Sample records for water pool storage

  1. annulus water pool: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Last Page Topic Index 1 Power & Water Resources Pooling Authority Resolution 13-11-13 Energy Storage, Conversion and Utilization Websites Summary: Power & Water Resources Pooling...

  2. Report on fuel pool water loss tests

    SciTech Connect (OSTI)

    Zalenski, R.F. [West Valley Nuclear Services Co., West Valley, NY (United States)

    1995-12-31T23:59:59.000Z

    To resolve potential concerns on the integrity of the fuel storage pool at the West Valley Demonstration Project (WVDP), a highly accurate testing technique was developed to quantify water losses from the pool. The fuel pool is an unlined, single wall, reinforced concrete structure containing approximately 818,000 gallons of water. Since an initial test indicated that water losses could possibly be attributed solely to evaporation, a cover was suspended and sealed over the pool to block evaporation losses. High accuracy water level and temperature instrumentation was procured and installed. The conclusions of this report indicate that unaccounted-for water losses from the pool are insignificant and there is no detectable leakage within the range of test accuracy.

  3. An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools

    E-Print Network [OSTI]

    Jeavons, Peter

    , it is still necessary to store this waste in cool- ing ponds for 20 to 60 years to remove the heatAn Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil spread with grow- ing world population. However, the radioactive waste generated in these power plants

  4. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  5. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19T23:59:59.000Z

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  6. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA)

    1996-01-01T23:59:59.000Z

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  7. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12T23:59:59.000Z

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  8. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA or service at least 3 days before the meeting. Requests should be sent to: Power and Water Resources Pooling

  9. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  10. Strontium and cesium radionuclide leak detection alternatives in a capsule storage pool

    SciTech Connect (OSTI)

    Larson, D.E.; Crawford, T.W.; Joyce, S.M.

    1981-08-01T23:59:59.000Z

    A study was performed to assess radionuclide leak-detection systems for use in locating a capsule leaking strontium-90 or cesium-137 into a water-filled pool. Each storage pool contains about 35,000 L of water and up to 715 capsules, each of which contains up to 150 kCi strontium-90 or 80 kCi cesium-137. Potential systems assessed included instrumental chemical analyses, radionuclide detection, visual examination, and other nondestructive nuclear-fuel examination techniques. Factors considered in the assessment include: cost, simplicity of maintenance and operation, technology availability, reliability, remote operation, sensitivity, and ability to locate an individual leaking capsule in its storage location. The study concluded that an adaption of the spent nuclear-fuel examination technique of wet sipping be considered for adaption. In the suggested approoch, samples would be taken continuously from pool water adjacent to the capsule(s) being examined for remote radiation detection. In-place capsule isolation and subsequent water sampling would confirm that a capsule was leaking radionuclides. Additional studies are needed before implementing this option. Two other techniques that show promise are ultrasonic testing and eddy-current testing.

  11. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  12. Morphology, hydrology, and water quality of two vernal pools in Madera County, California

    E-Print Network [OSTI]

    Renz, Wendy; Higgins, Tanya

    2006-01-01T23:59:59.000Z

    regime on vernal pool hydrology. Freshwater Biology 50:and L. Stromberg. (1998). Hydrology of vernal pools on non-Morphology, hydrology, and water quality of two vernal pools

  13. La Jolla Children's Pool Beach Management and Water Quality Improvement Project

    E-Print Network [OSTI]

    Elwany, Hany; Flick, Reinhard; Nichols, Jean; Lindquist, Anne-Lise

    1998-01-01T23:59:59.000Z

    POOL BEACH MANAGEMENT AND WATER QUALITY IMPROVEMENT PROJECTPool Beach Management and Water Quality Improvements ProjectPool Beach Management and Water Quality Improvements Project

  14. STATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS

    E-Print Network [OSTI]

    Certified Water Heater §111, §113 (a) Water Heater Efficiency §113 (b) Service Water Heating Installation/A" in the column next to the measure. 2: For each water heater, pool heat and domestic water loop (or groupsSTATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS CEC-MECH-2C

  15. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30T23:59:59.000Z

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

  16. Pressurized melt ejection into water pools

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M. (Sandia National Labs., Albuquerque, NM (USA)); Ross, J.W.; Oliver, M.S.; Gilbert, D.W.; Nichols, R.T. (Ktech Corp., Albuquerque, NM (USA))

    1991-03-01T23:59:59.000Z

    Direct Containment Heating is important because it is one of the postulated methods for early containment failure. If the reactor pressure vessel (RPV) should fail at an instrument tube penetration in the lower head, the resulting aperture would allow the molten core material to be discharged at high velocity into the cavity. Scaled experiments have demonstrated that the gas discharged during blowdown of the pressure system can entrain core debris and carry it out of the cavity region. Although these experiments were performed with the cavity initially devoid of water, other tests with the cavity partially filled with water exhibited similar results. The objective of the work described here is twofold: (1) to study the jet ejection and debris dispersal behavior when water is in contact with the lower head of the RPV and completely fills the cavity; and, (2) to compare the results of an experiment where the cavity is partially filled with water. These tests are of interest not only because they consider the dispersal of water and debris from the cavity but they also consider the potential consequences of codispersing water with core debris into the containment. Because the core debris may impart sufficient energy to the containment atmosphere to raise the pressure to potentially threatening levels, it is important to identify possible mitigating mechanisms. Analytical efforts have suggested that the codispersed water may act as a finely distributed heat sink that would have the beneficial effect of absorbing debris energy. This has not been confirmed experimentally, although the work presented here does attempt to identify the potential for water preexisting in the cavity to be dispersed as small droplets. 17 refs., 41 figs., 12 tabs.

  17. Covered Product Category: Residential Gas Storage Water Heaters...

    Energy Savers [EERE]

    Gas Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  18. Water Heaters (Storage Electric) | Department of Energy

    Energy Savers [EERE]

    Electric) Water Heaters (Storage Electric) The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with...

  19. Fission matrix-based Monte Carlo criticality analysis of fuel storage pools

    SciTech Connect (OSTI)

    Farlotti, M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ecole Polytechnique, Palaiseau, F 91128 (France); Larsen, E. W. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-07-01T23:59:59.000Z

    Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)

  20. Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING AND AGENDA

    E-Print Network [OSTI]

    Power and Water Resources Pooling Authority NOTICE OF SPECIAL MEETING AND AGENDA Notice is hereby given that a special meeting of the Board of Directors of the Power and Water Resources Pooling Authority (PWRPA) will be held on November 25, 2013 at 10:00 a.m., at the Westlands Water District, 3130

  1. Management and Storage of Surface Waters (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Protection regulates the use and storage of surface waters in the state. A permit from either the Department or the local Water Management District is required for...

  2. International Conference on Water Harvesting, Storage and Conservation (WHSC-2009)

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Water Harvesting, Storage and Conservation (WHSC-2009) 23rd 25th International Conference on Water Harvesting, Storage and Conservation (WHSC- 2009) was the first guidelines and implementing mechanisms for water harvesting, storage and conservation. The main objectives

  3. Analysis of terrestrial water storage changes from GRACE and GLDAS

    E-Print Network [OSTI]

    Syed, Tajdarul H; Famiglietti, James S; Rodell, Matthew; Chen, Jianli; Wilson, Clark R

    2008-01-01T23:59:59.000Z

    2007), Estimating ground water storage changes in theand ground- water stores, so that we were unable to quantify their potentially considerable contributions to storage

  4. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Office of Scientific and Technical Information (OSTI)

    a p o t e n t i a l regime where t h e m a t r i x i s more passive, b u t t h e chromium-depleted g r a i n boundaries remain a c t i v e , promoting i n t e r g r a n u l a r a t...

  5. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior of Spent Nuclear

  6. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Electric Storage Tank Water Heater Efficiency and StandardsElectric Storage Tank Water Heater Efficiency and Standardsresistance storage tank water heaters (geysers), water

  7. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of StaffingStorage Water Heaters Storage Water Heaters June 15,

  8. Effects of Storage Container Color and Shading on Water Temperature

    E-Print Network [OSTI]

    Clayton, James Brent

    2012-07-16T23:59:59.000Z

    RWH systems has become a concern. Water temperature is a parameter of water quality and storage container color and shading affect this temperature. Four different colors and three different shadings were applied to twelve rainwater storage barrels...

  9. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27T23:59:59.000Z

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  10. Feasibility study 100 K East Area water purification pools fish-rearing program

    SciTech Connect (OSTI)

    Betsch, M.D., Westinghouse Hanford

    1996-07-03T23:59:59.000Z

    As part of the feasibility study, a design analysis was conducted to determine the usefulness of the existing sand filters and associated media for reuse. The sand filters which were studied for potential reuse are located on the northern end of the 100-K East Area water filtration plant on the Hanford Site. This plant is located about one- half mile from the Columbia River. The sand filters were originally part of a system which was used to provide cooling water to the nearby plutonium production K Reactors. This Cold War operation took place until 1971, at which time the K Reactors were closed for eventual decontamination and decommissioning. Recently, it was decided to study the concept of putting the sand filter structures back into use for fish-rearing purposes. Because the water that circulated through the water purification pools (K Pools) and associated sand filters was clean river water, there is little chance of the structures being radioactively contaminated. To date, separate K Pools have been used for raising a variety of cold water fish species, including white sturgeon and fall chinook salmon, as well as for providing potable water to the 100 K Area of the Hanford Site for fire and service water purposes.

  11. 225-B Pool Cell 5 Liner Leak Investigation

    SciTech Connect (OSTI)

    Rasmussen, J.H., Westinghouse Hanford

    1996-06-07T23:59:59.000Z

    This document describes the actions taken to confirm and respond to a very small (0.046 ml/min) leak in the stainless steel liner of Hanford`s Waste Encapsulation and Storage Facility (WESF) storage pool cell 5 in Building 225-B. Manual level measurements confirmed a consistent weekly accumulation of 0.46 liters of water in the leak detection grid sump below the pool cell 5 liner. Video inspections and samples point to the capsule storage pool as the source of the water. The present leak rate corresponds to a decrease of only 0.002 inches per week in the pool cell water level, and consequently does not threaten any catastrophic loss of pool cell shielding and cooling water. The configuration of the pool cell liner, sump system, and associated risers will limit the short-term consequences of even a total liner breach to a loss of 1 inch in pool cell level. The small amount of demineralized pool cell water which has been in contact with the concrete structure is not enough to cause significant structural damage. However, ongoing water-concrete interaction increases. The pool cell leak detection sump instrumentation will be modified to improve monitoring of the leak rate in the future. Weekly manual sump level measurements continue in the interim. Contingency plans are in place to relocate the pool cell 5 capsules if the leak worsens.

  12. Storage Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho | DepartmentEnergy Steps toStorage Water

  13. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20T23:59:59.000Z

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

  14. annual water storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a program for farmer storage of surface irrigation water in Elephant Butte Reservoir, New Mexico. This program would allow individual farmers to store part of their annual surface...

  15. Ground-based measurements of soil water storage in Texas

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Ground-based measurements of soil water storage in Texas Todd Caldwell Bridget Scanlon Di Long Michael Young Texas drought and beyond 22-23 October 2012 #12;Ground-based soil moisture Why do we need-limited TRANSPIRATION Water-limited Carbon storage ECOHYDROLOGY Stress, mortality, fire Oxygen limitations MICROBIAL

  16. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video

    E-Print Network [OSTI]

    Gerardi, Craig

    High-speed video and infrared thermometry were used to obtain time- and space-resolved information on bubble nucleation and heat transfer in pool boiling of water. The bubble departure diameter and frequency, growth and ...

  17. Investigation of the condition of spent-fuel pool components

    SciTech Connect (OSTI)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01T23:59:59.000Z

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

  18. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05T23:59:59.000Z

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regions deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regions large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  19. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01T23:59:59.000Z

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  20. Variations of surface water extent and water storage in large river basins: A comparison of different global data sources

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    of the spatio-temporal variations of total terrestrial water storage (the sum of ground water, soil water1 Variations of surface water extent and water storage in large river basins: A comparison mass variations monitored by GRACE, simulated surface and total water storage from WGHM, water levels

  1. Water storage key factor in coalbed methane production

    SciTech Connect (OSTI)

    Luckianow, B.J. (Taurus Exploration Inc., Birmingham, AL (US)); Hall, W.L. (Dames and Moore, Atlanta, GA (US))

    1991-03-11T23:59:59.000Z

    Storage ponds provide a cost-effective means to temporarily retain water produced with coalbed methane and permit gas production during times when stream flow rates drop. Normally, water produced with the gas is run into nearby streams, with the dilution rate closely monitored and controlled by environmental agencies. During low stream flow in the Black Warrior basin, Ala., large volumes of produced water must be stored to prevent shut-in of coalbed methane fields. The authors discuss how they constructed such production water facilities for the Cedar Cove field to eliminate periodic field shut-ins as a result of excess water production. The effectiveness of such a storage approach is governed by receiving stream flow variability, production water flow characteristics, and the economics of storage pond construction.

  2. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    SciTech Connect (OSTI)

    Wagner, J.C.; Parks, C.V.

    2000-09-01T23:59:59.000Z

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE. Consequently, the findings presented here do not represent a significant safety concern unless/until the subcritical margin associated with the soluble boron (that is not currently explicitly credited) is offset by the uncertainties associated with burnup credit and/or the expanded allowance of credit for the soluble boron.

  3. Ex-vessel melt-coolant interactions in deep water pool: Studies and accident management for Swedish BWRs

    SciTech Connect (OSTI)

    Sienicki, J.J.; Chu, C.C.; Spencer, B.W. (Argonne National Lab., IL (United States)); Frid, W. (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Loewenhielm, G. (Vattenfall AB, Vaellingby (Sweden))

    1993-01-01T23:59:59.000Z

    In Swedish BWRs having an annular suppression pool, the lower drywell beneath the reactor vessel is flooded with water to mitigate against the effects of melt release into the drywell during a severe accident. The THIRMAL code has been used to analyze the effectiveness of the water pool to protect lower drywell penetrations by fragmenting and quenching the melt as it relocates downward through the water. Experiments have also been performed to investigate the benefits of adding surfactants to the water to reduce the likelihood of fine-scale debris formation from steam explosions. This paper presents an overview of the accident management approach and surfactant investigations together with results from the THIRMAL analyses.

  4. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  5. Storage Gas Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanie Price Stephanie PriceStoller PrimeGas Water

  6. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois

    E-Print Network [OSTI]

    Swenson, Sean; Yeh, Pat J.-F.; Wahr, John; Famiglietti, James

    2006-01-01T23:59:59.000Z

    J. -F. Yeh et al. , Ground- water storage changes inferredstorage variations at these spatial scales, a GRACE ground-

  7. Texas Water Storage Observed by GRACE Byron Tapley , Srinivas Bettadpur , Hhimanshue Save

    E-Print Network [OSTI]

    Yang, Zong-Liang

    results from DM DM = DMl + DMs + DMg where DMl is surface storage DMs is soil moisture DMg is ground water1-08-2008 Texas Water Storage Observed by GRACE Byron Tapley , Srinivas Bettadpur , Hhimanshue Save Operations Implications for Texas Water Storage Measurements Future Plans 11/6/2012 2 #12;First Decade

  8. Operating experience of a chilled water storage system

    SciTech Connect (OSTI)

    Pierpoint, T.J.; Marsilii, J.A.

    1986-03-01T23:59:59.000Z

    The Potomac Electric Power Company (PEPCO) is actively studying methods, such as Thermal Energy Storage (TES), to reduce the summer peak growth rate. TES is a technology that can provide significant reductions in the summer on-peak demand level thereby aiding building owners in reducing their operating costs while helping utilities reduce summer peak load growth. From analysis of PEPCO's chilled water storage system in its Forestville, MD office building it is evident that for demand reduction to be achieved significant consideration must be placed in the operational strategies chosen for the TES system. The chiller priority strategy was chosen because it is straightforward to implement and provides security that stored chilled water will always be available. The building, operating under the chiller priority scenario, accomplished a maximum load reduction 20 kW in 1985 and an average summer season load reduction of 13.5 kW. Demand reductions of up to 50 kW were expected but not achieved largely due to the operational strategies chosen. An alternative approach is storage priority. If storage priority had been implemented for the 1985 cooling season, analysis indicate that the expected demand reductions of 50 kW could have been achieved. 7 figures, 2 tables.

  9. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America

    E-Print Network [OSTI]

    de Linage, Caroline; Kim, Hyungjun; Famiglietti, James S; Yu, Jin-Yi

    2013-01-01T23:59:59.000Z

    stress, i.e. , the ground water storage [Toomey et al. ,and longer time scales, as ground water storage multidecadal

  10. Storage of water on vegetation under simulated rainfall of varying intensity

    E-Print Network [OSTI]

    Keim, Richard

    Storage of water on vegetation under simulated rainfall of varying intensity R.F. Keim a,*, A Little is understood about how storage of water on forest canopies varies during rainfall, even though storage changes intensity of throughfall and thus affects a variety of hydrological processes

  11. Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K. Bowles, Ivan Saika-Voivod, and Francesco Sciortino

    E-Print Network [OSTI]

    Sciortino, Francesco

    Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K://jcp.aip.org/about/rights_and_permissions #12;THE JOURNAL OF CHEMICAL PHYSICS 138, 034505 (2013) Free energy surface of ST2 water near umbrella sampling Monte Carlo simulations to evaluate the free energy surface of the ST2 model of water

  12. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. Water-induced morphology changes in BaO?-Al2O3 NOx storage materials. Abstract: Exposure of NO2-saturated BaO?-Al2O3 NOx storage materials to H2O vapour...

  13. Heat pump water heater and storage tank assembly

    DOE Patents [OSTI]

    Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

    1999-09-07T23:59:59.000Z

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  14. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01T23:59:59.000Z

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  15. Spent fuel and fuel pool component integrity. Annual report, FY 1980

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Bailey, W.J.; Bradley, E.R.; Bruemmer, S.M.; Langstaff, D.C.

    1981-09-01T23:59:59.000Z

    During program FY 1980 staff members of the Spent Fuel and Fuel Pool Component Integrity Program at Pacific Northwest Laboratory (PNL) completed the following major tasks: represented DOE on the international Behavior of Fuel Assemblies in Storage (BEFAST) Committee; the program manager, A.B. Johnson, Jr., participated in an International Survey of Water Reactor Spent Fuel Storage Experience, which was conducted jointly by the International Atomic Energy Agency (Vienna) and the Nuclear Energy Agency (Paris); provided written testimony and cross statement for the Proposed Rulemaking on Storage and Disposal of Nuclear Waste; acquired and began examination of the world's oldest pool-stored Zircaloy-clad fuel from the Shippingport reactor, stored approx. 21 years in deionized water; acquired and began examination of stainless-clad spent fuel from the Connecticut Yankee Reactor (PWR); negotiated for specimens from components stored in spent fuel pools at fuel storage facilities from the Savannah River Plant, Aiken, South Carolina, Zion (PWR) spent fuel pool, Zion, Illinois, and La Crosse (BWR) spent fuel pool, La Crosse, Wisconsin; planned for examinations in FY 81 of specimens from the three spent fuel pools; investigated a low-temperature stress corrosion cracking mechanism that developed in piping at a few PWR spent fuel pools. This report summarizes the results of these activities and investigations. Details are provided in the presentationsand publications generated under this program and summarized in Appendix A.

  16. Criticality evaluations of scrambled fuel in water basin storage

    SciTech Connect (OSTI)

    Fast, E.

    1989-01-01T23:59:59.000Z

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections.

  17. Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana

    E-Print Network [OSTI]

    Stevenson, Matthew M

    2009-01-01T23:59:59.000Z

    Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

  18. Household water treatment and safe storage options for Northern Region Ghana : consumer preference and relative cost

    E-Print Network [OSTI]

    Green, Vanessa (Vanessa Layton)

    2008-01-01T23:59:59.000Z

    A range of household water treatment and safe storage (HWTS) products are available in Northern Region Ghana which have the potential to significantly improve local drinking water quality. However, to date, the region has ...

  19. REGULAR ARTICLE Small-scale variability in water storage and plant available

    E-Print Network [OSTI]

    Schwinning, Susan - Department of Biology, Texas State University

    domain reflectometry, neutron thermalization and gamma ray densitometry. Changes in water content were, water content and bulk density profiles were measured to a depth of 1.6 m by a combination of time in water storage and plant access to water in the rocky soils of a karst savanna dominated by Ashe juniper

  20. Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity

    E-Print Network [OSTI]

    Troch, Peter

    Total water storage dynamics in response to climate variability and extremes: Inference from long; published 27 April 2012. [1] Terrestrial water storage is a basic element of the hydrological cycle and a key state variable for land surface-atmosphere interaction. However, measuring water storage

  1. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01T23:59:59.000Z

    2007), Estimating ground water storage changes in thestorage (i.e. , all of the snow, ice, surface water, soil moisture, and ground-

  2. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE

    E-Print Network [OSTI]

    Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J. S

    2012-01-01T23:59:59.000Z

    or no change in ground water storage. Therefore, we con-ground- water table from 2002 through 2010 would be required to account for the subsurface water storageground water level over the same period repre- sents 1.9 cm of potential additional soil water storage

  3. Stay Above Water with an Efficient Swimming Pool | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring SolarSystem,DepartmentofStatusAbove Water

  4. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01T23:59:59.000Z

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  5. Water-induced morphology changes in BaO/?-Al2O3 NOx storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials: an FTIR, TPD, and time-resolved synchrotron XRD Water-induced morphology changes in BaO?-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron...

  6. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  7. Household water treatment and safe storage product development in Ghana

    E-Print Network [OSTI]

    Yang, Shengkun, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Microbial and/or chemical contaminants can infiltrate into piped water systems, especially when the system is intermittent. Ghana has been suffering from aged and intermittent piped water networks, and an added barrier of ...

  8. ORIGINAL PAPER Water storage loss in central and south Asia

    E-Print Network [OSTI]

    Hwang, Cheinway

    may cause a severe shortage of water sooner than expected. With a climate change that could affect., `Climate change and water shortages closing in on Tajikistan and central Asia', Oxfam, 17 February 2010, India may face a water shortage problem in the near future (Rodell et al. 2009; Tiwari et al. 2009

  9. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  10. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage

    E-Print Network [OSTI]

    Fiorino, D. P.

    1995-01-01T23:59:59.000Z

    of 35 psig was applied to the 36" diameter return header in the basement of the Central Utility Plant by a pressure-activated make-up valve. In addition, a hydro-pneumatic tank allowed for expansion. Chilled water was supplied at 42"F year... and a 5,000 gpm peak chilled water flow rate (1.33 gpmlton). Outside ofDPIIDMOS5, a pair of 600' long, 18" diameter overhead welded-steel primary chilled water pipelines were direct-connected with the Expressway manufacturing complex's existing...

  11. A remote desktop utility system is an emerging client/server networked model for enterprise desktops. In this model, a shared pool of consolidated compute and storage

    E-Print Network [OSTI]

    Nahrstedt, Klara

    Abstract 1 A remote desktop utility system is an emerging client/server networked model the shared pool on-demand, and they interact with their applications over the network using remote display technologies. Understanding the detailed behavior of applications in these remote desktop utilities is crucial

  12. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    SciTech Connect (OSTI)

    Langstaff, D.C.; Bailey, W.J.; Johnson, A.B. Jr.; Landow, M.P.; Pasupathi, V.; Klingensmith, R.W.

    1982-09-01T23:59:59.000Z

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation.

  13. A computerized storage and retrieval system for water quality data

    E-Print Network [OSTI]

    Sparr, Ted M

    1969-01-01T23:59:59.000Z

    and retrieval capability is needed in the field of water quality research, With many varied environmen- tal quality studies being conducted, an easy-to-use, flexible, and responsive means of storing and selectively retrieving date using a wide variety... this need, will have the follpw- Ing data management capabilities: (I) Create and maintain a water quality data base including sampled data values, reliability indicators, and remarks (2) retrieve selected data from this data bank (3} support a...

  14. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect (OSTI)

    Lata

    1996-09-26T23:59:59.000Z

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  15. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect (OSTI)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13T23:59:59.000Z

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  16. Procedures for the storage and digestion of natural waters for the determination of lterable reactive phosphorus, total lterable

    E-Print Network [OSTI]

    Canberra, University of

    Review Procedures for the storage and digestion of natural waters for the determination and digestion of water samples for lterable reactive phosphorus (FRP), total lterable phosphorus (TFP samples contain digestion of samples

  17. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S. [Centro Tecnologico da Marinha em S.Paulo, Brazilian Navy Technological Center, Sao Paulo (Brazil)

    2008-07-01T23:59:59.000Z

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  18. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect (OSTI)

    Kingston, T.; Scott, S.

    2013-03-01T23:59:59.000Z

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  19. Draft environmental assessment -- Test Area North pool stabilization project update

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

  20. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  1. Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological

    E-Print Network [OSTI]

    Stuttgart, Universität

    Estimating GRACE monthly water storage change consistent with hydrology by assimilating hydrological information B. Devaraju, N. Sneeuw Institute of Geodesy, Universit¨at Stuttgart, Germany estimates of mass changes with observed hydrological data, which is available for 20% of the land area

  2. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  3. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

    2002-07-15T23:59:59.000Z

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  4. On Leakage andSeepage of CO2 from Geologic Storage Sites intoSurface Water

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Lewicki, J.L.

    2005-10-14T23:59:59.000Z

    Geologic carbon sequestration is the capture ofanthropogenic carbon dioxide (CO2) and its storage in deep geologicformations. The processes of CO2 seepage into surface water aftermigration through water-saturated sediments are reviewed. Natural CO2 andCH4 fluxes are pervasive in surface-water environments and are goodanalogues to potential leakage and seepage of CO2. Buoyancy-driven bubblerise in surface water reaches a maximum velocity of approximately 30 cms-1. CO2 rise in saturated porous media tends to occur as channel flowrather than bubble flow. A comparison of ebullition versus dispersive gastransport for CO2 and CH4 shows that bubble flow will dominate overdispersion in surface water. Gaseous CO2 solubility in variable-salinitywaters decreases as pressure decreases leading to greater likelihood ofebullition and bubble flow in surface water as CO2 migratesupward.

  5. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  6. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  7. Regional terrestrial water storage change and evapotranspiration from terrestrial and atmospheric water balance computations

    E-Print Network [OSTI]

    Yeh, Pat J.-F.; Famiglietti, J. S

    2008-01-01T23:59:59.000Z

    is derived as the residual of precipitation and water vaporThe largest mean water budget residual calculated from theresidual between the two large terms in the combined water

  8. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01T23:59:59.000Z

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  9. Examination of Spent Pressurized Water Reactor Fuel Rods After 15 Years in Dry Storage

    SciTech Connect (OSTI)

    Einziger, Robert E. [Argonne National Laboratory (United States); Tsai Hanchung [Argonne National Laboratory (United States); Billone, Michael C. [Argonne National Laboratory (United States); Hilton, Bruce A. [Argonne National Laboratory-West (United States)

    2003-11-15T23:59:59.000Z

    For [approximately equal to]15 yr Dominion Generation's Surry Nuclear Station 15 x 15 Westinghouse pressurized water reactor (PWR) fuel was stored in a dry inert-atmosphere Castor V/21 cask at the Idaho National Environmental and Engineering Laboratory at peak cladding temperatures that decreased from {approx}350 to 150 deg. C. Before storage, the loaded cask was subjected to thermal-benchmark tests, during which time the peak temperatures were greater than 400 deg. C. The cask was opened to examine the fuel rods for degradation and to determine if they were suitable for extended storage. No fuel rod breaches and no visible degradation or crud/oxide spallation from the fuel rod surface were observed. The results from profilometry, gas release measurements, metallographic examinations, microhardness determination, and cladding hydrogen behavior are reported in this paper.It appears that little or no fission gas was released from the fuel pellets during either the thermal-benchmark tests or the long-term storage. In the central region of the fuel column, where the axial temperature gradient in storage is small, the measured hydrogen content in the cladding is consistent with the thickness of the oxide layer. At {approx}1 m above the fuel midplane, where a steep temperature gradient existed in the cask, less hydrogen is present than would be expected from the oxide thickness that developed in-reactor. Migration of hydrogen during dry storage probably occurred and may signal a higher-than-expected concentration at the cooler ends of the rod. The volume of hydrides varies azimuthally around the cladding, and at some elevations, the hydrides appear to have segregated somewhat to the inner and outer cladding surfaces. It is, however, impossible to determine if this segregation occurred in-reactor or during transportation, thermal-benchmark tests, or the dry storage period. The hydrides retained the circumferential orientation typical of prestorage PWR fuel rods. Little or no cladding creep occurred during thermal-benchmark testing and dry storage. It is anticipated that the creep would not increase significantly during additional storage because of the lower temperature after 15 yr, continual decrease in temperature from the reduction in decay heat, and concurrent reductions in internal rod pressure and stress. This paper describes the results of the characterization of the fuel and intact cladding, as well as the implications of these results for long-term (i.e., beyond 20 yr) dry-cask storage.

  10. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat oxide fuel cell, Cogeneration, Storage heat Tank 1. Introduction In residential sector, energy

  11. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01T23:59:59.000Z

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  12. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Pesticide Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    Proper pesticide management is important to preventing ground water contamination. This publication contains helpful information about pesticide storage facilities, mixing and loading practices, and spill cleanup. A chart lists pesticides according...

  13. Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates

    E-Print Network [OSTI]

    Ribes, Aurlien

    In earth system models, the partitioning of precipitation among the variations of continental water storage climate system sim- ulated by earth system models (ESMs). The continental freshwater reservoirs represent

  14. 1. Go on top of the check-dam and survey the water-shed, i.e., the upstream part from which water ows into the storage.

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 1. Go on top of the check-dam and survey the water-shed, i.e., the upstream part from which water ows into the storage. 2. What is the storage in the dam (in cu.m.)? 3. What is the length and depth of the dam? What is its structure and cost? How much time did it take to build the dam? 4. Where

  15. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems system will have similar performance to todays regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  16. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-11-01T23:59:59.000Z

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  17. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  18. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01T23:59:59.000Z

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

  19. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    E-Print Network [OSTI]

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S

    2011-01-01T23:59:59.000Z

    GRACE and a land-atmosphere water balance, Geophys. Res.2008), Analysis of terrestrial water storage changes fromGRACE and GLDAS, Water Resour. Res. , 44, W02433, doi:

  20. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08T23:59:59.000Z

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  1. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  2. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  3. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30T23:59:59.000Z

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 ?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    1975. Underground Storage of Treated Water: A Field Test.1975. "Underground Storage of Treated Water: A Field Test,"

  5. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect (OSTI)

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31T23:59:59.000Z

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  6. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01T23:59:59.000Z

    by approximately $1.5 million per year. The thermal storage tank is a fully buried cylindrical, precast, pre-stressed tank with four-ring single pipe octagonal diffusers. It holds 5.2 million gallons (1 9.7 million L) of water, and is 140 ft (42.7 m... of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management...

  7. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.

  8. Collection and representation of GIS data to aid household water treatment and safe storage technology implementation in the northern region of Ghana

    E-Print Network [OSTI]

    VanCalcar, Jenny E. (Jenny Elizabeth)

    2006-01-01T23:59:59.000Z

    In 2005, a start-up social business called Pure Home Water (PHW) was begun in Ghana to promote and sell household water treatment and safe storage (HWTS) technologies. The original aim of the company was to offer a variety ...

  9. A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure

    E-Print Network [OSTI]

    Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

    2010-01-01T23:59:59.000Z

    In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to ...

  10. Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

    2002-01-01T23:59:59.000Z

    The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

  11. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  12. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    households with water heaters, solar water heaters areMODELING THE IMPACT OF SOLAR WATER HEATERS ON THE REDUCTIONconditions than solar water heaters, and therefore provide

  13. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    MODELING THE IMPACT OF SOLAR WATER HEATERS ON THE REDUCTIONinsurance industry as a solar water heater driver in Southwith water heaters, solar water heaters are gaining in

  14. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    history of promoting heat pump water heaters (HPWH) throughwater heaters, and heat pump water heaters are not typical.water heaters, heat pump water heater (HPWH) technology

  15. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect (OSTI)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01T23:59:59.000Z

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  16. Measurements of Water and B4C Content of Rackable Can Storage Boxes for HEU Storage at the HEUMF at the Y-12 National Security Complex

    SciTech Connect (OSTI)

    Neal, JS

    2003-03-24T23:59:59.000Z

    Extensive measurements at the Oak Ridge National Laboratory (ORNL) with BoroBond{trademark} blocks of varying thickness, natural boron carbide (B{sub 4}C) content, and water content, and with a simplified mockup of the Rackable Can Storage Box (RCSB) of fixed natural B{sub 4}C and water content, have led to a method of quantifying the water content of RCSBs by fast neutron time-of-flight transmission measurements (NMIS)* and quantifying the B{sub 4}C content with gamma ray spectrometry assuming the water content is known. The time-of-flight transmission measurements results can also be used to assess the uniformity of the BoroBond{trademark} in the RCSB. The data from both measurements will be stored for future comparisons to initial measurements. These methods can also be implemented at the RCSB production site, or subsequently at the Y-12 National Security Complex during the operating lifetime of the RCSBs at the Highly Enriched Uranium Materials Facility.

  17. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    blankets to electric hot water heaters in South Africa, J.for Residential Water Heaters, Direct Heating Equipment, andfor Residential Water Heaters, Direct Heating Equipment, and

  18. Rainwater harvesting systems that collect and convey rain-water from roofs to storage tanks are often the best or only

    E-Print Network [OSTI]

    Polz, Martin

    PROBLEM Rainwater harvesting systems that collect and convey rain- water from roofs to storage-yearrecord Rigorous analysis of rainwater harvesting system design can improve reliability and water quality CEE-yield of the rainwater harvesting systems, defining reliability as days per year on which the community's water de- mand

  19. Development of a Procedure for the Predictive Control Strategy of a Chilled Water Storage System

    E-Print Network [OSTI]

    Wei, G.; Sakuri, Y.; Claridge, D. E.; Turner, W. D.; Liu, M.

    2000-01-01T23:59:59.000Z

    Thermal energy storage systems store the thermal energy produced by the chiller plant in periods of off-peak electrical demand or when cheaper electricity is available. The stored thermal energy is then withdrawn from the reservoir to satisfy...

  20. Test Area North Pool Stabilization Project: Environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as {open_quotes}commercial fuels{close_quotes} except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative.

  1. Safe water storage in Kenya's modified clay pot : standardization, tap design, and cost recovery

    E-Print Network [OSTI]

    Young, Suzanne E

    2005-01-01T23:59:59.000Z

    One of the main components necessary for providing safe drinking water for users who lack piped water in the home is the ability to safely store it in the home. Users in the Nyanza Province of Kenya frequently carry water ...

  2. Biosand filtration of high turbidity water : modified filter design and safe filtrate storage

    E-Print Network [OSTI]

    Collin, Clair

    2009-01-01T23:59:59.000Z

    Unsafe drinking water is a major cause of water-related diseases that predominantly affect people living in developing countries. The most prevalent water-related disease is diarrhea, estimated to kill 1.8 million children ...

  3. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    resistance heating, this technology provides greaterheat pump technology to improve water heating efficiencytechnology offers a dramatic improvement in overall water heating

  4. Corium quench in deep pool mixing experiments

    SciTech Connect (OSTI)

    Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

    1985-01-01T23:59:59.000Z

    The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO/sub 2/, 16% ZrO/sub 2/, and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m/sup 2/ and 3.7 MW/m/sup 2/, respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab.

  5. Ceramic filter manufacturing in Northern Ghana : water storage and quality control

    E-Print Network [OSTI]

    Kleiman, Shanti Lisa

    2011-01-01T23:59:59.000Z

    In 2009, Pure Home Water (PHW), a Ghana based non-profit organization working to provide affordable and safe drinking water to people in the Northern Region of Ghana, began the construction of a ceramic pot filter (CPF) ...

  6. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE)

    E-Print Network [OSTI]

    Yeh, Pat J.-F.; Swenson, S. C; Famiglietti, J. S; Rodell, M.

    2006-01-01T23:59:59.000Z

    2006), Estimating ground water storage changes in theof monitoring ground- water storage variations from space [variations of groundwater storage. Most ground- water level

  7. Infrared thermometry study of nanofluid pool boiling phenomena

    E-Print Network [OSTI]

    Gerardi, Craig

    Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). ...

  8. Determination of pool boiling Critical Heat Flux enhancement in nanofluids

    E-Print Network [OSTI]

    Truong, Bao H. (Bao Hoai)

    2007-01-01T23:59:59.000Z

    Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

  9. Large-scale pool fires

    E-Print Network [OSTI]

    Steinhaus, Thomas; Welch, Stephen; Carvel, Ricky O; Torero, Jose L

    2007-03-29T23:59:59.000Z

    A review of research into the burning behaviour of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low ...

  10. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  11. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    and transport properties of carbon dioxide for molecularinterfacial properties of binary carbon dioxide waterCarbon dioxides liquidvapor coexistence curve and critical properties

  12. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    liquid/vapor interface of SPC/E water. J. Phys. Chem. 100,dioxide mixtures described by the SPC/E and EPM2 models. (and water oxygen is denoted by O SPC/E and O TIP for SPC/E (

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  14. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01T23:59:59.000Z

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  15. Implementing the Reliable Server Pooling Thomas Dreibholz

    E-Print Network [OSTI]

    Dreibholz, Thomas

    Implementing the Reliable Server Pooling Framework Thomas Dreibholz University of Duisburg Server Pooling (RSerPool) pro- tocol suite currently under standardization by the IETF is designed, configuring, accessing and monitoring pools of server resources. But RSerPool is not only able to manage pools

  16. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    Republic of South Africa, National Energy Act 34 of 2008. water heaters in South Africa, J. Energy South. Afr. , vol.Energy Efficiency Country Study: Republic of South Africa,

  17. Re-evaluation of monitored retrievable storage concepts

    SciTech Connect (OSTI)

    Fletcher, J.F.; Smith, R.I.

    1989-04-01T23:59:59.000Z

    In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

  18. Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994

    SciTech Connect (OSTI)

    Hower, T.L.; Obernyer, S.L.

    1994-01-01T23:59:59.000Z

    A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

  19. Retrieving snow mass from GRACE terrestrial water storage change with a land surface model

    E-Print Network [OSTI]

    Yang, Zong-Liang

    by the Advanced Very High Resolution Radio- meter (AVHRR) is decreasing since middle 1980s in response to global are variations in surface albedo and surface energy budgets, sensible heat and water vapor fluxes-chan- nel Microwave Radiometer (SMMR) and the Advanced Microwave Scanning Radiometer (AMSR) provide a capa

  20. Liquid Water Storage, Distribution, and Removal from Diffusion Media in PEFCS

    E-Print Network [OSTI]

    Mench, Matthew M.

    . Turhan,* K. Heller, J. Brenizer, and M. M. Mench**,z Fuel Cell Dynamics and Diagnostics Laboratory media DM of polymer electrolyte fuel cells PEFCs is a function of design geometry, surface geometry. Available electronically August 28, 2006. The management of water within a polymer electrolyte fuel cell

  1. CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water-rock interaction assessment and

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water repository requires the investigation of the potential CO2 leakage back into fresh groundwater, particularly sensitive monitoring techniques in order to detect potential CO2 leaks and their magnitude as well

  2. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  3. SESE Source From life in pools to life on planets?

    E-Print Network [OSTI]

    Rhoads, James

    environments. Hot springs may be similar in temperature and conditions to potential life-harbor- ing Yellowstone spring has a high temperature source pool (about 93C), which can flow into channels that become progressively cooler as the water and moves away from the hot source. This natural spring water forced upward

  4. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address Flooding, Water, and Power Systems On June 11, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Infrastructure Security, Microgrid,...

  5. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01T23:59:59.000Z

    is overdrafted from ground water storage basins. 3 In 1976supply, pumping from ground water storage reservoirs mayIn of ground formation which reduces the water storage

  6. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  7. Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.

    SciTech Connect (OSTI)

    Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

    1982-09-01T23:59:59.000Z

    A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

  8. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  9. Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1989-03-01T23:59:59.000Z

    The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

  10. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters March 10, 2015 -...

  11. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect (OSTI)

    Powers, D.A.

    1997-05-01T23:59:59.000Z

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  12. Water Clarity Simulant for K East Basin Filtration Testing

    SciTech Connect (OSTI)

    Schmidt, Andrew J.

    2006-01-20T23:59:59.000Z

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  13. Pooled Bond Program (South Dakota)

    Broader source: Energy.gov [DOE]

    The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt...

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  15. A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure

    E-Print Network [OSTI]

    Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

    2010-01-01T23:59:59.000Z

    the operating costs by shifting cooling production from higher cost periods to low cost periods. The electricity energy savings can also be achived by shifting the cooling load from less efficient chillers (CHLR) to more efficient chillers (such as new... electric centrifugal chillers) or loading chillers at the optimal Part Load Ratio (PLA). In an energy retrofit project, a chilled water (ChW) storage system is ofen prefered since existing equipment can be kept and the least system changes...

  16. Computational Study of the Hydrodynamic Behavior during Air Discharge through a Sparger Submerged in the Condensation Pool

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Bang, Young-Seok; Kim, In-Goo; Kim, Hho-Jung [Regulatory Research Div., Korea Institute of Nuclear Safety, 19 Kusongdong Yusongku Taejon (Korea, Republic of); Lee, Byeong-Eun; Kwon, Soon-Bum [School of Mech. Eng., Kyungpook National University, 1370, Sankyuk-dong, Puk-ku, Daegu 702-701 (Korea, Republic of)

    2002-07-01T23:59:59.000Z

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge and a better design of the IRWST, including sparger. (authors)

  17. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    AprilOctober period in Western Australia (see Chapter 7 foron the coast of Western Australia. The Australian Bureau oftowards the coast of Western Australia, ultimately making

  18. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    as the main body of the pack ice retreated northward andice retreat in the outer pack ice of the western Weddell-the S142 | AUGUST 2013 outer pack ice in the East Antarctic/

  19. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    Leba- non, Syria, West Kazakhstan, Armenia, Georgia, andterm mean. In western Kazakhstan, at the Caspian Sea, and into most areas; in western Kazakhstan tem- peratures were

  20. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    Atlantic hurricane in gale wind force diameter on record.stages of activity. Gale force winds and torrential rainfallto submergence of gale force winds as it crossed the north

  1. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    properties. Atmospheric Composition: aerosols and their precursors. Ocean Surface: carbon dioxide,

  2. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    from Pakistan northeastward to Mongolia and parts of easterntal Monitoring, Ulaanbaatar, Mongolia Parinussa, Robert M. ,eastern Siberia flowed into Mongolia and Kazakhstan along

  3. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration

  4. Underground storage of hydrocarbons in Ontario

    SciTech Connect (OSTI)

    Carter, T.R.; Manocha, J. [Ontario Ministry of Natural Resources, Ontario (Canada)

    1995-09-01T23:59:59.000Z

    The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

  5. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    1971, storage of Solar Energy in a Bandy- Gravel Ground. 2.Aquifer Storage of Heated Water: A Field Experuuent. GroundStorage of Heated Water: Part II - Numerical Simulation of Field Results. Ground

  6. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  7. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect (OSTI)

    Geosciences Division, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA; Hammack, R.W.

    2006-12-28T23:59:59.000Z

    Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

  8. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    SciTech Connect (OSTI)

    Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

    2010-01-15T23:59:59.000Z

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  9. 0-7803-XXXX-X/06/$20.00 2009 IEEE 25th IEEE SEMI-THERM Symposium Sub-Atmospheric Pressure Pool Boiling of Water on a Screen-Laminate Enhanced Surface

    E-Print Network [OSTI]

    Wirtz, Richard A.

    structures having wide ranging porosity and pore size. When deployed as a surface enhancement in a boiling pool-boiling experiments at one atmosphere and sub-atmospheric pressure assess the utility of fine factor of lamination [dimensionless] CHF = critical heat flux [W/cm2 ] Dh = pore hydraulic diameter [m

  10. Spent fuel storage requirements 1993--2040

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  11. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heaters, hot water supply boilers, and unfired hot water storage tanks.heaters, hot water supply boilers, and unfired hot water storage tanks.

  12. Recommended temperature limits for dry storage of spent light water reactor Zircaloy-clad fuel rods in inert gas

    SciTech Connect (OSTI)

    Levy, I.S.; Chin, B.A.; Simonen, E.P.; Beyer, C.E.; Gilbert, E.R.; Johnson, A.B. Jr.

    1987-05-01T23:59:59.000Z

    It is concluded that the recommendation of a single-valued temperature limit of 380/sup 0/C should be replaced by multiple limits to account for variations in fuel design, burnup level, spent fuel age, and storage cask design. A single-valued limit to account for these factors would, in some situations, impose unnecessary conservatisms and, potentially, economic penalties for utilities and storage cask vendors. The technical validity and conservatism of the CSFM model should assure acceptance by the NRC for utility and cask vendor use.

  13. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01T23:59:59.000Z

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  14. Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling

    E-Print Network [OSTI]

    Shai, Isaac

    1967-01-01T23:59:59.000Z

    A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

  15. Pool power control in remelting systems

    DOE Patents [OSTI]

    Williamson, Rodney L. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX)

    2011-12-13T23:59:59.000Z

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  16. Pool boiling on nano-finned surfaces

    E-Print Network [OSTI]

    Sriraman, Sharan Ram

    2009-05-15T23:59:59.000Z

    The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling...

  17. Do Dark Pools Harm Price Discovery?

    E-Print Network [OSTI]

    Zhu, Haoxiang

    Dark pools are equity trading systems that do not publicly display orders. Dark pools offer potential price improvements but do not guarantee execution. Informed traders tend to trade in the same direction, crowd on the ...

  18. Report on Solar Pool Heating Quantitative Survey

    SciTech Connect (OSTI)

    Synapse Infusion Group, Inc. (Westlake Village, California)

    1999-05-06T23:59:59.000Z

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

  19. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  20. Company: American Pool Management Work Location: Edison, NJ Local Pools throughout Central and North Jersey

    E-Print Network [OSTI]

    Hanson, Stephen José

    Company: American Pool Management Work Location: Edison, NJ ­ Local Pools throughout Central and North Jersey Pay Rate: $9-$12/hour Type of Business: Swimming Pool Management Job Title: Seasonal Staffing Assistant, Seasonal Area Supervisors, Seasonal Pool Managers, Seasonal Lifeguards Start Date: May

  1. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19T23:59:59.000Z

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  2. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    , accumulating manure in a con- centrated area can be risky to the environment and to human and animal health unless done properly. Federal and state drinking water standards state that nitrate levels in drinking water should not exceed 10 milligrams per liter... (equivalent to parts per million for water mea- sure). Nitrate nitrogen levels higher than this can pose health problems for infants under 6 months of age, including the condition known as methemoglobinemia (blue baby syndrome). Nitrate also can affect adults...

  3. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of water heaters and hot water storage tanks of June 2010,for water heaters and hot water storage tanks, and of theof water heaters and hot water storage tanks," 2010. http://

  4. The Water Purification System for the Daya Bay Reactor Neutrino Experiment

    E-Print Network [OSTI]

    J. Wilhelmi; R. Bopp; R. Brown; J. Cherwinka; J. Cummings; E. Dale; M. Diwan; J. Goett; R. W. Hackenburg; J. Kilduff; L. Littenberg; G. S. Li; X. N. Li; J. C. Liu; H. Q. Lu; J. Napolitano; C. Pearson; N. Raper; R. Rosero; P. Stoler; Q. Xiao; C. G. Yang; Y. Yang; M. Yeh

    2014-08-06T23:59:59.000Z

    We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly sealed system, and this provides significant challenges to maintaining high purity in the storage pools, each of which contains several thousand cubic meters. High purity is dictated by the need for large optical absorption length, which is critical for the operation of the experiment. The system is largely successful, and the water clarity criteria are met. We also include a discussion of lessons learned.

  5. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    SciTech Connect (OSTI)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01T23:59:59.000Z

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

  6. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    SciTech Connect (OSTI)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10T23:59:59.000Z

    To develop the understanding and predictive measures of the post loss of water inventory hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  7. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Fertilizer Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Fertilizer is a major source of ground water contamination. This publication emphasizes the best management practices for storing fertilizers, whether you are building a new facility or modifying an existing one. It also includes information on safe...

  8. Status of household water treatment and safe storage in 45 countries and a case study in Northern India

    E-Print Network [OSTI]

    Jain, Mehul

    2010-01-01T23:59:59.000Z

    This thesis examines the present of the status of HWTS technologies across the world, and in one location Lucknow, India. The data for the global status of HWTS was collected by contacting the Water, Sanitation and Hygiene ...

  9. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    -tight design, stalled according to according to accepted medium-textured soils coarse-textured above ground) accepted engineering engineering standards (silt loam, loam). soils (sands, sandy standards and specifi- and specifications. Not Water table deeper... loam). Water table cations. Properly maintained. than 20 feet. or fractured bed- maintained. rock shallower than 20 feet. Concrete (liquid- Designed and in- Designed and installed Concrete cracked, Concrete cracked, tight design) stalled according...

  10. Signature of Robert Poole Signature of Robert Poole Signature of Robert Poole

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich Signature ofMarkR.Robert Poole

  11. Relaxations and discretizations for the pooling problem

    E-Print Network [OSTI]

    Akshay Gupte

    2015-04-28T23:59:59.000Z

    Apr 28, 2015 ... Abstract: The pooling problem is a folklore NP-hard global optimization problem that finds appli- cations in industries such as petrochemical...

  12. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  13. Monitoring and simulation of the thermal performance of solar heated outdoor swimming pools

    SciTech Connect (OSTI)

    Hahne, E.; Kuebler, R. (Universitaet Stuttgart (Germany))

    1994-07-01T23:59:59.000Z

    Based on detailed measurements of two outdoor swimming pools (at Leonberg and Moehringen) a computer model has been developed and validated for the simulation of the thermal behaviour of such pools. The subroutine is compatible to TRNSYS 13.1. Correlations for the heat losses due to evaporation, convection, and radiation were taken from literature and tested in the model. It was not possible to select one optimal correlation for the description of the evaporative heat losses of both swimming pools due to the different exposure to wind. Using the most suitable correlation for the evaporative heat losses of each pool allowed for the simulation of the pool temperature with less than 0.5 K standard deviation between measured and simulated temperature. the major problem was the measurement of the relevant wind speed to be used in the correlations describing the evaporative heat losses under real outdoor conditions. A method is described detailing how to calibrate the model using the heating energy requirement and the measured pool temperature during actual operation periods. The analysis of the measured data of two different outdoor swimming pools under the same climatic conditions showed differences of a factor 2 and more in the heat demand per unit pool area. This was mainly caused by the difference in local wind speed which differed by more than a factor 4. The two pools investigated were heated by solar energy with a fraction of 28% and 14%, respectively, and the seasonal efficiency of the solar systems was 37.7% and 33.4%. Simulations show that a reduction of the water temperature from 24[degrees]C to 22[degrees]C during periods with low outdoor temperatures and few visitors, reduces the fuel consumption to less than half and increases the solar fraction from 28% to 50% in one pool.

  14. 4, 615650, 2007 Drivers of storage

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    BGD 4, 615650, 2007 Drivers of storage water use in Scots pine H. Verbeeck et al. Title Page drivers of storage water use in Scots pine H. Verbeeck1 , K. Steppe2 , N. Nadezhdina3 , M. Op De Beeck1 Correspondence to: H. Verbeeck (hans.verbeeck@ua.ac.be) 615 #12;BGD 4, 615650, 2007 Drivers of storage water use

  15. The High Performance Storage System

    SciTech Connect (OSTI)

    Coyne, R.A.; Hulen, H. [IBM Federal Systems Co., Houston, TX (United States); Watson, R. [Lawrence Livermore National Lab., CA (United States)

    1993-09-01T23:59:59.000Z

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  16. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  17. Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for

    E-Print Network [OSTI]

    Holliday, Vance T.

    Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf If the trip be submitted with the Motor Pool Request. A list of passengers and drivers is for all motor pool travel (this

  18. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01T23:59:59.000Z

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  19. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  20. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  1. Water Heaters (Tankless Electric) | Department of Energy

    Energy Savers [EERE]

    Tankless Electric) Water Heaters (Tankless Electric) Water Heater, Tankless Electric - v1.0.xlsx More Documents & Publications Tankless Gas Water Heaters Water Heaters (Storage...

  2. Enhancement of Pool Boiling Heat Transfer in Confined Space

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05T23:59:59.000Z

    Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

  3. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  4. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  5. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  6. Analysis of Bitcoin Pooled Mining Reward Systems

    E-Print Network [OSTI]

    Rosenfeld, Meni

    2011-01-01T23:59:59.000Z

    In this paper we describe the various scoring systems used to calculate rewards of participants in Bitcoin pooled mining, explain the problems each were designed to solve and analyze their respective advantages and disadvantages.

  7. Modeling of LNG Pool Spreading and Vaporization

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding...

  8. Recycled Unbound Base Pooled Fund Study

    E-Print Network [OSTI]

    Minnesota, University of

    Recycled Unbound Base Pooled Fund Study Tuncer B. Edil Recycled Materials Resource Center Geological Engineering Program University of Wisconsin-Madison #12;! Recycled Concrete Aggregate (RCA absorption ! Un-Hydrated cement increases strength and durability ! Recycled asphalt pavement (RAP

  9. Performance Study of Swimming Pool Heaters

    SciTech Connect (OSTI)

    McDonald, R.J.

    2009-01-01T23:59:59.000Z

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  10. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01T23:59:59.000Z

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  11. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

  12. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  13. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues Chemical Storage Store in compatible containers that are in good condition to store separately. #12;Safety Issues Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage Provide

  14. Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411

    SciTech Connect (OSTI)

    Phillips, Chris; Thomas, Ivan; McNiven, Steven [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Lanthrum, Gary [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)] [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)

    2013-07-01T23:59:59.000Z

    EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the construction of the CSF. Stage 1 requires only a cask storage pad and railroad interface to be constructed, and the CSF can then receive the UNF that is in transportable storage casks. Stage 2 adds a canister handling facility, a storage cask fabrication facility and an expanded storage pad, and enables the receipt of all canistered UNF from both operating and shutdown sites. Stage 3 provides a repackaging facility with a water-filled pool that provides flexibility for a range of repackaging scenarios. This includes receiving and repackaging 'bare' UNF into suitable canisters that can be placed into interim storage at the CSF, and enables UNF that is being received, or already in storage onsite, to be repackaged into canisters that are suitable for disposal at a geologic repository. The study used the 'Total System Model' (TSM) to analyze a range of CSF capacities and operating scenarios with differing parameters covering UNF pickup orders, one or more CSF sites, CSF start dates, CSF receipt rates and geologic repository start dates. The TSM was originally developed to model movement of UNF to the Yucca Mountain repository and was modified for this study to enable the CSF to become the 'gateway' to a future geologic repository. The TSM analysis enabled costs to be estimated for each scenario and showed how these are influenced by each of the parameters. This information will provide essential underpinning for a future Conceptual Design preparation. (authors)

  15. Stealthy Deception Attacks on Water SCADA Systems

    E-Print Network [OSTI]

    Hu, Fei

    Stealthy Deception Attacks on Water SCADA Systems Saurabh Amin1 Xavier Litrico2 Alexandre M. Bayen1 The Gignac Water SCADA System Modeling of Cascade Canal Pools Attacks on PI Control Limits on Stability and Detectability #12;Recapitulation from last year The Gignac Water SCADA System Modeling of Cascade Canal Pools

  16. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements

    SciTech Connect (OSTI)

    Griffin, M.J. [EQE International, Inc., Irvine, CA (United States); Harris, B.G. [Argonne National Lab., Idaho Falls, ID (United States)

    1993-10-01T23:59:59.000Z

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. {times} 15in., and 366 1in. {times} 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. {times} 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget.

  17. Evaluation of a Simple Load Balancing Improvement for Reliable Server Pooling with Heterogeneous Server Pools

    E-Print Network [OSTI]

    Dreibholz, Thomas

    Evaluation of a Simple Load Balancing Improvement for Reliable Server Pooling with Heterogeneous Server Pools Xing Zhou Hainan University, College of Information Science and Technology Renmin Road 58.dreibholz,erwin.rathgeb}@uni-due.de Abstract The IETF is currently standardizing a light-weight proto- col framework for server redundancy

  18. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-02-01T23:59:59.000Z

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  19. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    205 5. Mediterranean, Italian, and Balkanin Italy and most of the Balkan Peninsula (e.g. , -3.5Ctation over most of the Balkan Peninsula and over some parts

  20. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    contrast, southwest Western Australia had its driest year,+0.5C across most of Western Australia, the far north, andin the west of Western Australia (+1.5C) and the coolest in

  1. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    4.9. NOAAs Accumulated Cyclone Energy (ACE) Index in theF ig . 4.23 (a) Accumulated Cyclone Energy (ACE) In- dex perone TY). The accumulated cyclone energy (ACE) in the WNP (

  2. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    Lebanon, Syria, western Kazakhstan, Armenia, Georgia, andthe south Caucasus and west Kazakhstan were dry. Armenia hadwere detected over Russia and Kazakhstan. The anomaly lasted

  3. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    Biomass burning occurs in all vegetated terrestrial central Europe, andEurope in Table 2.6 and F ig . 2.67. Climatological global biomass

  4. Cash Management Pool Guidelines The Cash Management Pool was established by the University of Utah as a pooled fund for

    E-Print Network [OSTI]

    by the University of Utah as a pooled fund for the investment of State and other Public Funds. State and other Public Funds are funds that are derived from the operating revenue of the University, such as tuition with the University Investment Policies (Policy 3-050). B. Eligible Investments State and other Public Funds shall

  5. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest

    E-Print Network [OSTI]

    Curtis, Peter S.

    to store carbon (C) due to variation in disturbance frequency and intensity, successional status, soil: Disturbance effects on forest carbon storage Final Submission to Global Change Biology 1 #12;Summary1 2 3 4 5 this legacy of disturbance constrains forest carbon (C) storage rates by quantifying C pools and fluxes after

  6. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01T23:59:59.000Z

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for validation. Comparisons between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data are discussed in detail.

  7. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    E-Print Network [OSTI]

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S

    2011-01-01T23:59:59.000Z

    correlated errors. The WaterGAP Global Hydrology Model (and Shmakin, 2002], the WaterGAP Global Hydrol- ogy Model (and Pan, 1984], (2) the WaterGAP Hydrological Model [Dll et

  8. Methods to Study Intervention Sustainability Using Pre-existing, Community Interventions: Examples from the Water, Sanitation and Hygiene Sector

    E-Print Network [OSTI]

    Arnold, Benjamin Ford

    2009-01-01T23:59:59.000Z

    rainwater harvesting or purchasing water from a tanker orsafe water storage, sanitation, and rainwater harvesting.safe water storage, sanitation, and rainwater harvesting.

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  10. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  12. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  13. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by

  14. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into highvalue demandfollowing power; and second, it can simultaneously serve as a tidal power/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra stop blowing for two days at a time? Chemical or kineticenergy storage systems are an economical way

  15. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high-value demand-following power; and second, it can simultaneously serve as a tidal power/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra stop blowing for two days at a time? Chemical or kinetic-energy storage systems are an economical way

  16. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  17. Logic Programming, Abduction and Probability David Poole

    E-Print Network [OSTI]

    Poole, David

    Logic Programming, Abduction and Probability David Poole Department of Computer Science, University 5485 Abstract Probabilistic Horn abduction is a simple frame­ work to combine probabilistic and logical abduction and logic pro­ gramming is at two levels. At the first level probabilistic Horn abduction

  18. Storage Rings

    SciTech Connect (OSTI)

    Fischer, W.

    2011-01-01T23:59:59.000Z

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A number of storage rings exist where the beam itself or its decay products are the object of s

  19. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    air. For a storage tank water heater, the greater the hotthe water heater with cold water Note: The TANK program usesof a natural draft tank type water heater can be without

  20. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    SciTech Connect (OSTI)

    Phillips, C.; Thomas, I. [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA 99354 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

  1. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    SciTech Connect (OSTI)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01T23:59:59.000Z

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  2. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01T23:59:59.000Z

    appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

  3. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01T23:59:59.000Z

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  4. Jandy Pool Products: Proposed Penalty (2010-CE-1111)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Jandy Pool Products, Inc. failed to certify a variety of pool heaters as compliant with the applicable energy conservation standards.

  5. UNIVERSITY OF CALIFORNIA, SANTA CRUZ Ongoing Lecturer Pool

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ PSYCHOLOGY Ongoing Lecturer Pool The Psychology Department at the University of California, Santa Cruz, invites applications for an ongoing pool of qualified temporary, commensurate with qualifications and experience. Appointment contingent upon availability of funding. MINIMUM

  6. IS URBAN LOGISTICS POOLING VIABLE? A MULTISTAKEHOLDER MULTICRITERIA ANALYSIS

    E-Print Network [OSTI]

    Boyer, Edmond

    IS URBAN LOGISTICS POOLING VIABLE? A MULTISTAKEHOLDER MULTICRITERIA ANALYSIS Jesus Gonzalez. Urban consolidation and logistics sharing. III. Multi-stakeholder mutli-criteria methodology. A of application. V. Conclusion. ABSTRACT Collaborative transportation and logistics pooling are relatively new

  7. Ties that Bind: Policies to Promote (Good) Patent Pools

    E-Print Network [OSTI]

    Gilbert, Richard J

    2009-01-01T23:59:59.000Z

    plans-progress/ and David Serafino, Survey ofPatent Pools Demonstrates Variety ofPurposes and Management

  8. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  9. On Improving the Performance of Reliable Server Pooling Systems

    E-Print Network [OSTI]

    Dreibholz, Thomas

    On Improving the Performance of Reliable Server Pooling Systems for Distance-Sensitive Distributed, Germany, dreibh@iem.uni-due.de, http://www.exp-math.uni-essen.de/~dreibh Abstract. Reliable Server Pooling (RSerPool) is a protocol framework for server redundancy and session failover, currently under

  10. Improving the Load Balancing Performance of Reliable Server Pooling

    E-Print Network [OSTI]

    Dreibholz, Thomas

    Improving the Load Balancing Performance of Reliable Server Pooling in Heterogeneous Capacity@iem.uni-due.de Abstract. The IETF is currently standardizing a light-weight protocol frame- work for server redundancy and session failover: Reliable Server Pooling (RSer- Pool). It is the novel combination of ideas from

  11. CERNA WORKING PAPER SERIES Strategic inputs into patent pools

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 CERNA WORKING PAPER SERIES Strategic inputs into patent pools Justus Baron Henry Delcamp Working;2 Strategic inputs into patent pools1 Justus BARON2 Henry DELCAMP3 Abstract: This article explores what factors determine the decision of a patent pool to accept new inputs. We propose a dynamic analysis

  12. Antitrust for Patent Pools: A Century of Policy Evolution

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Antitrust for Patent Pools: A Century of Policy Evolution Richard J. Gilbert1 October 3, 2002 Abstract This paper reviews the antitrust treatment of patent pooling and cross-licensing arrangements from on the MPEG and DVD patent pools. I examine the factors that the courts identified as pertinent

  13. Epidemiology 69 Sander Greenland and Charles Poole1

    E-Print Network [OSTI]

    Gelman, Andrew

    Epidemiology 69 COMMENTARY Sander Greenland and Charles Poole1 accept that P values are here discussed, for example, by Greenland in 2011).2 The formal view of the P value as a probability conditional of the model). I find Greenland and Poole's1 perspective to be valuable: it is important to go beyond criticism

  14. Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state

    E-Print Network [OSTI]

    value of $3,000 or more. · Perform preventive maintenance (PM) on vehicles, LSVs, golf cartsMotor Pool Department The Motor Pool Department is responsible for the maintenance of over 550

  15. Pool boiling on nano-finned surfaces

    E-Print Network [OSTI]

    Sriraman, Sharan Ram

    2008-10-10T23:59:59.000Z

    is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three...). .................................................................................................68 Fig. 19. Plots comparing the heat flux through the enhanced test surfaces (qw) with the heat flux through the bare test surface (qb) under 10 C sub-cooling condition for both nulceate and film boiling regimes. Heat flux data...

  16. Summary To determine the effects of lifting time and stor-age on water-stress resistance of nursery-grown white spruce

    E-Print Network [OSTI]

    Macdonald, Ellen

    results in reduced water- stress resistance because of a lack of reserves for osmotic adjustment and newSummary To determine the effects of lifting time and stor- age on water-stress resistance in January 1992. The seedlings were placed in nutrient solution and subjected to 1.1 or 2.7 MPa water

  17. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM XIV Storage System and IBM System Storage SAN Volume Controller deliver high performance and smart management for SAP landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  18. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect (OSTI)

    Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  19. Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy Lewis &Department of Energy Pentair

  20. Management effects on labile organic carbon pools

    E-Print Network [OSTI]

    Kolodziej, Scott Michael

    2005-08-29T23:59:59.000Z

    It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following ...

  1. Management effects on labile organic carbon pools

    E-Print Network [OSTI]

    Kolodziej, Scott Michael

    2005-08-29T23:59:59.000Z

    It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following the proposal...

  2. Earthen Liquid Manure Storage/Lagoon

    E-Print Network [OSTI]

    for the storage to function as intended. Best Environmental Management Practices Farm Animal Production Inspecting Water Diversions Is the surface water diversion adequate? Diverting excess clean water away is key to carry storm flows. Are diversions and diversion outlets properly vegetated and maintained to minimize

  3. Pooled ORF Expression Technology (POET) USING PROTEOMICS TO SCREEN POOLS OF OPEN READING FRAMES FOR PROTEIN EXPRESSION*S

    E-Print Network [OSTI]

    Pooled ORF Expression Technology (POET) USING PROTEOMICS TO SCREEN POOLS OF OPEN READING FRAMES developed a pooled ORF expression technology, POET, that uses recombinational cloning and proteomic methods are greatly simplified. Small scale expression and purification of 12 positive clones identified by POET from

  4. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  5. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  6. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  7. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01T23:59:59.000Z

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  8. A method of measuring a molten metal liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12T23:59:59.000Z

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  9. Rainwater Harvesting: Soil Storage and Infiltration System

    E-Print Network [OSTI]

    Mechell, Justin; Lesikar, Bruce J.

    2008-08-11T23:59:59.000Z

    A soil storage and infiltration system collects rainfall runoff from the roofs of buildings and directs it underground where it infiltrates the soil. Such a system conserves water and protects it from surface pollution. This publication describes...

  10. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  11. air-water interactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 27 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE...

  12. Saving for dry days: Aquifer storage and recovery may help

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    underground storage (MUS) of recoverable water. The Committee on Sustainable Underground Storage of Recoverable Water uses MUS ?to denote purposeful recharge of water into an aquifer system for intended recovery and use as an element of long-term water...tx H2O | pg. 2 Saving for dry days Story by Kathy Wythe tx H2O | pg. 3 Aquifer storage and recovery may help With reoccurring droughts and growing population, Texas will always be looking for better ways to save or use water. Some water...

  13. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  14. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  15. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  16. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because-scale thermal energy storage via hot compressed liquid water. Such a cycle is potentially interesting becauseEXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM Paul T. O'Brien 1 , and John Pye 2 1

  17. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News,...

  18. Sandia National Laboratories: hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  19. Impact-driven pressure management via targeted brine extraction Conceptual studies of CO2 storage in saline formations

    E-Print Network [OSTI]

    Birkholzer, J.T.

    2013-01-01T23:59:59.000Z

    of CO 2 Storage for Full-Scale Deployment, Ground Water, 48(connect the storage formation with the ground surface. ToStorage SystemsApplication of a New Analytical Solution, submitted to Ground

  20. Solar Swimming Pool Heaters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof Energy Projects toSolar Swimming Pool

  1. LaTonya Poole | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17, 2015LM NewsLaTonya Poole About Us

  2. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    storage. Power towers capture energy from the sun reflectedtower where water or molten salt is flowing to absorb the solar energy.towers or ponds). For liquid fuels, increased reliance on bioenergy will increase the correlation of water and energy

  3. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  4. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  5. Computerized Waters

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    - ing 2002?2005 and documented in TWRI?s Technical Report 284 released in January 2006, include: ? Capabilities for short-term reliability analyses based on current storage conditions (Or what is the likelihood of meeting water needs in the near... System Reference Manual. TWRI Technical Report 255, Second Edition, April 2005. ? Water Rights Analysis Package Modeling System Users Manual. TWRI Technical Report 256, Second Edition, April 2005. ? Fundamentals of Water Availability Modeling...

  6. Summary Report for Capsule Dry Storage Project

    SciTech Connect (OSTI)

    JOSEPHSON, W S

    2003-09-04T23:59:59.000Z

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  7. POOL BOILING OF HIGH-FREQUENCY CONDUCTORS

    SciTech Connect (OSTI)

    Wright, S. E. (Spencer E.); Konecni, S. (Snezana); Ammerman, C. N. (Curtt N.); Sims, J. R. (James R.)

    2001-01-01T23:59:59.000Z

    This study presents development of a unique, powerful method for cooling high-frequency, AC conductors that can benefit end users of transformer windings, electrical machine windings, and magnet coils. This method of heat removal involves boiling a dielectric, fluorinert refrigerant that is in direct contact with litz wire conductors. A pool boiling test vessel is constructed, which provides for temperature control of the pool of fluorinert liquid. The test vessel is fitted with viewing ports so that the experiments are observed and studied with the aid of high-speed photography. Tests are performed on a variety of litz wire conductors. The boiling heat transfer coefficient is dependent on the conductor surface roughness. The size of the features on the conductor surface depends on the single-strand wire gage from which the conductor is constructed. All tests are performed with the conductors mounted horizontally. These tests are performed using a DC power supply. The results of these experiments will aid in the design of future cooling systems.

  8. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  9. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file...

  10. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  11. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    Efforts Investigating Water Extraction ! LLNL ! Active CObenefits of various water extraction, treatment, and reuseof CO 2 storage and water extraction scenarios ! Technical

  12. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    have storage tank water heaters, and 3 million householdsstorage water heater (ESWH) with tank and controls; and (2)water heaters could spill over into the more common tank

  13. Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico

    E-Print Network [OSTI]

    Ellis, J. R.; Teague, P. W.; Lacewell, R. D.

    allocation of surface water given the 1 and 3 foot groundwater limitations. These streams of net returns were valued in 1980 dollars allowing comparison among the alternative scenarios. Differences between the various returns streams for each groundwater...

  14. Comparison of Soil Phosphorus Storage in the Ridge and Slough Landscape in Water Conservation Area 3A (WCA3A) of the Everglades

    E-Print Network [OSTI]

    Ma, Lena

    landscape (Ogden 2005; Bruland et al., 2007; Richardson 2010). Prior to drainage, the water input are found (Bruland et al., 2007). Ridges are generally monotonically covered in Cladium and are oriented

  15. Economical Energy Storage Option Enhances Energy Purchasing Strategies

    E-Print Network [OSTI]

    Hansen, D. W.; Winters, P. J.

    Chilled Water Thermal Energy Storage (TES) offers benefits to both the electricity supplier and the electricity user. This well-established technology uses stratified chilled water to store energy in thermal form so that electricity can be purchased...

  16. New multi-commodity flow formulations for the pooling problem

    E-Print Network [OSTI]

    2015-06-11T23:59:59.000Z

    Jun 11, 2015 ... ... of pooling problems are in the refining and petrochemical industries [49]. ... an important feature of numerous other manufacturing processes,...

  17. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaheater. Eco-design of Water Heaters and Methodology studyboth storage-type water heaters and tankless water heaters.

  18. Fort Calhoun Station disposal of spent fuel pool racks

    SciTech Connect (OSTI)

    Jamieson, T.W. [Omaha Public Power District, Fort Calhoun Station, NE (United States)

    1995-09-01T23:59:59.000Z

    The original plan was to have the racks pulled out of the pool, washed down and wrapped and placed in Sea/Lands to be sent to a vendor for free release and disposal. In the winter of 93 the proposed quotations on the Spent Fuel Rerack Processing were all rejected. With the rerack job starting in March of 94 and the closing of Barnwell in July we were faced with what to do with the racks. Processing of the existing racks were required since if the racks were sent to Barnwell for burial intact the cost would be prohibitive, that is, if Barnwell would have stayed open. If the racks were sent to a smelter, such as Scientific Ecology Group (SEG), there are restrictions on the length of the components that can go through the smelter. If SEG were to do the rack processing (sectioning) at their facility, the cost would also be prohibitive and they would not be in a position to receive the racks until June, 1995. Therefore, bid specifications were requested for on-site volume reduction processing of the existing spent fuel storage racks, with further ultimate disposal to be performed by SEG. The processing of the racks included piping and supports. Volume reduction (VR) was an issue in the evaluation since after this process the racks were to be shipped to SEG. If a low VR ratio option was chosen, OPPD would need a significant number of shipping containers and required more radwaste shipments versus if a high VR ratio option were chosen.

  19. Thermal Storage Systems at IBM Facilities

    E-Print Network [OSTI]

    Koch, G.

    1981-01-01T23:59:59.000Z

    In 1979, IBM commissioned its first large scale thermal storage system with a capacity of 2.7 million gallons of chilled water and 1.2 million gallons of reclaimed, low temperature hot water. The stored cooling energy represents approximately 27...

  20. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    resistance storage water heater with tank and controls;tank size and thermostat set point of the water heater, and

  1. WaterAction Plan Update Platte River Recovery ImplementationProgram

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Storage CO GW Management NE Water Leasing NE Water Mang Incentives NE GW Management Power Interference WY

  2. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOE Patents [OSTI]

    Heiple, C.R.; Burgardt, P.

    1984-03-13T23:59:59.000Z

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  3. "Open Water/Closed Water: a filmic portrait of America's disappearing public

    E-Print Network [OSTI]

    Sekelsky, Jeff

    "Open Water/Closed Water: a filmic portrait of America's disappearing public pools" Rachel Johnson space of water as a vital component of the public sphere. My movie features footage and interviews. But ultimately, the film is also a meditation on water itself: the transformative powers the sphere of water can

  4. Safety of interim storage solutions of used nuclear fuel during extended term

    SciTech Connect (OSTI)

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

    2013-07-01T23:59:59.000Z

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  5. On the Performance of Reliable Server Pooling Systems Thomas Dreibholz

    E-Print Network [OSTI]

    Dreibholz, Thomas

    sharing [8]. The existence of multiple servers for redundancy au- tomatically leads to load distribution- tems. Keywords: RSerPool, server pooling, load distribution, performance analysis, parameter and Related Work A basic method to improve the availability of a service is server replication. Instead

  6. A shape optimization formulation of weld pool determination. , A. Ellabibb

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    The determination of temperature field in a welding process permits the control of mechanical effects (residual consists in finding the weld pool and T the temperature gradient in the workpiece, solution of: K T xA shape optimization formulation of weld pool determination. A. Chakiba , A. Ellabibb , A

  7. Urban logistics pooling viabililty analysis via a multicriteria multiactor method

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Urban logistics pooling viabililty analysis via a multicriteria multiactor method Jesus Gonzalez transportation and logistics pooling are relatively new concepts in research, but are very popular in practice. In the last years, collaborative transportation seems a good city logistics alternative to classical urban

  8. Selecting a new water heater

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

  9. DEVELOPMENTS IN GROUND WATER HYDROLOGY : AN OVERVIEW C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    . Surface water storage and ground water withdrawal are traditional engineering approaches which of storage and circulation as ground water. The large alluvial tract extending over 2000 km in length from which allows ground water storage in the weathered residium and its circulation in the underlying

  10. Environmental Assessment: Relocation and storage of TRIGA{reg_sign} reactor fuel, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations.

  11. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02T23:59:59.000Z

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  12. Selecting Thermal Storage Systems for Schools

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01T23:59:59.000Z

    measurement at six equally spaced elevations. Charged by chiller or hydronic vent cycle. B. Hot Water Storage Tank - Concrete lined steel 17,000 gallon with four headers arranged for dual temperature storage. C. Chiller - Variable frequency drive, 196... for Thermal Storage Projects since 1985: KW SCHOOL REDUCTION Kimball E.S. 7 1 Poteet H.S. 210 Phases I & I1 AC New M.S. 18 4 Pirrung E.S. 7 6 Poteet H.S. 14 0 Phase I11 Kimball E.S. 2 0 Phase I1 Black E.S. 3 7 Cannaday E.S. 9 0 Austin E.S. 94 N...

  13. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01T23:59:59.000Z

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  14. Storage Space Request Aurora Facility

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Storage Space Request Aurora Facility (1855 Marika) Department and Division: _______________________________________________________ Storage Contact: ____________________________________________________________ Name Phone and fax Fiscal Footage required: ______________ Brief Description of storage items

  15. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage The challenge of creating new advanced batteries and energy storage technologies is one of Argonne's key initiatives. By creating a multidisciplinary...

  16. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01T23:59:59.000Z

    testing storage water heaters, water was drawn either prioris located behind the water heater and samples before thelocated behind the water heater and sample emissions prior

  17. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  18. Pool boiling heat transfer characteristics of nanofluids

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

  19. air-water countercurrent flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 38 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE...

  20. Investigation of cracking and leaking of nuclear reactor pools

    E-Print Network [OSTI]

    Cooper, William Bernard

    1965-01-01T23:59:59.000Z

    *ion of the pool was lined with a 0. 2y in, aluminum I'xxer which hss since corroded. snd. pitted. allowing the dent nex slimed watel' used xxx the pool to come into dix'ec't contact with the concx etc pool wall. Pigure Hc, LacBtx one oi l&BkBg?e A mare detai3... good, Job i'or several years without, renovation, [0] This type of reactor has, however, developed. some maJor problems that have?or will, require r'enovation ~ Figure l. Nuclear Science Center Reactor Facie. ity at, Texas A& University...

  1. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  2. Storage Ring Operation Modes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in...

  3. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  4. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  5. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  6. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  7. Experimental investigation of sedimentation of LOCA - generated fibrous debris and sludge in BWR suppression pools

    SciTech Connect (OSTI)

    Souto, F.J.; Rao, D.V.

    1995-12-01T23:59:59.000Z

    Several tests were conducted in a 1:2.4 scale model of a Mark I suppression pool to investigate the behavior of fibrous insulation and sludge debris under LOCA conditions. NUKON{trademark} shreds, manually cut and tore up in a leaf shredder, and iron oxide particles were used to simulate fibrous and sludge debris, respectively. The suppression pool model included four downcomers fitted with pistons to simulate the steam-water oscillations during chugging expected during a LOCA. The study was conducted to provide debris settling velocity data for the models used in the BLOCKAGE computer code, developed to estimate the ECCS pump head loss due to clogging of the strainers with LOCA generated debris. The tests showed that the debris, both fibrous and particulate, remains fully mixed during chugging; they also showed that, during chugging, the fibrous debris underwent fragmentation into smaller sizes, including individual fibers. Measured concentrations showed that fibrous debris settled slower than the sludge, and that the settling behavior of each material is independent of the presence of the other material. Finally, these tests showed that the assumption of considering uniform debris concentration during strainer calculations is reasonable. The tests did not consider the effects of the operation of the ECCS on the transport of debris in the suppression pool.

  8. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  9. Condition Controlling and Monitoring of Indoor Swimming Pools

    E-Print Network [OSTI]

    Nissinen, K.; Kauppinen, T.; Hekkanen, M.

    2004-01-01T23:59:59.000Z

    VTT has executed a lot of research work concerning the usage, functionality and refurbishment of indoor swimming pools and spas lately. This work includes for instance detailed condition surveys, energy audits, cost analysis and maintenance planning...

  10. ageing seed pools: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the methods, expense, and logistics of sample collection. The ability to inventory wild populations would be greatly expanded if pooled adult age-class data (e.g.,...

  11. EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to enter into a use permit or lease agreement with the Yakama Indian Nation or other parties who would rear fish in the 100-K Area Pools.

  12. ANALYSIS OF MILP TECHNIQUES FOR THE POOLING PROBLEM ...

    E-Print Network [OSTI]

    2013-04-28T23:59:59.000Z

    Flows from input nodes are allowed either to pool nodes or directly to output ... process should occur in a way that the end products satisfy these lower and upper...

  13. Pool boiling studies on nanotextured surfaces under highly subcooled conditions

    E-Print Network [OSTI]

    Sathyamurthi, Vijaykumar

    2009-05-15T23:59:59.000Z

    Subcooled pool boiling on nanotextured surfaces is explored in this study. The experiments are performed in an enclosed viewing chamber. Two silicon wafers are coated with Multiwalled Carbon Nanotubes (MWCNT), 9 microns (Type-A) and 25 microns (Type...

  14. arvs patent pool: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aus- tralia (Maths), 1979 Ph. In the early 1990s Poole developed probabilis- tic Horn abduction, a simple framework with in- dependent and Clinton Smyth, "Type Uncer- tainty in...

  15. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  16. association consortium pooled: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF GPS ENABLED CAR POOLING SYSTEM CiteSeer Summary: Carpooling commonly known as car-sharing or ride-sharing is a concept in which commuters share a car while travelling....

  17. analogs pooled results: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF GPS ENABLED CAR POOLING SYSTEM CiteSeer Summary: Carpooling commonly known as car-sharing or ride-sharing is a concept in which commuters share a car while travelling....

  18. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  19. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    potential CO 2 storage and water extraction projects based on the efforts findings DOEs Interagency CCS

  20. Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE)

    E-Print Network [OSTI]

    Seo, K.-W.; Wilson, C. R; Famiglietti, J. S; Chen, J. L; Rodell, M.

    2006-01-01T23:59:59.000Z

    of changes in continental water storage, Global Planet.system modeling studies, Water Resour. Res. , 35(2), 583 Time variations of land water storage from an inversion of 2

  1. Impact of Reservoir Evaporation and Evaporation Suppression on Water Supply Capabilities

    E-Print Network [OSTI]

    Ayala, Rolando A

    2013-04-01T23:59:59.000Z

    Reservoir storage is essential for developing dependable water supplies and is a major component of the river system water budget. The storage contents of reservoirs fluctuate greatly with variations in water use and climatic conditions that range...

  2. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sbastien

    CH8 Divers Agenda Storage : DAS / SAN / NAS Dploiement VLAN 802.1Q Gestion d Scurisation de Windows Scurisation de UNIX Qu'est-ce que... Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;Storage : DAS, NAS, SAN Direct Attached Storage Network Attached Storage Storage

  3. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  4. Pool spacing, channel morphology, and the restoration of tidal forested wetlands of the Columbia River, U.S.A.

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Montgomery, David R.

    2008-10-09T23:59:59.000Z

    Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of three freshwater tidal forested wetlands near Grays Bay were 2.2 1.3, 2.3 1.2, and 2.5 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.

  5. A Fresh Perspective for Managing Water in California: Insights from Applying the European Water Framework Directive to the Russian River

    E-Print Network [OSTI]

    Grantham, Ted; Christian-Smith, Juliet; Kondolf, G. Mathias; Scheuer, Stefan

    2008-01-01T23:59:59.000Z

    Stormwater Management Hydropower Generation Wastewateragricultural irrigation, hydropower, industry, fishing,dams for water storage and hydropower and diversions for

  6. aboveground carbon pools: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage in a Tropical Forest Daniel E. Bunker,1 * Fabrice De services, such as carbon storage and sequestration, remain unknown. We assessed the influence of the loss of...

  7. Saving for dry days: Aquifer storage and recovery may help

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 2 Saving for dry days Story by Kathy Wythe tx H2O | pg. 3 Aquifer storage and recovery may help With reoccurring droughts and growing population, Texas will always be looking for better ways to save or use water. Some water... suppliers in Texas are turning to aquifer storage and recovery. During the dry summer of 2008, the San Antonio Water System (SAWS) had enough assets in its ?bank? (of water) to make with- drawals to meet the needs of its customers. The water bank...

  8. TECHNICAL NOTES Drought Storage Allocation Rules for Surface

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    TECHNICAL NOTES Drought Storage Allocation Rules for Surface Reservoir Systems Jay R. Lund1 Abstract: This technical note develops a simple drought storage allocation rule to minimize evaporative and seepage water losses from a system of reservoirs. Such a rule might have value during a prolonged drought

  9. An Improved Stochastic Optimization Model for Water Supply ...

    E-Print Network [OSTI]

    Jonathan De La Vega

    2014-03-09T23:59:59.000Z

    Mar 9, 2014 ... Abstract: This study investigates a pump scheduling problem for the collection, transfer and storage of water in water supply systems in urban...

  10. alkaline electrolyzed water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer Energy Storage, Conversion and Utilization Websites Summary: Effect of Water Transport on the...

  11. angeles water supply: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it is possible Griffin, Ronald 6 CLIMATE CHANGE AND WATER SUPPLY SECURITY Energy Storage, Conversion and Utilization Websites Summary: CLIMATE CHANGE AND WATER SUPPLY...

  12. Study on Commissioning Process for Control Logic of Thermal Storage System

    E-Print Network [OSTI]

    Shioya, M.; Tsubaki, M.; Nakahara, N.

    2004-01-01T23:59:59.000Z

    thermal storage system in an actual building using the CLT. Introduction In thermal storage systems, as large temperature difference between the supply water and the return water as possible should be maintained in order to ensure high system..., at the secondary water circuit of a heat exchanger installed between the thermal storage system and secondary HVAC system of an actual building. One of the authors, Nakahara, acted as Commissioning Authority during construction phase and later as a consultant...

  13. A New Server Selection Strategy for Reliable Server Pooling in Widely Distributed Environments

    E-Print Network [OSTI]

    Dreibholz, Thomas

    A New Server Selection Strategy for Reliable Server Pooling in Widely Distributed Environments Xing a generic, application- independent and resource-efficient framework for server redundancy and session failover, the IETF RSerPool WG is currently standardizing the Reliable Server Pooling (RSerPool) framework

  14. Computational generation and screening of RNA motifs in large nucleotide sequence pools

    E-Print Network [OSTI]

    Schlick, Tamar

    Computational generation and screening of RNA motifs in large nucleotide sequence pools Namhee Kim1 random sequence pools is central to RNA in vitro selection, no systematic computational equivalent -sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We

  15. State Motor Pool Rental Contract for Business Travel Effective January 1, 2010

    E-Print Network [OSTI]

    Harms, Kyle E.

    State Motor Pool Rental Contract for Business Travel Effective January 1, 2010 Base Rental Charges Vehicle Class State Motor Pool Rental Contract Daily Rate* State Motor Pool Rental Contract Weekly Rate* State Motor Pool Rental Contract Monthly Rate* Compact 32 176 640 Mid-size/Intermediate 34 187 680

  16. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01T23:59:59.000Z

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  17. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30T23:59:59.000Z

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  18. ABSTRACT: The effect of the cotton storage trisaccharide raf-finose and cottonseed storage protein (CSP) in combination on

    E-Print Network [OSTI]

    Cotty, Peter J.

    ABSTRACT: The effect of the cotton storage trisaccharide raf- finose and cottonseed storage protein of ground whole cottonseed and water-extracted cotton- seed meal to support fungal biosynthesis of aflatoxin in raffinose refer- ence media. Results with ground whole cottonseed as a sole carbon/nitrogen source

  19. Review of Vedder pool development, Kern River field, Kern County, California

    SciTech Connect (OSTI)

    Condon, M.W.

    1986-07-01T23:59:59.000Z

    The Kern River field is located on the east side of the San Joaquin Valley, just north of Bakersfield, California. Since its discovery in 1899, the field has produced over 1 billion bbl of heavy oil from the Kern River Formation. It was not until 1981 that light oil was discovered from a deeper zone, the Vedder formation. The discovery well, Getty Oil Company WD-1 Apollo, encountered 40 ft of net oil sand within the third Vedder sand and was completed on pump for an initial production of 100 bbl of 40.5/sup 0/ API oil and 200 MCDGD. As suggested by its name, WD-1 Apollo was drilled as a water-water injection wells. However, a detailed subsurface study of the field suggested the possibility of a trap within the Vedder formation. The originally proposed location of WD-1 Apollo was then moved to test the proposal. The trap is a series of intersecting, up-to-the-basin normal faults trending west and northwest. These faults have dropped impermeable silty zones within the Vedder formation against the productive Vedder sands. Since the completion of WD-1 Apollo, nine other wells have been drilled within this pool, extending production over 1 mi to the southeast. One of the first of the extension wells, Getty Oil Company 73X Central Point, located approximately 600 ft southeast of WD-1 Apollo, established production from the second Vedder sand. This well was completed flowing 300 b/d of 32/sup 0/ API oil and 1000 MCFGD through a 16/64-in. choke. Through December 1985, Texaco (Getty Oil) produced more than 250,000 bbl of oil and 350,000 mcf of gas combined from the second and third Vedder sands from 2.5 net wells. Although attempts to find other such Vedder pools have met with limited success, there is still the potential for many to exist, given proper structural closure, as seen in the Apollo pool.

  20. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    vs. Short-Term Energy Storage Technologies Analysis, A Life-Energy Systems Integration Environmentally Preferred Advanced Generation Industrial/Agricultural/Water End-Use Energy Efficiency Renewable Energy Technologies Transportation Storagestorage technologies and PVs merit deeper analysis. SVOW is an open access, web-based energy

  1. Fact Sheet: Isothermal Compressed Air Energy Storage (October...

    Broader source: Energy.gov (indexed) [DOE]

    SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. The system captures the heat from compression in water and stores the captured heat until it...

  2. GE, Berkeley Energy Storage for Electric Vehicles | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Just Add Water: GE, Berkeley Lab Explore Possible Key to Energy Storage for Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  3. Robotic Inspection System for Bulk Liquid Storage Tanks

    E-Print Network [OSTI]

    Hartsell, D. R.; Hakes, K. J.

    for aboveground storage tanks (ASTs) requires: drainage of the product; cleaning of the vessel with water or solvents; physical removal, collection and containment of petroleum and chemical waste residues, including the waste streams created by the cleaning...

  4. Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to underground storage facilities for petroleum and hazardous waste, and seek to protect water resources from contamination. The regulations establish procedures for the...

  5. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  6. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers HEV & PHEV Technology Roadmaps R&D Timeline Overview 3 Develop electrochemical energy storage technologies which support the commercialization of hybrid and electric...

  7. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  8. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  9. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  10. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  11. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  12. Water Quality: Its Relationship to Livestock

    E-Print Network [OSTI]

    Faries Jr., Floron C.; Sweeten, John M.; Reagor, John C.

    1998-06-30T23:59:59.000Z

    . From: Herrick, J.B., Water Quality for Animals toxins (poisons). To control algae in storage tanks, reduce the introduced organic pollu- tion and exclude light. Disin- fect water storage tanks by adding 1 ounce of chlorine bleach per 30 gallons of water...

  13. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  14. Aquifer thermal energy storage: a survey

    SciTech Connect (OSTI)

    Tsang, C.F.; Hopkins, D.; Hellstroem, G.

    1980-01-01T23:59:59.000Z

    The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

  15. Secondary Storage Management Himanshu Gupta

    E-Print Network [OSTI]

    Gupta, Himanshu

    Secondary Storage Management Himanshu Gupta Storage1 #12;Outline Memory Hierarchy Disk Records/Fields Deletions and Insertions of Records Himanshu Gupta Storage2 #12;Himanshu Gupta Storage3 Memory Hierarchy Cache (1 MB; 1-5 nsec) Main Memory (GBs; 10-100 nsec) Secondary Storage

  16. Optimal Storage Allocation for Serial

    E-Print Network [OSTI]

    Yechiali, Uri

    Optimal Storage Allocation for Serial Haim Mendelson, Joseph S. Pliskin, and Uri Yechiali Tel Aviv reside on a direct-access storage device in which storage space is limited. Records are added allocating storage space to the files. Key Words and Phrases: serial files, storage allocation

  17. AB Levitator and Electricity Storage

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-03-01T23:59:59.000Z

    The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energy (spended energy is replenished in braking when ship returns from other planet to its point of origin), using AB-devices in military, in sea-going ships (submarimes), in energy industry (for example. as small storage of electric energy) and so on. The vehicles equipped with AB propulsion can take flight for days and cover distances of tens thousands of kilometers at hypersonic or extra-atmosphere space speeds. The work contains tens of inventions and innovations which solves problems and breaks limitations which appear in solution of these very complex revolutionary ideas. Key word: AB levitator, levitation, non-rocket outer space flight, electric energy storage, AB propulsion, AB engine, Bolonkin.

  18. Storage-discharge relationships at different catchment scales based on local high-precision gravimetry

    E-Print Network [OSTI]

    Troch, Peter

    Storage-discharge relationships at different catchment scales based on local high, Institute of Earth and Environmental Sciences, Potsdam, Germany Abstract: In hydrology, the storage of catchment science. To date, there are no direct methods to measure water storage at catchment scales (101

  19. Exergetic analysis of a steam-flashing thermal storage Paul T. O'Brien

    E-Print Network [OSTI]

    @vipac.com.au 2 PhD, Australian National University ABSTRACT Thermal energy storage is attractive in the design of the performance of a cycle that uses large-scale thermal energy storage via hot compressed liquid waterExergetic analysis of a steam-flashing thermal storage system Paul T. O'Brien 1 and John Pye 2 1

  20. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  1. Sandia National Laboratories: implement energy storage projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implement energy storage projects Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  2. Sandia National Laboratories: Stationary Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageStationary Energy Storage Stationary Energy Storage The 1 MW Energy Storage Test Pad integrated with renewable energy generation at Sandia's Distributed Energy Technology...

  3. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  4. Sandia National Laboratories: evaluate energy storage opportunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage opportunity Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  5. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  6. Demonstrating the Safety of Long-Term Dry Storage - 13468

    SciTech Connect (OSTI)

    McCullum, Rod [Nuclear Energy Institute, 1201 F St. NW, Washington, DC, 20004 (United States)] [Nuclear Energy Institute, 1201 F St. NW, Washington, DC, 20004 (United States); Brookmire, Tom [Dominion Energy, 5000 Dominion Boulevard Glen Allen, VA 23060 (United States)] [Dominion Energy, 5000 Dominion Boulevard Glen Allen, VA 23060 (United States); Kessler, John [Electric Power Research Institute, 1300 West W.T. Harris Boulevard, Charlotte, NC 28262 (United States)] [Electric Power Research Institute, 1300 West W.T. Harris Boulevard, Charlotte, NC 28262 (United States); Leblang, Suzanne [Entergy, 1340 Echelon Parkway, Jackson, MS 39211 (United States)] [Entergy, 1340 Echelon Parkway, Jackson, MS 39211 (United States); Levin, Adam [Exelon, 4300 Winfield Road, Warrenville, IL 60555 (United States)] [Exelon, 4300 Winfield Road, Warrenville, IL 60555 (United States); Martin, Zita [Tennessee Valley Authority, 1101 Market Street, Chattanooga, TN 37402 (United States)] [Tennessee Valley Authority, 1101 Market Street, Chattanooga, TN 37402 (United States); Nesbit, Steve [Duke Energy, 550 South Tryon Street, Charlotte, NC 28202 (United States)] [Duke Energy, 550 South Tryon Street, Charlotte, NC 28202 (United States); Nichol, Marc [Nuclear Energy Institute, 1201 F St. NW Washington DC, 2004 (United States)] [Nuclear Energy Institute, 1201 F St. NW Washington DC, 2004 (United States); Pickens, Terry [Xcel Energy, 414 Nicollet Mall, Minneapolis, MN 55401 (United States)] [Xcel Energy, 414 Nicollet Mall, Minneapolis, MN 55401 (United States)

    2013-07-01T23:59:59.000Z

    Commercial nuclear plants in the United States were originally designed with the expectation that used nuclear fuel would be moved directly from the reactor pools and transported off site for either reprocessing or direct geologic disposal. However, Federal programs intended to meet this expectation were never able to develop the capability to remove used fuel from reactor sites - and these programs remain stalled to this day. Therefore, in the 1980's, with reactor pools reaching capacity limits, industry began developing dry cask storage technology to provide for additional on-site storage. Use of this technology has expanded significantly since then, and has today become a standard part of plant operations at most US nuclear sites. As this expansion was underway, Federal programs remained stalled, and it became evident that dry cask systems would be in use longer than originally envisioned. In response to this challenge, a strong technical basis supporting the long term dry storage safety has been developed. However, this is not a static situation. The technical basis must be able to address future challenges. Industry is responding to one such challenge - the increasing prevalence of high burnup (HBU) used fuel and the need to provide long term storage assurance for these fuels equivalent to that which has existed for lower burnup fuels over the past 25 years. This response includes a confirmatory demonstration program designed to address the aging characteristics of HBU fuel and set a precedent for a learning approach to aging management that will have broad applicability across the used fuel storage landscape. (authors)

  7. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

    SciTech Connect (OSTI)

    Guest, Geoffrey, E-mail: geoffrey.guest@ntnu.no; Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco, E-mail: francesco.cherubini@ntnu.no; Strmman, Anders H., E-mail: anders.hammer.stromman@ntnu.no

    2013-11-15T23:59:59.000Z

    Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxes in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily ? 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of ? 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. Temporary storage of bio-C does not always equate to a climate cooling impact. 1 unit of bio-C stored over a time horizon does not always equate to ? 1 unit CO{sub 2}eq. Discrepancies of climate change impact quantification in literature are clarified.

  8. Collection, Storage And Impounding Of Waters (Kansas)

    Broader source: Energy.gov [DOE]

    Kansas Statute Chapter 82 Article 4 lays out property tax exemption requirements for landowners who build and maintain dams on their property in the state of Kansas. Dams must meet the given...

  9. Storage Electric Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanie Price Stephanie PriceStoller Prime

  10. Storage Oil Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanie Price Stephanie PriceStoller PrimeGas

  11. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  12. Water Quality Program, Volume 2 (Alabama)

    Broader source: Energy.gov [DOE]

    This volume of the water quality program mainly deals with Technical Standards, Corrective Action Requirements and Financial Responsibility for Owners and Operators of Underground Storage Tanks....

  13. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20T23:59:59.000Z

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  14. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping (Hoffman Estates, IL); Liu, Di-Jia (Naperville, IL); Yuan, Shengwen (Chicago, IL); Yang, Junbing (Westmont, IL)

    2011-12-13T23:59:59.000Z

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  16. Feasibility of dry cask-to-cask and pool-to-cask spent fuel transfer based on single-element transfer cask experience

    SciTech Connect (OSTI)

    Schmoker, D.S.; Bowser, R.C.

    1993-12-31T23:59:59.000Z

    Spent fuel transportation casks and canister-based storage systems are generally loaded underwater in a nuclear plant`s spent fuel pool/cask loading pit. Several reasons exist for exploring the feasibility of dry cask-to-cask and pool-to-cask spent fuel transfer. These include: the accommodation of plants which do not have sufficient crane capacity to handle large 90 tonne (100 ton) storage canisters or shipping casks, and construction of an MRS without the need for extensive hot cell facilities. In the case of DOE`s ``Multi-Purpose Canister`` (MPC) scenario, use of such a transfer system would allow all plants with adequate transport routes to use large canisters at-reactor, and those without adequate transport routes to use the MRS for loading of large canisters without the need for hot cell facilities. The dry transfer option would not only allow the use of large canisters for all fuel, but would assist DOE in meeting MRS deadlines since licensing and construction of hot-cell facilities significantly affect schedule. This paper reviews the regulatory issues and technical design considerations for a single-element dry transfer system. Also summarized are lessons learned from the TMI-2 fuel transfer system which are directly applicable to the design, testing, startup, and use of a future dry cask-to-cask or pool-to-cask transfer system.

  17. MRS (monitored retrievable storage) systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system

    SciTech Connect (OSTI)

    Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

    1989-04-01T23:59:59.000Z

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity (in metric tons of uranium (MTU)) required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs.

  18. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01T23:59:59.000Z

    Emissions from Residential Water Heaters Table of Contents46 Table 10. Storage water heaters evaluated experimentally50 Table 11. Published information for water heater

  19. Economic reservoir design and storage conservation by reduced sedimentation

    SciTech Connect (OSTI)

    Singh, K.P.; Durgunoglu, A.

    1990-01-01T23:59:59.000Z

    A mathematical model has been developed for estimating the design storage capacity of a reservoir by using the expected water demand, storage loss due to sedimentation, and physical and hydrological characteristics of the watershed. Suitable mitigative measures can be incorporated in dam design and reservoir operation to substantially reduce sediment entrapment in the reservoir, and to improve dissolved oxygen levels by releasing hypolimnetic waters from the reservoir. These measures may also greatly reduce streambed degradation downstream of the dam and consequent initiation of a new erosion cycle in the tributaries. Economic analyses for different storage-maintenance measures (such as undersluices and flushing pipes) have been investigated in terms of reduction in initial reservoir design storage, cost of installing measures, and cost of any dredging operations. These analyses are performed for a site in Illinois for several water-demand levels and useful lives of the reservoir.

  20. Sodium reflux pool-boiler solar receiver on-sun test results

    SciTech Connect (OSTI)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1992-06-01T23:59:59.000Z

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  1. air-water vertical upward: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 30 Chapter 2 x Pressure Distribution in a Fluid 89...

  2. air-water cross flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12...

  3. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  4. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  5. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture & Storage, Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Facilities, Livermore Valley Open Campus (LVOC), Materials Science, News,...

  6. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

  7. Mitigated subsurface transfer line leak resulting in a surface pool

    SciTech Connect (OSTI)

    SCOTT, D.L.

    1999-02-08T23:59:59.000Z

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  8. STATE OF CALIFORNIA POOL AND SPA HEATING SYSTEMS

    E-Print Network [OSTI]

    that at least 60 % of the annual heating energy is from site solar energy or recovered energy. 5. Heating system ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-03 Pool And Spa Heating Systems (Page 1 of 3) Site that complies with the Appliance Efficiency Regulations. 2. Has a readily accessible on-off switch mounted

  9. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  10. Enhancement of Pool Boiling Heat Transfer in Confined Space

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05T23:59:59.000Z

    on pool boiling. In the study, confinement was achieved by placing a flat plate over heated surface. The flat plate has a hole in the middle, and there is a gap between the flat plate and the heater. The diameters of hole are 2 mm, 3 mm, and 4 mm; the gap...

  11. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect (OSTI)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01T23:59:59.000Z

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  12. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  13. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  16. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  17. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  18. In Eve L. Kuniansky, editor, 2001, U.S. Geological Survey Karst Interest Group Proceedings, Water-Resources Investigations Report 01-4011, p. 157-162

    E-Print Network [OSTI]

    Maynard, J. Barry

    ratio of DNAPL ganglia, blobs, pools, and residual accumulations; (4) the local ground-water flow regimeIn Eve L. Kuniansky, editor, 2001, U.S. Geological Survey Karst Interest Group Proceedings, Water-flow zones; and (5) pooling in isolation from active ground- water flow. More than one conceptual model

  19. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  20. Water : forms and associations in natural and built landscapes

    E-Print Network [OSTI]

    Hungle, Laurene Anne

    1986-01-01T23:59:59.000Z

    In nature, water appears as a drop, a trickle, a spring, a stream, a waterfall, a pool, a lake, a river or the sea. These myriad forms offer exciting visual and physical contrast within the natural landscape and evoke ...

  1. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  2. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  3. Technical Note/ Improved Water Table Dynamics in MODFLOW

    E-Print Network [OSTI]

    Barrash, Warren

    series of ground water simulation codes, developed by the U.S. Geological Survey, is possi- bly the most storage as well as the physical dimensions of the sat- urated region. The change in storage is modeled of the cell. While the change in storage occurs at the water table, the influence is applied to the entire

  4. Monitoring aquifer storage and recovery using multiple geophysical methods , Kristofer Davis

    E-Print Network [OSTI]

    -gravity methods to monitor an aquifer storage recovery (ASR) project. An abandoned coal mine has been developed into an underground water reservoir in Leyden, Colorado. Excess water from surface sources is injected into the reservoir during winter and then retrieved for use in the summer. Understanding the storage-recovery process

  5. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  6. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  7. Marketing Cool Storage Technology

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01T23:59:59.000Z

    in the field. The International Thermal Storage Advisory Council was formed to help meet this perceived need. This paper will review activities of EPRI and ITSAC to achieve widespread acceptance of the technology....

  8. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  9. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  10. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010 This document list the...

  11. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    He and Bowei Du implemented Oasys, and helped with my firstwas built on top of a C++ object persistence library, Oasys.Oasys uses plug-in storage modules that implement persistent

  12. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  13. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  14. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  15. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy, in this case mechanical, in the spring tension. ...

  16. April 24, 2001 To all retail Providers/Wholesalers/Power Pools

    E-Print Network [OSTI]

    April 24, 2001 To all retail Providers/Wholesalers/Power Pools: This letter is to alert you a tradable certificates program for use by generators, pools/wholesalers and retail providers for supporting

  17. Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.; Meng, O.

    2006-01-01T23:59:59.000Z

    This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

  18. Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.; Meng, O.

    2006-01-01T23:59:59.000Z

    This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

  19. Storage management solutions Buyer's guide: purchasing criteria

    E-Print Network [OSTI]

    Storage management solutions Buyer's guide: purchasing criteria Manage your storage to meet service storage environment cohesively As new guidelines or regulations surface, storage administrators receive increasing numbers of requests for change (RFCs) in storage provisioning. Simultaneously, routine changes

  20. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  1. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program denes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  2. US PRACTICE FOR INTERIM WET STORAGE OF RRSNF

    SciTech Connect (OSTI)

    Vinson, D.

    2010-08-05T23:59:59.000Z

    Aluminum research reactor spent nuclear fuel is currently being stored or is anticipated to be returned to the United States and stored at Department of Energy storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper summarizes the current practices to provide for continued safe interim wet storage in the U.S. Aluminum fuel stored in poor quality water is subject to aggressive corrosion attack and therefore water chemistry control systems are essential to maintain water quality. Fuel with minor breaches are safely stored directly in the basin. Fuel pieces and heavily damaged fuel is safely stored in isolation canisters.

  3. Request for Proposals for Final Energy Service Company Selection from Pre-Qualified Pool Documents

    Broader source: Energy.gov [DOE]

    Information and documents about the Request for Proposals to select an Energy Service Company from a pre-qualified pool.

  4. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat, and exacerbating adverse water quality conditions. A reduction in carry over can lead to seasonal reductions in instream flows, which may also negatively affect fish, wildlife, and recreation in Idaho. The Idaho Water Rental Pilot Project does provide opportunities to protect and enhance resident fish and wildlife habitat by improving water quality and instream flows. Control of point sources, such as sewage and industrial discharges, alone will not achieve water quality goals in Idaho reservoirs and streams. Slow, continuous releases of rented water can increase and stabilize instream flows, increase available fish and wildlife habitat, decrease fish displacement, and improve water quality. Island integrity, requisite for waterfowl protection from mainland predators, can be maintained with improved timing of water releases. Rebuilding Snake River salmon and steelhead runs requires a cooperative commitment and increased flexibility in system operations to increase flow velocities for fish passage and migration. Idaho's resident fish and wildlife resources require judicious management and a willingness by all parties to liberate water supplies equitably.

  5. Development of Thermal Analysis Capability of Dry Storage Cask for Spend Fuel Interim Storage

    SciTech Connect (OSTI)

    Fu-Kuang Ko; Liang, Thomas K.S.; Chung-Yu Yang [Institute of Nuclear Energy Research P.O. Box 3-3, Longtan, 32500, Taiwan (China)

    2002-07-01T23:59:59.000Z

    As most of the nuclear power plants, on-site spent fuel pools (SFP) of Taiwan's plants were not originally designed with a storage capacity for all the spent fuel generated over the operating life by their reactors. For interim spent fuel storage, dry casks are one of the most reliable measures to on-site store over-filled assemblies from SFPs. The NUHOMS{sup R}-52B System consisting of a canister stored horizontally in a concrete module is selected for thermal evaluation in this paper. The performance of each cask in criticality, radioactive, material and thermal needs to be carefully addressed to ensure its enduring safety. Regarding the thermal features of dry storage casks, three different kinds of heat transfer mechanisms are involved, which include natural convection heat transfer outside and/or inside the canister, radiation heat transfer inside and outside the canister, and conduction heat transfer inside the canister. To analyze the thermal performance of dry storage casks, RELAP5-3D is adopted to calculate the natural air convection and radiation heat transfer outside the canister to the ambient environment, and ANSYS is applied to calculate the internal conduction and radiation heat transfer. During coupling iteration between codes, the heat energy across the canister wall needs to be conserved, and the inner wall temperature of the canister needs to be converged. By the coupling of RELAP5-3D and ANSYS, the temperature distribution within each fuel assembly inside canisters can be calculated and the peaking cladding temperature can be identified. (authors)

  6. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  8. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  9. High Availability using Reliable Server Pooling Thomas Dreibholz (dreibh@exp-math.uni-essen.de)

    E-Print Network [OSTI]

    Dreibholz, Thomas

    High Availability using Reliable Server Pooling Thomas Dreibholz (dreibh RSerPool working group is standardizing a protocol suite for Reliable Server Pooling, which copes with the challenge of providing high availability by using redundant servers. Servers for the same service

  10. A New Approach of Performance Improvement for Server Selection in Reliable Server Pooling Systems

    E-Print Network [OSTI]

    Dreibholz, Thomas

    A New Approach of Performance Improvement for Server Selection in Reliable Server Pooling Systems.dreibholz,erwin.rathgeb}@uni-due.de Abstract Reliable Server Pooling (RSerPool) is a light-weight pro- tocol framework for server redundancy architecture is. Server redundancy directly leads to the issues of load distribution and load balancing, which

  11. Simulated Convective Invigoration Processes at Trade Wind Cumulus Cold Pool ZHUJUN LI AND PAQUITA ZUIDEMA

    E-Print Network [OSTI]

    Zuidema, Paquita

    convection and cold pools using a nestedWeather Research and Fore- casting Model simulation of 19 January ratio drops in simulated cold pools fall within the envelope of observed cases, and the wind enhancement pools invigorating convection at their downwind boundary and suppressing thermals in- side the stable

  12. Analysis of the pool critical assembly pressure vessel benchmark using pentran

    SciTech Connect (OSTI)

    Edgar, C. A.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Inst. of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2012-07-01T23:59:59.000Z

    The internationally circulated Pool Critical Assembly (PCA) Pressure Vessel Benchmark was analyzed using the PENTRAN Parallel Sn code system for the geometry, material, and source specifications as described in the PCA Benchmark documentation. This research focused on utilizing the BUGLE-96 cross section library and accompanying reaction rates, while examining both adaptive differencing on a coarse mesh basis as well as Directional Theta Weighted Sn differencing in order to compare the calculated PENTRAN results to measured data. The results show good comparison with the measured data as well as to the calculated results provided from TORT for the BUGLE-96 cross sections and reaction rates, which suggests PENTRAN is a viable and reliable code system for calculation of light water reactor neutron shielding and dosimetry calculations. (authors)

  13. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  14. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  15. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  16. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOE Patents [OSTI]

    Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

    1998-01-01T23:59:59.000Z

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

  17. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  18. Dry Cask Storage Experience for a One-of-a-Kind Decommissioning Project

    SciTech Connect (OSTI)

    Lehnert, Robert [Energy Solutions, Spent Fuel Division, Inc: 2105 S. Bascom Ave., Suite 160, Campbell, California 95008 (United States); Trubilowicz, William [Operating Solutions of Michigan, Inc: 9039 Norton Road, Charlevoix, Michigan 49720 (United States)

    2008-01-15T23:59:59.000Z

    The Big Rock Point Restoration Project faced many unique challenges in preparation to remove all of the spent fuel from the fuel pool where it had been stored for almost thirty years to facilitate decommissioning and dismantling the entire plant. Being the first site to use a new cask system to place the fuel into dry cask storage canisters to be stored at the Independent Spent Fuel Storage Installation (ISFSI) on the Big Rock site was among the challenges. Providing the ability for cask handling operations after the spent fuel pool had been dismantled provided another challenge. The purpose of this paper is to discuss the challenges that the Big Rock team faced in completing this task on a schedule that met the goals of the Restoration Project. In conclusion, the unique features of the Big Rock plant and fuel, coupled with the goals and objectives of the Big Rock decommissioning and site restoration project posed considerable challenges that were successfully overcome by the Big Rock team. The Big Rock spent fuel was successfully moved to dry cask storage in a stand-alone ISFSI awaiting DOE to remove it from the site, and the plant structures, including the spent fuel pool, have been successfully demolished and removed from the site. The site with the exception of the ISFSI has been fully restored and was released by the NRC for unrestricted use on January 08, 2007.

  19. Minimum Stream Flow and Water Sale Contracts (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

  20. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  1. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  2. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment

    E-Print Network [OSTI]

    Haiyan Li; Shengfu Mei; Lei Wang; Yunxia Gao; Jing Liu

    2013-09-04T23:59:59.000Z

    In this article, the fluid dynamics of room temperature liquid metal (RTLM) droplet impacting onto a pool of the same liquid in ambient air was investigated. A series of experiments were conducted in order to disclose the influence of the oxidation effect on the impact dynamics. The droplet shape and impact phenomenology were recorded with the aid of a high-speed digital camera. The impact energy stored in the splash structures was estimated via a theoretical model and several morphological parameters obtained from instantaneous images of the splash. It was observed that the droplet shape and the splashing morphology of RTLM were drastically different from those of water, so was the impact dynamics between room temperature LM pool and high temperature LM pool. The energy analysis disclosed that the height of the jet is highly sensitive to the viscosity of the fluid, which is subjected to the oxidation effect and temperature effect simultaneously, and thus perfectly explained the phenomena. These basic findings are important for the application of RTLM in a series of newly emerging technologies such as liquid metal based spray cooling, ink-jet printed electronics, interface material painting and coating, metallurgy, and 3D packages, etc.

  3. State Water Permit Regulation (Arkansas)

    Broader source: Energy.gov [DOE]

    It is the purpose of this regulation to adopt standards applicable to the storage, discharge, or disposal of any waste which, if unregulated, will cause pollution of waters of the state or result...

  4. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  5. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect (OSTI)

    JOSEPHSON, W S

    2003-09-04T23:59:59.000Z

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis refinements and/or relaxation of conservatisms. However, possible design improvements will be summarized for future application. All assumptions and related design features, while appropriate for conceptual designs, must be technically justified for the final design. The pertinent thermal design requirements and underlying assumptions are summarized in Section 1.3. The majority of the thermal analyses, as described in Sections 4.2 and 4.3, focus on an acceptable conceptual design arrived at by refinement of a preliminary but unacceptable design. The results of the subject thermal analyses, as presented in Section 4.0, satisfy items 3 and 4 above.

  6. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19T23:59:59.000Z

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  7. Time-lapse gravity monitoring of an aquifer storage recovery project in Leyden, Colorado Kristofer Davis*

    E-Print Network [OSTI]

    this stage, water injection will also help in removal of residual natural gas stored in the mine. The mine coal mine is being developed into an underground water reservoir in Leyden, Colorado. Excess water from. Efficient operation of the storage-recovery process requires knowledge of water concentration and movement

  8. Surface Water Development in Texas.

    E-Print Network [OSTI]

    McNeely, John G.; Lacewell, Ronald D.

    1977-01-01T23:59:59.000Z

    Government. Flood-control storage capacities at 26 major Texas reservoirs amounted to 17.4 million acre-feet in 1976. There is evi- dence of a changing national policy to keep economic development out of the flood plains. It appears that management... Water Development ................................. 30 Appendix Tables .......................................... 32 ......... Appendix A: Major Conservation Storage Reservoirs 40 endix B: Water Development Board Policy ............... 41 eferences...

  9. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494StorageStorage

  10. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  11. Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements

    E-Print Network [OSTI]

    Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements 5.1 Overview 5.1.1 Water Heating Energy Water heating energy use is an important end use in low-rise residential buildings. Roughly 90 percent of California households use natural gas fueled water heaters, typically storage gas

  12. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News, News &...

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  15. Sandia National Laboratories: DOE International Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity DOE International Energy Storage Database Has Logged 420...

  16. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    tiles for thermal energy storage, working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  17. Sandia National Laboratories: Electricity Storage Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  18. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured ElectrodesCells for Energy Storage and Generation . . . . . . . . . .batteries and their energy storage efficiency. vii Contents

  19. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  1. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    of new energy generation and storage technologies arenew energy generation and storage technologies is importantBased Energy Storage and Generation Technologies The world

  2. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  3. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  4. Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud

    E-Print Network [OSTI]

    Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

  5. Solar-thermal-energy collection/storage-pond system

    DOE Patents [OSTI]

    Blahnik, D.E.

    1982-03-25T23:59:59.000Z

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  6. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

  7. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  8. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  9. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  10. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  11. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  12. LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07

    SciTech Connect (OSTI)

    KNOLLMEYER PM

    2007-08-31T23:59:59.000Z

    Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

  13. Regional Estimation of Total Recharge to Ground Water in Nebraska

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    )over long periods of time when the potential change in ground water storage becomes negligible compared storage other than discharge to streams. One such loss term is evapotranspiration (ET) from ground waterRegional Estimation of Total Recharge to Ground Water in Nebraska by Jozsef Szilagyi1m2,F. Edwin

  14. Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application

    E-Print Network [OSTI]

    Rana, Morshed A.

    2011-02-22T23:59:59.000Z

    .............................................................................................................................. 211 xv LIST OF FIGURES Page Fig. 1. Densities of methane (vapor) and air at different temperatures. .......................... 2 Fig. 2. Temperature and specific gravity of methane, air and methane-air mixture at atmospheric... on methane concentration downwind of the LNG pool ..................................................................................................... 37 Fig. 10. Methane concentrations downwind of the LNG pool, with and without water spray...

  15. Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources

    E-Print Network [OSTI]

    Barthelat, Francois

    of compartmentalized data, lack of central storage, and limited access to data for decision-making in water managementConference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources Management in the Caribbean Marie-Claire St

  16. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage options primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argons design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, Silo Storage Concepts, Cathodic Protection Options Study (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  17. Safford Pool & Spa Low Temperature Geothermal Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions JumpFacility |Information Safford Pool

  18. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetail Demand Response in Southwest Power Pool

  19. EA-98-F, Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western Systems Power Pool EA-98-F, Western Systems Power

  20. EA-98-H Western Systems Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western Systems Power Pool EA-98-F, Western Systems98-H