Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Behavior of Spent Nuclear Fuel in Water Pool Storage  

Office of Scientific and Technical Information (OSTI)

Behavior of Spent Nuclear Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared Cor the Energy Research and Development Administration under Contract EY-76-C-06-1830 ---- Pat t i ~ < N ~ ~ r ~ t b w t ~ - ! I , ~ I ~ ~ ~ I . I I ~ ) ~ I I ~ ~ N O T I C E T€& - was prepad pnpn4. m w n t of w k spon-d by the Unitd S t . & ) C a u n m ~ (*WU ij*. M t e d $tam w the Wqy R e s e w & a d Ohrsropmcnt ~dmhirmlion, nor m y d thair ewhew,,nq Pny @fw a n t r ~ ~ t 0 ~ 1 , s ~ k m r i t r i l t t q r , ~ , m r tWf ernpfQw, r(tLltm any wartany, s x p r e s or kWld,= w w aAql -9 . o r r w p a m l ~ ~ t y for e~ o r uodruincvr of any infomutim, 9 F p d + d - , or repratants that -would nat 1 d - e privately owned rfghas. ,i PAQFIC NORTHWEST UBORATORY operated b ;"' SArnLLE ' fw the E M R m RESEARCH AND DEVELOPMENT ADMINISTRAT1QN Wk.Cwfraa rv-76c-ts-is38

2

Annual collection and storage of solar energy for the heating of buildings, report No. 1. Progress report, May--November 1976. [Underground pool of water  

DOE Green Energy (OSTI)

A new system for the annual collection and storage of solar heated water for heating of buildings is under development at the University of Virginia. The system is composed of an energy storage sub-system which stores hot water in an underground pool and of a solar collector sub-system which acts not only to collect solar energy throughout the year but also to limit the evaporative and convective heat losses from the storage system. During the summer of 1976, a storage sub-system was constructed using the initial design specifications. A structural failure of that storage pool occurred in August resulting from a leak in the pool liner which caused a failure of the pool structure. A revised design of the storage pool sub-system has been implemented and construction was completed in November, 1976. The collector sub-system has been designed and constructed. Collector operation began in February 1977. A vertical reflector on the north edge of the collector was added in March 1977. Future research will include initial total system operation, performance evaluation, and analytical modeling.

Beard, J. T.; Dickey, J. W.; Iachetta, F. A.; Lilleleht, L. U.

1977-01-01T23:59:59.000Z

3

Bases for extrapolating materials durability in fuel storage pools  

SciTech Connect

A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

Johnson, A.B. Jr.

1994-12-01T23:59:59.000Z

4

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools  

E-Print Network (OSTI)

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil must be stored for around 60 years in underwater storage pools before permanent disposal. These underwater storage environments must be carefully monitored and controlled to avoid an environmental

Jeavons, Peter

5

Conventional Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Conventional storage water heaters remain the most popular type of water heating system for homes and buildings.

6

Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor  

DOE Patents (OSTI)

An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

7

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

8

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, D.M.

1996-03-12T23:59:59.000Z

9

Examination of Spent CANDU (TM) Fuel Following 27 Years of Pool Storage  

Science Conference Proceedings (OSTI)

After 27 years in pool storage, the Zircaloy cladding of CANDU fuel showed no deterioration. Further, in deliberately defected fuel elements, uranium oxide surface oxidation appeared to have no impact on fuel-cladding integrity. These results increase utilities' confidence that the fuel can be stored in pools for periods of at least 50 years.

1992-05-01T23:59:59.000Z

10

Conventional Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heaters Conventional Storage Water Heaters July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the...

11

Update on use of mine pool water for power generation.  

Science Conference Proceedings (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

12

Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

13

Conventional Storage Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On...

14

Storage Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of iStockphoto...

15

Energy Basics: Conventional Storage Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heater can range from 20 to hundreds of gallons. Conventional storage water heater fuel sources include natural gas, propane, fuel oil, and electricity. Natural gas and...

16

Management and Storage of Surface Waters (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Protection regulates the use and storage of surface waters in the state. A permit from either the Department or the local Water Management District is required for...

17

Time-Dependent Internal Energy Budgets of the Tropical Warm Water Pools  

Science Conference Proceedings (OSTI)

The exchange of internal energy between the warm water pools of the tropical oceans and the overlying atmosphere is thought to play a central role in the evolving climate system of the earth. Spatial displacements of the warm water pools are ...

John M. Toole; Huai-Min Zhang; Michael J. Caruso

2004-03-01T23:59:59.000Z

18

Chilled Water Storage System and Demand Response at the University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chilled Water Storage System and Demand Response at the University of California at Merced Title Chilled Water Storage System and Demand Response at the University of California at...

19

Stay Above Water with an Efficient Swimming Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Above Water with an Efficient Swimming Pool Above Water with an Efficient Swimming Pool Stay Above Water with an Efficient Swimming Pool August 10, 2009 - 10:38am Addthis Allison Casey Senior Communicator, NREL All eyes were on the pool recently for swimming's 2009 World Championships in Rome. As a former competitive swimmer (though I was a dog-paddler compared to the likes of Michael Phelps and Ariana Kukors), these events hold a special place in my heart, and I managed to catch a few exciting moments in the competition. I'm no longer involved in the world of swimming, but I can only imagine that interest in the sport has skyrocketed since last year's thrilling Olympics in Beijing. Maybe you or your children were inspired to get serious about swimming; maybe you've even decided to install a pool at your

20

Solar pool heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar pool heating Jump to: navigation, search Pool Heating is a great use for solar energy. Solar pool heating systems can be very effective and inexpensive. The pool itself is the thermal storage unit and the existing pump that the pool uses will circulate the water through the solar collectors. Pool Covers Having a good pool cover is one of the best ways to conserve energy and use solar energy to heat the pool. If you don't have a pool cover the solar energy being used will be wasted and you will be using three times as much energy that is necessary. Solar Sun Rings- instead of using a full pool cover sun rings are

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Stratified Chilled-Water Storage Design Guide  

Science Conference Proceedings (OSTI)

Improved load factors for utilities and lower operating costs for users are two of the benefits of chilled-water storage technologies for space cooling in commercial buildings. Among those technologies, the lowest-cost and simplest to operate are the thermally stratified systems treated in this comprehensive, state-of-the-art design handbook.

1988-06-14T23:59:59.000Z

22

Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

23

USE of mine pool water for power plant cooling.  

Science Conference Proceedings (OSTI)

Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

Veil, J. A.; Kupar, J. M .; Puder, M. G.

2006-11-27T23:59:59.000Z

24

Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling, Revision 1  

Science Conference Proceedings (OSTI)

In 2010, EPRI performed a study of the accelerated transfer of spent fuel from pools to dry storage in response to the threat of terrorist activities at nuclear power plants (report 1021049). Following the March 2011 Great East Japan Earthquake and the subsequent accident at the Fukushima Daiichi nuclear power plant, some organizations issued a renewed call for accelerated transfer of used fuel from spent fuel ...

2012-08-31T23:59:59.000Z

25

An analysis of radionuclide behavior in water pools during accidents at the Annular Core Research Reactor  

SciTech Connect

Physical and chemical phenomena that will affect the behavior of radionuclides released from fuel in the Annular Core Research Reactor during a hypothetical, core disruptive accident are described. The phenomena include boiling of water on heated clad, metal-water reactions, vapor nucleation to form aerosol particles, coagulation of aerosol particles, aerosol deposition within bubbles rising through the shield pool, vapor dissolution in the shield pool, and revaporization of radionuclides from the shield pool. A model of these phenomena is developed and applied to predict the release of radionuclides to the confinement building of the Annular Core Research Reactor. It is found that the shield pool provides overall decontamination factors for particulate of about 2.8 {times} 10{sup 5} and decontamination factors for noble gases of about 2.5--3.7. These results are found to be sensitive to the predicted clad temperature and bubble behavior in the shield pool. Slow revalorization of krypton, xenon and iodine from the shield pool is shown to create a prolonged, low-intensity source term of radioactive material to the confinement atmosphere.

Powers, D.A.

1992-08-01T23:59:59.000Z

26

Antelope Valley Water Storage, LLC RFP - DEADLINE: March 31,...  

NLE Websites -- All DOE Office Websites (Extended Search)

-Renewable-Energy.doc REQUEST FOR PROPOSALS RENEWABLE ENERGY SUPPLY FOR ANTELOPE VALLEY WATER BANKING PROJECT ANTELOPE VALLEY WATER STORAGE, LLC. Filing Deadline: March 31, 2008 -...

27

Feasibility study 100 K East Area water purification pools fish-rearing program  

Science Conference Proceedings (OSTI)

As part of the feasibility study, a design analysis was conducted to determine the usefulness of the existing sand filters and associated media for reuse. The sand filters which were studied for potential reuse are located on the northern end of the 100-K East Area water filtration plant on the Hanford Site. This plant is located about one- half mile from the Columbia River. The sand filters were originally part of a system which was used to provide cooling water to the nearby plutonium production K Reactors. This Cold War operation took place until 1971, at which time the K Reactors were closed for eventual decontamination and decommissioning. Recently, it was decided to study the concept of putting the sand filter structures back into use for fish-rearing purposes. Because the water that circulated through the water purification pools (K Pools) and associated sand filters was clean river water, there is little chance of the structures being radioactively contaminated. To date, separate K Pools have been used for raising a variety of cold water fish species, including white sturgeon and fall chinook salmon, as well as for providing potable water to the 100 K Area of the Hanford Site for fire and service water purposes.

Betsch, M.D., Westinghouse Hanford

1996-07-03T23:59:59.000Z

28

Trojan Spent Fuel Pool Chemistry Control During Fuel Transfer to Storage Cask  

Science Conference Proceedings (OSTI)

The decommissioning staff at Trojan Nuclear Power Plant faced a difficult carbon steel fuel basket corrosion problem resulting from decreased pH in their fuel pool. This report provides the details of the technical solution proposed by the EPRI investigative team. They based the solution upon sound chemical principles backed up with laboratory experimental data and a literature review.

2001-02-23T23:59:59.000Z

29

Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)  

SciTech Connect

This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

2011-03-20T23:59:59.000Z

30

Installing and Operating an Efficient Swimming Pool Pump | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water with an Efficient Swimming Pool Installing and Operating an Efficient Swimming Pool Pump Swimming Pool Covers An example of a solar pool heater. Solar Swimming Pool Heaters...

31

Spent fuel pool storage calculations using the ISOCRIT burnup credit tool  

Science Conference Proceedings (OSTI)

In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.

Kucukboyaci, Vefa [Westinghouse Electric Company, Cranberry Township, PA; Marshall, William BJ J [ORNL

2012-01-01T23:59:59.000Z

32

Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)  

DOE Green Energy (OSTI)

Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

2010-04-01T23:59:59.000Z

33

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

Science Conference Proceedings (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regions deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regions large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

34

Baseline descriptions for LWR spent fuel storage, handling, and transportation  

SciTech Connect

Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

Moyer, J.W.; Sonnier, C.S.

1978-04-01T23:59:59.000Z

35

Core-concrete interactions with overlying water pools. The WETCOR-1 test  

Science Conference Proceedings (OSTI)

The WETCOR-1 test of simultaneous interactions of a high-temperature melt with water and a limestone/common-sand concrete is described. The test used a 34.1-kg melt of 76.8 w/o Al{sub 2}O{sub 3}, 16.9 w/o CaO, and 4.0 w/o SiO{sub 2} heated by induction using tungsten susceptors. Once quasi-steady attack on concrete by the melt was established, an attempt was made to quench the melt at 1850 K with 295 K water flowing at 57 liters per minute. Net power into the melt at the time of water addition was 0.61 {plus_minus} 0.19 W/cm{sup 3}. The test configuration used in the WETCOR-1 test was designed to delay melt freezing to the walls of the test fixture. This was done to test hypotheses concerning the inherent stability of crust formation when high-temperature melts are exposed to water. No instability in crust formation was observed. The flux of heat through the crust to the water pool maintained over the melt in the test was found to be 0.52 {plus_minus} 0.13 MW/m{sup 2}. Solidified crusts were found to attenuate aerosol emissions during the melt concrete interactions by factors of 1.3 to 3.5. The combination of a solidified crust and a 30-cm deep subcooled water pool was found to attenuate aerosol emissions by factors of 3 to 15.

Blose, R.E. [Ktech Corp., Albuquerque, NM (United States); Powers, D.A.; Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A. [Sandia National Labs., Albuquerque, NM (United States)

1993-11-01T23:59:59.000Z

36

Investigation of the condition of spent-fuel pool components  

Science Conference Proceedings (OSTI)

It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

1981-09-01T23:59:59.000Z

37

Water-storage-tube systems. Final report  

DOE Green Energy (OSTI)

Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

Hemker, P.

1981-12-24T23:59:59.000Z

38

Covered Product Category: Gas Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Water Heaters Gas Storage Water Heaters Covered Product Category: Gas Storage Water Heaters October 7, 2013 - 10:43am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

39

A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage  

SciTech Connect

This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE. Consequently, the findings presented here do not represent a significant safety concern unless/until the subcritical margin associated with the soluble boron (that is not currently explicitly credited) is offset by the uncertainties associated with burnup credit and/or the expanded allowance of credit for the soluble boron.

Wagner, J.C.; Parks, C.V.

2000-09-01T23:59:59.000Z

40

Performance of a hotel chilled water plant with cool storage  

SciTech Connect

A comprehensive monitoring suite was installed at a large convention hotel located in San Francisco, CA. The instrumentation was used for a research project to evaluate the effectiveness of electricity price based controls that automate response to real time pricing and to characterize the operation and performance of the hotel's chilled water plant that included a newly installed ice cool storage system. The hotel operates under real-time electricity rates. To date, over four years of data have been collected. Data included electricity use for all chillers, secondary coolant, chilled water, condenser pumps, and the cooling tower fans. Thermal flow data were also collected for the storage system, ice chiller, direct cooling chillers, and chilled water load loops. This paper (1) describes the chilled water plant, (2) defines the performance measurement objectives for the project, (3) discusses operational experience with the plant, focusing on the cool storage system, (4) analyzes chilled water plant and cool storage system operation by examining the charge/discharge heat flow data, and (5) evaluates how well the plant as a whole and the cool storage system specifically met cooling loads of the facility, and how this affected their use.

Gillespie, K.L.; Blanc, S.L.; Parker, S.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Conventional Storage Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another valve near the bottom of the outside of the tank is the thermostat and gas valve. A cutout shows the parts inside the tank, which include a large tube called a flue tube/heat exchanger. Inside this tube is a jagged insert called a flue baffle. Beside the flue tube/heat exchanger is a thin tube called the anode rod. At the bottom of the tank is a gas burner, and beneath the burner are combustion air openings.

42

Sodium/water pool-deposit bed model of the CONACS code. [LMFBR  

SciTech Connect

A new Pool-Bed model of the CONACS (Containment Analysis Code System) code represents a major advance over the pool models of other containment analysis code (NABE code of France, CEDAN code of Japan and CACECO and CONTAIN codes of the United States). This new model advances pool-bed modeling because of the number of significant materials and processes which are included with appropriate rigor. This CONACS pool-bed model maintains material balances for eight chemical species (C, H/sub 2/O, Na, NaH, Na/sub 2/O, Na/sub 2/O/sub 2/, Na/sub 2/CO/sub 3/ and NaOH) that collect in the stationary liquid pool on the floor and in the desposit bed on the elevated shelf of the standard CONACS analysis cell.

Peak, R.D.

1983-12-17T23:59:59.000Z

43

Sizing a water softener for aquifer thermal energy storage  

DOE Green Energy (OSTI)

In aquifer thermal energy storage (ATES) installations, ground water is circulated between an aquifer and heat exchangers via a well field. It is often necessary to soften the water to prevent carbonate scaling in pipes, heat exchangers, and well screens. Most ATES projects requiring water softening will be best served by using synthetic ion-exchange resins. The size of the resin beds, the resin regeneration cycle, and the amount of NaCl brine used in each regeneration depend on several factors. These are (1) the chemistry of the native ground water, (2) allowable residual hardness after softening, (3) the maximum flow rate of water through the ATES plant, and (4) exchange characteristics of the resin. Example calculations are given for a three-bed water softening system.

Hall, S.H.; Jenne, E.A.

1993-03-01T23:59:59.000Z

44

Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint  

DOE Green Energy (OSTI)

Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

2009-04-01T23:59:59.000Z

45

Scrubbing of Aerosols by Water Pools, Volume 3: Small-Scale Single-Orifice Experiments  

Science Conference Proceedings (OSTI)

During a postulated severe accident in a BWR, the pressure suppression pool provides an important barrier to the release of radioactive fission-product aerosols. Experiments have been performed in a labscale apparatus to investigate the aerosol scrubbing efficiency obtained as a function of several parameters.

1991-10-01T23:59:59.000Z

46

Utility water system with a pressureless storage container, particularly for solar installations  

SciTech Connect

A warm water storage system for supplying warm water to a network with water under pressure characterized in that the storage is pressureless and takes place in a ventilated container, and that between the take-off region of the container and the warm water supply network is incorporated a booster pump.

Laing, K.; Laing, N.; Laing, O.; Ludin, L.

1984-03-20T23:59:59.000Z

47

Heat pump water heater and storage tank assembly  

DOE Patents (OSTI)

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

48

Effects of Climate Variability on Water Storage in the Colorado River Basin  

Science Conference Proceedings (OSTI)

Understanding the long-term (interannualdecadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed ...

Ruud Hurkmans; Peter A. Troch; Remko Uijlenhoet; Paul Torfs; Matej Durcik

2009-10-01T23:59:59.000Z

49

Relationship of regional water quality to aquifer thermal energy storage  

DOE Green Energy (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

50

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool A flow control valve -- automatic or manual device that diverts pool

51

Suncatcher and cool pool. Project report  

DOE Green Energy (OSTI)

The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

Hammond, J.

1981-03-01T23:59:59.000Z

52

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Swimming Pool Heaters Solar Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool

53

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

54

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

55

Household water treatment and safe storage options for Northern Region Ghana : consumer preference and relative cost  

E-Print Network (OSTI)

A range of household water treatment and safe storage (HWTS) products are available in Northern Region Ghana which have the potential to significantly improve local drinking water quality. However, to date, the region has ...

Green, Vanessa (Vanessa Layton)

2008-01-01T23:59:59.000Z

56

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network (OSTI)

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

57

Effect of water storage tanks design in solar combisystems efficiency  

Science Conference Proceedings (OSTI)

One of the key components of a solar combisystem is the heat store. In the international literature the matter of storage necessity for solar systems is well justified. We build an experimental system assisted by a stratified storage tank and we estimate ... Keywords: fractional savings, storage tank, stratification

Nikolaos Taoussanidis

2007-05-01T23:59:59.000Z

58

Control of degradation of spent LWR (light-water reactor) fuel during dry storage in an inert atmosphere  

DOE Green Energy (OSTI)

Dry storage of Zircaloy-clad spent fuel in inert gas (referred to as inerted dry storage or IDS) is being developed as an alternative to water pool storage of spent fuel. The objectives of the activities described in this report are to identify potential Zircaloy degradation mechanisms and evaluate their applicability to cladding breach during IDS, develop models of the dominant Zircaloy degradation mechanisms, and recommend cladding temperature limits during IDS to control Zircaloy degradation. The principal potential Zircaloy cladding breach mechanisms during IDS have been identified as creep rupture, stress corrosion cracking (SCC), and delayed hydride cracking (DHC). Creep rupture is concluded to be the primary cladding breach mechanism during IDS. Deformation and fracture maps based on creep rupture were developed for Zircaloy. These maps were then used as the basis for developing spent fuel cladding temperature limits that would prevent cladding breach during a 40-year IDS period. The probability of cladding breach for spent fuel stored at the temperature limit is less than 0.5% per spent fuel rod. 52 refs., 7 figs., 1 tab.

Cunningham, M.E.; Simonen, E.P.; Allemann, R.T.; Levy, I.S.; Hazelton, R.F.

1987-10-01T23:59:59.000Z

59

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

60

ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)  

E-Print Network (OSTI)

The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

Lewis, M E

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inferring Changes in Terrestrial Water Storage Using ERA-40 Reanalysis Data: The Mississippi River Basin  

Science Conference Proceedings (OSTI)

Terrestrial water storage is an essential part of the hydrological cycle, encompassing crucial elements of the climate system, such as soil moisture, groundwater, snow, and land ice. On a regional scale, it is however not a readily measured ...

Sonia I. Seneviratne; Pedro Viterbo; Daniel Lthi; Christoph Schr

2004-06-01T23:59:59.000Z

62

Swimming Pool Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the water temperature, and using a smaller pump less...

63

Development of a Procedure for the Predictive Control Strategy of a Chilled Water Storage System  

E-Print Network (OSTI)

Thermal energy storage systems store the thermal energy produced by the chiller plant in periods of off-peak electrical demand or when cheaper electricity is available. The stored thermal energy is then withdrawn from the reservoir to satisfy cooling load during peak demand periods. This paper discusses the development of a simplified predictive control strategy for a 7000 ton-hour chilled water storage system serving a hospital. Control strategies are developed for both on-peak and off-peak months to minimize demand charges. By optimizing the operation of the building air handling units (AHUs), chilled water pumps, chiller plant and the thermal storage system, the storage tank is better charged while chiller run time is reduced. Both on-peak and off-peak electrical demands are expected to be reduced significantly.

Wei, G.; Sakuri, Y.; Claridge, D. E.; Turner, W. D.; Liu, M.

2000-01-01T23:59:59.000Z

64

Cost Impact of Using ISG-8 Rev. 3 for PWR Spent Fuel Pool Criticality Analysis  

Science Conference Proceedings (OSTI)

Nuclear Regulatory Commission (NRC) guidance for applying burnup credit in criticality analyses for spent fuel storage and transportation requirements recently changed with the release of Interim Staff Guidance (ISG) 8 Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks. If ISG-8 Rev. 3 were imposed upon pressurized water reactor (PWR) spent fuel pool (SFP) criticality analyses, the burnup requirements for loading would ...

2012-11-21T23:59:59.000Z

65

Comparison of energy storage systems in the United States chilled water versus two types of ice storage systems  

DOE Green Energy (OSTI)

Current US production non-storage heat pumps are compared to heat pumps using stored hot water and stored chilled water and to heat pumps using ice-on-coils as a means of using latent heat of fusion of water as a heat source. This equipment is also used as a means of stored cooling for air conditioning during hot weather. An ice-making heat pump which harvests ice as sheets of ice 3 to 4 times per hour and stores the ice in a large inexpensive bin is discussed. The advantages of such an ice-making heat pump to heat in cold weather and cool in hot weather is discussed as it relates to Electric Utility load management in different parts of the United States.

Fischer, H.C.

1984-01-01T23:59:59.000Z

66

Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building  

Science Conference Proceedings (OSTI)

This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

Lata

1996-09-26T23:59:59.000Z

67

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

68

Summary status of advanced water electrolysis and hydrogen storage/transport R and D  

SciTech Connect

Major projects within the framework of the U.S. DOE Chemical/Hydrogen Energy Systems Program are described. Goals, accomplishments and status of investigations into advanced water electrolysis and hydrogen storage/transport are summarized. Electrolytic hydrogen production systems include: SPE electrolyzers; static feed water electrolysis; high temperature electrolysis; and other advanced concepts. Hydrogen transport studies have emphasized the characterization of hydrogen embrittlement effects on conventional natural gas pipeline steels.

Mezzina, A.

1984-04-01T23:59:59.000Z

69

Evaluation of Stratified Chilled-Water Storage Techniques, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

After conducting experiments in both full-scale and scale model tanks, researchers found three thermally stratified chilled-water storage systems for achieving off-peak air conditioning to be efficient, repeatable, and reliable. This two-volume report provides design and operation guidelines for these systems.

1985-12-10T23:59:59.000Z

70

Payette Idaho Pool Energy Conservation Study  

DOE Green Energy (OSTI)

Staff at PNNL studied and performed evaluations on the pool facility for energy conservation measures and actions to lower the annual energy costs of the pool complex. PNNL staff analyzed the utility billing data and a number of energy conservation opportunities. Conservation opportunities analyzed include adding pool covers and a solar water heating system, sealing and insulating the building envelope, optimizing the pool schedule, and incorporating several no- or low-cost energy saving recommendations.

Larson, Loren L.; Hillman, Timothy C.; McCullough, Jeffrey J.; Roy, Nicole D.

2001-11-01T23:59:59.000Z

71

Solar Heated Pools for Your Commercial Property  

SciTech Connect

A brochure describing the energy-saving and cost-saving benefits of using solar water heating in commercial swimming pools.

American Solar Energy Society

2001-06-19T23:59:59.000Z

72

Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report  

DOE Green Energy (OSTI)

A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.

1977-01-01T23:59:59.000Z

73

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09  

SciTech Connect

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

2009-11-25T23:59:59.000Z

74

Heat Pump Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

from the hot gas to the cooler pool water circulating through the heater. The heated water then returns to the pool. The hot gas, as it flows through the condenser coil, returns...

75

Solar pool heater  

SciTech Connect

A solar pool heater is defined by a submersible tubular ring attached to the perimeter of a transparent or translucent sheet. Floatation of the heater is obtained through an air bubble captured by the sheet and maintained by the ring. The ring is perforated to permit the entry of water within the ring to induce partial submersion and thereby establish a peripheral seal about the captured air bubble. The submersed ring also prevents overlapping of adjacent heaters and reduces the likelihood of the heaters being blown off the pool by wind. By developing the sheet from material transparent to at least a spectrum of the solar rays, the air space intermediate the sheet and the underlying water surface will provide a ''greenhouse'' effect to heat the water through direct impingement by the received radiant energy; additionally, radiation of heat from the water will be reduced by the sheet, whereby, the heater not only collects but retains the impinged radiant energy.

Acker, L.C.

1980-09-16T23:59:59.000Z

76

Water coning in porous media reservoirs for compressed air energy storage  

DOE Green Energy (OSTI)

The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

Wiles, L.E.; McCann, R.A.

1981-06-01T23:59:59.000Z

77

Managing Swimming Pool Temperature for Energy Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency May 29, 2012 - 7:42pm Addthis Managing Swimming Pool Temperature for Energy Efficiency What does this mean for me? The temperature you keep your pool affects the pool heater size as well as your operating costs. Turn the temperature down or turn off the heater when your pool won't be used for several days. The water temperature you desire for your swimming pool not only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78ºF to 82ºF. The American Red Cross recommends a temperature of 78ºF for competitive swimming. This coincides with good fuel savings. However, this may be too cool for young

78

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

79

Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles  

SciTech Connect

Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

C.C. Baker; T.M. Pfeiffer; J.C. Price

2013-09-01T23:59:59.000Z

80

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling  

E-Print Network (OSTI)

Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according to their "leachability.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Thermal energy storage tests  

Science Conference Proceedings (OSTI)

The solar-powered water desalination pilot plant at Yanbu in the Kingdom of Saudi Arabia is a unique project in terms of its size, purpose, objectives, and scope. The plant uses a combination of solar thermal energy and fossil-fuel energy to provide the shaft horsepower necessary to operate the indirect heat-transfer freeze desalination process developed and patented by Chicago Bridge and Iron Inc. (CBandI) to produce potable water. The thermal storage acts as a buffer between the energy collection subsystem and the energy delivery subsystem. This report describes the thermal storage subsystem. One of the objectives of the desalination research project is to publish a series of reports on the performance of its various subsystems. The authors of this report do not claim that it is exhaustive and complete in all respects, for more than one reason. Any research activity is like an open-ended problem and during the tenure of its investigation it raises more problems than can be solved. However, the authors believe that the storage system behavior has posed no serious problem and that the report adequately covers all the facets of the investigation. 3 refs., 5 figs., 3 tabs.

Not Available

1987-04-01T23:59:59.000Z

82

Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input  

SciTech Connect

GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems system will have similar performance to todays regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

None

2010-09-01T23:59:59.000Z

83

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

NLE Websites -- All DOE Office Websites (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

84

Methodology for Determining the Optimal Operating Strategies for a Chilled Water Storage System  

E-Print Network (OSTI)

This dissertation proposed a new methodology for determining the optimal operating strategies for a chilled water storage system under a Time-of-Use electricity rate structure. It is based on a new classification of operating strategies and an investigation of multiple search paths. Each operating strategy consists of a control strategy and the maximum number of chillers running during the off-peak and on-peak periods. For each month, the strategy with the lowest monthly billing cost and minimal water level higher than the setpoint is selected as the optimal operating strategy for the current month. A system model is built to simulate the tank water level at the end of each time step and the system total power during each time step. This model includes six sub-models. Specifically, the plant model is a forward model using a wire-to-water concept to simulate the plant total power. For the Thermal Energy Storage (TES) model, the tank state is described with total chilled water volume in the tank and its derivation is the tank charging or discharging flow rate. A regression model is adopted to simulate the loop supply and return temperature difference as well as the loop total flow rate demand. In the control strategy sub-model, except for three conventional control strategies and the operation without TES, a new control strategy is advanced to load the chiller optimally. The final results will be a table showing the monthly control strategy and maximal number of chillers staged on during the off-peak and on-peak periods, an approach which is easy for the operators to follow. Two project applications of this methodology are introduced in this dissertation. One is an existing TES system with state-of-the-art control and metering systems. The monthly optimal operating strategies are generated, which will achieve significant savings. The comparisons among different control strategies are also provided. The other application consists of multiple plants with little data. The purpose of the study is to evaluate the economic feasibility of designing a new chilled water storage tank and sharing it among four plants. This problem can be solved with a simplified system model, and an optimal tank size is recommended.

Zhang, Zhiqin

2010-05-01T23:59:59.000Z

85

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

Science Conference Proceedings (OSTI)

The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

2009-10-08T23:59:59.000Z

86

Managing Swimming Pool Temperature for Energy Efficiency | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the water temperature, and using a smaller pump less...

87

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

Science Conference Proceedings (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 ?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

88

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents (OSTI)

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

89

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents (OSTI)

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

Corletti, M.M.; Lau, L.K.; Schulz, T.L.

1993-12-14T23:59:59.000Z

90

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source scheme in economical, technical, and environmental aspects, it is determined that the scheme of the groundwater source heat pump has better energy efficiency than others. The GHPWTS can take full advantage of the heat source from groundwater and benefit of electricity difference pricing during a day. Its character is a combination of a strength and another strength. It is the lowest cycle cost of all chide and heat source schemes. The GHPWTS has the best economic benefit and runs stably and reliably. Its advantage is clearly compared with other schemes. There is a real value for the project that is similar to the characteristic of this project and the condition of the water source.

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

91

Patricia Poole-Shirriel  

Energy.gov (U.S. Department of Energy (DOE))

Patricia Poole-Shirriel is the human resources/administrative team leader for the Office of Legacy Management (LM) in the Office of Business Operations Division.Ms. Poole-Shirriel comes to LM from...

92

Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate  

E-Print Network (OSTI)

The advantages of thermal storage are enhanced in hot and humid climates. Year-round cooling loads increase thermal storage operating cost savings. The absence of a long winter during which major maintenance tasks can be accomplished without compromising system reliability increases the importance of thermal storage as back-up capacity. In an industrial setting, operating cost savings due to thermal storage go directly to the bottom line of a manufacturing process and the avoidance of lost production due to process cooling outages can save millions of dollars per year. This paper presents a case study of chilled water storage use at the campus of a major US electronics manufacturer located in Dallas, TX. An overview of the system and its operation is followed by presentation of operating data taken during 1997.

Bahnfleth, W. P.; Musser, A.

1998-01-01T23:59:59.000Z

93

Annual report, FY 1979 Spent fuel and fuel pool component integrity.  

Science Conference Proceedings (OSTI)

International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

1980-05-01T23:59:59.000Z

94

Report of the committee to review the use of J-13 well water in Nevada Nuclear Waste Storage Investigations  

SciTech Connect

The Waste Management Project Office of the Department of Energy conducted a special audit of the activities of the Nevada Nuclear Waste Storage Investigation Project at Livermore. It was noted that there never has been a comprehensive, well-documented examination of the basis for the use of J-13 water in the nuclear waste storage investigations. In each of the sections of This Report, an issue relating to the use of J-13 water has been addressed. 58 refs., 19 figs., 8 tabs.

Harrar, J.E.; Carley, J.F.; Isherwood, W.F.; Raber, E.

1990-01-01T23:59:59.000Z

95

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network (OSTI)

University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods, further complicating demand response scenarios. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced is described and its participation in a demand response event during 2008 is detailed. Second, a set of demand response strategies were pre-programmed into the campus control system to enable semi-automated demand response during a 2009 event, which is also evaluated. Finally, demand savings results are applied to the utilitys DR incentives structure to calculate the financial savings under various DR programs and tariffs.

Granderson, J.; Dudley, J. H.; Kiliccote, S.; Piette, M. A.

2009-11-01T23:59:59.000Z

96

Chilled Water Storage System and Demand Response at the University of California at Merced  

NLE Websites -- All DOE Office Websites (Extended Search)

53E 53E Chilled Water Storage System and Demand Response at the University of California at Merced J. Granderson, J.H. Dudley, S. Kiliccote, M.A. Piette Environmental Energy Technologies Division September 2009 Presented at the 9 th International Conference for Enhanced Building Operations, Austin, TX, November 17-18, 2009, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

97

Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report  

DOE Green Energy (OSTI)

Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

1980-12-01T23:59:59.000Z

98

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report  

Science Conference Proceedings (OSTI)

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.

Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

2009-07-22T23:59:59.000Z

99

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

100

Spent Fuel Pool Accident Characteristics  

Science Conference Proceedings (OSTI)

Spent fuel pools (SFPs) at nuclear reactor sites contain used fuel assemblies, control rods, used radioactive sources, and used instrumentation. Cooling of the used fuel is required to remove the decay heat generated by radioactive decay.BackgroundThe SFPs include heat removal systems to provide methods to cool the used fuel and inventory makeup systems as backup methods to preserve water inventory if the SFP cooling system is ineffective. These two methods ...

2013-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

102

Collection and representation of GIS data to aid household water treatment and safe storage technology implementation in the northern region of Ghana  

E-Print Network (OSTI)

In 2005, a start-up social business called Pure Home Water (PHW) was begun in Ghana to promote and sell household water treatment and safe storage (HWTS) technologies. The original aim of the company was to offer a variety ...

VanCalcar, Jenny E. (Jenny Elizabeth)

2006-01-01T23:59:59.000Z

103

Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges  

Science Conference Proceedings (OSTI)

In earth system models, the partitioning of precipitation among the variations of continental water storage, evapotranspiration, and freshwater runoff to the ocean has a major influence on the terrestrial water and energy budgets and thereby on ...

R. Alkama; B. Decharme; H. Douville; M. Becker; A. Cazenave; J. Sheffield; A. Voldoire; S. Tyteca; P. Le Moigne

2010-06-01T23:59:59.000Z

104

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage  

E-Print Network (OSTI)

This publication focuses on safe storage of gasoline, diesel, kerosene and liquid heating fuels. It includes information about storage tank location, tank design and installation, tank monitoring, and tank closure.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

105

Storage of LWR (light-water-reactor) spent fuel in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

1989-12-01T23:59:59.000Z

106

Heat Pump Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Heat Pump Swimming Pool Heaters May 29, 2012 - 1:49pm Addthis How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the evaporator coil absorbs the heat from the outside air and becomes a gas. The warm gas in the coil then passes through the compressor. The compressor increases the heat, creating a very hot gas that then passes through the condenser. The condenser transfers the heat from the hot gas to the cooler pool water circulating

107

The integration of water loop heat pump and building structural thermal storage systems  

DOE Green Energy (OSTI)

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

108

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

109

Preliminary screening of thermal storage concepts for water/steam and organic fluid solar thermal receiver systems  

DOE Green Energy (OSTI)

A preliminary comparison of thermal storage concepts for solar thermal applications was done generically for large and small solar systems with sensible and latent heat and two-stage storage concepts. Concepts were ranked based on the cost of delivered energy. A +- 20% uncertainty in subsystem cost was included in the analysis. Water/steam and organic fluid collector/receivers were studied separately. For the water/steam concept, Barstow technology (100 MW/sub e/) was examined. A nitrite/nitrate salt with a low-cost solid medium was best for buffer storage; for diurnal storage, the two-stage draw salt/low-cost media and oil/rock concept was best. Phase change concepts require improvements on the concept analyzed to be attractive. For the organic fluid system, a Shenandoah total energy system was examined. The Syltherm trickle charge taconite concept was the most favorable and may be improved by replacing the taconite with a lower-cost oil-compatible medium. Salt concepts can be competitive with this system only if there is a low-cost solid medium that is compatible with the salt and the end use requires a large amount of storage. The phase change concept examined was found to be quite poor for this total energy application.

Copeland, R.J.; Karpuk, M.E.; Ullman, J.L.

1980-04-01T23:59:59.000Z

110

Annual collection and storage of solar energy for the heating of buildings. Report No. 2. Annual progress report, May 1976--July 1977  

DOE Green Energy (OSTI)

A new system for year-round collection and storage of solar heated water for heating of buildings has been designed and constructed at the University of Virginia. The system is composed of an energy storage sub-system which stores hot water in an underground pool and of a solar collector sub-system which acts not only to collect solar energy throughout the year but also to limit the evaporative and convective heat losses from the storage system. The annual collection and storage system began operation in late February 1977. Data are presented which illustrates the transient heat transfer which occurs during the start-up phase of operation. Thermal performance results are presented illustrating the efficiency of the solar collector and the variation of solar energy input to storage during a typical day's operation in May. Data are also presented which show the transient build-up of energy storage in the earth which surrounds the storage pool. An analog model has been developed to analyze the transient energy phenomena which occur within the earth surrounding the pool. These include transient heat losses from the pool to the earth and energy storage within the earth. Results of the analog model for idealized conditions are confirmed by exact mathematical solutions and by numerical analysis using a digital computer.

Beard, J. T.; Iachetta, F. A.; Lilleleht, L. U.; Dickey, J. W.

1977-07-01T23:59:59.000Z

111

Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems  

E-Print Network (OSTI)

During the summer of previous years, Kuwait faced a series of power shortages emphasizing the need for urgent commissioning of power generation projects. It is estimated that the demand for electricity is growing at an average of 6.2% per year, encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS) system is one of the available techniques that can be utilized to reduce peak electricity demand of buildings when national electricity consumption is at its highest level. This paper demonstrates that the use of CWTS system reduces the peak power demand and energy consumption of AC systems for design day conditions by 36.7% - 87.5% and 5.4% - 7.2%, respectively. This reduction depends on selected operating strategies as compared with conventional AC system. Furthermore, results show that the annual energy consumption of CWTS systems decreases by between 4.5% and 6.9% compared with conventional systems, where chillers and pumps significantly contribute to this reduction.

Sebzali, M.; Hussain, H. J.; Ameer, B.

2010-01-01T23:59:59.000Z

112

Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Mudpots, Mud Pools, or Mud Volcanoes Mudpots, Mud Pools, or Mud Volcanoes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mudpots, Mud Pools, or Mud Volcanoes Dictionary.png Mudpots, Mud Pools, or Mud Volcanoes: A kind of hot spring or fumarole with limited water causing a bubbling pool with a consistency of mud or clay. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mudpot in Yellowstone National Park(reference: nps.gov) Mudpots and mud pools are actually hot springs or fumaroles with limited amounts of water but a lot of clay from surrounding rock and soil causing a boiling slurry. Not to be confused with mud volcanoes, which are the

113

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network (OSTI)

and Techniques for Demand Response. California EnergyTest Results of Automated Demand Response in a Large OfficeStorage System and Demand Response at the University of

Granderson, Jessica

2010-01-01T23:59:59.000Z

114

Maximizing Gross Margin of a Pumped Storage Hydroelectric Facility Under Uncertainty in Price and Water Inflow.  

E-Print Network (OSTI)

??The operation of a pumped storage hydroelectric facility is subject to uncertainty. This is especially true in todays energy markets. Published models to achieve optimal (more)

Ikudo, Akina

2009-01-01T23:59:59.000Z

115

Water and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Water in swimming pool Water and Energy The water and energy technology research focuses on improving the efficiency of energy and water use in water delivery, supply and...

116

Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.  

Science Conference Proceedings (OSTI)

The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

Not Available

2011-04-01T23:59:59.000Z

117

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

118

The effects of an intermittent piped water network and storage practices on household water quality in Tamale, Ghana  

E-Print Network (OSTI)

The United Nations Millennium Development Goals include a target to halve the number of people without access to "improved" water sources, which include piped water supply. However, an "improved" source of water does not ...

Vacs Renwick, Deborah Alexandra

2013-01-01T23:59:59.000Z

119

Thermal Analysis of BORAL(R) in Storage Racks  

Science Conference Proceedings (OSTI)

This report documents the results of thermal analyses showing that the BORAL neutron absorber in the Seabrook storage racks is unlikely to experience conditions sufficient to induce boiling in the water trapped within the internal porosity of the core material. This finding makes it likely that the observed blister formation in BORAL coupons in spent fuel pools actually results from an alternative mechanism involving hydrogen generation and internal pressure build-up.

2008-11-18T23:59:59.000Z

120

Effects of plumbing attachments on heat losses from solar domestic hot water storage tanks. Final report, Part 2  

DOE Green Energy (OSTI)

The Solar Rating and Certification Corporation (SRCC) has established a standardized methodology for determining the performance rating of the Solar Domestic Hot Water (SDHW) systems it certifies under OG-300. Measured performance data for the solar collector component(s) of the system are used along with numerical models for the balance of the system to calculate the system`s thermal performance under a standard set of rating conditions. SRCC uses TRNSYS to model each of the components that comprise the system. The majority of the SRCC certified systems include a thermal storage tank with an auxiliary electrical heater. The most common being a conventional fifty gallon electric tank water heater. Presently, the thermal losses from these tanks are calculated using Q = U {center_dot} A {center_dot} {Delta}T. Unfortunately, this generalized formula does not adequately address temperature stratification both within the tank as well as in the ambient air surrounding the tank, non-uniform insulation jacket, thermal siphoning in the fluid lines attached to the tank, and plumbing fittings attached to the tank. This study is intended to address only that part of the problem that deals with the plumbing fittings attached to the tank. Heat losses from a storage tank and its plumbing fittings involve three different operating modes: charging, discharging and standby. In the charging mode, the tank receives energy from the solar collector. In the discharge mode, water flows from the storage tank through the distribution pipes to the faucets and cold city water enters the tank. In the standby mode, there is no forced water flow into or out of the tank. In this experimental study, only the standby mode was considered.

Song, J.; Wood, B.D. [Univ. of Nevada, Reno, NV (United States); Ji, L.J. [Arizona State Univ., Tempe, AZ (United States)

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

122

Safe water storage in Kenya's modified clay pot : standardization, tap design, and cost recovery  

E-Print Network (OSTI)

One of the main components necessary for providing safe drinking water for users who lack piped water in the home is the ability to safely store it in the home. Users in the Nyanza Province of Kenya frequently carry water ...

Young, Suzanne E

2005-01-01T23:59:59.000Z

123

Biosand filtration of high turbidity water : modified filter design and safe filtrate storage  

E-Print Network (OSTI)

Unsafe drinking water is a major cause of water-related diseases that predominantly affect people living in developing countries. The most prevalent water-related disease is diarrhea, estimated to kill 1.8 million children ...

Collin, Clair

2009-01-01T23:59:59.000Z

124

Definition: Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Mudpots, Mud Pools, or Mud Volcanoes Jump to: navigation, search Dictionary.png Mudpots, Mud Pools, or Mud Volcanoes A kind of hot spring or fumarole with limited water causing a bubbling pool with a consistency of mud or clay. View on Wikipedia Wikipedia Definition A mudpot - or mud pool - is a sort of acidic hot spring, or fumarole, with limited water. It usually takes the form of a pool of bubbling mud. The acid and microorganisms decompose surrounding rock into clay and mud. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Mudpots,_Mud_Pools,_or_Mud_Volcanoes&oldid=684824" Category:

125

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

126

Spent fuel pool analysis using TRACE code  

SciTech Connect

The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S. [Dept. of Chemical and Nuclear Engineering, Universitat Politenica de Valencia, Cami de Vera s/n, 46021, Valencia (Spain)

2012-07-01T23:59:59.000Z

127

Ceramic filter manufacturing in Northern Ghana : water storage and quality control  

E-Print Network (OSTI)

In 2009, Pure Home Water (PHW), a Ghana based non-profit organization working to provide affordable and safe drinking water to people in the Northern Region of Ghana, began the construction of a ceramic pot filter (CPF) ...

Kleiman, Shanti Lisa

2011-01-01T23:59:59.000Z

128

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology  

SciTech Connect

The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

Not Available

1993-11-01T23:59:59.000Z

129

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

130

Rain water transport and storage in a model sandy soil with hydrogel particle additives  

E-Print Network (OSTI)

We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

Y. Wei; D. J. Durian

2013-10-23T23:59:59.000Z

131

The ecology of southern California vernal pools: A community profile  

SciTech Connect

Vernal pools are shallow temporary bodies of water that form in winter and spring in the Mediterranean climate region of the Pacific coast. They occur in a diversity of natural settings, often in association with mounded topography. The origin of this mounded topography is still controversial. The short duration of pools and the extreme variation from standing water to severe drought favor a unique fauna and flora. The organisms of vernal pools have special life history features that fit them to this environment. Some of the plants and many of the animals have cosmopolitan distribution, and are found in temporary wetlands at widely scattered locations. Others are extremely restricted in distribution and many are endemic to clusters of pools within the California biotic province. Vernal pools have disappeared at an increasing rate over the past 100 years; because of this, several plant taxa associated with them are listed as rare and endangered by the Federal Government and the State of California.

Zedler, P.H.

1987-05-01T23:59:59.000Z

132

Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of ...

2009-05-20T23:59:59.000Z

133

Interim Storage of Used or Spent Nuclear Fuel Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports the safe, controlled, licensed, and regulated interim storage of used nuclear fuel (UNF) (irradiated, spent fuel from a nuclear power reactor) until disposition can be determined and completed. ANS supports the U.S. Nuclear Regulatory Commissions (NRCs) determination that spent fuel generated in any reactor can be stored safely and without significant environmental impacts for at least 30 years beyond the licensed life for operation. 1 Current operational and decommissioned nuclear power plants in the United States were licensed with the expectation that the UNF would be stored at the nuclear power plant site until shipment to an interim storage facility, reprocessing plant, or permanent storage. Because of delays in Federal programs and policy issues, utilities have been forced to store UNF. Current means of interim storage of UNF at nuclear power plant sites include storage of discharged fuel in a water-filled pool or in a sealed dry cask, both under safe, controlled, and monitored conditions. This UNF interim storage is designed, managed, and controlled to minimize or preclude potential radiological hazards or material releases. At nuclear power plant sites in the United States and internationally, this interim storage is regulated under site license requirements and technical specifications imposed by the national or state regulator. In the United States, NRC is the licensing and regulatory authority. ANS believes that UNF interim storage

unknown authors

2008-01-01T23:59:59.000Z

134

Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage  

E-Print Network (OSTI)

of caprock minerals by carbon dioxide. Geofluids 7, 112-122.between water and carbon dioxide. Langmuir 15, 419-428. DaYung, K. H. (1995) Carbon dioxides liquidvapor coexistence

Nielsen, L.C.

2013-01-01T23:59:59.000Z

135

Swimming Pool Covers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Covers Swimming Pool Covers Swimming Pool Covers May 29, 2012 - 6:40pm Addthis Swimming Pool Covers What does this mean for me? Pool covers minimize evaporation from both outdoor and indoor pools. Covering a pool when it is not in use is the single most effective means of reducing pool heating costs. Savings of 50%-70% are possible. You can significantly reduce swimming pool heating costs by using a pool cover. On the following pages, see the tables showing the costs of heating pools with and without pool covers in different U.S. cities: Estimating Heat Pump Swimming Pool Heater Costs and Savings Estimating Swimming Pool Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work

136

Swimming Pool Covers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from an outdoor pool varies depending on the pool's temperature, air temperature and humidity, and the wind speed at the pool surface. The higher the pool temperature and wind...

137

Task pool teams implementation of the master equation approach for random sierpinski carpets  

Science Conference Proceedings (OSTI)

We consider the use of task pool teams in implementation of the master equation on random Sierpinski carpets. Though the basic idea of dynamic storage of the probability density reported earlier applies straightforward to random carpets, the randomized ...

K. H. Hoffmann; M. Hofmann; G. Rnger; S. Seeger

2006-08-01T23:59:59.000Z

138

H[sub 2]OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage  

DOE Green Energy (OSTI)

A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH)[sub 3][a], birnessite, chalcedony, and SiO[sub 2]) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO[sub 2] precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

Vail, L.W.; Jenne, E.A.; Eary, L.E.

1992-08-01T23:59:59.000Z

139

H{sub 2}OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage  

DOE Green Energy (OSTI)

A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH){sub 3}[a], birnessite, chalcedony, and SiO{sub 2}) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO{sub 2} precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

Vail, L.W.; Jenne, E.A.; Eary, L.E.

1992-08-01T23:59:59.000Z

140

Storage of burned PWR and BWR fuel  

SciTech Connect

In the last few years, credit for fuel burnup has been allowed in the design and criticality safety analysis of high-density spent-fuel storage racks. Design and operating philosophies, however, differ significantly between pressurized water reactor (PWR)- and boiling water reactor (BWR)-type plants because: (1) PWR storage pools generally use soluble boron, which provides backup criticality control under accident conditions; and (2) BWR fuel generally contains gadolinium burnable poison, which results in a characteristically peaked burnup-dependent reactivity variation. In PWR systems, the reactivity decreases monotonically with burnup in a nearly linear fashion (excluding xenon effects), and a two-region concept is feasible. In BWR systems, the reactivity is initially low, increases as fuel burnup progresses, and reaches a maximum at a burnup where the gadolinium is nearly depleted. In any spent-fuel storage rack design, uncertainties due to manufacturing tolerances and in calculational methods must be included to assure that the highest reactivity (k/sub eff/) is less than the 0.95 US Nuclear Regulatory Commission limit. In the absence of definitive critical experiment data with spent fuel, the uncertainty due to depletion calculations must be assumed on the basis of judgment. High-density spent-fuel storage racks may be designed for both PWR and BWR plants with credit for burnup. However, the design must be tailored to each plant with appropriate consideration of the preferences/specifications of the utility operating staff.

Turner, S.E.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Spent Fuel Pool Cooling and Cleanup During Decommissioning: Experience at Trojan Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Operation of original in-plant spent fuel pool facilities at shutdown power plants is expensive compared to available alternatives and can interfere with the decommissioning process. This report describes the approach taken in the Trojan Decommissioning Project to establish independent cooling and cleanup services for the fuel pool until the spent fuel is placed in dry storage.

1999-03-15T23:59:59.000Z

142

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

143

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

Marseille, T.J.; Schliesing, J.S.

1990-09-01T23:59:59.000Z

144

Arrival condition of spent fuel after storage, handling, and transportation  

Science Conference Proceedings (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

145

Re-evaluation of monitored retrievable storage concepts  

SciTech Connect

In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

Fletcher, J.F.; Smith, R.I.

1989-04-01T23:59:59.000Z

146

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

147

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: microlayer disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

148

Environmental assessment, K Pool fish rearing, Hanford Site, Richland, Washington  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public and private funds and (2) long-term enhancement and supplementation programs for game fish populations in the Columbia River Basin. The proposed action is to enter into a use permit or lease agreement with the YIN or other parties who would rear fish in the 100-K Area Pools. The proposed action would include necessary piping, pump, and electrical upgrades of the facility; cleaning and preparation of the pools; water withdrawal from the Columbia River, and any necessary water or wastewater treatment; and introduction, rearing and release of fish. Future commercial operations may be included.

NONE

1996-12-01T23:59:59.000Z

149

Fracture Optimization eXpert (FOX) -How Computational Intelligence Helps the Bottom-Line in Gas Storage; A Case Study  

E-Print Network (OSTI)

. The understanding of this value concept is to a natural gas storage pool: the top gas capacity, the first to expand a market for natural gas ing side, though, the storage pool cap/del working unit is storage case is established. The actual incremental increases in expansion. value of the natural gas storage

Mohaghegh, Shahab

150

EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50: Test Area North Pool Stabilization Project, Idaho Falls, 50: Test Area North Pool Stabilization Project, Idaho Falls, Idaho EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and commercial fuels from the Test Area North Pool and transfer them to the Idaho Chemical Processing Plant for interim dry storage until an alternate storage location other than INEL, or a permanent federal spent nuclear fuel repository is available. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 1996 EA-1050: Finding of No Significant Impact Test Area North Pool Stabilization Project

151

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces  

SciTech Connect

This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

Not Available

1993-11-01T23:59:59.000Z

152

Automotive storage of hydrogen as a mixture of methanol and water. Final report  

SciTech Connect

The concept of steam-reforming methanol on-board an automobile was evaluated as a candidate method of storing fuel for the hydrogen engine. This method uses low-temperature, engine waste heat to evaporate a 1:1 molar water-methanol mixture at 373/sup 0/K (212/sup 0/F) and to provide endothermic reaction heat at 505/sup 0/K (450/sup 0/F) to convert this mixture to hydrogen and carbon dioxide. By using engine waste heat, a fuel combustion enrichment of 8% (LHV) or 18% (HHV) is obtained when the reactor effluents are compared with those from the tanked fuel. Defining system efficiency as the product of the generator chemical efficiency (108%) and the engine thermal efficiency (assumed to be 30%) yields a value of 32.4%. Conservative estimates indicate that an additional volume of 44 to 49 liters and an additional weight of 110 to 140 kg would be required, compared with a conventional 20 gal gasoline tank. A 500 hour endurance test of this system with a Girdler G-66B catalyst was conducted at 505/sup 0/K (450/sup 0/F), atmospheric pressure, and low space velocity--compared with automotive requirements--at wide-open-throttle conditions with laboratory-grade methanol; there was no loss of activity. However, when fuel-grade methanol containing small amounts of higher alcohols was substituted for the laboratory-grade methanol, significant catalyst deactivation occurred. (auth)

Kester, F.L.; Konopka, A.J.; Camara, E.

1975-11-01T23:59:59.000Z

153

Initial findings: The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

1989-01-01T23:59:59.000Z

154

Current trends in commercial cool storage. Final report. [Use of chilled water and ice storage to reduce demand charges and electric bills; 85 projects  

DOE Green Energy (OSTI)

The objectives of this study were to identify, by means of a phone-and-mail survey, recent installations of off-peak cool storage air conditioning systems in commercial buildings; to monitor new developments; and to indicate trends. This report contains descriptions of over 80 systems installed since 1981, plus findings and conclusions based on site-specific information. Analysis of the findings suggests that storage cooling systems in commercial buildings can, in many cases, offer technical and cost advantages over nonstorage systems. The detailed information should be of value to potential customers and HVAC engineers in making cooling equipment decisions that would be advantageous to customer, utility, and HVAC industry alike. 20 refs.

Hersh, H.N.

1985-07-01T23:59:59.000Z

155

Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.  

DOE Green Energy (OSTI)

A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

1982-09-01T23:59:59.000Z

156

Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage  

Science Conference Proceedings (OSTI)

The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

Bailey, W.J.

1989-03-01T23:59:59.000Z

157

Evaluation of cover gas impurities and their effects on the dry storage of LWR (light-water reactor) spent fuel  

DOE Green Energy (OSTI)

The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO/sub 2/ fuel to produce U/sub 3/O/sub 8/ at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is greater than or equal to300/sup 0/C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs.

Knoll, R.W.; Gilbert, E.R.

1987-11-01T23:59:59.000Z

158

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters...

159

Cold Pools in the Columbia Basin  

Science Conference Proceedings (OSTI)

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures ...

C. D. Whiteman; S. Zhong; W. J. Shaw; J. M. Hubbe; X. Bian; J. Mittelstadt

2001-08-01T23:59:59.000Z

160

Swimming Pool Covers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work Swimming pools lose energy in...

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can be a good choice for pools that aren't used on a regular basis. Unlike heat pump and solar pool heaters, gas pool heaters can maintain any desired temperature regardless of...

162

Loss of spent fuel pool cooling PRA: Model and results  

Science Conference Proceedings (OSTI)

This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

1996-09-01T23:59:59.000Z

163

Solar Pool Heating | Open Energy Information  

Open Energy Info (EERE)

icon Solar Pool Heating Jump to: navigation, search TODO: Add description List of Solar Pool Heating Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolar...

164

Pooled Bond Program (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Bond Program Provider South Dakota Governor's Office of Economic Development The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt or taxable bond issuances. Bond proceeds can be used to finance 80 percent of new construction, and 75 percent of new equipment costs, with no greater than 25 percent of the bond proceeds being used for ancillary activities such as

165

Hydrocarbon pool and vapor fire data analysis. Final report  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

166

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

167

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

ground water was pumped into the storage tank from the well,be withdrawn from storage, HTW is pumped from the hot well,storage well. However, both wells are capable of being pumped and

Authors, Various

2011-01-01T23:59:59.000Z

168

Cool pool development. Quarterly technical report No. 1, April-June 1979  

DOE Green Energy (OSTI)

The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. It is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.

Crowther, K.

1979-10-15T23:59:59.000Z

169

Analysis of community solar systems for combined space and domestic hot water heating using annual cycle thermal energy storage  

DOE Green Energy (OSTI)

A simplified design procedure is examined for estimating the storage capacity and collector area for annual-cycle-storage, community solar heating systems in which 100% of the annual space heating energy demand is provided from the solar source for the typical meteorological year. Hourly computer simulations of the performance of these systems were carried out for 10 cities in the United States for 3 different building types and 4 community sizes. These permitted the use of design values for evaluation of a more simplified system sizing method. Results of this study show a strong correlation between annual collector efficiency and two major, location-specific, annual weather parameters: the mean air temperature during daylignt hours and the total global insolation on the collector surface. Storage capacity correlates well with the net winter load, which is a measure of the seasonal variation in the total load, a correlation which appears to be independent of collector type.

Hooper, F.C.; McClenahan, J.D.; Cook, J.D.; Baylin, F.; Monte, R.; Sillman, S.

1980-01-01T23:59:59.000Z

170

Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation  

DOE Patents (OSTI)

A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

1982-05-13T23:59:59.000Z

171

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

172

Report on Solar Pool Heating Quantitative Survey  

DOE Green Energy (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

Synapse Infusion Group, Inc. (Westlake Village, California)

1999-05-06T23:59:59.000Z

173

Why Are There Tropical Warm Pools?  

Science Conference Proceedings (OSTI)

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing ...

Amy C. Clement; Richard Seager; Raghu Murtugudde

2005-12-01T23:59:59.000Z

174

Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report  

SciTech Connect

Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

Geosciences Division, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA; Hammack, R.W.

2006-12-28T23:59:59.000Z

175

New England Power Pool (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

England Power Pool (Multiple States) England Power Pool (Multiple States) New England Power Pool (Multiple States) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Interconnection Independent System Operator (ISO) New England helps protect the health of New England's economy and the well-being of its people by ensuring the constant availability of electricity, today and for future generations. ISO New England meets this obligation in three ways: by ensuring the day-to-day reliable operation of New England's bulk power generation and transmission system, by overseeing and ensuring the fair administration of the region's wholesale electricity markets, and by managing comprehensive, regional

176

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network (OSTI)

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants together. This paper presents the method of determining the optimal tank size as well as corresponding optimal operating strategies for this project. Based on the analysis of the historical log data, utility rate structures, and equipment information, the baseline profiles of electricity fed to buildings, plant cooling load, and utility billing cost for each plant are generated. A simplified TES plus four plants model is built based on some assumptions. The results show that a 3.5 million gallon tank has the shortest payback time and the projected total capital cost is within the budget. The annual billing cost savings are $907,231 and the simple payback time is 12.5 years.

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

177

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

178

Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling  

E-Print Network (OSTI)

A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

Shai, Isaac

1967-01-01T23:59:59.000Z

179

Numerical modeling of pool spreading, heat transfer and evaporation in liquefied natural gas (LNG).  

E-Print Network (OSTI)

?? This master's thesis is a continuation of previous theses written at ComputIT AS. It treats heat transfer to LNG pools boiling on water through (more)

Myrmo, ystein

2011-01-01T23:59:59.000Z

180

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cooling Requirements and Water Use Impacts of Advanced Coal-fired Power Plants with CO2 Capture and Storage  

Science Conference Proceedings (OSTI)

In addition to the large cost impact that comes with including CO2 capture in coal power plants, the consumption of water also increases. The increase in water consumption could represent a significant barrier to the implementation of CO2 capture. Although it is assumed that technology improvements might reduce the cost and power consumption of future CO2 capture systems, it might not be feasible to implement CO2 capture if additional water is not available at a site. In addition, because many regions of...

2011-12-20T23:59:59.000Z

182

Texas Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

coil hot water storage tank, a backup instantaneous electric water heater, a hydronic fan coil unit for space heating, and an efficient plumbing manifold for domestic hot water...

183

Status of household water treatment and safe storage in 45 countries and a case study in Northern India  

E-Print Network (OSTI)

This thesis examines the present of the status of HWTS technologies across the world, and in one location Lucknow, India. The data for the global status of HWTS was collected by contacting the Water, Sanitation and Hygiene ...

Jain, Mehul

2010-01-01T23:59:59.000Z

184

Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater  

SciTech Connect

One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

2008-10-01T23:59:59.000Z

185

High temperature post-irradiation performance of spent pressurized-water-reactor fuel rods under dry-storage conditions  

Science Conference Proceedings (OSTI)

Post-irradiation studies on failure mechanisms of well characterized PWR rods were conducted for up to a year at 482, 510 and 571/sup 0/C in unlimited air and inert gas atmospheres. No cladding breaches occurred even though the tests operated many orders of magnitude longer in time than the lifetime predicted by Blackburn's analyses. The extended lifetime is due to significant creep strain of the Zircaloy cladding which decreases the internal rod pressures. The cladding creep also contributes to radial cracks, through the external oxide and internal FCCI layers, which propagated into and arrested in an oxygen stabilized ..cap alpha..-Zircaloy layer. There were no signs of either additional cladding hydriding, stress-corrosion cracking or fuel pellet degradation. Using the Larson-Miller formulization, a conservative maximum storage temperature of 400/sup 0/C is recommended to ensure a 1000-year cladding lifetime. This accounts for crack propagation and assumes annealing of the irradiation-hardened cladding.

Einziger, R.E.; Atkin, S.D.; Stellrecht, D.E.; Pasupathi, V.

1981-06-01T23:59:59.000Z

186

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

187

Annual grassland resource pools and fluxes: sensitivity to precipitation  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual grassland resource pools and fluxes: sensitivity to precipitation Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils Title Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils Publication Type Journal Article Year of Publication 2012 Authors Sudderth, Erika A., Samuel B. St. Clair, Sarah A. Placella, Stéphanie M. Swarbreck, Cristina Castanha, Donald J. Herman, Marc L. Fischer, Markus Kleber, Erik B. Sudderth, Margaret S. Torn, Mary K. Firestone, Gary L. Andersen, and David D. Ackerly Journal Ecosphere Volume 3 Issue 8 Keywords Avena barbata, Bayesian ANOVA, carbon, climate change, dry periods, Grassland, nitrogen, phenology, precipitation, soil type, water Abstract In ecosystems throughout the world climate models project increased variability in precipitation patterns that may strongly affect the above- and below-ground processes that control carbon, water, and nutrient cycles. Uncertainty about how plant and soil processes respond to wet and dry periods at different times in the growing season is a barrier to understanding how changing rainfall patterns will affect ecosystem function in annual grasslands. We used mesocosm systems to test the sensitivity to mid- and late-season dry periods of twenty response variables related to nitrogen, carbon, and water cycling in Avena barbata monocultures. We compared the responses of individual variables and of grassland systems under low and high cumulative rain treatments and between two contrasting soil types.

188

Bonneville Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bonneville Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Bonneville Seabase Scuba Dive Pool Sector Geothermal energy Type Pool and Spa Location Grantsville, Utah Coordinates 40.5999425°, -112.4643988° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Moana Swimming Pool Sector Geothermal energy Type Pool and Spa Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Facility Stacy Park Pool Sector Geothermal energy Type Pool and Spa Location Austin, Texas Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Hobo Pool Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool Pool & Spa Low Temperature Geothermal Facility Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Pool Pool & Spa Low Temperature Geothermal Facility Facility Hobo Pool Sector Geothermal energy Type Pool and Spa Location Saratoga, Wyoming Coordinates 41.4549621°, -106.8064263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

192

Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Public Swimming Pool Sector Geothermal energy Type Pool and Spa Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

193

Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Baker Swimming Pool Sector Geothermal energy Type Pool and Spa Location Baker, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

194

Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Cove Swimming Pool Sector Geothermal energy Type Pool and Spa Location Cove, Oregon Coordinates 45.2965256°, -117.8079872° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

195

Homestead Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Homestead Crater Scuba Dive Pool Sector Geothermal energy Type Pool and Spa Location Midway, Utah Coordinates 40.5121772°, -111.4743545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

196

Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Soaking Pools Pool & Spa Low Temperature Geothermal Facility Soaking Pools Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs Soaking Pools Sector Geothermal energy Type Pool and Spa Location Hay-Yo-Kay, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

197

Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pools (5) Pool & Spa Low Temperature Geothermal Facility Pools (5) Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility Facility Klamath Swimming Pools (5) Sector Geothermal energy Type Pool and Spa Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

198

H2O[underscore]TREAT users' manual: An aid for evaluating water treatment requirements for aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

This manual addresses the use of a public-domain software package developed to aid engineers in the desip of water treatment systems for aquifer thermal energy storage (ATES). The software, H20[underscore]TREAT, which runs in the DOS or UNIX Environment, was developed by the Pacific Northwest Laboratory and targeted to engineers possessing limited or no experience in geochemistry. To do this, the software provides guidance on geochemical phenomena that can cause problems in ATES systems (i.e., the formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials causing a reduction in permeability). Preventing such problems frequently requires the use of water treatment systems. Because individual water treatment methods vary in cost, effectiveness, environmental impact, corrosion potential, and acceptability to regulators, proper evaluation of treatment options is required to determine the feasibility of ATES systems. The software is available for DOS- and UNIX-based computers. It uses a recently revised geochemical model, MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation index of a specific mineral defines the point at which that mineral is oversaturated and hence may precipitate at the specified temperature. Cost calculations are not performed by the software; however, treatment capacity requirements are provided. Treatments include Na and H ion exchanger, fluidized-bed heat exchanger or pellet reactors, and CO[sub 2] injection. The H2O[underscore]TREAT software also provides the user with warning of geochemical problems that must be addressed, such as Fe and Mn oxide precipitation, SiO[sub 2] precipitation at high temperatures, corrosion, and clay swelling and dispersion.

Vail, L.W.; Jenne, E.A.; Zipperer, J.P.; McKinley, M.I.

1993-02-01T23:59:59.000Z

199

H2O{underscore}TREAT users` manual: An aid for evaluating water treatment requirements for aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

This manual addresses the use of a public-domain software package developed to aid engineers in the desip of water treatment systems for aquifer thermal energy storage (ATES). The software, H20{underscore}TREAT, which runs in the DOS or UNIX Environment, was developed by the Pacific Northwest Laboratory and targeted to engineers possessing limited or no experience in geochemistry. To do this, the software provides guidance on geochemical phenomena that can cause problems in ATES systems (i.e., the formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials causing a reduction in permeability). Preventing such problems frequently requires the use of water treatment systems. Because individual water treatment methods vary in cost, effectiveness, environmental impact, corrosion potential, and acceptability to regulators, proper evaluation of treatment options is required to determine the feasibility of ATES systems. The software is available for DOS- and UNIX-based computers. It uses a recently revised geochemical model, MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation index of a specific mineral defines the point at which that mineral is oversaturated and hence may precipitate at the specified temperature. Cost calculations are not performed by the software; however, treatment capacity requirements are provided. Treatments include Na and H ion exchanger, fluidized-bed heat exchanger or pellet reactors, and CO{sub 2} injection. The H2O{underscore}TREAT software also provides the user with warning of geochemical problems that must be addressed, such as Fe and Mn oxide precipitation, SiO{sub 2} precipitation at high temperatures, corrosion, and clay swelling and dispersion.

Vail, L.W.; Jenne, E.A.; Zipperer, J.P.; McKinley, M.I.

1993-02-01T23:59:59.000Z

200

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Electromagnetic Inspection Methods for Fuel Pool and Transfer Canal Liners  

Science Conference Proceedings (OSTI)

Liner leakage is prevalent in spent fuel pools (SPFs) and transfer canals, with some plants experiencing leakage since early in plant life. Leakage concerns are more critical in the pressurized water reactor (PWR) fleet due to the undesirable consequences that can be encountered with the release of boron. These can include, but are not limited to, (1) degradation of the reinforced concrete and rebar that form the pool structure and (2) uncontrolled release of radioactive nuclides that have the potential ...

2012-07-30T23:59:59.000Z

202

Solar-heated municipal swimming pools, a case study: Dade County, Florida  

DOE Green Energy (OSTI)

The experience of installing a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described and the mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The performance and economics of the system are discussed as well as future plants. (LEW)

Levin, M.

1981-09-01T23:59:59.000Z

203

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

204

Submersible purification system for radioactive water  

DOE Patents (OSTI)

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

1989-01-01T23:59:59.000Z

205

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

206

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

207

Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water  

Science Conference Proceedings (OSTI)

This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

1997-09-01T23:59:59.000Z

208

Federal Energy Management Program: Covered Product Category: Gas Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Storage Water Heaters to someone by E-mail Gas Storage Water Heaters to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Google Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Delicious Rank Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

209

Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for  

E-Print Network (OSTI)

Motor Pool Guidelines for Geosciences · A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf · If the trip be submitted with the Motor Pool Request. · A list of passengers and drivers is for all motor pool travel (this

Holliday, Vance T.

210

HTGR spent fuel storage study  

SciTech Connect

This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification.

Burgoyne, R.M.; Holder, N.D.

1979-04-01T23:59:59.000Z

211

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

212

Northwest Power Pool Area | OpenEI  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 93, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northwest Power Pool Area projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Northwest Power Pool Area (xls, 259.1 KiB)

213

Southwest Power Pool | OpenEI  

Open Energy Info (EERE)

Southwest Power Pool Southwest Power Pool Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 90, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections South Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool / South- Reference Case (xls, 259 KiB)

214

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

215

Gas Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You'll probably need to tune up your pool heater annually. Also, scaling in the burner or heat exchanger may decrease efficiency over a period of time. With proper installation and...

216

Addendum 1 to CSER 78-001 PWR Core 2 Blanket Fuel Storage Cell 4 221T building  

SciTech Connect

Irradiated pressurized water reactor (PWR) Core 2 (PWR-2) blanket fuel assemblies from the Shippingport PWR have been stored in the 221-T canyon water pool for twenty years. The fuel is in the form of small wafers of UO{sub 2}, which were initially natural enriched uranium (0.72% {sup 235}U). The uranium oxide wafers have a pyrolytic carbon coating, which prevents the fuel from reacting with a zircaloy-4 grid which provides structural strength and holds the wafers in place to form fuel plates. Thirty fuel plates comprise a sub-assembly which are held together by zircaloy-4 end plates. Two identical oxide fuel plate sub-assemblies are welded together to form a square structure with two zircaloy-4 extensions welded to the ends. Seventy-two PWR-2 assemblies are stored in the 221-T canyon water pool. Eight of these assemblies were irradiated in the center of the reactor core to an average burnup of 24,538 Mwd/MTU. The remaining assemblies had a burnup of 16,200 Mwd/MTU. These assemblies were placed in the canyon in 1978 and 1979 (WHC 1996). The original Criticality Safety Analysis Report (CSAR) (WHC 1990) analyzed the criticality safety of their storage and concluded that they were safe from a criticality standpoint. It was also mentioned in this CSAR that the assemblies were scheduled to be stored for twenty years. The Criticality Prevention Specification (CPS) for this storage configuration (RHO 1978), included in (WHC 1990), specifies that the fuel ''will be stored in Cell 4 up to 20 years'', and that ''no special handling or storage requirements for criticality control during interim storage up to 20 years'' were necessary. The purpose of this addendum is to extend the period of coverage for this material. The analysis examines zircaloy-clad fuel degradation and extends the permitted storage time by ten years for Shippingport Core 2 blanket fuel assemblies in the 221-T, Cell 4 storage pool.

GOLDBERG, H.J.

1999-12-03T23:59:59.000Z

217

Performance Study of Swimming Pool Heaters  

Science Conference Proceedings (OSTI)

The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

McDonald, R.J.

2009-01-01T23:59:59.000Z

218

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

219

EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: K Pool Fish Rearing, Hanford Site, Richland, Washington EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of...

220

Algae Computer Simulation: Growth Forecasting Within A Swimming Pool Environment.  

E-Print Network (OSTI)

??An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris (more)

Ballard, Roderick Chevelle

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot...

222

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado...

223

ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM  

E-Print Network (OSTI)

dam and the Thermalito pumped storage units in the north,This generation pumped storage, and recovery generation, (electricity demand. In a pumped-storage system, water is

Krieg, B.

2010-01-01T23:59:59.000Z

224

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

225

Caliente City Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente City Pool Pool & Spa Low Temperature Geothermal Facility Facility Caliente City Pool Sector Geothermal energy Type Pool and Spa Location Caliente, Nevada Coordinates 37.6149648°, -114.5119378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

226

Severe accidents in spent fuel pools in support of generic safety, Issue 82  

SciTech Connect

This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. Spent fuel pool fission product inventory is estimated and the releases and consequences for the various cladding scenarios are provided. Possible preventive or mitigative measures are qualitatively evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified.

Sailor, V.L.; Perkins, K.R.; Weeks, J.R.; Connell, H.R.

1987-07-01T23:59:59.000Z

227

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

228

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

229

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

230

Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements  

SciTech Connect

As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. {times} 15in., and 366 1in. {times} 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. {times} 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget.

Griffin, M.J. [EQE International, Inc., Irvine, CA (United States); Harris, B.G. [Argonne National Lab., Idaho Falls, ID (United States)

1993-10-01T23:59:59.000Z

231

STATE OF CALIFORNIA POOL AND SPA HEATING SYSTEMS  

E-Print Network (OSTI)

Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Pool and Spa solar heating. 2. A cover for outdoor pools or spas that have a heat pump or gas heater. 3. Pool system shall be calculated based on pool sizing table below. 3. The pump is capable of operating at 2 or more

232

Evaluation of the Storms Pool Improved Waterflood Project  

Science Conference Proceedings (OSTI)

A review of the performance of the Storms Pool Improved Waterflood Project has been completed. This project was designed to evaluate the efficiency of polymer flooding in a reservoir which had been extensively waterflooded. The project was conducted in a 100-acre pattern in the Waltersburg sandstone of the Storms Pool Field, located in White County, Illinois. This field is typical of many old oil fields in the Illinois Basin. A total of 703,000 barrels of biopolymer-thickened water was injected, which represents about 23% of the pore volume. The project was terminated early, as expenses were greatly exceeding revenues. The project resulted in little or no incremental oil production. The lack of response is attributed mainly to the conditions in which the polymer was injected. The project indicates that the injection of a polymer which acts dominantly to increase viscosity has little potential for increasing oil recovery under the conditions where a waterflood has been successful, the mobility ratio is favorable, and when initiated in the latter stages of the flood. The movable oil saturation is thought to have been lower than anticipated by the operators. Biodegradation of the polymer probably occurred, as evidenced by the lack of polymer in offset wells and in back-produced injection water. The lack of data collected and/or reported prevented a thorough analysis of the project. Field equipment and procedures appeared adequate for the mixing, filtration, and injection of polymer made up in river water. Some problems occurred during those periods of the year when the river water contained a large amount of dispersed fines. The use of a river water is questioned due to the problems of removing dispersed fines and to the increased protection required to prevent biodegradation of the biopolymer. 26 refs., 13 figs., 3 tabs.

Norton, D.K.; Dauben, D.L.

1986-03-01T23:59:59.000Z

233

2015 Resource Pool - Sierra Nevada Region - Western Area Power  

NLE Websites -- All DOE Office Websites (Extended Search)

2015 Resource Pool 2015 Resource Pool 2015 Resource Pool Updates 2015 Base Resource Percentages Including Resource Pool Allocations Federal Register Notices Final 2015 Resource Pool Allocations (PDF 147KB) Proposed Allocations FRN (PDF - 59KB) Notice of Extension (PDF - 49KB) Applicant Profile Data Form (WORD - 89KB) Call for 2015 Resource Pool Applications (PDF - 70KB) Final 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 57.4KB) Proposed 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 60.7KB) Public Meetings Comment Forum on the Proposed 2015 Resource Pool Size and Eligibility Criteria Date: Wednesday, May 21, 2008, at 1:00 p.m., PST Location: Lake Natoma Inn located at 702 Gold Lake Drive, Folsom, California Comments on 2015 Resource Pool Size and General Eligibility Criteria

234

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state  

E-Print Network (OSTI)

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 and equipment costing $3,000 or more for the Institute's vehicle fleet program. The mission of the Motor Pool form when bringing their vehicles, LSVs, golf carts or equipment to the Motor Pool for service (see

Li, Mo

235

Mitigation of Nuclear Fuel Pool Leaks  

Science Conference Proceedings (OSTI)

The used or spent fuel from nuclear reactors is stored in spent fuel pools, which require canals for fuel transfer activities. These pools--3540 feet or more in depth--are lined with stainless steel ranging in thickness from ~.19 in~.38 in (~4.8 mm~9.5 mm). The liners are anchored to the walls and slab via welds that can leak or crack. lectricit de France (EDF) has developed tools to check suspect areas of the liner seam welds for cracking or leakage. This report ...

2013-08-29T23:59:59.000Z

236

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

237

Thermal Radiation from Large Pool Fires  

Science Conference Proceedings (OSTI)

... to fires involving LPG and LNG in which a ... fueled by gases leaking from storage tanks can cause ... Expanding Vapor Explosion) within a tank that not ...

2004-06-22T23:59:59.000Z

238

Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool  

E-Print Network (OSTI)

This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which can be divided into three main parts: heat loss due to surface water evaporation, conduction and convective heat loss, and heat demand for heating fresh water. Then, an all-year solar radiation model for slope with varying orientation and incline angle is introduced, and relevant results are given based on typical year weather data in GuangZhou. Furthermore, annual energy consumption model and life cycle cost optimization model is established, and optimal results are analyzed based on an indoor solar-assisted heating swimming pool with 200m2 surface area in GuangZhou.

Zuo, Z.; Hu, W.; Meng, O.

2006-01-01T23:59:59.000Z

239

Condensation enhancement on a pool surface caused by a submerged liquid jet  

SciTech Connect

One advanced nuclear reactor design has a residual heat removal (RHR) pipe connected to the bottom of a steam generator outlet plenum. The water in the plenum can become thermally stratified during postulated loss of coolant accidents. Cold water injected through the RHR pipe has the potential effect of increasing the steam condensation on the pool surface due to the stirring action of the jet. The amount of increase depends on a number of factors, including the jet velocity and the pool height above the jet injection point. Prediction of steam condensation rates, before and after the jet breaks the pool surface, is the topic of this paper. Data and correlations exist for pre surface breakthrough and a method has been developed for post breakthrough. The models have been incorporated into the reactor safety analysis computer software known as RELAP5. Comparisons of predictions against data are presented.

Shumway, R.W.

1997-05-01T23:59:59.000Z

240

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Aquifer Storage of Hot Water from Solar Energy Collectors.of International Solar Energy Congress, New Delhi, India.Thermal Storage of Solar Energy 11 , Amsterdam, The

Tsang, C.F.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy storage criteria handbook. Final report mar 81-jun 82  

SciTech Connect

The purpose of this handbook is to provide information and criteria necessary for the selection and sizing of energy storage technologies for use at U.S. Naval facilities. The handbook gives Naval base personnel procedures and information to select the most viable energy storage options to provide the space conditioning (heating and cooling) and domestic hot water needs of their facility. The handbook may also be used by contractors, installers, designers, engineers, architects, and manufacturers who intend to enter the energy storage business. The handbook is organized into three major sections: a general section, a technical section, and an example section. While a technical background is assumed for the latter two sections, the general section is simply written and can serve as an introduction to the field of energy storage. The technical section examines the following energy storage technologies: sensible heat storage, latent heat storage, cold storage, thermochemical storage, mechanical storage, pumped hydro storage, and electrochemical storage. The example section is limited to thermal storage and includes examples for: water tank storage, rockbed storage, latent heat storage, and cold water storage.

Hull, J.R.; Cole, R.L.; Hull, A.B.

1982-10-01T23:59:59.000Z

242

Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences  

Science Conference Proceedings (OSTI)

The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

Bailey, W.J.

1990-02-01T23:59:59.000Z

243

NGO collaborations: sharing and pooling projects  

Science Conference Proceedings (OSTI)

Humanitarian non-governmental organizations (NGOs) are increasingly facing challenges due to the growing number of actors in the humanitarian relief sector as well as the high incidence of natural disasters. A prominent means of mitigating these challenges ... Keywords: NGO, collaboration bodies, infrastructure, resource pooling, resource sharing

Kartikeya Bajpai; Edgar Maldonado; Louis-Marie Ngamassi; Andrea H. Tapia; Carleen Maitland

2011-02-01T23:59:59.000Z

244

The Persistent Cold-Air Pool Study  

Science Conference Proceedings (OSTI)

The Persistent Cold-Air Pool Study (PCAPS) was conducted in Utah's Salt Lake valley from 1 December 2010 to 7 February 2011. The field campaign's primary goal was to improve understanding of the physical processes governing the evolution of multiday cold-...

Neil P. Lareau; Erik Crosman; C. David Whiteman; John D. Horel; Sebastian W. Hoch; William O. J. Brown; Thomas W. Horst

2013-01-01T23:59:59.000Z

245

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network (OSTI)

In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due to preferential boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, mass and momentum balance equations are derived for continuous and instantaneous spills and mixture thermodynamic effects are incorporated. A parameter sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding of these governing phenomena and their relative importance throughout the pool lifetime. The spread model was validated against available experimental data for pool spreading on concrete and sea. The model is solved using Matlab for two continuous and instantaneous spill scenarios and is validated against experimental data on cryogenic pool spreading found in literature.

Basha, Omar 1988-

2012-12-01T23:59:59.000Z

246

Hydroelectric reservoir optimization in a pool market  

Science Conference Proceedings (OSTI)

For a price-taking generator operating a hydro-electric reservoir in a pool electricity market, the optimal stack to offer in each trading period over a planning horizon can be computed using dynamic programming. However, the market trading period (usually ...

G. Pritchard; A. B. Philpott; P. J. Neame

2005-07-01T23:59:59.000Z

247

Warm Pool Physics in a Coupled GCM  

Science Conference Proceedings (OSTI)

The physics of the IndoPacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with ...

Niklas Schneider; Tim Barnett; Mojib Latif; Timothy Stockdale

1996-01-01T23:59:59.000Z

248

Forming test collections with no system pooling  

Science Conference Proceedings (OSTI)

Forming test collection relevance judgments from the pooled output of multiple retrieval systems has become the standard process for creating resources such as the TREC, CLEF, and NTCIR test collections. This paper presents a series of experiments examining ... Keywords: evaluation of qrel sets, test collection formation

Mark Sanderson; Hideo Joho

2004-07-01T23:59:59.000Z

249

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

250

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

251

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

252

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

253

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

254

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

255

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

256

Installing and Operating an Efficient Swimming Pool Pump | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump May 29, 2012 - 7:54pm Addthis Photo courtesy iStockphoto.com Photo courtesy iStockphoto.com What does this mean for me? Use the smallest size pump possible for your swimming pool. Reduce the time your pool pump operates to save money while still keeping your pool clean. You can save energy and maintain a comfortable swimming pool temperature by using a smaller, higher efficiency pump and by operating it less. In a study of 120 pools by the Center for Energy Conservation at Florida Atlantic University, some pool owners saved as much as 75% of their original pumping bill when they used these energy conservation measures (see table below). Table 1. Savings from Pump Conservation Measures

257

Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b  

E-Print Network (OSTI)

in saturated pool boiling. In this model the analysis of heat conduction within the heater is added on the heater surface itself [10]. Bhat et al. [11] put forward a theoretical model of macrolayer formation to their model and ob- tained the simulated boiling curve of water. In addition, they compared Haramura and Katto

Maruyama, Shigeo

258

Sulfuric acid/water chemical heat pump/chemical energy storage. Final report: Phases 1 and 2, October 1979 through September 1980; Phases 3 and 4, October 1980 through January 1982  

DOE Green Energy (OSTI)

The sulfuric acid/water chemical heat pump/chemical energy storage (CHP/CES) concept was expanded to include previously unexplored applications, the most notable of which is the industrial chemical heat pump. A requirements analysis was completed which showed the CHP/CES application having the greatest near-term-commercialization potential in the form of a temperature amplification system. Another configuration, the HVAC system with or without diurnal storage was selected for further study. A verification test unit (VTU) was designed and is capable of demonstrating operation as an ICHP as well as an HVAC system. The VTU was fabricated and tested with a nominal power rating of 150,000 Btu/hr. Testing of the unit was directed at evaluating operational performance in the industrial waste heat upgrade mode. (LEW)

Not Available

1982-04-01T23:59:59.000Z

259

Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method  

Science Conference Proceedings (OSTI)

The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for validation. Comparisons between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data are discussed in detail.

Haihua Zhao; Ling Zou; Hongbin Zhang

2014-01-01T23:59:59.000Z

260

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

262

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

263

FAQ 40-What are the potential environmental impacts from storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental impacts from storage of depleted uranium as an oxide? Storage as an oxide could result in potential adverse impacts to air, water, and soil quality as a result of...

264

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

265

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

266

Application-storage discovery  

Science Conference Proceedings (OSTI)

Discovering application dependency on data and storage is a key prerequisite for many storage optimization tasks such as data assignment to storage tiers, storage consolidation, virtualization, and handling unused data. However, in the real world these ... Keywords: enterprise storage, experimental evaluation, storage discovery

Nikolai Joukov; Birgit Pfitzmann; HariGovind V. Ramasamy; Murthy V. Devarakonda

2010-05-01T23:59:59.000Z

267

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

268

Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1  

SciTech Connect

Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

1983-02-01T23:59:59.000Z

269

The Heat Balance of the Western Hemisphere Warm Pool  

Science Conference Proceedings (OSTI)

The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in ...

David B. Enfield; Sang-ki Lee

2005-07-01T23:59:59.000Z

270

Object-Centric spatial pooling for image classification  

Science Conference Proceedings (OSTI)

Spatial pyramid matching (SPM) based pooling has been the dominant choice for state-of-art image classification systems. In contrast, we propose a novel object-centric spatial pooling (OCP) approach, following the intuition that knowing the location ...

Olga Russakovsky; Yuanqing Lin; Kai Yu; Li Fei-Fei

2012-10-01T23:59:59.000Z

271

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

272

RCRA closure of the Building 3001 Storage Canal  

Science Conference Proceedings (OSTI)

The 3001 Storage Canal is located under portions of Buildings 3001 and 3019 at Oak Ridge National Laboratory (ORNL) and has a capacity of approximately 62,000 gallons of water. The term canal has historically been used to identify this structure, however, the canal is an in-ground reinforced concrete structure satisfying the regulatory definition of a tank. From 1943 through 1963, the canal in Building 3001 was designed to be an integral part of the system for handling irradiated fuel from the Oak Ridge Graphite Reactor. Because one of the main initial purposes of the reactor was to produce plutonium for the chemical processing pilot plant in Building 3019, the canal was designed to be the connecting link between the reactor and the pilot plant. During the war years, natural uranium slugs were irradiated in the reactor and then pushed out of the graphite matrix into the system of diversion plates and chutes which directed the fuel into the deep pit of the canal. After shutdown of the reactor, the canal was no longer needed for its designed purpose. Since 1964, the canal has only been used to store radioisotopes and irradiated samples under a water pool for radiation protection. This report describes closure alternatives.

Etheridge, J.T.; Thompson, W.T.

1992-09-01T23:59:59.000Z

273

An efficient modeling method for thermal stratification simulation in a BWR suppression pool  

SciTech Connect

The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

2012-09-01T23:59:59.000Z

274

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

275

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water...

276

Tertiary application of a hydrocarbon miscible flood; Rainbow Keg River B Pool  

SciTech Connect

The Rainbow Keg River B pool EOR scheme calls for placement of a 12% (net after recycle)-original-HCPV miscible bank in the crestal region of the pool. This bank will be chased vertically downward with more than 1 PV of dry gas. The injected solvent and chase gas will push the oil/water contact (OWC) downward as the previously injected water is produced. A tertiary oil bank will be formed in the region previously occupied by the water. This paper reports tertiary flood performance, results of the 1987 reservoir simulation study, and the operational strategy and problems encountered in monitoring the flood. The well-completion technique implemented to operate the flood is described, and the scheme economics is reviewed.

Nagel, R.G.; Hunter, B.E.; Peggs, J.K.; Fong, D.K. (Husky Oil Operations Ltd., Calgary (CA)); Mazzocchi, E. (EBCO Auctioneers International Inc. (CA))

1990-08-01T23:59:59.000Z

277

MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4  

DOE Green Energy (OSTI)

Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay heat of the fuel in the pool was, at the time of the accident, 2.284 MWt, of which 1.872 MWt were from the 548 assemblies of the last core discharged and 0.412 MWt were from the older 783 assemblies. These decay heat values were calculated at Oak Ridge National Laboratory using the ORIGEN2.2 code (Ref. 2) - they agree with values reported elsewhere (Ref. 3). The pool dimensions are 9.9 m x 12.2 m x 11.8 m (height), and with the water level at 11.5 m, the pool volume is 1389 m3, of which only 1240 m3 is water, as some volume is taken by the fuel and by the fuel racks. The initial water temperature of the SFP4 was assumed to be 301 K. The fuel racks are made of an aluminum alloy but are modeled in MELCOR with stainless steel and B4C. MELCOR calculations were completed for different initial water levels: 11.5 m (pool almost full, water is only 0.3 m below the top rim), 4.4577 m (top of the racks), 4.2 m, and 4.026 m (top of the active fuel). A calculation was also completed for a rapid loss of water due to a leak at the bottom of the pool, with the fuel rapidly uncovered and oxidized in air. Results of these calculations are shown in the enclosed Table I. The calculation with the initial water level at 11.5 m (full pool) takes 11 days for the water to boil down to the top of the fuel racks, 11.5 days for the fuel to be uncovered, 14.65 days to generate 150 kg of hydrogen and 19 days for the pool to be completely dry. The calculation with the initial water level at 4.4577 m, takes 1.1 days to uncover the fuel and 4.17 days to generate 150 kg of hydrogen. The calculation with the initial water level at 4.02 m takes 3.63 days to generate 150 kg of hydrogen this is exactly the time when the actual explosion occurred in Unit 4. Finally, fuel oxidation in air after the pool drained the water in 20 minutes, generates only 10 kg of hydrogen this is because very little steam is available and Zircaloy (Zr) oxidation with the oxygen of the air does not generate hydrogen. MELCOR calculated water levels and hydrogen generated in the SFP4 as a function of time for initial water le

Carbajo, Juan J [ORNL

2012-01-01T23:59:59.000Z

278

The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life  

SciTech Connect

A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

1996-10-01T23:59:59.000Z

279

Treatment, packaging, and storage of bundle scrap hardware  

SciTech Connect

A study was performed to identify and evaluate the various technical options for treatment, packaging and storing the bundle scrap hardware that results from rod consolidation. The three general scenarios addressed were keeping the treated scrap in the pool, moving it to on-site dry storage, or immediate disposal. The study concluded that practical alternatives existed for all three cases. Use of novel scrap packaging techniques achieved an overall net consolidation ratio of two. The most economical concept was found to be using advanced technology in the pool storage scenario with dry storage schemes a close second. The project also provides information on scrap characterization and provides tools to assist in classifying the scrap hardware.

Fuierer, A. (Rochester Gas and Electric Corp., NY (United States)); Dabolt, R. (Chem-Nuclear Systems, Inc., Columbia, SC (United States))

1991-09-01T23:59:59.000Z

280

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed competitive levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

282

Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations  

E-Print Network (OSTI)

Water Associated with Carbon Dioxide Capture and Storage,and Detection of Carbon Dioxide in Dilute Aquifers, 9 thGeological Storage of Carbon Dioxide and Amending Council

Birkholzer, J.T.

2013-01-01T23:59:59.000Z

283

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersA. 1957. Steady State Free Thermal Convection of Liquid in a1958. An Experiment on Free Thermal Convection of Water in

Authors, Various

2011-01-01T23:59:59.000Z

284

Seneca Compressed Air Energy Storage (CAES) Project  

DOE Green Energy (OSTI)

This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

None

2012-11-30T23:59:59.000Z

285

Complex Hydrides as Advanced Energy Storage Materials  

Science Conference Proceedings (OSTI)

Ammonia Borane for Chemical Hydrogen Storage: Effect of Nano-Confinement ... High Water Diffusivity in Low Hydration Plasma-Polymerised Proton Exchange ... Thermodynamic Characterization on Hydrogen Absorption and Desorption...

286

Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant  

SciTech Connect

The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

1994-11-01T23:59:59.000Z

287

Evaporative cooling enhanced cold storage system  

DOE Patents (OSTI)

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

Carr, P.

1991-10-15T23:59:59.000Z

288

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

289

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

290

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

291

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

292

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

293

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

294

Effect of surfactant additive on pool boiling of concentrated lithium bromide solution  

SciTech Connect

The measurements of nucleate pool boiling heat transfer rate and surface tension were made for pure water and 50 wt.% lithium bromide solution with various amounts of n-octanol. Regardless of low concentration, n-octanol additive depresses considerably the surface tension of the liquids. The pool boiling data, however, reveal that the addition of surfactant results in insignificant enhancement of heat transfer for both pure water and the concentrated LiBr solution. With the results of this work, the performance improvement received from using n-octanol additive in working liquid of an absorption heat pump (AHP) is consequently due to the enhancement of heat and mass transfer in the absorber (but not generator) by the induced interfacial turbulence.

Wu, W.T.; Yang, Y.M.; Maa, J.R. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemical Engineering] [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemical Engineering

1998-11-01T23:59:59.000Z

295

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

296

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

297

NERSC HPSS Storage Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Sharing Data Transferring Data Unix...

298

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

299

An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors  

Science Conference Proceedings (OSTI)

This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

300

Nuclear heating in thick iron slabs at the ORR Pool Side Facility  

SciTech Connect

The purpose of this work was to determine experimentally and computationally the nuclear heating rates in iron in the Pool Side Facility (PSF) of the Oak Ridge Research Reactor (ORR). This work was performed in support of the NRC-Pressure Vessel Surveillance Program, the objective of which is to verify and upgrade dosimetry and damage correlations for pressure vessels of Light Water Reactors (LWR).

Siman-Tov, I.I.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Retail Demand Response in Southwest Power Pool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LBNL-1470E LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

302

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

303

Madrid Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Assessment of Hot Water System Page 1 of 2 HOT WATER SYSTEM In general, the plumbing system in MAGIC BOX is designed to concentrate all devices, be they storage,...

304

Modelling spreading, vaporisation and dissolution of multi-component pools.  

E-Print Network (OSTI)

??The present work describes the fundamental extension of an integral pool spreading, vaporisation and dissolution model, part of the Process Hazard Assessment Tool (Phast) software. (more)

Fernandez, MI

2013-01-01T23:59:59.000Z

305

ANALYSIS OF MILP TECHNIQUES FOR THE POOLING PROBLEM ...  

E-Print Network (OSTI)

Some variants of pooling problem have cost of per unit flow in arcs, profit per ...... and Analytics in the Oil and Gas Industry, International Series in Operations Re-.

306

Transient Melt Pool Response in Wire Feed Electron Beam Direct ...  

Science Conference Proceedings (OSTI)

Presentation Title, Transient Melt Pool Response in Wire Feed Electron Beam Direct ... Abstract Scope, Wire feed electron beam direct digital manufacturing...

307

Low Temperature Direct Use Pool & Spa Geothermal Facilities ...  

Open Energy Info (EERE)

Low Temperature Direct Use Pool & Spa Geothermal Facilities Jump to: navigation, search No facilities found CSV Retrieved from "http:en.openei.orgwindex.php?titleLowTemperatu...

308

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369, -112.9422641 Loading map......

309

Puerto Rico - Building Energy Code with Mandatory Solar Water...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Solar Swimming Pool Heaters Water Heating Program Information Program Type Building Energy Code In 2009, the Governor of Puerto Rico provided assurance that Puerto...

310

Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool  

DOE Patents (OSTI)

An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

Heiple, C.R.; Burgardt, P.

1984-03-13T23:59:59.000Z

311

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

312

Storm Water Pollution Prevention Plan For SWMUS and AOCs (Sites)  

E-Print Network (OSTI)

wells, tanks, and container storage areas. Waste water treatment system, and transfer stations report (LANL 1990). Contamination originated from septic tanks and lines, chemical storage areas

313

Water Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right...

314

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

heater storage tank wastes energy to continuous heating.fired water heater Total Energy Total Waste Emissions (Air)fired water heater Total Energy Total Waste Emissions (Air)

Lu, Alison

2011-01-01T23:59:59.000Z

315

The Alternative Density Structures of Cold/Saltwater Pools on a Sloping Bottom: The Role of Friction  

Science Conference Proceedings (OSTI)

Observed density sections through dense-water pools or lenses on sloping topography typically have an asymmetric structure. One side of the dense lens usually is bounded by isopycnals that slope steeply down to the seabed while, on the other side,...

G. I. Shapiro; A. E. Hill

2003-02-01T23:59:59.000Z

316

Maintenance of a Mountain Valley Cold Pool: A Numerical Study  

Science Conference Proceedings (OSTI)

A persistent cold-air pool in the Yampa Valley of northwestern Colorado was simulated with the fifth-generation Pennsylvania State UniversityNational Center for Atmospheric Research Mesoscale Model (MM5). The observed cold-air pool, which was ...

Brian J. Billings; Vanda Grubii?; Randolph D. Borys

2006-08-01T23:59:59.000Z

317

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous)...

318

Pennsylvania Pool Chemical Business Soaks Up Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays September 7, 2010 - 3:00pm Addthis MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Stephen Graff Former Writer & editor for Energy Empowers, EERE Most people catching rays poolside don't realize this, but it takes a lot

319

Swimming Pool Granuloma, Fish Tank Granuloma,  

E-Print Network (OSTI)

Mycobacteriosis is a chronic or acute, systemic, granulomatous disease that occurs in aquarium and culture food fish, particularly those reared under intensive conditions. Mycobacteriosis results from infection by several species of Mycobacterium, aerobic, Gram-positive, pleomorphic rods which are members of the order Actinomycetales and family Mycobacteriaceae. Mycobacteria are widespread in the environment, particularly in aquatic reservoirs. The two most important species causing mycobacteriosis in fish and humans are Mycobacterium marinum and Mycobacterium fortuitum. Other species known to cause mycobacterial disease in fish include M. chelonei, M neoaurum, M simiae, and M scrofulaceum. Mycobacterium marinum was first recognized in 1926 from the liver, spleen and kidney of tropical coral fish kept in the Philadelphia Aquarium. M. marinum can grow prolifically within fibroblast, epithelial cells and macrophages. In the past, human outbreaks of M. marinum were sporadic and most commonly assoicated with contaminated swimming pools. Chlorination practices used today have greatly minimized to frequency of outbreaks from these sources. In the last decade, a small but

Fish Tuberculosis; Fish Handlers Disease; Fish Handlers Nodules

2007-01-01T23:59:59.000Z

320

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pool boiling heat transfer characteristics of nanofluids  

E-Print Network (OSTI)

Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

322

Clean, economical, underwater (hydrocarbon) storage  

SciTech Connect

A consortium consisting of Howaldtswerke-Deutsche Werft A.G., Phoenix Gummiwerke A.G., Strabag Bau-A.G., and Bugsier Reederei und Bergungs-A.G. offers a plausible solution to the large-scale underwater storage of hydrocarbons. Up to 20 storage compartments of 8000 cu m capacity can be assembled for a capacity of 160,000 cu m. Each compartment is divided in half by a nylon-reinforced polyurethane diaphragm which isolates oil or other products on one side from sea-water ballast on the other side. As oil is pumped into storage on one side of the diaphragm, the diaphragm moves and ballast on the other side is displaced to the sea. Ballast re-enters the compartment during unloading. The system can enable small offshore platforms to produce more economically. Cargo tankers load at 8000 cu m/hr. The tanks will be used in 200 m or greater water depths. The loading station is installed in a buoy 30 m below the water surface.

1978-08-01T23:59:59.000Z

323

Stratified thermal storage in residential solar energy applications  

DOE Green Energy (OSTI)

The benefits of thermal stratification in sensible heat storage were investigated for several residential solar applications. The operation of space heating, air conditioning and water heating systems with water storage was simulated on a computer. The performance of comparable systems with mixed and stratified storage was determined in terms of the fraction of the total load supplied by solar energy. The effects of design parameters such as collector efficiency, storage volume, tank geometry, etc., on the relative advantage of stratified over well-mixed storage were assessed. The results show that significant improvements in system performance (5 to 15%) may be realized if stratification can be maintained in the storage tank. The magnitude of the improvement is greatest and the sensitivity to design variables is smallest in the service hot water application. The results also show that the set of design parameters which describes the optimum system is likely to be substantially different for a system employing stratified storage than for a mixed storage system. In both the water heating and space heating applications collector flowrates lower than currently suggested for mixed storage systems were found to yield optimum performance for a system with stratified storage.

Sharp, M.K.; Loehrke, R.I.

1978-06-01T23:59:59.000Z

324

Porous polymeric materials for hydrogen storage  

DOE Patents (OSTI)

A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

2013-04-02T23:59:59.000Z

325

Upcoming Natural Gas Storage Facilities.  

U.S. Energy Information Administration (EIA)

Kentucky Energy Hub Project Orbit Gas Storage Inc KY Leader One Gas Storage Project Peregrine Midstream Partners WY Tricor Ten Section Storage Project

326

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

327

Selecting a new water heater  

SciTech Connect

This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

NONE

1995-03-01T23:59:59.000Z

328

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

329

NREL: Energy Storage - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage News Below are news stories related to NREL's energy storage research. August 28, 2013 NREL Battery Calorimeters Win R&D 100 Award The award-wining Isothermal...

330

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

331

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

332

Gas Water Heater Energy Losses  

E-Print Network (OSTI)

analyses of storage-type water heaters. 2 TANK modelswater heater as part of the DOE rulemaking analysis. We used the most current version of this model--

Biermayer, Peter

2012-01-01T23:59:59.000Z

333

Energy Storage & Delivery  

Science Conference Proceedings (OSTI)

Energy Storage & Delivery. Summary: Schematic of Membrane Molecular Structure The goal of the project is to develop ...

2013-07-23T23:59:59.000Z

334

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camperworld Hot Springs Sector Geothermal energy Type Pool and Spa Location Garland, Utah Coordinates 41.7410387°, -112.1616194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

335

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

337

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Huckelberry Hot Springs Sector Geothermal energy Type Pool and Spa Location Grand Teton Nat'l Park, Wyoming Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

338

Environmental Assessment K Pool 'Fish Rearing, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOERA-1 11 1 DOERA-1 11 1 Environmental Assessment K Pool 'Fish Rearing, Hanford Site, Richland, Washington U.S. Department of Emrgy Richland, Washington December 1996 DOEEA-1111 ENVIRONMJ3'NTAL ASSESSMENT K POOL 'F'ISH REARING HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY RICHLAND, WASHINGTON December 1996 This page intentionally left blank. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. 1 ' U.S. Department of Energy summary The U.S. Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public h

339

Safford Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Pool & Spa Low Temperature Geothermal Facility Facility Safford Sector Geothermal energy Type Pool and Spa Location Safford, Arizona Coordinates 32.8339546°, -109.70758° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

340

Retail Demand Response in Southwest Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

California Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot Springs Sector Geothermal energy Type Pool and Spa Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

342

Riverdale Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Pool & Spa Low Temperature Geothermal Facility Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Riverdale Resort Pool & Spa Low Temperature Geothermal Facility Facility Riverdale Resort Sector Geothermal energy Type Pool and Spa Location Preston, Idaho Coordinates 42.0963133°, -111.8766173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

343

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Sligar's Thousand Springs Resort Sector Geothermal energy Type Pool and Spa Location Hagerman, Idaho Coordinates 42.8121244°, -114.898669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

344

Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Facility Jackalope Plunge Sector Geothermal energy Type Pool and Spa Location Douglas, Wyoming Coordinates 42.7596897°, -105.3822069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

345

Baranof Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Baranof Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Pool & Spa Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

346

Melozi Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Pool & Spa Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Pool and Spa Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

347

Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Pool and Spa Location Lehi, Utah Coordinates 40.3916172°, -111.8507662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

348

Jones Splashland Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jones Splashland Pool & Spa Low Temperature Geothermal Facility Facility Jones Splashland Sector Geothermal energy Type Pool and Spa Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

349

Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Facility Facility Calvary Chapel Conference Center Sector Geothermal energy Type Pool and Spa Location Murrieta, California Coordinates 33.5539143°, -117.2139232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

350

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Brockway Springs Resort Sector Geothermal energy Type Pool and Spa Location King's Beach, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

351

Indian Springs Natatorium Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Natatorium Pool & Spa Low Temperature Geothermal Facility Natatorium Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs Natatorium Pool & Spa Low Temperature Geothermal Facility Facility Indian Springs Natatorium Sector Geothermal energy Type Pool and Spa Location American Falls, Idaho Coordinates 42.7860226°, -112.8544377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

352

Esalen Institute Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Esalen Institute Pool & Spa Low Temperature Geothermal Facility Esalen Institute Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Esalen Institute Pool & Spa Low Temperature Geothermal Facility Facility Esalen Institute Sector Geothermal energy Type Pool and Spa Location Big Sur, California Coordinates 36.270241°, -121.8074545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

353

Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Facility Tassajara Buddhist Meditation Sector Geothermal energy Type Pool and Spa Location Carmel Valley, California Coordinates 36.4860728°, -121.723836° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

354

Greenbrier Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Greenbrier Pool & Spa Low Temperature Geothermal Facility Facility Greenbrier Sector Geothermal energy Type Pool and Spa Location White Sulphur Springs, West Virginia Coordinates 37.7965107°, -80.2975704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

355

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baumgartner Hot Springs Sector Geothermal energy Type Pool and Spa Location Featherville, Idaho Coordinates 43.6098966°, -115.2581378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

356

Goddard Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Goddard Pool & Spa Low Temperature Geothermal Facility Goddard Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goddard Pool & Spa Low Temperature Geothermal Facility Facility Goddard Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

357

Comment to NOI re Retrospective Risk Pooling Program For Suppliers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NOI re Retrospective Risk Pooling Program For Suppliers to NOI re Retrospective Risk Pooling Program For Suppliers Comment to NOI re Retrospective Risk Pooling Program For Suppliers Comment by Cameco Resources On Retrospective Risk Pooling Program For Suppliers, 75 Fed. Reg. 43945 (July 27, 2010), Section 934 Rule Making. As discussed below, Cameco believes that producers and providers of uranium concentrates and UF6 conversion services, whether directly or as an intermediary, should be excluded from the definition of nuclear supplier. In this regard, Cameco generally agrees with the comments submitted by the Nuclear Energy Institute ("NEI") on behalf of its members; however, Cameco disagrees with the implication of NEl's comments that producers of uranium concentrates and providers of conversion services should be included in the

358

Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mineral Springs Pool & Spa Low Temperature Geothermal Facility Mineral Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart Mineral Springs Sector Geothermal energy Type Pool and Spa Location Weed, California Coordinates 41.4226498°, -122.3861269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

359

Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bathhouse Pool & Spa Low Temperature Geothermal Facility Bathhouse Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility Facility Jemez Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

360

Tenakee Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Tenakee Pool & Spa Low Temperature Geothermal Facility Tenakee Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tenakee Pool & Spa Low Temperature Geothermal Facility Facility Tenakee Sector Geothermal energy Type Pool and Spa Location Chichigaf Island, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents (OSTI)

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

362

Conserving Energy and Heating Your Swimming Pools with Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

measures (see table on page 2). Conserving Energy and Heating Your Swimming Pool with Solar Energy CLEARINGHOUSE ENERGY EFFICIENCY AND RENEWABLE ENERGY T O F E N E R G Y D E P...

363

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8OE-160W) have been objectively processed to reveal tropical cloud clusters with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

364

Article Geography doi: 10.1007/s11434-012-5529-9 Preliminary estimation of the organic carbon pool in Chinas wetlands  

E-Print Network (OSTI)

Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans. The inventory approach is a realistic method for estimating the organic carbon pool in Chinas wetlands at the national scale. An updated data and inventory approach were used to estimate the amount of organic carbon stored in Chinas wetlands. Primary results are as follows: (1) the organic carbon pool of Chinas wetlands is between 5.39 and 7.25 Pg, accounting for 1.3%3.5 % of the global level; (2) the estimated values and percentages of the organic carbon contained in the soil, water and vegetation pools in Chinas wetlands are 5.046.19 Pg and 85.4%93.5%, 0.220.56 Pg and 4.1%7.7%, 0.130.50 Pg and 2.4%6.9%, respectively. The soil organic carbon pool of Chinas wetlands is greater than our previous estimate of 3.67 Pg, but is lower than other previous estimates of 12.20 and 810 Pg. Based on the discussion and uncertainty analysis, some research areas worthy of future attention are presented. wetland carbon pool, inventory approach, remote sensing, soil carbon density, wetland vegetation Citation: Zheng Y M, Niu Z G, Gong P, et al. Preliminary estimation of the organic carbon pool in Chinas wetlands. Chin Sci Bull,

Zheng Yaomin; Niu Zhenguo; Gong Peng; Dai Yongjiu; Shangguan Wei

2012-01-01T23:59:59.000Z

365

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

366

Thermal Storage Systems at IBM Facilities  

E-Print Network (OSTI)

In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27,000 ton hours. Through reduced chiller plant capacity and annual operating cost savings in primarily electric demand charges the payback will be approximately 3 1/2 years. The water is stored in multiple, insulated tanks, located above the ground. A similar but smaller system at IBM's Charlotte, North Carolina plant has no provisions for heat reclaim. Instead, it uses cooling tower water directly in the chilled water circuit when outside conditions permit. This paper presents system designs, control modes and economic considerations and describes IBM's experience to date with large volume storage systems.

Koch, G.

1981-01-01T23:59:59.000Z

367

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

368

Method for storage of solid waste  

DOE Patents (OSTI)

Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.

Mecham, William J. (La Grange, IL)

1976-01-01T23:59:59.000Z

369

Test results of lithium pool-air reaction suppression systems  

Science Conference Proceedings (OSTI)

Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

Jeppson, D.W.

1987-02-01T23:59:59.000Z

370

Pool heating system on island brings year-round enjoyment  

SciTech Connect

The Bahamas is not generally thought of as a place in need of pool heating. However, the remote Bahamian island of Treasure Cay is actually situated north of Ft. Lauderdale, Florida. Pool temperatures drop during the winter, thus shortening the swimming season. The Beach Villas Homeowners Association of Treasure Cay investigated pool-heating options some time ago. Energy on Treasure Cay is expensive - about 25 cents/kWh - making cost a major concern for the association as they evaluated their choices. An electric heat pump was rule out as it would place too great a burden on the electricity load of the remote island. Heating the pool with propane gas was deemed far too costly. After evaluating each of these heating methods on the basis of economics, energy efficiency, and comfort, the association concluded that solar would be the best method. They selected a solar pool heating system manufactured by FAFCO, Inc. and installed by SUNWORKS in Ft. Lauderdale. The system requires virtually no daily maintenance, and there have been no problems with the system since its installation. In addition to being trouble-free, the FAFCO solar pool heater has saved Treasure Cay a great deal of money. The equipment cost about $9,500; lumber, PVC, and labor brought the total cost to $13,000. By comparison, a propane-gas system would have cost $4,000 but would have generated a yearly gas bill of $12,000. Therefore, payback on the system began immediately upon installation.

Not Available

1993-01-01T23:59:59.000Z

371

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

372

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

373

Retail Demand Response in Southwest Power Pool  

SciTech Connect

In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

2009-01-30T23:59:59.000Z

374

Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global  

E-Print Network (OSTI)

[1] We develop a mechanistic global model of soil mercury storage and emissions that ties the lifetime of mercury in soils to the lifetime of the organic carbon pools it is associated with. We explore the implications of considering terrestrial mercury cycling in the framework of soil carbon cycling and suggest possible avenues of future research to test our assumptions and constrain this type of model. In our simulation, input of mercury to soil is by atmospheric deposition, in part through leaf uptake and subsequent litter fall, and is moderated by surface photoreduction and revolatilization. Once bound to organic carbon, mercury is transferred along a succession of short?lived to long?lived carbon pools and is ultimately reemitted by respiration of these pools. We examine the legacy of anthropogenic influence on global mercury storage and emissions and estimate that storage of mercury in organic soils has increased by ?20 % since preindustrial times, while soil emissions have increased by a factor of 3 (2900 Mg yr ?1 versus 1000 Mg yr ?1). At steady state, mercury accumulates in the most recalcitrant soil carbon pools and has an overall lifetime against respiration of 630 years. However, the impact of anthropogenic emissions since preindustrial times has been concentrated in more labile pools, so that the mean lifetime of present?day anthropogenic mercury in all pools is ?80 years. Our analysis suggests that reductions in anthropogenic emissions would lead to immediate and large reductions in secondary soil mercury emissions.

Nicole V Smith?downey; Elsie M. Sunderl; Daniel J. Jacob

2010-01-01T23:59:59.000Z

375

Central unresolved issues in thermal energy storage for building heating and cooling  

DOE Green Energy (OSTI)

This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

Swet, C.J.; Baylin, F.

1980-07-01T23:59:59.000Z

376

Green Systems Solar Hot Water  

E-Print Network (OSTI)

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

Schladow, S. Geoffrey

377

STATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS  

E-Print Network (OSTI)

(e) Outdoor Damper Control 122(f) Isolation Zones 122(g) Pipe Insulation 123 Duct Insulation 124 or Specification2 MANDATORY MEASURES T-24 Sections Equipment Efficiency 112(a) Pipe Insulation PRESCRIPTIVE need to match the building plans schedule or specifications. If a requirement is not applicable, put "N

378

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

379

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

380

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Other Innovative Storage Systems  

Science Conference Proceedings (OSTI)

High Efficiency Electrical Energy Storage Using Reversible Solid Oxide Cells: Scott Barnett1; Gareth Hughes1; Kyle Yakal-Kremski1; Zhan Gao1; 1 Northwestern...

382

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

383

NREL: Energy Storage - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The National Renewable Energy Laboratory's (NREL) Energy Storage team and partners work within a variety of programs that have created test manuals to establish standard...

384

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

385

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps - Existing R&D and pilot programs - CAES - Controllable pumping - Off shore (energy island, etc) - Gravity systems - Thermal storage Confidential 3 Report to DOE ...

386

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

387

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

388

H 2 Storage Projects  

Science Conference Proceedings (OSTI)

... 10. Titanium-decorated carbon nanotubes: a potential high-capacity hydrogen storage madium. ... 3. Exohydrogenated single-wall carbon nanotubes. ...

389

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied (more)

Li, Yun

2007-01-01T23:59:59.000Z

390

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

391

Consumptive Water Use in the Production of Ethanol and Petroleum Gasoline  

E-Print Network (OSTI)

of a four-mile pipeline to divert the waste water to a waterflood project in an- other pool; (b) Mobil

Argonne National Laboratory

392

Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings  

Science Conference Proceedings (OSTI)

The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

Hunt, A.; Easley, S.

2012-05-01T23:59:59.000Z

393

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Pool and Spa Location Mesa, Arizona Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

394

ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment design includes an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with a large range of low, mid and high altitude aircraft for in-situ and remote sensing

395

Breitenbush Community Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Breitenbush Community Pool & Spa Low Temperature Geothermal Facility Breitenbush Community Pool & Spa Low Temperature Geothermal Facility Facility Breitenbush Community Sector Geothermal energy Type Pool and Spa Location Detroit, Oregon Coordinates 44.7340108°, -122.1497982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

397

Four Dam Pool Power Agency FDPPA | Open Energy Information  

Open Energy Info (EERE)

Dam Pool Power Agency FDPPA Dam Pool Power Agency FDPPA Jump to: navigation, search Name Four Dam Pool Power Agency (FDPPA) Place Anchorage, Alaska Zip 99515 Sector Hydro Product Joint action agency consisting of four hydroelectric projects that was organized by five electric cooperatives that purchase power from the facilities. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

399

Collection, Storage And Impounding Of Waters (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Kansas Statute Chapter 82 Article 4 lays out property tax exemption requirements for landowners who build and maintain dams on their property in the state of Kansas. Dams must meet the given...

400

AB Levitator and Electricity Storage  

E-Print Network (OSTI)

The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energy (spended energy is replenished in braking when ship returns from other planet to its point of origin), using AB-devices in military, in sea-going ships (submarimes), in energy industry (for example. as small storage of electric energy) and so on. The vehicles equipped with AB propulsion can take flight for days and cover distances of tens thousands of kilometers at hypersonic or extra-atmosphere space speeds. The work contains tens of inventions and innovations which solves problems and breaks limitations which appear in solution of these very complex revolutionary ideas. Key word: AB levitator, levitation, non-rocket outer space flight, electric energy storage, AB propulsion, AB engine, Bolonkin.

Alexander Bolonkin

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

402

Energy storage capacitors  

DOE Green Energy (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

403

Ex Parte Memorandum on Grid-Enabled Water Heaters | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

met with DOE representatives regarding water heater standards and thermal storage and demand response programs. DOE exparte memo100213 Grid-EnabledWaterHeaterAmendment...

404

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

405

Corrosion in ICPP fuel storage basins  

SciTech Connect

The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970`s, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate.

Dirk, W.J.

1993-09-01T23:59:59.000Z

406

Aquifer thermal energy storage: a survey  

DOE Green Energy (OSTI)

The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

Tsang, C.F.; Hopkins, D.; Hellstroem, G.

1980-01-01T23:59:59.000Z

407

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

408

Optimization of Chilled Water Systems  

E-Print Network (OSTI)

Chilled water systems are one of the major energy consumers in industrial, commercial, and institutional complexes. The centralization of chilled water systems presents numerous advantages, including simplified controls, reduced installation capacity due to diversity, and consolidated maintenance and operation. Centrally chilled water systems present potential energy and cost savings in the following areas: Chilled water reset. Condenser water reset. Chiller sequencing. Chilled water storage. Variable chilled water pumping. The feasibility aspect of the above items will be discussed in this paper.

Gidwani, B. N.

1987-09-01T23:59:59.000Z

409

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

410

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History All Operators Natural Gas in Storage 6,482,603 6,102,063 6,235,751 6,653,184 7,027,708 7,302,556 1973-2013 Base Gas 4,379,494...

411

Operating Room Pooling and Parallel Surgery Processing Under Uncertainty  

Science Conference Proceedings (OSTI)

Operating room (OR) scheduling is an important operational problem for most hospitals. In this study, we present a novel two-stage stochastic mixed-integer programming model to minimize total expected operating cost given that scheduling decisions are ... Keywords: multiple operating rooms, operating room pooling, operating room scheduling, parallel surgery processing, two-stage stochastic mixed-integer programs

Sakine Batun; Brian T. Denton; Todd R. Huschka; Andrew J. Schaefer

2011-04-01T23:59:59.000Z

412

Identifying incompatible service implementations using pooled decision trees  

Science Conference Proceedings (OSTI)

We study fault localization techniques for identification of incompatible configurations and implementations in service-based applications (SBAs). Practice has shown that standardized interfaces alone do not guarantee compatibility of services originating ... Keywords: dependability, fault localization, pooled decision trees, service-oriented architecture

Christian Inzinger; Waldemar Hummer; Benjamin Satzger; Philipp Leitner; Schahram Dustdar

2013-03-01T23:59:59.000Z

413

A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

R. L. Demmer

2011-04-01T23:59:59.000Z

414

Energy storage for hybrid remote power systems  

DOE Green Energy (OSTI)

Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

Isherwood, W., LLNL

1998-03-01T23:59:59.000Z

415

Underground Energy Storage Program. 1985 annual summary  

DOE Green Energy (OSTI)

Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (> 100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, monitoring of the University of Alabama Student Recreation Center in Tuscaloosa, Alabama, and limited numerical modeling efforts. The first long-cycle test at the University of Minnesota field test facility was completed. It consisted of approximately 59 days of heated water injection, 64 days of storage, and 58 days of heated water recovery. Chemistry of the recovered water was close to what was expected. Limited experimentation was done to characterize physical and chemical processes at the ATES test facility. A chill ATES monitoring project, initiated at the Student Recreation Center on the University of Alabama campus, continued during the reporting period. Numerical modeling efforts were continued at a minimum level to support field studies. The chill ATES facility at the University of Alabama Student Recreation Center was simulated with the Unconfined Aquifer Thermal Energy Storage (UCATES) model to examine the effect of different injection/recovery patterns on the system's thermal performance.

Raymond, J.R.; Kannberg, L.D.

1986-08-01T23:59:59.000Z

416

Sulfuric acid-sulfur heat storage cycle  

DOE Patents (OSTI)

A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

Norman, John H. (LaJolla, CA)

1983-12-20T23:59:59.000Z

417

Porous polymeric materials for hydrogen storage  

SciTech Connect

Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

Yu, Luping (Hoffman Estates, IL); Liu, Di-Jia (Naperville, IL); Yuan, Shengwen (Chicago, IL); Yang, Junbing (Westmont, IL)

2011-12-13T23:59:59.000Z

418

Porous polymeric materials for hydrogen storage  

DOE Patents (OSTI)

Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

Yu, Luping (Hoffman Estates, IL); Liu, Di-Jia (Naperville, IL); Yuan, Shengwen (Chicago, IL); Yang, Junbing (Westmont, IL)

2011-12-13T23:59:59.000Z

419

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

420

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

422

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

423

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

424

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

425

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

426

Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage  

DOE Green Energy (OSTI)

Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

Blahnik, D.E.

1980-11-01T23:59:59.000Z

427

Gas supplemented solar collector storage means  

SciTech Connect

The gas supplemented solar collector storage means includes a water tank having supply and return connections for circulating water from the tank to a solar collector and back to the tank. A combustion chamber having top and side openings is disposed within the upper half portion of the tank and connects respectively to an upwardly extending flue pipe and an inlet side cylinder to provide an air and gas passage through the upper half of the tank in heat exchange relationship with water. A gas burner is receivable in the combustion chamber and is operated by a thermostat to provide heat to the water only in the event that the solar heating of the water is insufficient to maintain the water above a minimum temperature.

Bressickello, L.J.; Moore, H.J.

1982-05-11T23:59:59.000Z

428

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

429

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

430

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

431

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

432

storage technology barriers. The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Power to build a 400-megawatt (MW) coal-fired power plant with carbon capture and storage (CCS) in Britain. The companies will submit the Caledonia Clean Energy Project to...

433

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

434

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

435

Storage Ring Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV...

436

Demonstration of a transportable storage system for spent nuclear fuel  

Science Conference Proceedings (OSTI)

The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds.

Shetler, J.R.; Miller, K.R.; Jones, R.E. (Sacramento Municipal Utility District, Herald, CA (United States))

1993-01-01T23:59:59.000Z

437

The impact of dry spent-fuel storage on decommissioning  

Science Conference Proceedings (OSTI)

Several utilities have made decisions to decommission nuclear plants. Other utilities are currently investigating the economic and technical feasibility of decommissioning versus continued operations. As a result, assessments are being made to determine the impact of dry spent-fuel storage on decommissioning. This assessment is being made on a comparison of wet and dry storage (including modifications to current wet storage systems). Not only are the capital and operating costs of the equipment or modifications being evaluated, but staffing levels, interference with other decommissioning activities, and the ability to eventually transfer the fuel to the U.S. Department of Energy (DOE) all factor into the assessments. In the case of the Rancho Seco nuclear generating station, the Sacramento Municipal Utility District (SMUD) developed three objectives related to spent-fuel disposition to support the safe and economical closure of the plant. These objectives are as follows: 1. Minimize occupational and public radiation exposure. 2. Minimize decommissioning costs, including the need to maintain the spent-fuel pool. 3. Prepare the fuel for DOE acceptance. These rather universal goals are being met for Rancho Seco through the use of a canister-based spent-fuel storage and transportation system, the NUHOMS system. This paper discusses the economic and technical impacts of dry spent-fuel storage on decommissioning, more specifically as it relates to the decommissioning of the Rancho Seco plant.

Bowser, R.C.; Taylor, M. Jr. (Pacific Nuclear, San Jose, CA (United States)); Miller, K.R. (Sacramento Municipal Utility District, Herald, CA (United States))

1993-01-01T23:59:59.000Z

438

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

The Ice Bear30 Hybrid Air Conditionerthermal energy storage system150uses smart integrated controls, ice storage, and a dedicated compressor for cooling. The system is designed to provide cooling to interior spaces by circulating refrigerant within an additional evaporator coil added to a standard unitary air conditioner. The Ice Bear 30 is a relatively small size (5 ton), intended for use in residential and light commercial applications. This report describes EPRI tests of the Ice Bear 30, which is manu...

2009-12-14T23:59:59.000Z

439

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

440

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "water pool storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

442

Thermal Storage with Conventional Cooling Systems  

E-Print Network (OSTI)

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak cooling demand, thereby lowering demand and saving money. In addition, significant savings are possible in the first cost of chilled water equipment, and the smaller chillers run at peak capacity and efficiency during a greater portion of their run time. The building, controlled by an Energy Management and Control System (EMCS), "learns" from past experience how to run the building efficiently. The result is an optimized balance between energy cost and comfort.

Kieninger, R. T.

1994-01-01T23:59:59.000Z

443

MRS (monitored retrievable storage) systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system  

SciTech Connect

This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity (in metric tons of uranium (MTU)) required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs.

Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

1989-04-01T23:59:59.000Z

444

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

445

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

446

Santa Clara Water and Sewer - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water and Sewer - Solar Water Heating Program Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program < Back Eligibility Commercial Local Government Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Commercial Heating & Cooling Program Info State California Program Type Leasing Program Provider City of Santa Clara Water and Sewer Utility In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. Solar equipment is available from the city for heating swimming pools,

447

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

448

Dry Cask Storage Characterization Project  

Science Conference Proceedings (OSTI)

Nuclear utilities have developed independent spent fuel storage installations (ISFSIs) as a means of expanding their spent-fuel storage capacity on an interim basis until a geologic repository is available to accept the fuel for permanent storage. This report provides a technical basis for demonstrating the feasibility of extended spent-fuel storage in ISFSIs.

2002-09-26T23:59:59.000Z

449

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

450

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

451

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature  

SciTech Connect

We conducted observations and modeling at a forest site to assess importance of biomass heat and biochemical energy storages for land-atmosphere interactions. We used the terrestrial ecosystem Fluxes And Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the calculated biomass energy storages. Effects of energy storages on flux exchanges and variations of radiative temperature were investigated by contrasting FAPIS simulations with and without the storages. We found that with the storages, FAPIS predictions agreed with measurements well; without them, FAPIS performance deteriorated for all surface energy fluxes. The biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 Wm-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Without-storage simulations produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with with-storage simulations. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the biomass energy storages act to dampen diurnal temperature range. Therefore, biomass heat and biochemical energy storages are an integral and substantial part of the surface energy budget and play a role in modulating land surface temperatures and must be considered in studies of land - atmosphere interactions and climate modeling.

Gu, Lianhong [ORNL; Meyers, T. P. [NOAA ATDD; Pallardy, Stephen G. [University of Missouri; Hanson, Paul J [ORNL; Yang, Bai [ORNL; Heuer, Mark [ATDD, NOAA; Hosman, K. P. [University of Missouri; Liu, Qing [ORNL; Riggs, Jeffery S [ORNL; Sluss, Daniel Wayne [ORNL; Wullschleger, Stan D [ORNL

2007-01-01T23:59:59.000Z

452

Assessing Fossil and Recent Carbon Pools in Reclaimed Mined Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4638 Heino.Beckert@netl.doe.gov Rattan Lal Principal Investigator The Ohio State University Research Foundation 210 Kottman Hall School of Natural Resources Columbus, OH 43210 614-292-9069 lal.1@osu.edu Assessing Fossil And Recent cARbon Pools in ReclAimed mined soils Background There is ample indication that reclaimed mine lands have great capacity to be used to sequester carbon dioxide (CO 2 ) generated by coal-fired utility and industrial power plants. This carbon could offset CO 2 emissions associated with extraction and burning of coal and provide public utilities and other industries with carbon credits. However, the present estimates of carbon pools in reclaimed mined lands are uncertain. This uncertainty is linked primarily

453

LCG Persistency Framework (CORAL, COOL, POOL): Status and Outlook  

SciTech Connect

The Persistency Framework consists of three software packages (CORAL, COOL and POOL) addressing the data access requirements of the LHC experiments in different areas. It is the result of the collaboration between the CERN IT Department and the three experiments (ATLAS, CMS and LHCb) that use this software to access their data. POOL is a hybrid technology store for C++ objects, metadata catalogs and collections. CORAL is a relational database abstraction layer with an SQL-free API. COOL provides specific software tools and components for the handling of conditions data. This paper reports on the status and outlook of the project and reviews in detail the usage of each package in the three experiments.

Valassi, A.; /CERN; Clemencic, M.; /CERN; Dykstra, D.; /Fermilab; Frank, M.; /CERN; Front, D.; /Weizmann Inst.; Govi, G.; /Northeastern U.; Kalkhof, A.; /CERN; Loth, A.; /CERN; Nowak, M.; /Brookhaven; Pokorski, W.; /CERN; Salnikov, A.; /SLAC; Schmidt, S.A.; /Mainz U., Inst. Kernphys.; Trentadue, R.; /CERN; Wache, M.; /Mainz U., Inst. Kernphys.; Xie, Z.; /Princeton U.

2012-04-19T23:59:59.000Z

454

Design and installation manual for thermal energy storage  

DOE Green Energy (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

455

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

456

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

large quantities of hot water produced (1) as a by-productin one well and reservoir water is produced in another. Thesupply: produced from the aquifer. hot water is Spring (90

Tsang, C.-F.

2011-01-01T23:59:59.000Z

457

Low Molecular Weight Organic Contaminants in Advanced Treatment: Occurrence, Treatment and Implications to Desalination and Water Reuse Systems  

E-Print Network (OSTI)

power plant cooling water, intakes for desalination systemsimmediately after the intake water storage tank. Prior toconcentrations in pilot plant intake water potentially due

Agus, Eva

2011-01-01T23:59:59.000Z

458

Tunable molten oxide pool assisted plasma-melter vitrification systems  

DOE Patents (OSTI)

The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

459