power

  17. Energy & Water:Energy & Water: A Growing and IncreasinglyA Growing and Increasingly

    E-Print Network [OSTI]

    Keller, Arturo A.

    #12;20 Treatment TechnologiesTreatment Technologies #12;21 21 #12;22 Skinner PlantSkinner Plant Solar1 Energy & Water:Energy & Water: A Growing and IncreasinglyA Growing and Increasingly Important of Southern California First Western Forum on Energy & Water Sustainability #12;2 "Water is for life, power

  18. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  19. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  20. Dynamic Patterns of Academic Forum Activities

    E-Print Network [OSTI]

    Zhao, Zhi-Dan; Cai, Shi-Min; Zhou, Tao

    2015-01-01

    A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers' activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps' law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time interval and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return and memory effect, which ca...

  1. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

  2. Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals

    E-Print Network [OSTI]

    Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals Louisiana New Hampshire Florida Idaho Washington Oregon Nevada California New,000 9,000 to 13,000 Thermoelectric-power withdrawals by water quality and State, 2005. Estimated Use

  3. Spring 2013 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholders Forum Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring...

  4. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    next webinar is scheduled to occur in June 2013 TRIBAL NATIONS CAUCUS UPDATE WIKI AND NTSF WEB SITES ntsf.wikidot.com www.em.doe.govPagesNationalTransportationForum.aspx...

  5. Before the Subcommittee on Water, Power, and Oceans - House Natural...

    Office of Environmental Management (EM)

    - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator Southeastern...

  6. Before the Subcommittee on Water and Power - House Natural Resources...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator SEPA...

  7. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville...

  8. Marine & Hydrokinetic Technologies, Wind and Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and evaluate various technology types. Technology Development, Testing & Deployment Water Power Program projects support the marine and hydro- kinetic technology industry in its...

  9. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Christopher M. Turner, Administrator SWPA Before the...

  10. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  11. Powering Your Water Heater Using Solar Energy 

    E-Print Network [OSTI]

    Miller, Daniel

    2013-02-13

    This report is a detailed overview of my research on solar water heating. Solar water heaters may be used to either supplement or even replace a standard water heater. In addition to being environmentally friendly, solar ...

  12. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  13. Water, Electric Power and Growth in Southern Arizona

    E-Print Network [OSTI]

    Scott, Christopher

    . #12;Growth City of Tucson: Department of Urban Planning and Design. 2008. Pima County Population and Regional Development University of Arizona #12;The Water-Energy Nexus Goldstein, Robert. 2006. Electric Power/Water Sustainability. Western Region Energy-Water Needs Assessment Workshop, Salt Lake City. #12

  14. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  15. Water value in power generation: Experts distinguish water use and consumption 

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01

    stream_source_info Water value in power generation.pdf.txt stream_content_type text/plain stream_size 10063 Content-Encoding windows-1252 stream_name Water value in power generation.pdf.txt Content-Type text/plain; charset...=windows-1252 Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts...

  16. Dinner Forum SUMMARY REPORT

    E-Print Network [OSTI]

    . #12;FINANCIAL TIMES CSCO DINNER FORUM 4. Customer intimacy: Despite demand-driven mantras, companies are struggling in acquiring, developing and retaining top global talent. A career in supply chain management further. Certainly, when oil went through the $100 ceiling last year, there was a case for supply chains

  17. Wireless World Research Forum

    E-Print Network [OSTI]

    Sasse, Angela

    Wireless World Research Forum Working Group 1 IEEE Communications Magazine Article Draft Considering the User in the Wireless World Authors: Ken Crisler (Motorola, US) Andrew Aftelak (Motorola, UK Dainesi (University of Pavia, Italy) Thea Turner (Motorola, US) #12;Abstract The Wireless World Research

  18. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

  19. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  20. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how the down-hole CO 2 plumes may evolve over time (geomodeling with TOUGH2), what engineering and other resources would be required to develop a water extraction and...

  1. Water Power. 2010 Peer Review Report

    SciTech Connect (OSTI)

    Murphy, Michael; Higgins, Mark; Reed, Michael

    2010-10-01

    This document is the peer review panel’s observations and findings, response from the Water Program to these, and supporting meeting materials including an agenda and participants list.

  2. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    Installation September 18, 2015 9:00AM EDT to September 19, 2015 1:00PM EDT 2015 NHA Hydraulic Power Committee (HPC) Fall Retreat October 4, 2015 5:00PM CDT to October 7, 2015...

  3. Use of reclaimed water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.

  4. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  5. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  6. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  7. Corona Department of Water & Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water & Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2015 is $0.78 per watt up to $2,340 for residential...

  8. High speed electrical power takeoff for oscillating water columns 

    E-Print Network [OSTI]

    Hodgins, Neil

    2010-01-01

    This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator ...

  9. Fiscal Year 2011 Water Power Program Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic...

  10. Loveland Water & Power- Home Energy Audit Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power (LWP) is providing an incentive for customers living in single-family detached homes or attached townhouses that wish to upgrade the energy efficiency of eligible homes....

  11. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  12. Pasadena Water and Power - Solar Power Installation Rebate | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P -Particle ReceiverEnergy Pasadena Water

  13. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy

  14. Water Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating

  15. NREL: Water Power Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement

  16. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Broader source: Energy.gov (indexed) [DOE]

    fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. 51315.pdf More Documents & Publications Marine &...

  17. Case Study - Glendale Water and Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA)civilEnergy Water Heaters

  18. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating Products

  19. Water Power Information Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating ProductsInformation

  20. Water Power News | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating

  1. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water HeatingAbout the

  2. NREL: Water Power Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement ModelsPublications

  3. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4Study of the Use of

  4. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4Study of the Use

  5. Alaska Forum on the Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  6. 2015 Energy Efficiency Global Forum

    Broader source: Energy.gov [DOE]

    Hosted by the Alliance to Save Energy, this two-day, invite-only conference is the premier forum dedicated to energy efficiency.

  7. 2015 Arizona Housing Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Housing Forum 2015 Arizona Housing Forum August 26, 2015 8:00AM MDT to August 28, 2015 5:00PM MDT Scottsdale, Arizona The 12th annual Arizona Housing Forum provides a...

  8. Discharge waters from a power plant as an influent of phytoplankton in adjacent estuarine waters 

    E-Print Network [OSTI]

    Strong, Clyde B

    1977-01-01

    DISCHARGE WATERS FROM A POWER PLANT AS AN 1NFLUENT OF PHYTOPLANKTON IN ADJACENT ESTUARINE WATERS A Thesis 'by CLYDE B. STRONG, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1977 Major Su'bject: Wildlife and Fisheries Sciences DISCHARGE WATERS FROM A POWER PLANT AS AN INFLUEN'I' OF PHYTOPLANKTON IN ADJACENT ESTUARINE WATERS A Thesis by CLYDE B. STRONG, JR. Approved as to sty...

  9. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico The Spring 2015 meeting of the National Transportation Stakeholders Forum will be held on May 12-14, 2015...

  10. Conventional Energy Forum & Associated Vertical Business Development...

    Office of Environmental Management (EM)

    & Casino The Office of Indian Energy Tribal Leader Energy Forum on "Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development: Best Practices in...

  11. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater HeatingWater Power

  12. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  13. Transmission Capacity Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign In About | Careers |

  14. Water Power Program: 2011 Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWater PowerWater

  15. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    M.A. , 2009, Estimated use of water in the United States ins Thirst for Renewable Power: Water Implications of China’ss Thirst For Renewable Power: Water Implications of China’s

  16. (Tribology conferences and forums)

    SciTech Connect (OSTI)

    Yust, C.S.

    1990-11-30

    The principal meeting attended during this trip was the Japan International Tribology Conference Nagoya 1990. The conference encompassed a wide range of topics, including the tribology of ceramics, the tribology in high-performance automobiles, and many aspects of lubrication technology. Associated forums were also held on the tribology of advanced ceramics, on solid lubrication, and on automotive lubricants. Presentations made during the latter forum discussed anticipated trends in engine development and anticipated improvements in lubricants required for the next generation of engines. In addition to meetings, site visits were made to five industrial organizations to discuss ceramic tribology. Nippon Steel Corporation and Toshiba Corporation are both very active in the ceramic area, Nippon Steel from their interest in research on new materials and Toshiba from both an interest in new materials and in support of their work in electronic devices. Two engine manufacturers were also visited, Toyota Motor Corporation, and Nissan Motor Co., Ltd. These companies were somewhat reserved in their discussion of progress in the utilization of ceramics in automobile engines.

  17. Energy/Water Sustainability and the Electric Power

    E-Print Network [OSTI]

    Keller, Arturo A.

    are using wet cooling tower) Water Use by Plant Type 0 100 200 300 400 500 600 700 800 900 Nuclear Coal Oil Power Research Institute, Inc. All rights reserved. Dry Cooling Matimba 6x665MW Coal Courtesy of Eskom

  18. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  19. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  20. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Proceedings from the forum, which took place in...

  1. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment (AFN) is Alaska's largest statewide gathering of environmental professionals to cover sessions on climate change, energy, environmental regulations, cleanup and remediation, fish and wildlife, solid waste, and more.

  2. ACEEE Energy Efficiency Finance Forum

    Broader source: Energy.gov [DOE]

    The American Council for an Energy-Efficient Economy (ACEEE) is hosting an Energy Efficiency Finance Forum is dedicated to catalyzing investment in and scaling the market for energy efficiency.

  3. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWater

  4. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    Patent: PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash...

  5. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash A...

  6. Fish-Friendly Turbine Making a Splash in Water Power | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Making a Splash in Water Power Fish-Friendly Turbine Making a Splash in Water Power October 21, 2011 - 10:29am Addthis A computer simulation of the Alden...

  7. Security Working Group Marty Humphrey GRID FORUM DRAFT University of Virginia

    E-Print Network [OSTI]

    Lee, Ruby B.

    Security Working Group Marty Humphrey GRID FORUM DRAFT University of Virginia Mary Thompson] Security Implications of Typical Grid Computing Usage Scenarios security-implications-01 ways to access the immense computational power of a Computational Grid, each with unique security

  8. Love That Dirty Water (It Can Power Your Home) by Susan Kruglinski

    E-Print Network [OSTI]

    and Green Tech Love That Dirty Water (It Can Power Your Home) | Pollution | DISCOV... httpLove That Dirty Water (It Can Power Your Home) by Susan Kruglinski published online September 30, 2004 A quarter of the people in the world still drink filthy water and live miles from electrical power

  9. Safe Harbor Water Power Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon Development |SMCHarbor Water Power Corp Jump

  10. Western Water and Power Production WWPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWeVirginiaElectric AssnWater and Power

  11. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan1986) |Water and Power LLC Jump to:

  12. Water Power: 2009 Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWaterPower: 2009

  13. Wind and Water Power Program Realignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.ProjectsLeaders |3 0 0 N S T Rand Water Power

  14. 2015 Tribal Lands and Environment Forum

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) are hosting the annual Tribal Lands and Environment Forum. The four-day forum will feature special trainings, field trips, and breakout...

  15. Microsoft PowerPoint - E_forum_1_What is a Smart Grid_Miller_APPROVED_2008_04_23.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavyfamily Distribution5What is the

  16. Microsoft PowerPoint - E_forum_2_SG Benefits and Challenges_APPROVED_2008_06_02.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavyfamily Distribution5What is

  17. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING AND AGENDA

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING AND AGENDA Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA) will be held on November 25, 2013 at 10:00 a.m., at the Westlands Water District, 3130

  18. rom the beginning of time, the power of water has captured the human imagination and influenced

    E-Print Network [OSTI]

    the mighty Colorado River -- providing hydro-electrical power to millions of people. It also canF rom the beginning of time, the power of water has captured the human imagination and influenced the power of flowing water across a road! It's an incredibly senseless way to die and is completely

  19. Mark Modera Affiliates Forum

    E-Print Network [OSTI]

    California at Davis, University of

    for California's climate #12;WCEC TEAM #12;· Residential · Swimming Pools as Heat Sinks ­ Water Source Heat Pumps · Residential Radiant Cooling · Human Interface with In Home Energy Displays · Ground Source Heat Pumps · Honda/C · RTU Retrofit Initiative · Multi-Tenant Light Commercial Retrofit · Energy Plus Model of Hybrid

  20. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  1. Hand powered portable ultraviolet sterilizing water bottle with active UV dose sensing

    E-Print Network [OSTI]

    Das, Chandan (Chandan K.)

    2007-01-01

    A portable hand powered water sterilization device was created to address a portion of the growing epidemic of global water contamination. As being more supply chain independent and having an active dose sensing component ...

  2. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWyko

  3. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi. ” Renewable and Sustainable EnergyChina’s Thirst for Renewable Power: Water Implications of

  4. Model-Free Based Water Level Control for Hydroelectric Power Plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

  5. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guarantee its technical correctness. Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES...

  6. Beacon Power Corporation NREL Industry Growth Forum

    E-Print Network [OSTI]

    , the successful execution of the Company's plan of operation, changes in the Company's anticipated earnings;55 Safe Harbor Statement This presentation contains forward-looking statements, including the Company's beliefs about its business prospects and future results of operations. These statements involve risks

  7. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  8. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWyko NT33004.DepartmentUsedUserUserM01:

  9. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWyko NT33004.DepartmentUsedUserUserM01:W03:

  10. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWykoW03: Data Transfer Tools - Exascale

  11. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducingJobs Human ResourcesJohn@EnergySecurity NewJoint

  12. Public Architecture -- ScrapHouse [Forum

    E-Print Network [OSTI]

    Cary, John; Heineman, Zachary

    2006-01-01

    the value of truly public architecture. Cary and Heineman /Zachary Heineman Public Architecture: ScrapHouse These ForumFoundation and Public Architecture. Public Architecture acts

  13. Nearly 200 Attend National Transportation Stakeholders Forum...

    Office of Environmental Management (EM)

    national transportation coordination. BUFFALO, N.Y. - In his keynote address at the fourth-annual DOE National Transportation Stakeholders Forum (NTSF) meeting, EM Senior...

  14. National Transportation Stakeholders Forum (NTSF) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the...

  15. Women of Wind Energy Leadership Forum

    Broader source: Energy.gov [DOE]

    The 2014 Women of Wind Energy Leadership Forum combines professional development with tools to advance renewable energy. Join professionals from across the country to discuss current renewable...

  16. Technology Forum Map and List of Awardees' Posters and Exhibits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Forum Map and List of Awardees' Posters and Exhibits Technology Forum Map and List of Awardees' Posters and Exhibits Technology Forum map and list of exhibits.pdf More...

  17. 2012 National Electricity Forum: February 8-9, 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 National Electricity Forum: February 8-9, 2012 2012 National Electricity Forum: February 8-9, 2012 January 4, 2012 - 11:28am Addthis The 2012 National Electricity Forum will...

  18. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  19. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

  20. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  1. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  2. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  3. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  4. Optimization of the axial power shape in pressurized water reactors

    E-Print Network [OSTI]

    Malik, Mushtaq Ahmad

    1981-01-01

    Analytical and numerical methods have been applied to find the optimum axial power profile in a PWR with respect to uranium utilization. The preferred shape was found to have a large central region of uniform power density, ...

  5. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  6. Technical Forum Participants at the International Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications R&D of Large Stationary HydrogenCNGHCNG Storage Vessels Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum Bonfire Tests of...

  7. Energy Department to Host Tribal Leader Forum and Tribal Renewable...

    Office of Environmental Management (EM)

    to Host Tribal Leader Forum and Tribal Renewable Energy Development Workshop in New Mexico Energy Department to Host Tribal Leader Forum and Tribal Renewable Energy Development...

  8. Advanced Power Plant Modeling with Applications to an Advanced Boiling Water

    E-Print Network [OSTI]

    Mitchell, John E.

    Advanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat and an Advanced Boiling Water Reactor (ABWR). The continuity wave equa- tions for single and two-phase flow advanced method, are shown. These both are applied to a simplified model of the Advanced Boil- ing Water

  9. Report of a Policy Forum: Weather, Climate, and Energy

    SciTech Connect (OSTI)

    None

    2002-07-01

    The report of a policy forum on Weather, Climate, and Energy presents findings and recommendations that, if implemented, could position the energy sector, the providers of weather and climate science and services, and energy consumers to mange more cooperatively and effectively the production, distribution, and consumption of electrical power and fossil fuels. Recent U.S. experience with a series of energy shortages encouraged the AMS Atmospheric Policy Program to join with the University of Oklahoma in the development of a forum to address the issues connected with responding to those shortages. Nearly 100 representatives from the public, private, and academic portions of the energy production sector, the meteorological community, political and corporate leaders, weather risk management analysts, and policy makers met on October 16-17, 2001 to discuss these policy issues.

  10. A Yale Forest Forum Series Publication

    E-Print Network [OSTI]

    Communities and Forests A summary of a forum and workshop exploring the links between rural community Tyrrell Sustaining Rural Communities and Forests A summary of a forum and workshop exploring the links between rural community viability and sustainable forestry #12;Issue SummaryPage 3 | Contents Contents

  11. A Yale Forest Forum Series Publication

    E-Print Network [OSTI]

    A Yale Forest Forum Series Publication Volume 6 2003 Number 3 Issue Summary Rural Communities and Forests A summary of a forum and workshop exploring the rural community perspective of managing the forest Land, Chadwick D. Oliver Series Editor Mary L. Tyrrell Rural Communities and Forests A summary

  12. NIST Cloud Computing Forum and Workshop VIII

    E-Print Network [OSTI]

    NIST Cloud Computing Forum and Workshop VIII Kevin Mills, NIST July 9, 2015 #12;NIST Cloud Project Research Goals Kevin Mills, NIST #12;NIST Cloud Computing Forum and Workshop VIII July 2 015 failure scenarios in a cloud system · Ongoing work on run-time methods · Where to find more information 3

  13. Wind Power Answer In Times of Water Scarcity (Presentation)

    SciTech Connect (OSTI)

    Flowers, L.; Reategui, S.

    2010-05-25

    Strategic energy planning is paramount during times of dramatic population growth, global warming, increasing energy demands, and concerns over energy security, food security, and economic development. Recent concerns over water scarcity have moved the energy-water issue to the forefront of energy options discussions. This presentation describes the current water challenges in the United States and presents a case for wind energy as one way to mitigate the problem of water scarcity in several U.S. regions while providing a clean and sustainable economic future for America.

  14. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  15. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  16. Off Earth Mining Forum 19-21 February 2013

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    1 Off Earth Mining Forum 19-21 February 2013 www.acser.unsw.edu.au/oemf Never Stand Still Faculty of Engineering Australian Centre for Space Engineering Research (ACSER) #12;Off Earth Mining Forum, UNSW, Sydney Australia's place in space. Off Earth Mining Forum Sponsors Off Earth Mining Forum The prospect of people

  17. Water energy nexus in biofuels production and renewable based power

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    is the FT-fuels, with other options being second generation bioethanol via gasification and catalytic that transform them into power and a number of common fuels, not restricted to bioethanol and biodiesel

  18. Redlands Water & Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield Campus Geothermal AreaRedlands Water

  19. Water Power Program Contacts and Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating WaterYou are

  20. Title 16 USC 796 Regulation of the Development of Water Power...

    Open Energy Info (EERE)

    6 Regulation of the Development of Water Power and Resources Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16...

  1. Thermal desalination : structural optimization and integration in clean power and water

    E-Print Network [OSTI]

    Zak, Gina Marie

    2012-01-01

    A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

  2. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  3. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  4. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  5. The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    WIND AND WATER POWER PROGRAM The Impact of Wind Developmentmay be required. WIND AND WATER POWER PROGRAM Methods TheNREL). The U.S. DOE (Wind & Water Power Program) funded

  6. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-Print Network [OSTI]

    Wu, Mingshen

    The development of a solar thermal water purification, heating, and power generation system: A case parabolic solar troughs. A flow control valve adjustable for temperature and pressure, allowed the pressure within the troughs to build, thus increasing the boiling point of the water. At a temperature greater

  7. Journal of Power Sources 124 (2003) 9098 In situ water distribution measurements in a

    E-Print Network [OSTI]

    Mench, Matthew M.

    2003-01-01

    distribution; Water distribution; PEFC; Flooding; Solid polymer electrolyte 1. Introduction The hydrogenJournal of Power Sources 124 (2003) 90­98 In situ water distribution measurements in a polymer in the flow channels is a critical phenomenon affecting polymer electrolyte fuelcell

  8. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  9. 384 Power plant waste water sampling and analysis plan

    SciTech Connect (OSTI)

    Hagerty, K.J.; Knotek, H.M.

    1995-01-01

    This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

  10. December 2006 Standards Forum and Standards Actions

    Energy Savers [EERE]

    -9 Cancellations in Progress - 0 Inside This Issue Visit the Technical Standards Program Web Site at http:tis.eh.doe.govtechstds December 2006 The Standards Forum and Standards...

  11. SYNERGIA Forum Integrated Municipal Solid Waste Management

    E-Print Network [OSTI]

    Columbia University

    2nd SYNERGIA Forum «Integrated Municipal Solid Waste Management: Recycling and Energy Change and Solid Waste Management" Anthony Mavropoulos President, Scientific Technical Committee, Chairman, SYNERGIA "Where Greece stands on the Ladder of Sustainable Waste Management " *Nikolaos

  12. 2012 National Tribal Forum on Air Quality

    Broader source: Energy.gov [DOE]

    This forum on improving air quality will take place May 22-24, 2012, in Tulsa, Oklahoma. It is co-sponsored by the Institute for Tribal Environmental Professionals (ITEP) and the National Tribal...

  13. U.S.-China Energy Efficiency Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Second U.S.-China Energy Efficiency Forum, held May 5-6, 2011 in the U.S. at Lawrence Berkeley National Laboratory in Berkeley, California, highlighted U.S.-China cooperation on energy...

  14. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    Sternwheeler, W.D.E.

    1992-12-31

    This paper provides highlights from the 1992 winter meeting of the Low Level Radioactive Wastes Forum. Topics of discussion included: legal information; state and compact reports; freedom of information requests; and storage.

  15. LettersForum512 Can biological invasions

    E-Print Network [OSTI]

    D'Odorico, Paolo

    LettersForum512 Letters Can biological invasions induce desertification? A common form of land present a new desertification paradigm that includes the invasion of stable desert shrublands by exotic

  16. Congressional Forum on Minorities in Energy

    Broader source: Energy.gov [DOE]

    On November 19, 2013, Congressman Bobby Rush is hosting the Congressional Forum on Minorities in Energy, featuring members of Congress and thought leaders from the public and private sector.

  17. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  18. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    None

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  19. Water Power Program: 2010 Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer Reviews Water

  20. Before the Subcommittee on Water and Power - House Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville EnergyDepartmenton ContractingCommittee

  1. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emergi

  2. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

  3. Burbank Water and Power Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: EnergyGHGsBuildingsBumlaiWater and

  4. Superior Water, Light and Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy InformationSunrain JumpSuperior Water, Light

  5. About the Water Power Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:was created in 1950 by theWhat WeTheWater

  6. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranchLongweiLos AlamosPower (Redirected

  7. Los Angeles Department of Water Power LADWP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranchLongweiLos AlamosPower

  8. Microsoft PowerPoint - Water Control Issues LRD.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReport ARM28Greg BallVirginia Smart

  9. Microsoft PowerPoint - epa_clean_water_act.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReportJ. Conti Director OfficeSurveyOverview

  10. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models andInstrumentation,

  11. City of Glendale Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, Iowa (Utility Company)Glen Elder, KansasPower

  12. Direct Power and Water Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind Farm Jump to:

  13. Microsoft PowerPoint - Air Soil Water rev3 - Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavy nanowires with anDale

  14. The development of a subsea power transmission system for deep water boosting applications

    SciTech Connect (OSTI)

    Godinho, C.A.; Campagnac, L.A.; Nicholson, A.; Magalhaes, W.M.

    1996-12-31

    This paper presents the development of a subsea power transmission in medium voltage and variable frequency, as a key system for application of Boosting Technology and, more particularly, for Electrical Submersible Pumping in deep water wells. The focuses of this paper are mainly on the design and manufacture of subsea power cables and transformers for 1,000 m water depth. The production from a subsea well equipped with ESP`s is a fact since October/94, with the first installation in the Campos Basin, Brazil. The development of the subsea power transmission in medium voltage and variable frequency will allow the installation of a Boosting System in deep water at long distance (25 km or more) from the production platform. The design and manufacture of subsea power cables and subsea power transformers, as well as the integration of the complete power system is a result of a Technological Cooperation Agreement with Tronic, Pirelli, Siemens A.G. and Siemens Brazil. As a result from this agreement subsea power cables up to 12/20 kV voltage level, conductor sizes from 35 to 150 mm{sup 2}, oil filled subsea power transformer rated at 750 kVA, nominal voltage ratio 10,000/3,000 V and the electrical connectors to X-tree will be developed and manufactured.

  15. Richard Lester STS Forum (6 October 2014) SCIENCE AND TECHNOLOGY IN SOCIETY FORUM

    E-Print Network [OSTI]

    Reif, Rafael

    Richard Lester STS Forum (6 October 2014) 1 SCIENCE AND TECHNOLOGY IN SOCIETY FORUM 10TH ANNUAL of Technology October 6, 2014 My topic is nuclear innovation, and its role in solving the world's energy problem, particularly coal burning for electricity and industry and oil burning in vehicles. And the fourth is climate

  16. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    SciTech Connect (OSTI)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  17. Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power Forum Home

  18. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities...

    Office of Environmental Management (EM)

    Leader Forum: Oil and Gas Technical Assistance Capabilities Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities August 18, 2015 8:00AM to 5:00PM MDT Denver, Colorado...

  19. Tribal Leader Forum on Climate Preparedness and Resiliency to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leader Forum on Climate Preparedness and Resiliency to be Held on March 4; RSVP by Feb. 27 Tribal Leader Forum on Climate Preparedness and Resiliency to be Held on March 4; RSVP by...

  20. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Cost-Effectiveness Working Group A National Forum on Demand Response: Results on What...

  1. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWaterWater

  2. ENGINEERING.com EngTips Forums TekTips Forums LoginRegister 3D Printing

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    ENGINEERING.com EngTips Forums TekTips Forums LoginRegister Home Videos Jobs Games 3D Printing YouTube Facebook Twitter Sections 3D Printing Design Software Designer Edge Education Electronics

  3. 12 2000 UT University of Tokyo Forum

    E-Print Network [OSTI]

    Miyashita, Yasushi

    20 12 2000 UT University of Tokyo Forum 6 UT 19 2007 6 25 26 6 25 26 2 6 UT 2 2 UT 2 21 21 COE 6 UT-KU Forum:"University Education in the midst of Globalization" 2 150 #12;22 UT 2 6 26 #12;? 1 21 21 2,000 23-Moo 1944 67 72 81 88 99 2000 00 02 03 04 05 4 28 KOMIYAMA Hiroshi 19 6 26 #12;26 UT 2000 1 2 1 1 2 3 4 4 5

  4. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect (OSTI)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  5. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  6. Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1

    E-Print Network [OSTI]

    , the predicted thermal energy efficiency of the reactor is 53%. Keywords: Biomass, gasification, supercritical, biomass is a hydrogen lean feedstock and has a lower specific energy content than CH4. Accordingly moreModelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1 , John D Pye2

  7. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  8. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore »FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  9. Natural gas powered rotary water chiller development. Phase 1. Final report, September 1991-June 1993

    SciTech Connect (OSTI)

    Sanborn, D.F.; Lakowske, R.L.; Byars, M.

    1993-06-01

    Objectives of the project were to evaluate performance and marketability of a rotary engine driven screw compressor for water chiller applications. Choice of a rotary engine was aimed at rotary compressor. Initial testing done with modified stock 13B rotary engine and experimental open compressor. Engine torque not sufficient for 70 ton compressor. Analysis concluded 50 ton best match for air cooled applications and 60 ton best for water cooled to get highest gas COP. Market analysis covered total water chiller market assuming relative costs of power would lead to gas cooling sales. Allowable cost premium for 3 yr payback determined for areas of country. Premium cost of 100 ton air cooled unit estimated and compared to market allowable premiums. Concluded product acceptance will be primarily in niche markets with high local electric power demand charges.

  10. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  11. Selection of a suitable reactor type for water desalination and power generation in Saudi Arabia

    SciTech Connect (OSTI)

    Hussein, F.M.

    1988-03-01

    Selection of a reactor type suitable for water desalination and power generation is a complex process that involves the evaluation of many criteria and requires the professional judgment of many experts in different fields. A reactor type that is suitable for one country might not be suitable for another. This is especially true in the case of Saudi Arabia because of its strategic location, the nature of its land and people, and its moderate technological situation. A detailed study using a computer code based on Saaty's mathematical pairwise comparison technique and developed in a previous study was carried out to find the most suitable reactor for water desalination and power generation in Saudi Arabia from among five potential types: boiling water reactors (BWRs), pressurized water reactors, CANDU heavy water reactors (HWRs), steam-generating heavy water reactors (SGHWRs), and high-temperature gas-cooled reactors. It was concluded that the CANDU HWR is the most suitable type for this purpose followed first by the BWR, then the SGHWR.

  12. Research Staff Forum 12th February 2015

    E-Print Network [OSTI]

    Sussex, University of

    Research Staff Forum 12th February 2015 #12;Welcome! · Quick update from Research Staff Office · Understanding Research Impact ­ Christina Miariti, Research Impact officer · Open Discussions and Lunch (All Slides and Resources will be circulated after the event and uploaded onto the research staff webpages

  13. Finance forum.........................2 LTAP Roads Scholars.............3

    E-Print Network [OSTI]

    Minnesota, University of

    · Finance forum.........................2 · LTAP Roads Scholars.............3 · CTS Executive on page 3 Value capture continued on page 2 Current funding and finance mechanisms for transportation face completed research project led by CTS. "The project provides new financing meth- ods that are not currently

  14. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1993-12-31

    This paper provides the results of the winter meeting of the Low Level Radioactive Waste Forum. Discussions were held on the following topics: new developments in states and compacts; adjudicatory hearings; information exchange on siting processes, storage surcharge rebates; disposal after 1992; interregional access agreements; and future tracking and management issues.

  15. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1991-12-31

    This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report.

  16. European Forum 1999 -2000 22 October 1999

    E-Print Network [OSTI]

    Feigon, Brooke

    European Forum 1999 - 2000 22 October 1999 Dr Andrew Williams, University of Kent, Canterbury 'Europe and the New American World Order' 13 November 1999 Professor Irene Brennan, University of Westminster 'Dialogue with Janus: The Political Economy of EU-Russia Relations' 20 November 1999 Richard

  17. Regional Technical Forum AND 2015 PROGRESS UPDATE

    E-Print Network [OSTI]

    is a leader in developing energy efficiency as a resource. Remarkably, it's now our second largest resource, determined that energy efficiency would be the resource of first choice, we were embarking on a new course FORUM Energy efficiency is major resource in the region's energy portfolio. Since 1980, over

  18. FORUM ON INTERNATIONAL PHYSICS Executive Committee Meeting

    E-Print Network [OSTI]

    Nahar, Sultana Nurun

    FORUM ON INTERNATIONAL PHYSICS Executive Committee Meeting Sunday, March 17, 2013 - 8:30 - 4) Report from the Past Chair (Barletta) 6) Report from the APS Council (Winick) 7) Report from CISA 8) Report from APS Office of International Affairs (Flatten) 9) International Engagement (Alp, Unit

  19. FORUM ON INTERNATIONAL PHYSICS Executive Committee Meeting

    E-Print Network [OSTI]

    Nahar, Sultana Nurun

    FORUM ON INTERNATIONAL PHYSICS Executive Committee Meeting Saturday, March 31, 2012 - 8:30 - 3) Report from the Past Chair (Newman) 6) Report from the APS Council (Winick) 7) Report from CISA 8) Report from APS Office of International Affairs (Flatten) 9) International Travel Grant Award Program (Ulloa

  20. Web Maintainers Forum 29 August 2013

    E-Print Network [OSTI]

    Hickman, Mark

    1 Web Maintainers Forum 29 August 2013 Agenda Welcome and introduction Web team Update My Baker, WCMS Project Manager) Questions Web team update Web team site rebranded http://www.canterbury.ac.nz/web/ When was the last time you visited the web team site: August? June or July? 2013? 2012? Never

  1. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  2. FORUM REVIEW ARTICLE Alternative Perspectives on Aging

    E-Print Network [OSTI]

    Gems, David

    FORUM REVIEW ARTICLE Alternative Perspectives on Aging in Caenorhabditis elegans: Reactive Oxygen mechanisms at the heart of the aging process are a long-standing mystery. An influential theory has it that aging is the result of an accumulation of molecular damage, caused in particular by reactive oxygen

  3. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  4. A study of out-of-phase power instabilities in boiling water reactors

    SciTech Connect (OSTI)

    March-Leuba, J.; Blakeman, E.D.

    1988-06-20

    This paper presents a study of the stability of subcritical neutronic modes in boiling water reactors that can result in out-of-phase power oscillations. A mechanism has been identified for this type of oscillation, and LAPUR code has been modified to account for it. Numerical results show that there is a region in the power-flow operating map where an out-or-phase stability mode is likely even if the core-wide mode is stable. 4 refs., 7 figs.

  5. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    water-quality-water-pollution-water-resources. Liu, Jianguo,Xue; Devra Lee Davis. “Water Pollution and Human Health inof cities, and severe water pollution— in order to mitigate

  6. hydro | OpenEI Community

    Open Energy Info (EERE)

    hydro Home Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other...

  7. Water Power For a Clean Energy Future Cover Photo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at Armyusing FueleffectiveWater Power

  8. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  9. Technology Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »Tankless WaterEnergyJanuary28-98 -Price ParityDepartment

  10. The culture of marine fish and their use as biological monitors of water quality in ponds receiving heated discharge water from a power station 

    E-Print Network [OSTI]

    Linder, Donald Ray

    1974-01-01

    For Individual Fish Tables 1 through 12. Length-Weight and Standard Length-Total Length Relationships for Each Sample Of Fish Tables 1 through 9 173 174 247 332 345 xx LIST OF TABLES Table Page Distribution of experimental fish populations... were periodically sampled to determine growth, survival, snd condi- tion. LITERATURE REVIEW Effects of Power Station Effluents Power stations normaljy discharge water which is 6 to 9 C above ambient water temperature (Davidson and Bradshaw 1967; de...

  11. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  12. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    and political means to control water were in many casesfind ways to control and manipulate water to ensure a stableamong legitimacy, water control, and political-economic

  13. Water use in the development and operation of geothermal power plants.

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary significantly both among and within geothermal fields. Seven main chemical constituents were found to

  14. WaterSmart Environmental Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power ForumWaterSmart

  15. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  16. cleantech forum | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County,Zena,architecturebrowncleantech forum

  17. Water footprint of electric power generation : modeling its use and analyzing options for a water-scarce future

    E-Print Network [OSTI]

    Delgado Martín, Anna

    2012-01-01

    The interdependency between water and energy, sometimes called the water-energy nexus, is growing in importance as demand for both water and energy increases. Energy is required for water treatment and supply, while virtually ...

  18. FORECASTERS' FORUM Mountain Wave Signatures in MODIS 6.7-m Imagery and Their Relation to Pilot

    E-Print Network [OSTI]

    Sheridan, Jennifer

    FORECASTERS' FORUM Mountain Wave Signatures in MODIS 6.7- m Imagery and Their Relation to Pilot June 2006, in final form 29 September 2006) ABSTRACT A technique for nowcasting turbulent mountain. Analysis of MODIS water vapor imagery indicated that mountain wave signatures were present

  19. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  20. Clean Energy Opportunity Forum - Creating the New Energy Economy (Presentation)

    SciTech Connect (OSTI)

    Murphy, L. M.

    2009-11-05

    A presentation at the 22nd Industry Growth Forum by Marty Murphy about making connections and business opportunities in the cleantech industry.

  1. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps

    SciTech Connect (OSTI)

    Dudley, K.F.

    1992-03-17

    This patent describes a method of operating an integrated heat pump and hot water system that is capable of providing heating or cooling to an environmental comfort zone. The heat pump and hot water system including a variable speed compressor whose operating speed is substantially linearly related to the difference between outdoor air temperature and indoor air temperature in the comfort zone, and also including means to receive a utility peak demand limit signal to initiate automatic power limiting to reduce the power demand imposed by the heat pump and hot water system, the method comprising sensing the outdoor temperature T{sub OD}; sensing the indoor temperature T{sub ID} in the comfort zone; sensing the speed S{sub 1} of the variable speed compressor; and in response to receiving the utility peak demand limit signal DLS calculating a reference speed S{sub R} for the compressor as a function of the speed S{sub 1}, the outdoor temperature T{sub OD}, the indoor temperature T{sub ID}, and predetermined values that correspond to a reference indoor temperature T{sub ID} and a zero-load temperature difference {Delta}T{sub Z} that corresponds to the difference between the outdoor and indoor temperatures that result in a zero load requirement on the compressor; and during occurrence of the signal DLS operating the compressor at a reduced operating speed limited to a predetermined fraction, less than unity, times the reference speed S{sub R}.

  2. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  3. Water Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWater Power

  4. ATM Forum Document Number: ATM Forum/97-0609 Title: Patent Declaration

    E-Print Network [OSTI]

    Jain, Raj

    Forum/97-0609 ****************************************************************** Title: Patent is the owner of U.S. Patent No. 5,633,859 entitled "Method and Apparatus for Congestion Management in Computer that it is prepared to license its patents which are necessary to manufacture and sell implementations using

  5. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    Spatial-Geographic Models of Water Scarcity and Supply inBS""hijkg,l+ !" +2011m)g 2030 Water Resources Group (WRG). “Charting Our Water Future: Economic frameworks to inform

  6. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  7. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  8. Journal of Power Sources 139 (2005) 106114 Real-time water distribution in a polymer electrolyte fuel cell

    E-Print Network [OSTI]

    Mench, Matthew M.

    2005-01-01

    ; Water; Fuel cell; Flooding; Solid polymer electrolyte 1. Introduction Many researchers haveJournal of Power Sources 139 (2005) 106­114 Real-time water distribution in a polymer electrolyte Abstract Knowledge of the species distribution within a polymer electrolyte fuel cell (PEFC) is critical

  9. 736 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 6, DECEMBER 2002 A Water-Powered Osmotic Microactuator

    E-Print Network [OSTI]

    Lin, Liwei

    -Powered Osmotic Microactuator Yu-Chuan Su, Liwei Lin, Member, IEEE, and Albert P. Pisano Abstract--This paper in diameter and of 200 to 1000 m in depth. Sodium chloride is chosen as the osmotic driving agent to be placed diaphragm. Using the principle of osmosis, this water-powered, osmotic microactuator can employ high osmotic

  10. TransForum | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA'sTraining WorksheetTransForum

  11. (Integrated Energy Systems Forum monthly meetings). Final report

    SciTech Connect (OSTI)

    Gatton, D.

    1983-10-07

    During the life of the IES program, including the time it was administered by NBS, a total of 288 documents were designated as numbered IES documents, reproduced and made available to IES Forum participants. The documents constituted an important part of the technical information exchange function of the IES Forum. Included were reprints of articles from journals and magazines; papers presented at IES Forum meetings; papers prepared for other meetings and conferences; reports on topics of interest; Congressional testimony; and other papers and publications of interest. Current documents were placed on the literature table at each meeting to be taken by meeting participants; they also were provided by mail upon request. In addition, a variety of magazines, newsletters and other miscellaneous literature was provided to the IES Forum by their publishers. The Conference of Mayors Research and Education Foundation was successful in its purpose of maintaining the IES Forum as an important means of exchanging technical information during the one-year grant period. At this time, the future of the IES Forum is uncertain. The IES Advisory Council is exploring the possibility of obtaining outside funding to continue the group; but there is a general feeling that the IES Forum may no longer be necessary, since the technologies promoted by the IES Forum are now generally accepted and other organizations have instituted meetings and conferences which serve a technical information exchange function.

  12. Helmholtz Alliance Linear Collider Forum Proceedings of the Workshops

    E-Print Network [OSTI]

    Helmholtz Alliance Linear Collider Forum Proceedings of the Workshops Hamburg, Munich, Hamburg 2010 of the Helmholtz Alliance Linear Collider Forum 2010­2012, Hamburg, M¨unchen, Hamburg, Germany Conference homepage, Internationales Congress Center, Dresden (at the 4th Annual Workshop of the Helmholtz Alliance `Physics

  13. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  14. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  15. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  16. As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal

    E-Print Network [OSTI]

    plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal powerAs the demand for power increases in populated areas, so will the demand for water. Current power the cooling power from radiation were developed and run. The results showed a cooling power of 35 W/m2

  17. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  18. Proceedings of the Lucerne Fuel Cell Forum 2006 European Solid Oxide Fuel Cell Forum, 3-7 July 2006

    E-Print Network [OSTI]

    Yildiz, Bilge

    Uncertainties in our understanding of the oxygen reduction mechanism (ORR) at solid oxide fuel cell (SOFCProceedings of the Lucerne Fuel Cell Forum 2006 7th European Solid Oxide Fuel Cell Forum, 3-7 July studies have shown that cathodic or anodic dc polarization of the solid oxide fuel cell oxygen electrodes

  19. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    lifecycle analyses of water and energy inputs to each typein recognizing the water-energy nexus, or in this case, theavailability between water and renewable energy. Both wind

  20. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  1. LWR (Light Water Reactor) power plant simulations using the AD10 and AD100 systems

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J. (Brookhaven National Lab., Upton, NY (USA); Institute of Nuclear Energy Research, Lung-Tan (Taiwan); Tawian Power Co., Taipei (Taiwan); Brookhaven National Lab., Upton, NY (USA); Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab.

  2. Los Angeles Department of Water and Power Electric and Hybrid Vehicle Program site operator program

    SciTech Connect (OSTI)

    1998-02-01

    During the term of the above mentioned agreement, the Los Angeles Department of Water and Power (LADWP), a municipal utility serving the citizens of Los Angeles, marked its tenth year of involvement in testing and promoting electric vehicles as part of Los Angeles` overall air quality improvement program, and as a means of improving the regions` economic competitiveness through the creation of new industries. LADWP maintained and operated twenty electric vehicles (EVs) during the test period. These vehicles consisted of six G-Vans, four Chrysler TEVans, five U.S. Electricar pickup trucks, and five U.S. Electricar Prizms. LADWP`s electric transportation program also included infrastructure, public transit development, public and awareness, and legislative and regulatory activities.

  3. St. Anthony Falls Laboratory, College of Science & Engineering, University of Minnesota, Minneapolis, MN 55414, USA Energy-Water-Ecosystems Engineering, Wind and Water Power Technologies, Environmental Sciences Division, Oak Ridge National Laboratory, Oak

    E-Print Network [OSTI]

    Siefert, Chris

    , Minneapolis, MN 55414, USA 2 Energy-Water-Ecosystems Engineering, Wind and Water Power Technologies the assistance of SAFL Engineers Chris Ellis and Jim Mullin with design and instrumentation of the turbine power by Verdant Power and U.S. Department of Energy under Contract DE-AC05-00OR22725. We would like to also thank

  4. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  5. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect (OSTI)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  6. March 12, 2009 Director's Forum (PowerPoint)

    Broader source: Energy.gov (indexed) [DOE]

    10.01 4.78 0.038 F5C5AY 79.88 15.21 4.83 0.063 B154N 80.84 15.16 3.98 <0.0003 Table: Chemistry of the alloys Cr vs. Al map of the alloys 19 20 OM micrographs (cross-sectional...

  7. The 7th Annual Women in Power Forum

    Broader source: Energy.gov [DOE]

    Over the last century we have seen dramatic changes in the roles played by women, but women are still underrepresented in many science, technology, engineering and math disciplines.

  8. Solar-powered electrodialysis. Part 2. Design of a solar-powered, electrodialysis system for desalting remote, brackish water sources. Final report

    SciTech Connect (OSTI)

    Lundstrom, J.E.; Socha, M.M.; Lynch, J.D.

    1983-04-01

    The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumps and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.

  9. Climate mitigation’s impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sector’s use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sector’s water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  10. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    will- be-fought-over-water. Kuznets, Simon. “Modern economicas a staged process (Kuznets 1973; Rostow 1956) in whicha teleological process (see Kuznets 1973 and Rostow 1956 for

  11. Water, Power, and Development in Twenty-First Century China: The Case of the South-North Water Transfer Project

    E-Print Network [OSTI]

    Crow-Miller, Brittany Leigh

    2013-01-01

    shaping the geography of freshwater resources through watergeography, political science, political ecology, STS, and resourceon the geography of China’s water resources traced back to

  12. Tribal Clean Energy Financing Forum Agenda and Registration Form

    Broader source: Energy.gov [DOE]

    Download the agenda and registration form for the Tribal Leader Forum on "Financing and Investing in Tribal Renewable Energy Projects,” to be held Wednesday, May 14, 2014, at the US GRANT hotel in...

  13. Strategic Plan 2014 2019 Open Forum October 3, 2014

    E-Print Network [OSTI]

    Strategic Plan 2014 ­ 2019 Open Forum October 3, 2014 #12;Broad University Representation ­ Faculty, Staff, Students Strategic Plan Steering Committee Steering Committee Members M'Hammed Abdous (DL Economic Development and Entrepreneurship Community Engagement Strategic Planning Topic Committees Included

  14. Tribal Leader Forum on Climate Preparedness and Resiliency

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting the 10th in a series of planned strategic energy development forums for tribal leaders and interested staff on “Tribal Energy Systems: Climate Preparedness and Resiliency.”

  15. LLW Forum meeting report, October 20--22, 1997

    SciTech Connect (OSTI)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-12-31

    The Low-Level Radioactive Waste Forum met in Annapolis, Maryland, on October 20--22, 1997. Twenty-six Forum Participants, Alternate Forum Participants, and meeting designees representing 22 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Discussion with NRC Commissioner McGaffigan; Regulatory issues session; Executive session; LLW forum business session; DOE low-level waste management program; Transportation of radioactive waste; Environmental equity: Title VI; Congressional studies on Ward Valley Site; Implementation of DOE`s strategy for waste management; Relicensing Envirocare; Draft agreement for uniform application of manifesting procedures; CRCPD report; Panel: Future of low-level radioactive waste management; Agenda planning: February 1998; Resolutions; and Attendance.

  16. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Indian Energy is hosting a Tribal Leader Forum on oil and gas technical assistance capabilities on Aug. 18, 2015, at the Magnolia Hotel in Denver, Colorado.

  17. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Handbook #12;California Renewable Energy Center Resources: 1) Technology Roadmap: Energy EfficiencyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop Renewable Energy Center California Energy Efficiency and GHG Goals · Integrated previous finding from

  18. Science Teaching Forum (STF) Thursday, October 24, 2013

    E-Print Network [OSTI]

    de Leon, Alex R.

    Science Teaching Forum (STF) Thursday, October 24, 2013 4:00-4:50 pm, EEEL 345 Teaching Earth Science with Controversy: The role of the history and philosophy of science Presenter: Dr. Glenn Dolphin, Tamaratt Teaching Professor

  19. Robert Paine Scripps Forum for Science, Society and the Environment

    E-Print Network [OSTI]

    Constable, Steve

    and the environment. The entire facility is designed with energy efficiency in mind: · Drought-tolerant landscaping The Scripps Seaside Forum has achieved LEED Certification from the U.S. Green Building Council. Auditorium

  20. DOE Tribal Leaders Forum on Climate Preparedness and Resiliency

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting the 10th in a series of planned strategic energy development forums for tribal leaders and interested staff on "Tribal Energy...

  1. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect (OSTI)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  3. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    rare earth metal mining on water and air quality are gainingrare earth metal mining on water and air quality are gainingeven Priuses, severe air and water pollution problems with

  4. LLW Forum meeting report, May 7--9, 1997

    SciTech Connect (OSTI)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-12-31

    The Low-Level Radioactive Waste Forum met in Chicago, Illinois, on may 7--9, 1997. Twenty-three Forum Participants, Alternate Forum Participants, and meeting designees representing 20 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Upgrading an existing disposal facility; Revisions to DOE Order 5820 re DOE waste management; Conference of radiation control program directors: Recent and upcoming activities; National Conference of State Legislatures` (NCSL) low-level radioactive waste working group: Recent and upcoming activities; Executive session; LLW forum business session; Public involvement and risk communication: Success at West Valley, New York; DOE low-level waste management program; impact of the International Atomic Energy Agency`s convention on waste; Panel discussion: The environmental justice concept--Past, present and future; New technologies for processing and disposal of LLRW; High-level and low-level radioactive waste: A dialogue on parallels and intersections; Draft agreement re uniform application of manifesting procedures; Regulatory issues focus; LLW forum October 1997 agenda planning; Resolutions; LLW forum regulatory issues discussion group meets; and Attendance.

  5. The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination 

    E-Print Network [OSTI]

    Park, Gavin L.; Schäfer, Andrea; Richards, Bryce S.

    2011-01-01

    A wind-powered reverse osmosis membrane (wind-membrane) system without energy storage was tested using synthetic brackish water (2750 and 5500 mg/L NaCl) over a range of simulated wind speeds under both steady-state and ...

  6. Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

    2003-01-01

    The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

  7. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  8. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  9. PROC. IPSI-2003 VIP SCIENTIFIC FORUM, SVETI STEFAN, MONTE NEGRO, OCTOBER 5-11, 2003 1 Information design a new paradigm in

    E-Print Network [OSTI]

    Karabeg, Dino

    PROC. IPSI-2003 VIP SCIENTIFIC FORUM, SVETI STEFAN, MONTE NEGRO, OCTOBER 5-11, 2003 1 Information design ­ a new paradigm in creation and use of information Dino Karabeg Abstract--Anomalies, such as the information overload, show that a more powerful information technology alone is no guarantee that we

  10. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect (OSTI)

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  11. Forbes Leadership Forum April 2, 2013

    E-Print Network [OSTI]

    policy. Our newfound boom in natural gas and oil production will ease of clean base load power. In short, America needs to produce energy Power, a 10-Year Plan for Energy Security" that details how America can

  12. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  13. Journal of Power Sources 160 (2006) 11951203 Quantification of liquid water accumulation and distribution in a

    E-Print Network [OSTI]

    Mench, Matthew M.

    2006-01-01

    water content. © 2006 Elsevier B.V. All rights reserved. Keywords: Flooding; Polymer electrolyte fuel and distribution in a polymer electrolyte fuel cell using neutron imaging A. Turhan, K. Heller, J.S. Brenizer, M cell; Solid polymer electrolyte; Neutron imaging; Water storage; Residual water 1. Introduction

  14. 3-103 The power that could be produced by a water wheel is to be determined. Properties The density of water is taken to be 1000 m3

    E-Print Network [OSTI]

    Bahrami, Majid

    3-52 3-103 The power that could be produced by a water wheel is to be determined. Properties The density of water is taken to be 1000 m3 /kg (Table A-3). Analysis The power production is determined from The mass flow rate through the wind mill is kg/s7.457 /kg)m4(0.8409 m/s)(10m)7( 3 2 11 S v VA m The power

  15. Progress Report on Power Division Work Plan

    E-Print Network [OSTI]

    RPS & impacts on PNW · Analysis of negative wholesale power prices · Wind Integration Forum · Maintain balancing" DR pilot programs · Tracking Smart Grid Demo Project ­ ­ Will include "conventional" and "load/windProgress Report on Power Division Work Plan Power Committee Meeting October 2010 1 #12;The Division

  16. New Mexico Tribal Leader Forum and Community-Scale Workshop for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Mexico Tribal Leader Forum and Community-Scale Workshop for Tribes New Mexico Tribal Leader Forum and Community-Scale Workshop for Tribes The Pueblo Cultural Center's solar PV...

  17. NEW MEXICO TRIBAL LEADER FORUM AND COMMUNITY-SCALE WORKSHOP FOR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEW MEXICO TRIBAL LEADER FORUM AND COMMUNITY-SCALE WORKSHOP FOR TRIBES NEW MEXICO TRIBAL LEADER FORUM AND COMMUNITY-SCALE WORKSHOP FOR TRIBES July 27, 2015 8:00AM MDT to July 29,...

  18. LLW Forum meeting report, April 18--19, 1991

    SciTech Connect (OSTI)

    NONE

    1991-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently- operating low-level radioactive waste facilities. This quarterly meeting was held on April 18-19, 1991.

  19. LLW Forum meeting report, April 25--27, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The Low-Level radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This quarterly meeting was held April 25-27, 1994 and activities during the first quarter of 1994 are detailed..

  20. bersicht DESY Zeuthen Abbildung 82: Blickfang der Ausstellung ,,TESLA Licht der Zukunft" im Automobil Forum

    E-Print Network [OSTI]

    Automobil Forum der Volkswagen AG Unter den Linden in Berlin war eine Großprojektion in der Mitte des

  1. Secretary Chu Letter to 2nd US-China EE Forum

    Broader source: Energy.gov [DOE]

    English and Chinese translation of Secretary Chu's letter to participants in the 2nd US-China EE Forum.

  2. Light Water Reactor Sustainability Program Power Uprate Research and Development Strategy

    SciTech Connect (OSTI)

    Hongbin Zhang

    2011-09-01

    The economic incentives for low-cost electricity generation will continue to drive more plant owners to identify safe and reliable methods to increase the electrical power output of the current nuclear power plant fleet. A power uprate enables a nuclear power plant to increase its electrical output with low cost. However, power uprates brought new challenges to plant owners and operators. These include equipment damage or degraded performance, and unanticipated responses to plant conditions, etc. These problems have arisen mainly from using dated design and safety analysis tools and insufficient understanding of the full implications of the proposed power uprate or from insufficient attention to detail during the design and implementation phase. It is essential to demonstrate that all required safety margins have been properly retained and the existing safety level has been maintained or even increased, with consideration of all the conditions and parameters that have an influence on plant safety. The impact of the power uprate on plant life management for long term operation is also an important issue. Significant capital investments are required to extend the lifetime of an aging nuclear power plant. Power uprates can help the plant owner to recover the investment costs. However, plant aging issues may be aggravated by the power uprate due to plant conditions. More rigorous analyses, inspections and monitoring systems are required.

  3. April 27, 2012, Spring Operations Review Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and OMP. Moderate temperatures in the region combined with high flows have lead to some small displacement of thermal generators in order to manage water quality. INCDEC...

  4. Water-saving Measures: Energy and Cost Savings Calculator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power Forum

  5. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Project Description AREVA and a team of investigators surveyed 33 operators of electric power systems in 18 countries about wind integration, their operating policies, best...

  6. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Project Location Northern Power Systems, Inc. Advanced Manufacturing and Supply Chain Automation 683,388 FY09: American Recovery and Reinvestment Act (part of the 20% Wind by...

  7. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  8. Executive Forum on Solutions to Transmission Investment

    E-Print Network [OSTI]

    National Rural Electric Coop. Assn. New York ISO New York Power Authority Pacific Gas and Electric PJM. California ISO CenterPoint Energy Duke Energy Entergy EPRI Exelon FirstEnergy GE Energy Institut de recherche d'Hydro-Québec (IREQ) ISO New England Korea Electric Power Research Institute Michigan Electric

  9. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  10. Proceedings of the School of Engineering Nanotechnology Research Forum

    E-Print Network [OSTI]

    Chandy, John A.

    #12;Proceedings of the School of Engineering Nanotechnology Research Forum Mehdi Anwar Mun Y. Choi fundamental in their impact on our world, that they are regarded as transformative. Nanotechnology may very-billionth of a meter. Because nanotechnology involves the manipulation of matter at the atomic or cellular level

  11. 2013 OSU Outreach and Engagement FORUM Table # Program Title

    E-Print Network [OSTI]

    Nahar, Sultana Nurun

    's Energy Future 28 Engineering Outreach to K12 30 Enhancing Rural Education/Business Connectivity: a New Public Health Farmers' Market 61 Real Money.Real World #12;2013 OSU Outreach and Engagement FORUM 62 Consortium 82 Working Towards Abundant and Sustainable Vegetab

  12. Forest Plan A summary of a forum explor-

    E-Print Network [OSTI]

    environmental issue sticks in Americans' minds as well as the northern spotted owl and timber industry and early 1990s. While the debates encompassed economic, social, and political issues, at the heartNorthwest Forest Plan Revisited A summary of a forum explor- ing the science, policy, and politics

  13. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    / RECs #12;CGECTask 7. Biomass Gasification Technology Assessment · Task is still in progress · UpdateRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;Biomass/MSW Gap

  14. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

  15. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center California Off-shore Wind Technology Assessment #12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

  16. The Role of Demand Response Policy Forum Series

    E-Print Network [OSTI]

    California at Davis, University of

    The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

  17. > JOURNAL FORUM Pavillon 3744, rue Jean-Brillant

    E-Print Network [OSTI]

    Charette, André

    2 6 Journal > JOURNAL FORUM Pavillon 3744, rue Jean-Brillant Local 490 Téléphone : 514 343 343-6111, poste 3730 lepolemique@yahoo.ca Journal des étudiants en sciences poli- tiques et études internationales > LE POLYSCOPE article@polyscope.qc.ca Journal des étudiants de l'École Polytechnique > LE POULS

  18. European Forum 2001-2002 5 October 2001

    E-Print Network [OSTI]

    Feigon, Brooke

    European Forum 2001-2002 5 October 2001 M. Bowker, R. Crockatt, N. Macmaster, P. Chilton, V on the USA' 19 October 2001 Dr. Philip Dine, Loughborough University 'Sport, Media Representations and the Making of Europe' 16 November 2001 Dr. Annemarie van Heerikhuizen, University of Amsterdam 'Dutch

  19. Kobe University Global-Link Forum in Vietnam

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Kobe University Global-Link Forum in Vietnam December 19, 2013 in Ho Chi Minh City December 22 Environment in Asia The potential impact of the Trans-Pacific Partnership (TPP) on Vietnam and other TPP possibilities of the collaboration between Vietnam and Japan: From a viewpoint of Political History Dr. IHARA

  20. SAIS Energy, Resources and Environment Program (ERE) Global Leaders Forum

    E-Print Network [OSTI]

    Holsinger, Kent

    of SELCO India. Dr. David J. Jhirad is a Professor and the Director of the Energy, ResourSAIS Energy, Resources and Environment Program (ERE) Global Leaders Forum presents Growing Green Program (UNEP) Kate Gordon Vice President for Energy Policy, Center for American Progress Richenda Van

  1. Fish Tagging Forum Draft Compilation of Tagging Information

    E-Print Network [OSTI]

    compilation of tagging technology information is intended to provide a summary of comparative information the technologies. Instances where it is not, indicates an information gap. Please provide comments Fish Tagging Forum Draft Compilation of Tagging Information 2012_10_30 v3 The enclosed

  2. SPECIAL FEATURE FORUM THE TREE OF LIFE IN ECOSYSTEMS

    E-Print Network [OSTI]

    Thomas, David D.

    SPECIAL FEATURE ­ FORUM THE TREE OF LIFE IN ECOSYSTEMS The world-wide `fast­slow' plant economics, Penrith, NSW 2751, Australia Summary 1. The leaf economics spectrum (LES) provides a useful framework described, involved only two key resources (carbon and nutrients) and one of three economically important

  3. Policy Forum Series "Beyond 33 Percent: California's Renewable Energy Future,

    E-Print Network [OSTI]

    California at Davis, University of

    Policy Forum Series "Beyond 33 Percent: California's Renewable Energy Future, From Near as it transitions to a renewable energy future. Featuring panelists from government, industry and academia the renewables portfolio standard (RPS) beyond 33 percent. "Beyond 33 Percent: California's Renewable Energy

  4. Proceeding of the 1st International Forum on Heat Transfer

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Proceeding of the 1st International Forum on Heat Transfer November 24-26, 2004, Kyoto, Japan Paper No. HEAT TRANSFER PROBLEMS RELATED WITH CARBON NANOTUBES BY MOLECULAR DYNAMICS-BASED SIMULATIONS Dynamics Simulation, Thermal Conductance ABSTRACT Several heat transfer problems related to single

  5. Generation IV International Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are safe, reliable, economical and proliferation resistant... to help ensure that nuclear power has a vital and viable role in the world's energy future. I last met with the...

  6. Northwest Wind Integration Forum Policy Steering Committee

    E-Print Network [OSTI]

    Utilities Rachel Shimshak, Executive Director, Renewable Northwest Project Brian Skeahan, General Manager Cashell, Vice President - Transmission, Northwestern Energy Teresa Conway, President and CEO, Power, Western Montana G&T Don Furman, Senior Vice President, Development, Transmission and Policy, Iberdrola

  7. Water Power Technologies Oak Ridge National Laboratory (ORNL) supports the Department of Energy's mission to research,

    E-Print Network [OSTI]

    ://nhaap.ornl.gov) is an integrated research effort to advance sustainable hydroelectricity generation and water management. The NHAAP the potential for new hydropower development in U.S. stream segments that do not currently have hydroelectric

  8. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  9. A hybrid energy cell for self-powered water splitting Hulin Zhang,a

    E-Print Network [OSTI]

    Wang, Zhong L.

    reformation of natural gas, which not only consumes natural resources but also generates carbon dioxide to develop a cost-effective technology for mass production of H2.3 Photo- catalytic splitting of water into H

  10. PowerProjections2003(avgusing5-03water,BrokerPrices)(amended...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jections2003(avgusing5-03water,BrokerPrices)(amended).xls SLIP Energy WY Gross Gen from Hydro LP Dolores Gen. Total SLIP Gross Gen Avg. Plant Use SLIP Net Gen @ Plant Losses SLIP...

  11. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  12. Power of the people: Restoring impaired water bodies with stakeholder-driven WPPs 

    E-Print Network [OSTI]

    Foust, Margaret

    2010-01-01

    Story by Margaret Foust txH2O | pg. 15 Watershed protection plans (WPPs) are one of the approaches stakeholders are using to protect and restore water bodies and watersheds in Texas. WPPs are voluntary and actively involve local... Board (TSSWCB) through a Clean Water Act Nonpoint Source Grant from the U.S. Environmental Protection Agency (EPA). Through the Watershed Protection Plan Development for Buck Creek, the project team has identified specific sources of E. coli...

  13. Power of the people: Restoring impaired water bodies with stakeholder-driven WPPs 

    E-Print Network [OSTI]

    Foust, Maragaret

    2011-01-01

    Story by Margaret Foust txH2O | pg. 15 Watershed protection plans (WPPs) are one of the approaches stakeholders are using to protect and restore water bodies and watersheds in Texas. WPPs are voluntary and actively involve local... Board (TSSWCB) through a Clean Water Act Nonpoint Source Grant from the U.S. Environmental Protection Agency (EPA). Through the Watershed Protection Plan Development for Buck Creek, the project team has identified specific sources of E. coli...

  14. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWaterDepartment

  15. Water Power Program FY 2016 Budget At-A-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating WaterYou

  16. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  17. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  18. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan)] [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)] [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it was used for the column testing to obtain breakthrough curves under various conditions of pH and brine concentration. The breakthrough point had a dependency on pH and the brine concentration. We found that when the pH was higher or the brine concentration was lower, the longer it took to reach the breakthrough point. The inhibition of strontium adsorption by alkali earth metals would be diminished for conditions of higher pH and lower brine concentration. (authors)

  19. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    SciTech Connect (OSTI)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  20. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  1. Water Use in the Development and Operation of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWaterDepartment of

  2. Water Use in the Development and Operations of Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater EfficiencyWaterDepartment of2

  3. Water Power Program FY 2015 Budget At-A-Glance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste IsolationofWatchBudget WaterWater

  4. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  5. May 4, 2012, Spring Operations Review Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: 11:30 a.m. on May 4 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Hydro Operations Update The Federal Columbia River Power System is being operated for...

  6. TechnologyReview.com |Print Forums

    E-Print Network [OSTI]

    collaboration has developed a design to sustain such a so-called "burning plasma," generating about 500 as large, and also requires the use of superconducting magnets that consume negligible electric power for their operation. Decades of fundamental scientific research and detailed engineering design have bolstered

  7. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

  8. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  18. The culture of some marine fishes in ponds receiving heated discharge water from a power plant 

    E-Print Network [OSTI]

    Luebke, Richard William

    1973-01-01

    / l 0 O I- ILI CIS CII CIS O Ill IL CL O C I- III O O Ict C3 U. IL O 1 its origin. A 75 hp pump (Worthington Corporation) supplied the pond water. This water entered the intake end of each pond through a inventories and final... Cd (~dd) N39AXO 03A10SSIO ( Ol & I&/ccl(cldI AIIAILDOONOO (Od 38lllIIN3dN3d. 27 ONI AlINI1VS JJI O ICI oJ IIJ ID IU CJ UI o I?: OI 9 OI ) CI IK IJJ III 0 I CJ 0 CL VJ IIJ O. III CJJ I 0 't5 ~ td 0 0 g 0 ld W e 40 oo 0 0 E...

  19. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department ofIntroductionDepartmentWasteWater

  20. Before the Subcommittee on Water and Power - Committee on Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville EnergyDepartmenton ContractingCommittee ||

  1. 4th U.S.-China Energy Efficiency Forum

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy and China's National Development and Reform Commission held the annual U.S.-China Energy Efficiency Forum (EEF) this past September in Arlington, VA. The day-long event featured keynotes from DOE Office of Energy Efficiency and Renewable Energy Assistant Secretary Dr. David Danielson, U.S. Special Envoy for Climate Change Todd Stern, and NDRC Vice Chairman Xie Zhenhua.

  2. FY 2015 Small Business Kick-off Forum

    Broader source: Energy.gov [DOE]

    This free event will feature: • Insight into potential procurements in the current and upcoming fiscal years. • Key agency and prime contractor procurement representatives. • Opportunities to network during the Exhibit Forum with DOE buyers, and with small business advocacy groups. Everyone benefits! Small businesses learn about upcoming opportunities and "How to Work with DOE", and program representatives meet new small businesses capable of fufilling DOE requirements.

  3. EM Launches Forum on Business Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof Energy Laboratory Researcher JamesForum on

  4. Energy Leadership Forum | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar PowerTribesDepartmentEnergy Is Everywhere

  5. TransForum Volume 14, Issue 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories81TowardsTrackingCarbon2 - Summer2 2014

  6. PH adjustment of power plant cooling water with flue gas/fly ash

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  7. Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development Co Ltd

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock| Open Energy Information Water

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    R. P. Allison, "High Water Recovery with Electrodialysis12] GE Power & Water, "Electrodialysis Reversal (EDR)," 02ARABIA," in The Value of Water in the 21st Century, San

  9. Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, By

  10. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serialIndustrialSenior8Rick StevensA Megawatt

  11. Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThe U.S. Department of Energy's (DOE's) 20%

  12. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fm f m Tomega( ( ( ( ( ( (

  13. Microsoft PowerPoint - Aluminum Concentrations in Storm Water_w_lighter_photo_for_pdf.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavy nanowires with anDaleStudies

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  15. Looking Ahead - Biofuels, H2, & Vehicles: 21st Industry Growth Forum

    SciTech Connect (OSTI)

    Gardner, D.

    2008-10-28

    This presentation on the future of biofuels, hydrogen, and hybrid vehicles was presented at NREL's 21st Industry Growth Forum in Denver, Colorado, on October 28, 2008.

  16. The 2nd US-China Energy Efficiency Forum Agenda- Thursday

    Office of Energy Efficiency and Renewable Energy (EERE)

    Complete agenda for the 2nd US-China Energy Efficiency Forum on Thursday, May 5, 2011, including speaker names and topics.

  17. Money & More: MATIC Tribal Resource Forum for Arizona Tribes and Tribal Organizations

    Broader source: Energy.gov [DOE]

    Hosted by the Multi-Agency Tribal Infrastructure Collaborative (MATIC), this free Multi-Agency Resource Forum will share funding, technical assistance, training, and other resources available to...

  18. 22nd NREL Industry Growth Forum Opening Remarks - Day 2 (Presentation)

    SciTech Connect (OSTI)

    Perry, T.

    2009-11-04

    A presentation at the 22nd Industry Growth Forum by Tod Perry that provides information and statistics about the presenting companies.

  19. Forum on Enhancing the Delivery of Energy Efficiency to Middle Income Households: Discussion Summary

    SciTech Connect (OSTI)

    none,

    2012-09-20

    Summarizes discussions and recommendations from a forum for practitioners and policymakers aiming to strengthen residential energy efficiency program design and delivery for middle income households.

  20. The 2nd US-China Energy Efficiency Forum Agenda- Friday

    Office of Energy Efficiency and Renewable Energy (EERE)

    Complete agenda for the 2nd US-China Energy Efficiency Forum on Friday, May 6, 2011, including speaker names and topics.

  1. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  2. Thin power law film flow down an inclined plane: consistent shallow water models and stability under large scale perturbations

    E-Print Network [OSTI]

    Noble, Pascal

    2012-01-01

    In this paper we derive consistent shallow water equations for thin films of power law fluids down an incline. These models account for the streamwise diffusion of momentum which is important to describe accurately the full dynamic of the thin film flows when instabilities like roll-waves arise. These models are validated through a comparison with Orr Sommerfeld equations for large scale perturbations. We only consider laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of thin film and its relation with long wave asymptotic leads naturally to flow conditions around a uniform free surface Poiseuille flow. The apparent viscosity diverges at the free surface which, in turn, introduces a singularity in the formulation of the Orr-Sommerfeld equations and in the derivation of shallow water models. We remove this singularity by introducing a weaker formulation of Cauc...

  3. WATER POWER SOLAR POWER WIND POWER

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency &Report- April 2012 |VoteWATCH

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  5. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  6. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  7. Data and Modeling Conflation IssuesData and Modeling Conflation Issues in Energy and Water Systemsin Energy and Water Systems

    E-Print Network [OSTI]

    Keller, Arturo A.

    Data and Modeling Conflation IssuesData and Modeling Conflation Issues in Energy and Water Systemsin Energy and Water Systems Lawrence Livermore National Laboratory:Lawrence Livermore National Western Forum on Energy & Water Sustainability March 23, 2007 #12;22 #12;33 Integrated planning requires

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  9. Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly Awaiting Exploitation-Cold Water!! 

    E-Print Network [OSTI]

    Burger, R.

    1990-01-01

    TOWER PERFORMANCE REFRIGERATION SYSTEMS, CHEMICAL PLANTS, AND POWER PLANTS ALL HAVE A RESOURCE QUIETLY AWAITING EXPLOITATION - COLD WATER!! ROBERT BURGER President Burger and Associates, Inc. Dallas, Texas Cooling towers, because... of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty...

  10. The culture of selected marine fish in ponds receiving thermal effluent from a power station and their use as biological monitors of water quality 

    E-Print Network [OSTI]

    Pane, Joseph John

    1976-01-01

    THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE AS BIOLOGICAL MONITORS OF WATER QUALITY A Thesis by JOSEPH JOHN PANE Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject: Wildlife and Fisheries Sciences THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE...

  11. New England Wind Forum, Volume 1, Issue 1 -- January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 1 features an interview with Brother Joseph of Portsmouth Abbey. A commercial-scale Vestas V47 wind turbine will soon be installed on the grounds of the Benedictine monastery and prep school in Rhode Island, with the assistance of a grant from the Rhode Island Renewable Energy Fund. This will be the first large-scale turbine located behind the customer meter in the region.

  12. Global Green Growth Forum (3GF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliamOhio:Change |Framework for ClimateForum

  13. White House Forum on Energy Security (Update) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergyDepartment ofNuclearWhere DoofReportForum

  14. Doctoral Program in Finance: Curriculum Fall FIN 7935 Finance Research Forum (1 credit hour)

    E-Print Network [OSTI]

    Foroosh, Hassan

    Doctoral Program in Finance: Curriculum First Year Fall FIN 7935 Finance Research Forum (1 credit of Finance Spring FIN 7935 Finance Research Forum (1 credit hour) ECO 6424 Econometrics I ECO 7116 Microeconomic Theory II FIN 7807 Seminar in Corporate Finance Attend FCTL Teaching Workshop for Doctoral

  15. Editorial p 3 Le Forum EPFL en bref... p 4-5

    E-Print Network [OSTI]

    Picasso, Marco

    » évolue également en 2013 et devient le « Forum Respon- sable » ! En effet, après la certification ISO 14 certification ISO 9001, standard international en matiere de gestion de la qualité. Nous nous réjouissons de esprit corporate ! Comité Forum EPFL 2013 ISO 14001 r esponsabl e a LDE_infos_partie1.indd 3 28.08.13 11

  16. Proceedings of the Inaugural Meeting of the International Forum for Reactor Aging Management (IFRAM)

    SciTech Connect (OSTI)

    Bond, Leonard J.; Brenchley, David L.

    2011-09-01

    In almost all countries with nuclear power plants (NPPs), regulatory authorities and the nuclear industry are looking at some form of extended operating periods. To support life extension activities it is necessary to ensure the continued safety and reliability of system, structures, and components, and the component materials. Internationally, a variety of individual national and international activities have been initiated including Plant Life Management through the International Atomic Energy Agency, Electric Power Research Institute’s Long Term Operation program, and various national programs in managing materials degradation and related topics. The U.S. Nuclear Regulatory Commission (NRC) engaged the international community in workshops in 2005-2006 to identify research needs and to collect information in an expert panel report on Proactive Management of Materials Degradation (PMMD), which was reported in NUREG/CR-6923. These results are also available via an Information Tool on the internet at http://pmmd.pnl.gov. This information builds on the extensive compilations known as the GALL Report (Generic Aging Lessons Learned, NUREG-1801, Vols. 1 and 2). Pacific Northwest National Laboratory (PNNL) recently issued a report on the review of various international activities in PMMD (PNNL-17779). There have also been initiatives by Electricite de France, Tokyo Electric Power Company, EPRI, and others to establish a "Materials Aging Institute." Within the materials degradation research community there are also networks and technical meetings focused on some elements of PMMD. In spite of all these efforts, there is currently no forum to bring together these diverse activities and provide coordinated information exchange and prioritization of materials aging management/PMMD topics. It is believed that the International Forum for Reactor Aging Management (IFRAM) would be a good way to achieve this goal and help develop new approaches for ensuring continued safe operation in existing and future nuclear power plants. To begin addressing this need, NRC has established a Proactive Management of Materials Degradation Program for managing in-service degradation of metallic components in aging NPPs. The NRC is seeking to facilitate the establishment of IFRAM as a network of international experts who would exchange information on operating experience, best practices, and emerging knowledge. These experts would be willing to work jointly and leverage the separate efforts of existing national programs into a unified approach to enable the potential for the safe and economic life extension of NPPs. A proposal for establishing IFRAM was developed and presented at Engagement workshops in Seoul, Korea (October 2009) and Petten, The Netherlands (May 2010). Participants in both groups demonstrated strong interest in the establishment of IFRAM. Therefore the Global Steering Committee was formed to plan and carry out the start-up of IFRAM in 2011. This group finalized the documents for IFRAM and organized the kick-off meeting. This document records the contents of the inaugural meeting of IFRAM, which was held August 4-5, 2011, at the Cheyenne Mountain Resort in Colorado Springs, Colorado. Representatives from Asia, Europe, and the United States met to share information on reactor aging management and make plans for the future. Professor Tetsuo Shoji was elected chairperson of the Leadership Council. This kick-off event transformed the dream of an international forum into a reality. IFRAM has begun to achieve its mission.

  17. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Domen, Kazunari (University of Tokyo)

    2012-03-14

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  18. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  19. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  20. BETAVOLTAIC BATTERIES Long-Life Power for Defense & Medical Markets

    E-Print Network [OSTI]

    BETAVOLTAIC BATTERIES Long-Life Power for Defense & Medical Markets NREL Industry Growth Forum Jonathan W. Greene, CEO November 2, 2009 #12;·! Patented Betavoltaics ­ tiny, long life batteries targeting electronic and isotope powered batteries MS - 14 yrs management and engineering ·!Expert in patent

  1. Water Power News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | DepartmentResidentialJeannie Saur

  2. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect (OSTI)

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  3. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    on water quality issues including water recycling, operation of wastewater treatment facilities, wind-powered

  4. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  5. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; Bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  6. Clean water from clean energy: removal of dissolved contaminants from brackish groundwater using wind energy powered electrodialysis 

    E-Print Network [OSTI]

    Malek, Payam

    2015-06-29

    Around 770 million people lack access to improved drinking water sources (WHO 2013), urgently necessitating implementation of contaminant removal by e.g. desalination systems on a large scale. To improve water quality ...

  7. The standards forum: Volume 6, Number 3 -- December 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This issue contains the following articles: NIST--A call for a national standards strategy; Fourth integrated safety management lessons learned workshop; TSP [Technical Standards Program] publications support moves to headquarters; Comments on the role of the federal government in environmental technology development; Technical standards manager spotlight; Topical committee developments: Quality assurance topical committee plays an active role in the TSP, New DOE accreditation committee targets issues and resolutions at first annual meeting, DOE fire safety committee meeting in New Orleans, Third annual DOE metrology committee meeting coming in March 1999, The biota dose assessment committee providing a major forum and technical resource for DOE, and A performance-based management handbook in the works; DOE technical standards projects initiated; Recently published DOE documents; Non-government standards: American National Standards Institute and American Society for Testing and Materials; Most DOE comments on ISO 17025 upheld by ANSI review committee; and ISO 9000 compliance--Changes in the future.

  8. Sixth Northwest Conservation and Electric Power Plan Chapter 14: Regional Adequacy Standards

    E-Print Network [OSTI]

    ) to assess the adequacy of the North American bulk power supply. In 2005, the Council and the Bonneville Power Administration created the Northwest Resource Adequacy Forum to aid the Council in developingSixth Northwest Conservation and Electric Power Plan Chapter 14: Regional Adequacy Standards

  9. New Mexico Tribal Leader Forum and Community-Scale Workshop for...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2015 8:00AM MDT to July 29, 2015 5:00PM MDT Albuquerque, New Mexico Pueblo Cultural Center 2401 12th St. NW Albuquerque, NM 87104 Tribal Leader Forum on Tribal Energy and...

  10. Low-level Waste Forum meeting report. Fall meeting, October 20--22, 1993

    SciTech Connect (OSTI)

    NONE

    1993-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  11. Low-level Waste Forum meeting report. Winter meeting, January 26--28, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  12. New Mexico Tribal Leader Forum and Community-Scale Workshop for Tribes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting a Tribal Leader Forum and Community-Scale Renewable Energy Workshop in Albuquerque, New Mexico, July 27-29, 2015.

  13. Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

    2011-07-01

    This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

  14. Developing stakeholder understanding, technical capability, and responsibility: The New Bedford Harbor Superfund Forum

    SciTech Connect (OSTI)

    Finney, C.; Polk, R.E.

    1995-11-01

    The community of New Bedford, Massachusetts, site of one of the world`s worst underwater polychlorinated biphenyls (PCB) dumps, is undergoing a second attempt to choose the method for the first phase of the harbor Superfund site clean-up. The first attempt, which some termed a ``model public participation process,`` ended unfruitfully when the larger community rejected the selected remedy. The authors examine how a new effort -- the ongoing New Bedford Harbor Superfund Forum -- is working to instill in its participants the technical understanding and capability to assist in the selection of a remedy, as well as creating a larger sense of community ownership that will outlive the process. This article briefly reviews the first attempt at public participation and the factors that contributed to its dissolution, and then examines the current forum and the changes that increase the likelihood of the community accepting the forum`s recommendation.

  15. Save the Date! 2015 Small Business Kick-Off Forum, October 22, 2014

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Small and Disadvantaged Business Utilization will host the FY 2015 Small Business Kick-Off Forum at the DOE's Forrestal Building, 1000 Independence Ave SW, on October 22, 2014.

  16. NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

  17. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect (OSTI)

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  18. Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants

    SciTech Connect (OSTI)

    Douglas G. Hall

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  19. Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants: Main report and Appendix A

    SciTech Connect (OSTI)

    Hall, Douglas G.; Reeves, Kelly S.; Brizzee, Julie; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  20. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.