Sample records for water pipeline right-of-way

  1. Right-of-Way for Carrier Facilities (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation establishes right-of-way for carrier pipelines, as well as restrictions on the width of lands used for pipeline facilities. This legislation also applies to electricity...

  2. Rights of Way Pesticide Training

    E-Print Network [OSTI]

    Ishida, Yuko

    Rights of Way Pesticide Training This class will provide informa on for people doing Rights of Way than 5 business days prior to training by 5:00PM. LATE CANCELLATIONS = NO REFUNDS ~ NO CREDITS ~ NO ROLLING FORWARD ~ NO EXCEPTIONS. The SBE Training Center reserves the right to cancel class due to low

  3. Gas Companies Right-of-Way (Maryland)

    Broader source: Energy.gov [DOE]

    Corporations engaged in the business of transmitting or supplying natural gas, artificial gas, or a mixture of natural and artificial gases may acquire by condemnation the rights-of-way or...

  4. Montana - Application for Right of Way Easement for Utilities...

    Open Energy Info (EERE)

    Right of Way Easement for Utilities Through State Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Application for Right of Way Easement...

  5. Power Districts: Acquisition of Right-of-Way (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute describes procedures for power districts (utilities, corporations, or municipalities that engage in the generation or transmission of electricity) to obtain a right-of-way for the...

  6. 5-4617-01-P1 RIGHT-OF-WAY ACQUISITION AND UTILITY

    E-Print Network [OSTI]

    Texas at Austin, University of

    5-4617-01-P1 RIGHT-OF-WAY ACQUISITION AND UTILITY ADJUSTMENT PROCESS DURATION INFORMATION TOOL of Right-of-Way Acquisition and Utility Adjustment Process Duration Information Tool JULY 2008 Performing parties both sides of the R/W line have asked the question "How long does it take to acquire right of way

  7. 16 U.S.C. 5: Rights-of-way through parks or reservations for...

    Open Energy Info (EERE)

    Rights-of-way through parks or reservations for power and communication facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  8. EA-0962: Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...

  9. Title 43 CFR 2800 Rights-of-way Under the Federal Land Policy...

    Open Energy Info (EERE)

    Land Policy Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 2800 Rights-of-way...

  10. Methods of right-of-way acquisition used by the Texas Highway Department

    E-Print Network [OSTI]

    Lowry, Paul Russell

    1959-01-01T23:59:59.000Z

    OF APPRAISERS. XXII. WHEN SHOULD APPRAISAL FEES BE PAID FOR CONPLETED vi Page 48 56 57 57 vii LIST OP FIGURES FIGURE 1. TEXAS HIGHWAY DEPARTHNHT Right-of-Way Division Organization Chart 2. Right-of-Way Acquisition HIGHWAY DEPAETNEHT AND OTHER... of appraisal after assignsmnt. 3. The desirability of the various means of assigning parcels of appraisal ~ 4. The adequacy of msp and other inforsmtion provided the appraiser by the Texas Highway Department. 5. The adequacy of fees paid to appraisers...

  11. Disinfection Procedure for Water Distribution Pipelines Drinking water contamination can be prevented by hydrostatic testing and disinfection of

    E-Print Network [OSTI]

    de Lijser, Peter

    Disinfection Procedure for Water Distribution Pipelines Drinking water contamination can pipeline connections to the system, and respond to requests for drinking water assessments. And, any be prevented by hydrostatic testing and disinfection of potable water distribution pipelines before connecting

  12. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  13. 5-4079-01-P1 RIGHT-OF-WAY COST ESTIMATING TOOL

    E-Print Network [OSTI]

    Texas at Austin, University of

    5-4079-01-P1 RIGHT-OF-WAY COST ESTIMATING TOOL USER MANUAL Authors: Dr. Kara Kockelman, R.S. Dr Acquisition Cost Estimating Planning Tool AUGUST 2006 Performing Organization: Center for Transportation and the Federal Highway Administration. #12;#12;1 Tool Introduction This document is the user manual for the Right

  14. Pipeline corridors through wetlands

    SciTech Connect (OSTI)

    Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

    1992-01-01T23:59:59.000Z

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  15. Pipeline corridors through wetlands

    SciTech Connect (OSTI)

    Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

    1992-12-01T23:59:59.000Z

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  16. Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

  17. Landowner’s Guide for Compatible Use of BPA Rights-of-Way

    SciTech Connect (OSTI)

    none,

    2011-02-01T23:59:59.000Z

    Keeping transmission lines safe and reliable is a critical priority for the Bonneville Power Administration. The key element in achieving those objectives is BPA’s ability to construct, operate and maintain its transmission lines and rights-of-way — the area under and around the lines. You can help BPA keep these rights-of-way clear of trees, brush and structures that could affect the safety or reliability of the transmission system. Prior to planting, digging, or constructing within BPA’s rights-of-way, fill out BPA’s Land Use Application Form. The information you provide on the application helps BPA understand your proposed use and the potential impacts to public safety, and the safety of our crews. BPA also reviews the application to determine whether a proposed use of land is compatible with the construction, operation and maintenance of BPA transmission lines. Coordinating with BPA early in your planning process can keep you safe and avoid wasting time and money.

  18. RIGHT-OF-WAY ACQUISITION PLAN UNDER THE UNIFORM ACT FOR THE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963American |Purpose01/05/14 RIGHT-OF-WAY

  19. Title 16 USC 79 Rights-of-way for Public Utilities | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc.,Information Rights-of-way for

  20. IEEE Transactions on Power Apparatus and Systems, Vol.PAS-98, No.5 Sept/Oct 1979 MITIGATION OF BURIED PIPELINE VOLTAGES

    E-Print Network [OSTI]

    Taflove, Allen

    OF BURIED PIPELINE VOLTAGES DUE TO 60 Hz AC INDUCTIVE COUPLING PART I - DESIGN OF JOINT RIGHTS-OF-WAY Allen for the reduction of voltages induced on gas transmission pipelines by 60 Hz ac power transmission lines sharing a joint right-of-way. Part I describes how a joint pipeline/power line corridor can be de- signed

  1. Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke The temperature of a pipeline buried 4 feet would

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 Water Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke ­ The temperature of a pipeline buried 4 feet would probably affect surface water. In some places the pipeline might be quite near the water table and in others it could be 50-100 feet

  2. EA-1629: Herbicide Application within Transmission Line Rights-of-Way in the Ozark-St. Francis National Forest, Arkansas

    Broader source: Energy.gov [DOE]

    The Department of the Interior, U.S. Forest Service, with DOE’s Southwestern Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of applying herbicide within transmission line rights-of-way in the Ozark-St. Francis National Forest in Arkansas. NOTE: SWPA's involvement in this EA has ended.

  3. Development of a right-of-way cost estimation and cost estimate management process framework for highway projects

    E-Print Network [OSTI]

    Lucas, Matthew Allen

    2009-05-15T23:59:59.000Z

    Escalation of right-of-way (ROW) costs have been shown to be a prime contributor to project cost escalation in the highway industry. Two problems contribute to ROW cost escalation: 1) the ROW cost estimation and cost estimate management process...

  4. Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County

    E-Print Network [OSTI]

    Leigh, E.; Fipps, G.

    TR-322 2008 Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College... Station Guy Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station March 20, 2007 Water Loss Test Results for the West Main Pipeline United Irrigation...

  5. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line, Pima County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Indian Affairs (BIA), as joint lead agencies, are preparing an EA that will evaluate the potential environmental impacts of a proposal for BIA to grant Western a 150-foot right-of-way across tribal land along the existing Tucson-Apache Transmission Line to replace the previous 100-foot right-of-way, which has expired.

  6. 36 CFR 14 et seq.: Rights-of-way | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive Jump to:Species | OpenSubjectet14 et seq.:

  7. A.A.C. R12-5-801: Rights-of-Way | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of The Transiel Method OnAand

  8. ADOT Policy for Accommodating Utilities on Highway Rights-Of-Way | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:Use LandsADOT

  9. Alaska Statutes - Chapter 38.35 - Right of Way Leasing Act | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformationOpen Energy850

  10. Transmission Right Of Way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfordefault SignTransmissionAbout

  11. Pipeline corridors through wetlands -- Impacts on plant communities: Little Timber Creek Crossing, Gloucester County, New Jersey. Topical report, August 1991--January 1993

    SciTech Connect (OSTI)

    Shem, L.M.; Zimmerman, R.E.; Alsum, S.K. [Argonne National Lab., IL (United States). Center for Environmental Restoration Systems; Van Dyke, G.D. [Argonne National Lab., IL (United States). Center for Environmental Restoration Systems]|[Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology

    1994-12-01T23:59:59.000Z

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old side of the ROW, created by the installation of the 1960 pipeline, was designed to contain a raised peat bed over the 1950 pipeline and an open-water ditch over the 1960 pipeline. The new portion of the ROW, created by installation of the 1990 pipeline, has an open-water ditch over the pipeline (resulting from settling of the backfill) and a raised peat bed (resulting from rebound of compacted peat). Both the old and new ROWs contain dense stands of herbs; the vegetation on the old ROW was more similar to that in the adjacent natural area than was vegetation in the new ROW. The ROW increased species and habitat diversity in the wetlands. It may contribute to the spread of purple loosestrife and affect species sensitive to habitat fragmentation.

  12. Pipeline Flow Behavior of Water-In-Oil Emulsions.

    E-Print Network [OSTI]

    Omer, Ali

    2009-01-01T23:59:59.000Z

    ??Water-in-oil (W/O) emulsions consist of water droplets dispersed in continuous oil phase. They are encountered at various stages of oil production. The oil produced from… (more)

  13. Environmental Assessment for the Strategic Petroleum Reserve West Hackberry Facility Raw Water Intake Pipeline Replacement Cameron and Calcasieu Parishes, Louisiana

    SciTech Connect (OSTI)

    N /A

    2004-08-31T23:59:59.000Z

    The proposed action and three alternatives, including a No Build alternative, were evaluated along the existing RWIPL alignment to accommodate the placement of the proposed RWIPL. Construction feasibility, reasonableness and potential environmental impacts were considered during the evaluation of the four actions (and action alternatives) for the proposed RWIPL activities. Reasonable actions were identified as those actions which were considered to be supported by common sense and sound technical principles. Feasible actions were those actions which were considered to be capable of being accomplished, practicable and non-excessive in terms of cost. The evaluation process considered the following design specifications, which were determined to be important to the feasibility of the overall project. The proposed RWIPL replacement project must therefore: (1) Comply with the existing design basis and criteria, (2) Maintain continuity of operation of the facility during construction, (3)Provide the required service life, (4) Be cost effective, (5)Improve the operation and maintenance of the pipeline, and (6) Maintain minimal environmental impact while meeting the performance requirements. Sizing of the pipe, piping construction materials, construction method (e.g., open-cut trench, directional drilling, etc.) and the acquisition of new Right-of-Way (ROW) were additionally evaluated in the preliminary alternative identification, selection and screening process.

  14. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01T23:59:59.000Z

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  15. The Trans-Africa Pipeline: Building a Sustainable Water Generation and Distribution Network

    E-Print Network [OSTI]

    unknown authors

    2011-01-01T23:59:59.000Z

    The Trans-Africa Pipeline (TAP), the vision of University of Toronto professor emeritus Rod Tennyson, aims to mitigate poverty, disease, desertification, and conflict in Africa’s Sahel1 region through the daily provision of roughly one billion litres of fresh water to 20 million people for domestic and agricultural use (Tennyson, n.d; Tennyson et al, n.d). As the effects of climate change become more pronounced,

  16. Establishing perennial grasses on new backslopes of a highway right-of-way during the summer months

    E-Print Network [OSTI]

    Waller, Jerry Jim

    1961-01-01T23:59:59.000Z

    ) to aocelerate seedling development. The fert111sed areas of each looation were split into five equal parts. Each portion reoeived one of the following treatmentsi (1) peat 12 moss under the seeded row[ (2) scarification) (3) vegatativa mulch1 (&) a mulsh... of RC 2 asphalt ~ and (5) no further treatment vt ioh was used as a shook. Tha peat moss was plaoed beneath the seeded rov in a furrow opened using a bull-tongue at tacbsd to a manually-operated hams~arden plow, The peat moss vas soaked in water...

  17. A.R.S. § 37-461: Grants of Rights-of-Way and Site for Public Uses | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of The Transiel Method11-801LegalEnergy

  18. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water

    E-Print Network [OSTI]

    Loh, Watson

    Elsevier B.V. All rights reserved. Keywords: Heavy oil; Asphaltenes; Naphthenic acids; Wettability; Oil­waterContact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water RonaldoG.dosSantos a , Rahoma S. Mohamed a,F , Antonio C. Bannwart b , Watson Loh c

  19. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect (OSTI)

    Zhou, Ling [Hohai University, China; Liu, Prof. Deyou [Hohai University, China; Karney, Professor Byran W. [University of Toronto; Zhang, Qin Fen [ORNL

    2011-01-01T23:59:59.000Z

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  20. Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A, and I-22 Hidalgo County Irrigation District No. 2

    E-Print Network [OSTI]

    Fipps, G.; Leigh, E.

    ...................................................... ..9 Acknowledgements........................................................................................................................................... 13 List of Figures Figure 1. Photo of leaking pipeline control structure... I-19/I-18 52080 63653 58.4 71.3 SJ17 I-7A 50193 61347 56.2 68.7 J18 I-22 36490 44599 40.9 50.0 * Water loss rates given are based on an in-service use of 24 hours/day and 365 days/year. Figure 1 shows a leaking pipeline control structure...

  1. Pipelines (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal...

  2. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  3. AZ Pending Solar Right-of-Way

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .68 Yuma FO AZA34739 IDIT Inc. N1 CSP Trough 12255.74 Yuma FO AZA34754 Horizon Wind Energy, LLC F1 Solar Field Office C2 C1 FLAGSTAFF KINGMAN Kingman Field Office COLORADO LAKE PRESCOTT HAVASU CITY R D4 F1 I2) City, State, County Parks County Lands BLM National Monument BLM Field Office Boundary BLM District

  4. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  5. Theoretical Study of Steam Condensation Induced Water Hammer Phenomena in Horizontal Pipeline

    E-Print Network [OSTI]

    Barna, Imre Ferenc

    2014-01-01T23:59:59.000Z

    We investigate steam condensation induced water hammer (CIWH) phenomena and present new theoretical results. We use the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. This model was validated with different CIWH experiments which were performed in the PMK-2 facility, which is a full-pressure thermo-hydraulic model of the nuclear power plant of VVER-440/312 type in the Energy Research Center of the Hungarian Academy of Sciences in Budapest and in the Rosa facility in Japan. In our recent study we show the first part of a planned large database which will give us the upper and lower flooding mass flow ...

  6. Pipeline Setback Ordinance (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

  7. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  8. Crossing conflict: The in-service lowering of a 34-in. crude oil pipeline for the construction of the Owen flood diversion channel

    SciTech Connect (OSTI)

    Mikkola, C.A.; Fridel, T.W. [Lakehead Pipe Line Co., Inc., Duluth, MN (United States)

    1996-12-31T23:59:59.000Z

    Lakehead Pipe Line Company, Inc. (LPL) was involved in a collaborative effort with State, local, and private agencies to solve a major crossing conflict in Owen, Wisconsin. This report describes the analysis and design of an in-service lowering of a 34-in. crude oil pipeline. An integrity assessment was performed using internal smart pig data and magnetic particle and ultrasonic inspections. The pipeline lowering design was based on maximum allowable pipe bending moments and included a coating replacement program and river weight installation. The paper describes design options, right-of-way agreement, contracts, pipe repair techniques and construction.

  9. Pipeline refurbishing

    SciTech Connect (OSTI)

    McConkey, S.E.

    1989-04-01T23:59:59.000Z

    A novel process for simultaneously removing deteriorated coatings (such as coal tar and asphalt enamel or tape) and providing surface preparation suitable for recoating has been developed for pipelines up to 36 in. (914 mm) in diameter. This patented device provides a near-white metal surface finish. Line travel or bell-hole operations are possible at rates up to 10 times conventional blasting techniques. This article describes development of a tool and machine that will remove pipeline coatings, including coal tar enamel and adhesive-backed plaster tape systems. After coating removal, the pipe surface is suitable for recoating and can be cleaned to a near-white metal finsh (Sa 2 1/2 or NACE No. 2) if desired. This cleaning system is especially useful where the new coating is incompatible with the coating to be removed, the new coating requires a near-white or better surface preparation, or no existing method has been found to remove the failed coating. This cleaning system can remove all generic coating systems including coal tar enamel, asphalt, adhesive-backed tape, fusion-bonded epoxy, polyester, and extruded polyethylene.

  10. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  11. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  12. Pipeline Operations Program (Louisiana)

    Broader source: Energy.gov [DOE]

    The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

  13. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  14. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  15. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    E-Print Network [OSTI]

    Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

  16. Self lubrication of bitumen froth in pipelines

    SciTech Connect (OSTI)

    Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States)

    1997-12-31T23:59:59.000Z

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes` bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating.

  17. Pipeline Construction Guidelines (Indiana)

    Broader source: Energy.gov [DOE]

    The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

  18. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  19. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  20. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

  1. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

  2. A diversion is any transfer of water across watershed boundaries through a man-made pipeline or canal. Diversions of Great Lakes water provide

    E-Print Network [OSTI]

    Saldin, Dilano

    that evaporates, is incorporated into products, or for other rea- sons is not returned as treated wastewater challenges can help us protect clean, abundant water for generations to come. Diversions of Great Lakes WaterLakeMichigan ·Completedin1900 ·ReversedtheflowoftheChicagoRivertocarry wastewater and shipping traffic toward

  3. Finding of No Significant Impact for the Environmental Assessment for the Strategic Petroleum Reserve West Hackberry Facility Raw Water Intake Pipeline Replacement Cameron and Calcasieu Parishes, Louisiana

    SciTech Connect (OSTI)

    N /A

    2004-08-31T23:59:59.000Z

    DOE has prepared an Environmental Assessment (EA), DOE/EA-1497, for the proposed replacement of the existing 107 centimeter (cm) [42 inch (in)] 6.87 kilometer (km) [4.27 mile (mi)] raw water intake pipeline (RWIPL). This action is necessary to allow for continued, optimum operations at the West Hackberry facility (main site/facility). The EA described the proposed action (including action alternatives) and three alternatives to the proposed action. The EA evaluated only the potential environmental consequences of the proposed action (one action alternative), and Alternative 3, which consisted of the No Build Action that is required by 10 CFR 1021.321(c). Based on the analysis in DOE/EA-1497, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting humans or the natural environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, an Environmental Impact Statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI). To further minimize impacts to environmental media, the DOE will also implement a Mitigation Action Plan (MAP) for this action. The MAP is included as Appendix F of this EA, which is appended to this FONSI. The Energy Policy and Conservation Act of 1975 (EPCA), as amended, authorizes the creation of the Strategic Petroleum Reserve (SPR) to store crude oil to reduce the United States' vulnerability to energy supply disruptions. Crude oil is stored in geologic formations, or salt domes, located under these facilities. The purpose of this proposed project is to construct a new RWIPL at the main site to replace the existing RWIPL which services this facility.

  4. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  5. The Motion Capture Pipeline.

    E-Print Network [OSTI]

    Holmboe, Dennis

    2008-01-01T23:59:59.000Z

    ?? Motion Capture is an essential part of a world full of digital effects in movies and games. Understanding the pipelines between software is a… (more)

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  7. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  8. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12T23:59:59.000Z

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

  9. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)] [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01T23:59:59.000Z

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  10. Energy Reduction in California Pipeline Operations

    E-Print Network [OSTI]

    technologies that can help California's industrial sectors reduce their energy consumption, their water use. In addition to significant baseline energy consumption, more energy is often required by pipelines Energy Commission Public Interest Energy Research Program Industrial/Agriculture/Water EndUse Phone

  11. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

  12. FEATURE ARTICLE Pipeline Corrosion

    E-Print Network [OSTI]

    Botte, Gerardine G.

    F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

  13. Lessons from two field tests on pipeline damage detection using acceleration measurement (Invited Paper)

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Lessons from two field tests on pipeline damage detection using acceleration measurement (Invited, Irvine, CA USA 92697-2700 ABSTRACT Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate

  14. EA-0962: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California Based on the...

  15. Natural Gas Pipeline Utilities (Maine)

    Broader source: Energy.gov [DOE]

    These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the...

  16. Natural Gas Pipeline Safety (Kansas)

    Broader source: Energy.gov [DOE]

    This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

  17. A Cheap Levitating Gas/Load Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-12-02T23:59:59.000Z

    Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

  18. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

  19. North Area Right-of-Way Maintenance Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 and O-2 inMuseum Lobby

  20. North Area Right-of-Way Maintenance Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 and O-2 inMuseum LobbySacramento

  1. WSDNR Rights-of-Way Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data Jump to: navigation,Information

  2. Arizona Right-of-Way Instruction Sheet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz

  3. Montana - Right-of-Way Checklist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone Subtype A. Places inMonson042161°,Lands

  4. Application for use of BPA Right-of-Way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration on Current andApplicationF

  5. Texas GLO Rights of Way Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to: navigation, searchTetra SunCounty,Sealed Bid

  6. Idaho Right-of-Way Encroachment Application and Permit - Other

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar JumpObtain EPAForm 204) | Open

  7. Gas Pipelines (Texas)

    Broader source: Energy.gov [DOE]

    This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

  8. Pipeline Carriers (Montana)

    Broader source: Energy.gov [DOE]

    Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by...

  9. Gas Pipeline Securities (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

  10. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  11. Composites Technology for Hydrogen Pipelines

    E-Print Network [OSTI]

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

  12. Tefken builds Turkish pipeline project

    SciTech Connect (OSTI)

    Not Available

    1984-08-01T23:59:59.000Z

    A turnkey contract was let in early 1983 for the construction of the Yumurtalik-Kirikkale crude oil pipeline system in Turkey. The design and construction of the 277 mile, 24 in dia pipeline will be completed toward the end of 1985. The pipeline will transport crude oil to the Central Anatolian Refinery. In the original design, the pipeline was planned for an ultimate capacity of 10 million tons/year with three pumping stations. Problems encountered in constructing the pipeline are discussed.

  13. Pipeline corridors through wetlands - impact on plant communities: Mill Creek Tributary Crossing, Jefferson County, New York, 1991 survey. Topical report, June 1991--April 1993

    SciTech Connect (OSTI)

    Van Dyke, G.D. [Argonne National Lab., IL (United States)]|[Trinity Christian College, Palos Heights, IL (United States); Shem, L.M.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01T23:59:59.000Z

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted in June 1991 at the Mill Creek tributary crossing, Jefferson County, New York. One pipeline had been installed through the wetland in 1966, and another was scheduled to be installed later in 1991. Data were collected along the existing pipeline ROW and also along the planned ROW for use as baseline data in future studies. Four separate communities were surveyed. A scrub-shrub wetland and a forested wetland were sampled along the existing ROW where the planned pipeline was to be installed. A mixed vegetation community was sampled along the existing ROW, west of where the planned pipeline would joint the ROW. A marsh community was sampled along the route of the planned pipeline. All plant species found on the ROW of the scrub-shrub community were also present in the adjacent natural areas. The vegetation on the ROW of the forested wetland community also consisted mostly of species found in the adjacent natural areas. In the mixed vegetation community, a small drainage channel present on the ROW, possibly resulting from the pipeline construction, provided habitat for a number of obligate species not found in other areas of this community. Differences noted among different areas of this community were also attributed to slight variations in elevation.

  14. Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND

    E-Print Network [OSTI]

    Michalowski, Radoslaw L.

    Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND RUPTURE: A FULL-SCALE EXPERIMENT A typical water distribution system includes a network of steel and concrete pipelines. Concrete segmental pipelines are particularly vulnerable to damage by ground rupture. Ground displacements may produce

  15. Microsoft Word - SPR Emergency Pipeline Repair, 2013-2017 NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion to be applied: B5.4 Repair or replacement of sections of a crude oil, produced water, brine or geothermal pipeline, if the actions are determined by the Army...

  16. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  17. Programmable Graphics Pipelines Anjul Patney

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Programmable Graphics Pipelines By Anjul Patney B.Tech. (Indian Institute of Technology Delhi) 2007 as Abstractions for Computer Graphics 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Modern Graphics Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

  18. Localized Pipeline Encroachment Detector System Using Sensor Network

    E-Print Network [OSTI]

    Ou, Xiaoxi 1986-

    2011-08-08T23:59:59.000Z

    NOMENCLATURE WSN Wireless Sensor Network ROW Right of Way WIFI Wireless Fidelity PC Personal Computer LED Light Emitting Diode USB Universal Serial Bus IEEE Institute of Electrical and Electronics Engineers A/D Analog to Digital WPAN Wireless...

  19. PID control of gas pipelines

    SciTech Connect (OSTI)

    Coltharp, B.; Bergmann, J. [Baker CAC, Kingwood, TX (United States)

    1996-09-01T23:59:59.000Z

    The use of low cost digital controllers for pipeline control is increasing as the reliability and cost improves. In pipeline applications, the proportional, integral, and derivative (PID) controller algorithm is often used. However, the unique problems associated with pipeline operation have caused manufacturers to modify the basic control algorithms. Features such as set point ramping, built in pressure control, freeze on input error, and high and low output limits help assure safe and predictable pipeline operation.

  20. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  2. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  3. CASE CRITICAL Keystone XL Pipeline

    E-Print Network [OSTI]

    Hall, Sharon J.

    CASE CRITICAL Keystone XL Pipeline: A Line in the Sand? Case Critical is presented by ASU's Global Professor, ASU's School of Geographical Sciences and Urban Planning The Keystone XL Pipeline, a large, and environmental pressures of the heated Pipeline controversy. #12;

  4. DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    DOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects #12;ppt00 3 Hydrogen Pipeline Pipeline Photos #12;ppt00 8 Pipeline Photos #12;ppt00 9 Overview of North American Air Products Hydrogen P

  5. Data-stationary pipelined machine

    SciTech Connect (OSTI)

    Abdou, I.E.

    1984-01-01T23:59:59.000Z

    The paper presents the data-stationary control concept of pipelined machines, with emphasis on its application in image processing systems. A parallel array of pipelined machines for image processing is considered, and data-stationary control is compared with time-stationary control. A system is proposed that is a parallel array of pipelined machines. Each pipeline is a multifunctional, statically configured, data-stationary device. The pipelines do not accommodate branching instructions or interrupts, and the design focus on vector processing only. The system can be used in other applications such as signal processing and arithmetic number crunching. 5 references.

  6. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  7. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin; Richard Cathcart

    2007-01-05T23:59:59.000Z

    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

  8. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01T23:59:59.000Z

    future estimates of hydrogen pipelines. Construction Cost (does this mean for hydrogen pipelines? The objective of thisinto the cost of hydrogen pipelines. To this end I will

  9. Drag reduction in coal log pipelines

    SciTech Connect (OSTI)

    Marrero, T.R.; Liu, H. [Univ. of Missouri, Columbia, MO (United States). Capsule Pipeline Research Center

    1996-12-31T23:59:59.000Z

    It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

  10. Total Crude by Pipeline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total

  11. A pipeline scheduling model

    E-Print Network [OSTI]

    Beatty, Thomas Melvin

    1975-01-01T23:59:59.000Z

    is dynamic- ally maintained as the pointer for the next record to be 26 written. This record pointer then is written on the working report as the option number for each of the five possible pipeline options. Also this pointer is written as the first... followed by a discussion of the data items. EXAMPLE: First Data Card CARD COLUMN 1 - 4 5 ? 8 9 ? 14 15 ? 20 21 ? 26 27 ? 32 33 ? 38 39 ? 44 DATA NAME ORIGIN DESTIN XREF (1) XREF (2) XREF ( 3) XREF (4) XREF (5) FIXCCT FORMAT/ SIZE A6...

  12. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

  13. Detection of the internal corrosion in pipeline

    E-Print Network [OSTI]

    2006-10-17T23:59:59.000Z

    Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

  14. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01T23:59:59.000Z

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  15. Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

    for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22 Introduction This report documents the analysis conducted for a project anticipated to be proposed to the Border Environmental Cooperative Commission...). Installation Periods: It is anticipated that it will take one year after purchase and project initiation for each of the three new pipeline segments to be installed and fully implemented (Table 4). No loss of operations or otherwise adverse impacts...

  16. Economic and Conservation Evaluation of Capital Renovation Projects: Edinburg Irrigation District Hidalgo County No. 1 - 72" Pipeline Replacing Delivery Canal and Multi-Size Pipeline Replacing Delivery Canal

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

    ). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., 72" pipeline replacing a segment of delivery canal along...

  17. Common Pipeline Carriers (North Dakota)

    Broader source: Energy.gov [DOE]

    Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

  18. Gas Utility Pipeline Tax (Texas)

    Broader source: Energy.gov [DOE]

    All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

  19. Pipelines programming paradigms: Prefab plumbing

    SciTech Connect (OSTI)

    Boeheim, C.

    1991-08-01T23:59:59.000Z

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  20. Decoupled Sampling for Graphics Pipelines

    E-Print Network [OSTI]

    Ragan-Kelley, Jonathan Millar

    We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

  1. Gas Pipelines, County Roads (Indiana)

    Broader source: Energy.gov [DOE]

    A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

  2. Interstate Natural Gas Pipelines (Iowa)

    Broader source: Energy.gov [DOE]

    This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

  3. Materials Solutions for Hydrogen Delivery in Pipelines

    E-Print Network [OSTI]

    Materials Solutions for Hydrogen Delivery in Pipelines Dr. Subodh K. Das Secat, Inc. September of new pipeline infrastructure Develop barrier coatings for minimizing hydrogen permeation in pipelines;NACE Hydrogen Induced Cracking (HIC) Test Evaluates resistance of pipeline and pressure vessel

  4. Pipeline system insulation: thermal insulation and corrosion prevention. December 1985-February 1988 (citations from the rubber and plastics research association data base). Report for December 1985-February 1988

    SciTech Connect (OSTI)

    Not Available

    1988-03-01T23:59:59.000Z

    This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems used to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline-insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester insulated-pipeline systems are among the topics discussed. Applications in solar-heating systems, underground water, oil, and gas, interior hot water and cold water lines under seawater, and chemical-plant pipeline-system insulation are included. (This updated bibliography contains 139 citations, all of which are new entries to the previous edition.)

  5. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  6. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01T23:59:59.000Z

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  7. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  8. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  9. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

  10. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    SciTech Connect (OSTI)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31T23:59:59.000Z

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

  11. Modeling and Validation of Pipeline Specifications

    E-Print Network [OSTI]

    Mishra, Prabhat

    -on-Chip design process. Many existing approaches employ a bottom-up approach to pipeline validation, where description language (ADL) constructs, and thus allows a powerful top-down approach to pipeline validationModeling and Validation of Pipeline Specifications PRABHAT MISHRA and NIKIL DUTT University

  12. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    , · fracture mechanics and metallurgy, · hydrogen and natural gas pipeline safety, · in-line inspection methodsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration

  13. Proceedings of IPC 2004 International Pipeline Conference

    E-Print Network [OSTI]

    Clapham, Lynann

    Proceedings of IPC 2004 International Pipeline Conference October 4 - 8, 2004 Calgary, Alberta) inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, MFL The most common cause of pipeline failure in North America is mechanical damage: denting or gouging

  14. BDP: BrainSuite Diffusion Pipeline

    E-Print Network [OSTI]

    Leahy, Richard M.

    BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography

  15. NAZ EDUCATION PIPELINE the-naz.org

    E-Print Network [OSTI]

    Amin, S. Massoud

    NAZ EDUCATION PIPELINE the-naz.org 1200 W. Broadway #250 | Minneapolis, MN 55411 | Family Academy is a foundational component of the NAZ "cradle to career" pipeline. NAZ families can enroll in the Family Academy college ready. Families and children move through a "cradle to career" pipeline that provides

  16. Tassel Pipeline Tutorial (Command Line Interface)

    E-Print Network [OSTI]

    Buckler, Edward S.

    Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

  17. Trawler: de novo regulatory motif discovery pipeline

    E-Print Network [OSTI]

    Cai, Long

    Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation Laurence, the fastest computational pipeline to date, to efficiently discover over-represented motifs in chromatin present the Trawler pipeline (Fig. 1a) that attempts the de novo identification of all over

  18. A Pipeline for Computational Historical Linguistics

    E-Print Network [OSTI]

    #12;A Pipeline for Computational Historical Linguistics Lydia Steiner Bioinformatics Group an algorithmic pipeline that mimics, as closely as possible, the traditional workflow of language reconstruction known as the comparative method. The pipeline consists of suitably modified algorithms based on recent

  19. TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward

    E-Print Network [OSTI]

    Buckler, Edward S.

    1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

  20. Analytic prognostic for petrochemical pipelines

    E-Print Network [OSTI]

    Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

    2012-12-25T23:59:59.000Z

    Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

  1. THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research

    E-Print Network [OSTI]

    Dennehy, John

    THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed before "going public." 3) Explore the possibility of doing the Pipeline thesis for credit

  2. THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research

    E-Print Network [OSTI]

    Dennehy, John

    THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed. The proposal must be completed and signed by your mentor by the beginning of the Pipeline summer research

  3. Pipeline-system insulation: Thermal insulation and corrosion prevention. December 1985-September 1989 (Citations from the Rubber and Plastics Research Association data base). Report for December 1985-September 1989

    SciTech Connect (OSTI)

    Not Available

    1989-10-01T23:59:59.000Z

    This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems utilized to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester-insulated pipeline systems are among the topics discussed. Applications in solar heating systems, underground water, oil, and gas, interior hot water and cold water lines under seawater, and chemical plant pipeline system insulation are included. (This updated bibliography contains 231 citations, 92 of which are new entries to the previous edition.)

  4. Pipeline-system insulation: thermal insulation and corrosion prevention. January 1976-November 1985 (Citations from the Rubber and Plastics Research Association data base). Report for January 1976-November 1985

    SciTech Connect (OSTI)

    Not Available

    1988-03-01T23:59:59.000Z

    This bibliography contains citations concerning thermal and corrosion insulating of pipeline systems used to transfer liquids and gases. Thermal aging of polyurethane foam for insulating heating pipes, extrusion-film pipeline-insulation materials and processes, flexible expanded nitrile-rubber pipeline insulation with class 1 fire rating, and underground fiberglass-reinforced polyester insulated-pipeline systems are among the topics discussed. Applications in solar-heating systems, underground water, oil, and gas, interior hot-water and cold-water lines under seawater, and chemical-plant pipeline-system insulation are included. (This updated bibliography contains 266 citations, none of which are new entries to the previous edition.)

  5. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysis &MapMajor NaturalPipeline

  6. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary MetalsOriginCapacity Design

  7. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01T23:59:59.000Z

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  8. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

    2006-07-01T23:59:59.000Z

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

  9. Hazardous Liquid Pipelines and Storage Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

  10. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  11. Illinois Gas Pipeline Safety Act (Illinois)

    Broader source: Energy.gov [DOE]

    Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever...

  12. Virginia Natural Gas's Hampton Roads Pipeline Crossing

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Virginia Natural Gas's (VNG's) pipeline project at Hampton Roads Crossing (HRX).

  13. Natural Gas Transmission Pipeline Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas...

  14. GLAST (FERMI) Data-Processing Pipeline

    SciTech Connect (OSTI)

    Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

    2011-08-12T23:59:59.000Z

    The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

  15. Acoustic system for communication in pipelines

    DOE Patents [OSTI]

    Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

    2008-09-09T23:59:59.000Z

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  16. Petroleum Pipeline Eminent Domain Permit Procedures (Georgia)

    Broader source: Energy.gov [DOE]

    The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection...

  17. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry (Columbia, MO)

    1982-01-01T23:59:59.000Z

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  18. Equivalence Checking for Function Pipelining in Behavioral Synthesis

    E-Print Network [OSTI]

    Xie, Fei

    on subtle design invariants. Function pipelining (a.k.a. system-level pipelining) is an important, correct-by-construction abstraction of function pipeline; thus, instead of developing pipelineEquivalence Checking for Function Pipelining in Behavioral Synthesis Kecheng Hao, Sandip Ray

  19. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  20. Robot design for leak detection in water-pipe systems

    E-Print Network [OSTI]

    Choi, Changrak

    2012-01-01T23:59:59.000Z

    Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

  1. Liquefaction and Pipeline Costs Bruce Kelly

    E-Print Network [OSTI]

    1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 are representative of hydrogen pipeline costs; 10 percent added to unit hydrogen costs as a contingency Better-9, 2007 Columbia, Maryland #12;2 Hydrogen Liquefaction Basic process Compress Cool to temperature

  2. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  3. Supplementary Figure 1 SHAPE-MaP data analysis pipeline.

    E-Print Network [OSTI]

    Cai, Long

    Supplementary Figure 1 SHAPE-MaP data analysis pipeline. Outline of software pipeline that fully.1 GHz Intel Core i7 and 16 GB RAM). This strategy is implemented in the SHAPE-MaP Folding Pipeline

  4. EIS-0433: Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE’s Western Area Power Administration, a cooperating agency, has jurisdiction over certain proposed transmission facilities (construction and operation of a short 230-kv transmission line and construction of a new substation). The State Department published a notice in the Federal Register on February 3, 2012, regarding the denial of the Keystone XL presidential permit (77 FR 5614).

  5. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  6. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  7. Report to Congress: Dedicated Ethanol Pipeline Feasability Study...

    Energy Savers [EERE]

    Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline...

  8. "Assessment of the Adequacy of Natural Gas Pipeline Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

  9. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

  10. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

  11. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  12. argentinian pipeline enlargement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber-reinforced polymer pipe Project Overview: Investigate 25 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

  13. acicular ferrite pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber-reinforced polymer pipe Project Overview: Investigate 18 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

  14. alaska pipeline system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber-reinforced polymer pipe Project Overview: Investigate 93 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

  15. automatic pipeline analysing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber-reinforced polymer pipe Project Overview: Investigate 45 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

  16. annotation pipelines differences: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber-reinforced polymer pipe Project Overview: Investigate 73 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

  17. arctic gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  18. arctic gas pipelines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  19. alaska highway pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber-reinforced polymer pipe Project Overview: Investigate 45 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

  20. Harmonic distortion correction in pipelined analog to digital converters

    E-Print Network [OSTI]

    Panigada, Andrea

    2009-01-01T23:59:59.000Z

    Background Correction of Harmonic Distortion in PipelinedBackground Correction of Harmonic Distortion in PipelinedADC with 69dB SNDR Enabled by Digital Harmonic Distortion

  1. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  2. FLUID TRANSIENTS IN A PIPELINE WITH ONE END OPEN

    SciTech Connect (OSTI)

    Leishear, R

    2008-06-09T23:59:59.000Z

    Water hammer during multi-phase flow is rather complex, but in some cases an upper limit to the pressure surge magnitude during water hammer can be estimated. In the case considered here, a two mile long pipeline with a single high point was permitted to partially drain. Due to gravitational effects, air bubbles up through the pipe line to its highest point, but the time required for air to reach the top of the pipe is rather long. Consequently, some transients caused by valve operations are affected by air entrapment and some are not. The intent of this research was to investigate the complex interactions between air, water vapor, and liquid during water hammer in a long pipe with one end of the pipe open to atmospheric conditions. To understand the system dynamics, experimental data was obtained from a long pipeline with an open end and also from a short, transparent tube. Transient calculations were performed for valve closures and pump operations as applicable. The limitations of available calculation techniques were considered in detail.

  3. Pressure Capacity Reduction of X52 Pipeline Steel Damaged by a Semi-Elliptical Pitting Corrosion

    E-Print Network [OSTI]

    S. M. Kazerouni Sangi; Y. Gholipour

    Abstract—Steel made pipelines with different diameters are used for transmitting oil and gas which in many cases are buried in soil under the sea bed or immersed in sea water. External corrosion of pipes is an important form of deterioration due to the aggressive environment of sea water. Corrosion normally results in pits. Hence, using the finite element method, namely ABAQUS software, this paper estimates the amount of pressure capacity reduction of a pipecontaining a semi-elliptical pitting corrosion and the rate of corrosion during the pipeline life of 25 years.

  4. Interior Offers First Right-of-Way for Renewable Energy Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan to create American jobs, develop clean energy sources and cut carbon pollution, Secretary of the Interior Sally Jewell and Bureau of Ocean Energy Management (BOEM)...

  5. Cornell Cooperative Extension provides equal program and employment opportunities Gas Rights and Right-of-Way

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    in lease values, but neither the natural gas nor the companies interested in developing this multi to legitimate companies. If no coalition exists in your county, you can form your own by organizing neighbors that the exact extent of impact is known. Loss of existing timber should be appraised exclusively by your

  6. EPAct 2005, Indian Lands Rights-of-Way | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1:EnergyDecemberof Energy87:EPAct 2005 Metering,

  7. Interior Offers First Right-of-Way for Renewable Energy Transmission in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment of EnergyDr.MD, SC, GA,Funding

  8. Colorado - C.R.S. 36-1-136 - Rights of Way Granted - Reversion | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | Open EnergyColonyR.S. 29-20-108JumpEnergy

  9. Colorado - Rights of Way on State Trust Lands - General Information | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | OpenEnergy Information Way on State

  10. Report to Congress: Corridors and Rights-of-Way on Federal Lands |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department of Energy on Separate DisposalDepartment of

  11. Utah - T-223 Application for Right-of-Way Encroachment Permit | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401Upson County,Monkeymosaic JumpUsina2-40 -

  12. Arizona State Land Department Rights-of-Way Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,KoblitzEnergy Information

  13. BIA - Procedural Handbook for Grants of Easement for Right-of-Way on Indian

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: TexasAvoyellesdeA S BiogasBBIBDBESTECLands |

  14. A study of property valuation for highway right of way acquisition in Texas

    E-Print Network [OSTI]

    Long, James Lindsay

    2012-06-07T23:59:59.000Z

    Comsssat o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Ths TIP snd Coasequentisl or Ineidsatsl Losses . 8'Nassry ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6$ 66 66 67 68 69 70 73 77 78 78 80 91 91 93 Vi...?ailablo literature, bsueeer, ?ooaalod that euoh s tosh uould ?eguirs writing e separate cheeis. Readers uho ero interested ia pursuing the topic e?a referred to the usrh of C. Reinhold Hopes. Hopes o3N?dnee Chs deesloynaat of both the eeonoakc ?nd legal nooning...

  15. Title 16 USC 5 Rights-of-way Through Parks or Reservations for Power and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)PtyO'reillyOpenCommunications

  16. Title 25 CFR 169 Rights-of-Way Over Indian Lands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc.,InformationOver Indian Lands Jump

  17. Title 43 CFR 2800 Rights-of-way Under the Federal Land Policy Management

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: Terminology and Index Jump to:ResourceAct |

  18. Title 43 USC 961 Rights-of-way Through Public Lands, Indian, and Other

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: Terminology and IndexInformationLands

  19. Montana - Application for Right of Way Easement for Utilities Through State

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone Subtype A. Places inMonson042161°,Lands | Open

  20. Right-of-Way Pre-Application Checklist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigbyChecklist

  1. Application & Checklist for Highway Right of Way Lease | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump

  2. Waiver of Preferential Right to Lease Highway Right of Way | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane

  3. 10 U.S.C. 2668 Easements for Rights-of-Way | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR SolarZe-geniotOpen Energy2668

  4. 16 U.S.C. 79: Rights-of-way for public utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14 CCR §Resources Planning |:

  5. Procedural Handbook: Grants of Easement for Right-of-Way on Indian Lands |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPriorOpen Energy

  6. File:Psl right of way app instruct.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to: navigation, search FileProof1.pdf Jump

  7. Texas GLO Highway Right of Way Leasing Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to: navigation, searchTetra SunCounty,

  8. Title 25 USC 3504 Leases, business agreements, and rights-of-way involving

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)TillmanMunicipal539Rules ofCodeenergy

  9. Title 36 CFR 14 Rights-of-way | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)TillmanMunicipal539RulesPolicyEnergyF.R.

  10. Title 43 USC 1761 Grant, Issue, or Renewal of Rights-of-way | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations Jump to: navigation, searchHomestead Act

  11. Idaho - IDAPA 39.03.42 - Encroachment on State Highway Rights-of-Way | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to: navigation,IconInformation

  12. Idaho - Idaho Code 58-603 - Rights of Way Over State lands | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar Jump to:Information 58-603 - Rights of

  13. Idaho Right-of-Way Encroachment Application and Permit for Utilities | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar JumpObtain EPAForm 204) | OpenEnergy

  14. Polynuclear aromatic hydrocarbons on the vegetation of a railroad right-of-way

    E-Print Network [OSTI]

    Hancock, James Leonard

    1969-01-01T23:59:59.000Z

    (a)pyrone (P/BaP) ratios in leaf waxes to ratios reported in urban air pollution indicated that the py1'ene found in the leaf waxes was more stable than pyrene in the atmosphere. This suggested that pyrene, and possibly other PAH, were endogenous leaf wax... studied trace com- ponents in polluted air (HOFFi~WuN and WYDHER, 1968). They have been identified in the atmosphere of all large American cities (SAWACKI, 1967) and are present in a variety of environmental substances with which humans are in contact...

  15. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  16. Experience with pipelined multiple instruction streams

    SciTech Connect (OSTI)

    Jordon, H.F.

    1984-01-01T23:59:59.000Z

    Pipelining has been used to implement efficient, high-speed vector computers. It is also an effective method for implementing multiprocessors. The Heterogeneous Element Processor (HEP) built by Denelcor Incorporated is the first commercially available computer system to use pipelining to implement multiple processes. This paper introduces the architecture and programming environment of the HEP and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware.

  17. On-the-fly pipeline parallelism

    E-Print Network [OSTI]

    Lee, I-Ting Angelina

    Pipeline parallelism organizes a parallel program as a linear sequence of s stages. Each stage processes elements of a data stream, passing each processed data element to the next stage, and then taking on a new element ...

  18. Exploiting level sensitive latches in wire pipelining

    E-Print Network [OSTI]

    Seth, Vikram

    2005-02-17T23:59:59.000Z

    The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load...

  19. Evaluation of Natural Gas Pipeline Materials and Infrastructure for

    E-Print Network [OSTI]

    South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

  20. Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox

    E-Print Network [OSTI]

    Robinson, Peter

    to the current range of superscalar designs using multiple instruction issue into parallel pipelines to increase] is designed around a bi-directional pipeline carry- ing instructions and arguments in one direction it will start to execute as soon as the data arrives. 2.2 Basic Pipeline Construction A rotary pipeline

  1. ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline

    E-Print Network [OSTI]

    Oliver, Douglas L.

    ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline in 2005 Build It, and They Will Come, the pipeline of physician- scientists has a serious problem, first de- scribed more than a generation ago.2-scientist career pipeline. Design We assessed recent trends in the physician-scientist career pipeline using data

  2. Reference: RGL 84-07 Subject: MAPPING PIPELINES

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Reference: RGL 84-07 Subject: MAPPING PIPELINES Title: CHARTING OF PIPELINES AND CABLES Issued: 05/01/84 Expires: 12/31/86 Originator: DAEN-CWO-N Description: REQUIRES MAPPING OF PIPELINE CROSSINGS ON NAUTICAL and pipeline crossings on nautical charts published by the Government. This policy is contained in 33 CFR 209

  3. Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

  4. Pipelined FPGA Adders LIP Research Report RR2010-16

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Pipelined FPGA Adders LIP Research Report RR2010-16 Florent de Dinechin, Hong Diep Nguyen, Bogdan and frequency for pipelined large-precision adders on FPGA. It compares three pipelined adder architectures: the classical pipelined ripple-carry adder, a variation that reduces register count, and an FPGA- specific

  5. A moving horizon solution to the gas pipeline optimization problem

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    A moving horizon solution to the gas pipeline optimization problem EWO MEETING, Fall 2010 Ajit Gopalakrishnan Advisor: L. T. Biegler #12;Background: Gas pipeline optimization 2 Gas pipeline networks optimization Load forecast Weather, load history Controller #12;Pipeline modeling [Baumrucker & Biegler, 09

  6. Seadrift/UCAR pipelines achieve ISO registration

    SciTech Connect (OSTI)

    Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. (Carbide Corp., Danbury, CT (United States))

    1992-10-01T23:59:59.000Z

    Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

  7. Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance Yield in sub-100nm Technologies*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance), Intel Corp. and Semiconductor Research Corp. (SRC). Abstract Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100

  8. Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District – 72" and 48" Pipeline Replacing Main Canal – Final

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    TR-246 October 2003 Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District – 72" and 48" Pipeline Replacing Main Canal – Final M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant John R. C. Robinson... estimates of water-savings (i.e., seepage and evaporation) and the initial construction cost. Also, an engineering design change resulted in the east and west forks of the Main Canal being replaced with 48" instead of 54" pipeline. This Final document...

  9. IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012 223 On Optimizing Autonomous Pipeline Inspection

    E-Print Network [OSTI]

    Li, Xin "Shane"

    health. As the most economical way to transport gas, oil, bio fuels, water resource, sewer, and so forth. For example, the leak of petroleum pipeline causes ocean pollution and ecocatastrophe. Regular inspections Editor T. Murphey and Editor J.-P. Laumond upon evaluation of the reviewers' comments. This work

  10. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2004-11-05T23:59:59.000Z

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

  11. PipelinePipelineSeptember -October 2009 Volume 1, Issue 8 Energy Management's It All Adds Up

    E-Print Network [OSTI]

    Webb, Peter

    .umn.edu/italladdsup FM Safety: Safe Driving is a Full-Time Job continued on page 3 Building occupants take the energyPipelinePipelineSeptember - October 2009 Volume 1, Issue 8 Energy Management's It All Adds Up energy conservation campaign seeks to reduce annual campus energy usage five percent by the end of 2010

  12. Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - 48" Pipeline Replacing Wisconsin Canal - Final

    E-Print Network [OSTI]

    Rister, Edward; Lacewell, Ronald; Sturdivant, Allen; Robinson, John; Popp, Michael

    Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the “Wisconsin Canal.” Both nominal and real estimates of water and energy savings and expected economic and financial costs of those...

  13. Field tests of probes for detecting internal corrosion of natural gas transmission pipelines

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  14. Experience with pipelined multiple instruction streams

    SciTech Connect (OSTI)

    Jordan, H.F.

    1984-01-01T23:59:59.000Z

    The authors introduces the architecture and programming environment of the heterogeneous element processor (HEP) and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware. 35 references.

  15. Pipeline inspection using an autonomous underwater vehicle

    SciTech Connect (OSTI)

    Egeskov, P.; Bech, M. [Maridan Aps., Hoersholm (Denmark); Bowley, R. [TSS Ltd., Weston-on-the-Green (United Kingdom); Aage, C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Ocean Engineering

    1995-12-31T23:59:59.000Z

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, as well as the launch and recovery systems are described.

  16. Sensor Networks for Monitoring and Control of Water Distribution Systems

    E-Print Network [OSTI]

    Whittle, Andrew

    Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

  17. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04T23:59:59.000Z

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

  18. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 1:45:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada...

  19. Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines

    E-Print Network [OSTI]

    Cobanoglu, Mustafa Murat

    2014-03-28T23:59:59.000Z

    and deterioration processes in pipeline networks. Therefore, pipeline operators need to rethink their corrosion prevention strategies. These results of corrosion failures are forcing the companies to develop accurate maintenance models based on failure frequency...

  20. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm...

  1. Some applications of pipelining techniques in parallel scientific computing

    E-Print Network [OSTI]

    Deng, Yuanhua

    1996-01-01T23:59:59.000Z

    In this thesis, we study the applicability of pipelining techniques to the development of parallel algorithms for scientific computation. General principles for pipelining techniques are discussed and two applications, Gram-Schmidt orthogonalization...

  2. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

  3. 3D Polygon Rendering Pipeline Michael Kazhdan

    E-Print Network [OSTI]

    Kazhdan, Michael

    3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

  4. 3D Polygon Rendering Pipeline Michael Kazhdan

    E-Print Network [OSTI]

    Kazhdan, Michael

    3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

  5. New system pinpoints leaks in ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A. [Solvay et Cie, Jemeppe sur Sambre (Belgium); Condacse, V.; Modisette, J. [Modisette Associates, Inc., Houston, TX (United States)

    1995-04-01T23:59:59.000Z

    A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

  6. The effect of pipe spacing on marine pipeline scour

    E-Print Network [OSTI]

    Westerhorstmann, Joseph Henry

    2012-06-07T23:59:59.000Z

    . The exposed pipe may be damaged since pipelines generally are not designed for conditions where spanning and vibrations due to vortex shedding occur (Herbich et al. 1984). In shallow depths, pipelines are usually buried, placed in trenches or undergo self..., exposing buried pipelines. Once exposed, the pipe lays on the surface of the seabed, and is further subjected to scouring currents. Local and area scour threaten pipeline stability which may damage the pipe. Scour holes endanger stability when large free...

  7. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2005-11-30T23:59:59.000Z

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

  8. Architectural Considerations for Application-Specific Counterflow Pipelines

    E-Print Network [OSTI]

    Childers, Bruce

    a new pipeline organization called the Counterflow Pipeline (CFP). This paper evaluates CFP design to an application can be constructed automatically. Third, we present measurements that evaluate CFP design tradeArchitectural Considerations for Application-Specific Counterflow Pipelines Bruce R. Childers, Jack

  9. Sensor and transmitter system for communication in pipelines

    DOE Patents [OSTI]

    Cooper, John F.; Burnham, Alan K.

    2013-01-29T23:59:59.000Z

    A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

  10. Method for route selection of transcontinental natural gas pipelines

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

  11. Hydrogen permeability and Integrity of hydrogen transfer pipelines

    E-Print Network [OSTI]

    Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory direction and review) #12;Outline of the presentation Background Hydrogen delivery through steel pipelines

  12. PSPP: A Protein Structure Prediction Pipeline for Computing Clusters

    E-Print Network [OSTI]

    PSPP: A Protein Structure Prediction Pipeline for Computing Clusters Michael S. Lee1,2,3 , Rajkumar. Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial

  13. Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002

    E-Print Network [OSTI]

    Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

  14. Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman

    E-Print Network [OSTI]

    Sjouwerman, Loránt

    Capabilities of the VLA pipeline in AIPS Lorâ??ant O. Sjouwerman National Radio Astronomy Observatory November 15, 2006 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line

  15. Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston

    E-Print Network [OSTI]

    Jackson, Robert B.

    Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks extraction and pipeline transmission are the largest human-derived source of emissions (EPA, 2012). However

  16. Color Appearance and the Digital Imaging Pipeline Brian A. Wandell

    E-Print Network [OSTI]

    Wandell, Brian A.

    Color Appearance and the Digital Imaging Pipeline Brian A. Wandell Psychology Department Stanford reproduction pipeline, spanning image capture, processing and display, must be designed to account for the properties of the human observer. In designing an image pipeline, three principles of human vision

  17. INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS

    E-Print Network [OSTI]

    BNL-65970 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION R PIPELINE LEAKS: FEASIBILITY EVALUATION A Concept Paper Russell N. Dietz, Head Gunnar I. Senum Tracer with Battelle Memorial Institute and the Colonial Pipeline Company #12;ABSTRACT The approximately 200,000-mile

  18. AIPS Memo 112 Capabilities of the VLA pipeline in AIPS

    E-Print Network [OSTI]

    Sjouwerman, Loránt

    AIPS Memo 112 Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman March 19, 2007 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line. The latter and an analysis of a pilot

  19. Software Pipelined Execution of Stream Programs on GPUs

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Software Pipelined Execution of Stream Programs on GPUs Abhishek Udupa, R. Govindarajan, Matthew J task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUsIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs

  20. INT WFS Pipeline Processing Mike Irwin & Jim Lewis

    E-Print Network [OSTI]

    Irwin, Mike

    INT WFS Pipeline Processing Mike Irwin & Jim Lewis Institute of Astronomy, Madingley Road pipeline processing developed specifically for the Wide Field Sur­ vey (WFS). The importance of accurate and complete FITS header information is stresed. Data processing products output from the complete pipeline

  1. CUNY Pipeline Program for Careers in College Teaching and Research

    E-Print Network [OSTI]

    Dennehy, John

    CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity to the CUNY Pipeline Program which is designed to prepare promising undergraduate students for admission;CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity & Diversity

  2. Evolution of Graphics Pipelines 1 Understanding the Graphics Heritage

    E-Print Network [OSTI]

    Verschelde, Jan

    Evolution of Graphics Pipelines 1 Understanding the Graphics Heritage the era of fixed-function graphics pipelines the stages to render triangles 2 Programmable Real-Time Graphics programmable vertex and fragment processors an example of a programmable pipeline unified graphics and computing processors GPU

  3. Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

    E-Print Network [OSTI]

    Lah, Mike M. (Mike Myoung)

    2007-01-01T23:59:59.000Z

    In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

  4. The inspection of a radiologically contaminated pipeline using a teleoperated pipe crawler

    SciTech Connect (OSTI)

    Fogle, R.F.; Kuelske, K.; Kellner, R.A.

    1995-08-01T23:59:59.000Z

    In the 1950s, the Savannah River Site built an open, unlined retention basin to temporarily store potentially radionuclide contaminated cooling water from a chemical separations process and storm water drainage from a nearby waste management facility that stored large quantities of nuclear fission byproducts in carbon steel tanks. The retention basin was retired from service in 1972 when a new, lined basin was completed. In 1978, the old retention basin was excavated, backfilled with uncontaminated dirt, and covered with grass. At the same time, much of the underground process pipeline leading to the basin was abandoned. Since the closure of the retention basin, new environmental regulations require that the basin undergo further assessment to determine whether additional remediation is required. A visual and radiological inspection of the pipeline was necessary to aid in the remediation decision making process for the retention basin system. A teleoperated pipe crawler inspection system was developed to survey the abandoned sections of underground pipelines leading to the retired retention basin. This paper will describe the background to this project, the scope of the investigation, the equipment requirements, and the results of the pipeline inspection.

  5. E-Print Network 3.0 - api pipeline conference Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: ); SOCIETY OF INDONESIAN PETROLEUM ENGINEERS (IATMI) ASIAN PIPELINE CONFERENCE ASEAN COUNCIL ON PETROLEUM... INSTITUTE (COPRI) DEEPWATER PIPELINE & RISER TECHNOLOGY...

  6. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31T23:59:59.000Z

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

  7. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth; Richard J. Davis

    2005-05-23T23:59:59.000Z

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is in the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In this third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted.

  8. TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu)

    E-Print Network [OSTI]

    Buckler, Edward S.

    1 TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens....................................................................................................................................................................... 3 Pipeline Controls.0_standalone or tassel4.0_standalone. Execute On Windows, use run_pipeline.bat to execute the pipeline. In UNIX

  9. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17T23:59:59.000Z

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  10. Pipeline safety joint eliminates need for divers

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    The Sea-Hook coupling is a diverless pressure-compensated pipeline safety joint designed to protect the pipe from damage by excessive physical loads. The coupling provides a predetermined weak point in the line that will cause a controlled separation when the line is exposed to strong wave action or dragging anchors. Moreover, it offers prepressurized remote lockout protection, metal seal integrity, no hand-up separation, enclosed bolting, optimal manual lockout, and no springs or shear rings.

  11. Hydrogen pipeline compressors annual progress report.

    SciTech Connect (OSTI)

    Fenske, G. R.; Erck, R. A. (Energy Systems)

    2011-07-15T23:59:59.000Z

    The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

  12. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,

  13. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01T23:59:59.000Z

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  14. Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing Wisconsin Canal – Preliminary

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    TR-220 May 2003 Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing Wisconsin Canal – Preliminary M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant... John R. C. Robinson Michael C. Popp Texas Water Resources Institute Texas A&M University TR-220 May 2003 Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing...

  15. Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District – 72" and 54" Pipeline Replacing Main Canal – Preliminary

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    ) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 54" pipeline to replace 2.29 miles of the “Main Canal.” Both nominal and real estimates of water and energy savings and expected economic and financial costs of those...

  16. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25T23:59:59.000Z

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  17. Materials Solutions for Hydrogen Delivery in Pipelines

    SciTech Connect (OSTI)

    Ningileri, Shridas T.; Boggess, Todd A; Stalheim, Douglas

    2013-01-02T23:59:59.000Z

    The main objective of the study is as follows: Identify steel compositions/microstructures suitable for construction of new pipeline infrastructure and evaluate the potential use of the existing steel pipeline infrastructure in high pressure gaseous hydrogen applications. The microstructures of four pipeline steels were characterized and tensile testing was conducted in gaseous hydrogen and helium at pressures of 5.5 MPa (800 psi), 11 MPa (1600 psi) and 20.7 MPa (3000 psi). Based on reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi). The basic format for this phase of the study is as follows: Microstructural characterization of volume fraction of phases in each alloy; Tensile testing of all four alloys in He and H{sub 2} at 5.5 MPa (800 psi), 11 MPa (1600 psi), and 20.7 MPa (3000 psi). RA performance was used to choose the two best performers for further mechanical property evaluation; Fracture testing (ASTM E1820) of two best tensile test performers in H{sub 2} at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi); Fatigue testing (ASTM E647) of two best tensile test performers in H2 at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi) with frequency =1.0 Hz and R-ratio=0.5 and 0.1.

  18. Praxair extending hydrogen pipeline in Southeast Texas

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

  19. Industry Research for Pipeline Systems Panel

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F. Edgar, Ph.D.,Pipeline

  20. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2...

  1. ,"International Falls, MN Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  2. ,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

  3. ,"Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  4. ,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  5. ,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  6. ,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  7. ,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  8. ,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  9. ,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  10. Mobile sensor network to monitor wastewater collection pipelines

    E-Print Network [OSTI]

    Lim, Jungsoo

    2012-01-01T23:59:59.000Z

    17 Mobile robot localization in23 WCS monitoring using mobile floatingDesign of mobile pipeline floating sensor “SewerSnort

  11. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic...

  12. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

  13. UNITED STATES OF AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION HAZARDOUS MATERIALS CERTIFICATE OF REGISTRATION FOR REGISTRATION YEAR(S) 2009-2012...

  14. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

  15. The Keystone XL Pipeline Dispute: A Strategic Analysis.

    E-Print Network [OSTI]

    Payganeh, Sevda

    2013-01-01T23:59:59.000Z

    ??TransCanada Corporation has proposed the Keystone XL pipeline project to transfer crude bitumen from the oil sand fields in northern Alberta, Canada, to oil refineries… (more)

  16. Pipeline and vehicle transportation problems in the petroleum industry.

    E-Print Network [OSTI]

    Zhen, Feng ( ??)

    2011-01-01T23:59:59.000Z

    ???In the petroleum industry, petroleum product logistics can be divided into two phases: first logistics, which is mainly provided through pipeline transportation or railway, refers… (more)

  17. Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure

    E-Print Network [OSTI]

    Masci, Frank

    Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure (The SIRTF "Pipeline Picker") F and request (AOR, IER or SER) is assigned a pipeline thread to initiate processing. It was developed by J, the "pipeline picker" routine is triggered to uniquely determine an appropriate pipeline script-ID (pl

  18. Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes

    E-Print Network [OSTI]

    Soatto, Stefano

    application is the lubricated pipelining of crude oil by the addition of water. We want to eÃ?ciently transportLevel Set Based Simulations of Two-Phase Oil-Water Flows in Pipes Hyeseon Shim July 31, 2000 Abstract We simulate the axisymmetric pipeline transportation of oil and water numerically under

  19. Journal of Fluids and Structures 22 (2006) 135171 Water hammer with column separation: A historical review

    E-Print Network [OSTI]

    Tijsseling, A.S.

    in fully filled pipelines. This may occur in a water-hammer event when the pressure in a pipeline drops worse: in one water-hammer event many repetitions of cavity formation and collapse may occur. This paper-sectional pipe area (m2 ) a pressure wave speed (m/s) B constant in water-hammer compatibility equations (s/m2

  20. Leak detection on an ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-12-31T23:59:59.000Z

    A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

  1. Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  2. The Oil Network in US:The Oil Network in US: A Closer Look at PipelinesA Closer Look at Pipelines

    E-Print Network [OSTI]

    Nagurney, Anna

    The Oil Network in US:The Oil Network in US: A Closer Look at PipelinesA Closer Look at Pipelines of Oil Network in USHistory of Oil Network in US Origin of pipelines:Origin of pipelines: WWII: Relied of transportationtransportation Need for a complex network:Need for a complex network: Move the raw materials (crude oils), from

  3. The CUNY Pipeline Program for Careers in College Teaching and Research The CUNY Pipeline Program is administered by the Office of Educational Opportunity and

    E-Print Network [OSTI]

    Dennehy, John

    The CUNY Pipeline Program for Careers in College Teaching and Research The CUNY Pipeline Program available to each Pipeline student is over $4,000. · In the summer before the senior year (June-July), Pipeline fellows attend a six-week institute at the Graduate Center). This institute includes workshops

  4. TASSEL: LD Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward

    E-Print Network [OSTI]

    Buckler, Edward S.

    1 TASSEL: LD Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu.1_standalone. Execute On Windows, see run_file_ld.bat for an example how to execute the pipeline. In Bash Shell, see run_file_ld.pl for an example how to execute the pipeline. If you are using a UNIX operating

  5. Pipelined Mutual Exclusion and The Design of an Asynchronous Microprocessor *

    E-Print Network [OSTI]

    Martin, Alain

    RVM46 -1 Pipelined Mutual Exclusion and The Design of an Asynchronous Microprocessor * Rajit; Pipelining; Microprocessor design; Program transformation. 1. Introduction Formal transformations are an e#11 by construction [3]. In the design of asynchronous systems, it is important to be able to decouple various parts

  6. Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,

    E-Print Network [OSTI]

    Jackson, Robert B.

    Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

  7. A Pipelined Turbo Decoder with Random Convolutional Interleaver Werner Henkel

    E-Print Network [OSTI]

    Henkel, Werner

    A Pipelined Turbo Decoder with Random Convolutional Interleaver Werner Henkel University of Applied: jusif, sayir¡ @ftw.at Abstract-- This paper describes a pipelined iterative decoder ("Turbo" decoder. INTRODUCTION SINCE the introduction of "Turbo" codes in 1993 [1] the coding community has put much effort

  8. Statistical Methods for Estimating the Minimum Thickness Along a Pipeline

    E-Print Network [OSTI]

    along the pipeline can be used to estimate corrosion levels. The traditional parametric model method for this problem is to estimate parameters of a specified corrosion distribution and then to use these parameters companies use pipelines to transfer oil, gas and other materials from one place to another. Manufactures

  9. How Safe Are Pipelines? Diana Furchtgott-Roth

    E-Print Network [OSTI]

    Calgary, University of

    How Safe Are Pipelines? Diana Furchtgott-Roth Director, Economics21, Manhattan Institute Moving Statement: Keystone XL Project, page 5.1-96. January 2014. #12;Number of Injuries per Million Ton-Miles Transported: Petroleum Pipeline and Class I Rail Source: "Final Supplemental Environmental Impact Statement

  10. Increasing pipelined IP core utilization in Process Networks using Exploration

    E-Print Network [OSTI]

    Kienhuis, Bart

    Increasing pipelined IP core utilization in Process Networks using Exploration Claudiu Zissulescu pipelined. In this paper, we present an exploration methodology that uses feedback provided by the Laura tool to increase the uti- lization of IP cores embedded in our PN network. Using this exploration, we

  11. ABB Review 4/2000 55 ultiphase pipelines connecting

    E-Print Network [OSTI]

    Skogestad, Sigurd

    ABB Review 4/2000 55 ultiphase pipelines connecting remote wellhead platforms and subsea wells of the multi-phase pipelines connecting wells and remote installations to the processing unit. One common form and unstable, it is difficult to predict the pressure drop, heat and mass transfer. In addition, the flow

  12. Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows

    E-Print Network [OSTI]

    Jittamai, Phongchai

    2006-04-12T23:59:59.000Z

    This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system...

  13. EIS-0429: Proposed IG CO2 Pipeline Route | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Proposed IG CO2 Pipeline Route EIS-0429: Proposed IG CO2 Pipeline Route Map of Proposed CO2 Pipeline Route More Documents & Publications EIS-0429: Amended Notice of Intent To...

  14. Beyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke, Thorsten Joachims

    E-Print Network [OSTI]

    Joachims, Thorsten

    ]: Learning General Terms Algorithms, Experimentation, Theory Keywords Big Data Pipelines, Modular Design Detection & Recognition pipeline. creation, model construction, testing, and visualization. In orderBeyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke

  15. Use of look-ahead modeling in pipeline operations

    SciTech Connect (OSTI)

    Wray, B.; O`Leary, C.

    1995-12-31T23:59:59.000Z

    Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

  16. Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1 Rob Gross 2 trenching operations for pipeline installation. Although mechanical soil excavation using heavy equipment

  17. Colorado - C.R.S. 38-5-102 - Right of Way Across State Land | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | Open EnergyColonyR.S.

  18. Draft Report to Congress: Energy Policy Act of 2005, Section 1813, Indian Land Rights-of-Way Study

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685 Vol. 76, No. Training Reciprocity Program

  19. Energy Policy Act of 2005, Section 1813, Indian Land Rights-of-Way Study, Report to Congress

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERECommercial BuildingsRegister

  20. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV Transmission

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935:Department ofEA-1988:Plant,|theLine, Pima

  1. 16 U.S.C. 5: Rights-of-way through parks or reservations for power and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14 CCR §Resources Planning |

  2. Capsule Pipeline Research Center. 3-year Progress report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Capsule Pipeline Research Center is devoted to performing research in capsule pipelines so that this emerging technology can be developed for early use to transport solids including coal, grain, other agricultural products, solid wastes, etc. Important research findings and accomplishments during the first-three years include: success in making durable binderless coal logs by compaction, success in underwater extrusion of binderless coal logs, success in compacting and extruding coal logs with less than 3% hydrophobic binder at room temperature, improvement in the injection system and the pump-bypass scheme, advancement in the state-of-the-art of predicting the energy loss (pressure drop) along both stationary and moving capsules, demonstrated the effectiveness of using polymer for drag reduction in CLP, demonstrated the influence of zeta potential on coal log fabrication, improved understanding of the water absorption properties of coal logs, better understanding of the mechanism of coal log abrasion (wear), completed a detailed economic evaluation of the CLP technology and compared coal transportation cost by CLP to that by rail, truck and slurry pipelines, and completion of several areas of legal research. The Center also conducted important technology transfer activities including workshops, work sessions, company seminars, involvement of companies in CLP research, issuance of newsletters, completion of a video tape on CLP, and presentation of research findings at numerous national and international meetings.

  3. Compression station key to Texas pipeline project

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

  4. Urethane coatings rehabilitate large crude oil pipeline

    SciTech Connect (OSTI)

    Kresic, W. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

    1995-10-01T23:59:59.000Z

    Interprovincial Pipe Line Inc. (IPL) provides a vital transportation link for moving liquid petroleum resources from oil-producing areas of western Canada to refining centers and markets in eastern canada and the midwestern US. Together with Lakehead Pipe Line Co., Inc., the pipeline system consists of about 7,600 miles of pipe. Approximately 1.6 million bpd of crude oil and liquid hydrocarbons are transported by the system. Along with high-resolution inspection data, an in-house engineering critical assessment process based on Battelle`s NG-18 surface flaw equation was developed to identify corrosion anomalies needing structural reinforcement sleeve repairs. A majority of ht non-critical anomalies remained unearthed and were exposed to possible future growth which could become critical. Several rehabilitation methods were considered including on-going sleeve repair, selective pipe replacement, and coating reconditioning. Economics and logistics of sleeving programs and selective pipe replacement were well known at IPL. However, aspects of replacing a coating system over a relatively long length of pipe were not completely known. Preliminary cost estimates favored replacement of the coating over a massive sleeving program or pipe replacement. To gain further insight, IPL began a two-year pilot program to research long length coating replacement feasibility. Two sections of Line 3 ultimately were rehabilitated in this manner. This paper reviews the project.

  5. INTERNAL REPAIR OF PIPELINES REVIEW & EVALUATION OF INTERNAL PIPELINE REPAIR TRIALS REPORT

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-09-01T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is generally ineffective at restoring the pressure containing capabilities of pipelines. Failure pressure for pipe repaired with carbon fiber-reinforced composite liner was greater than that of the un-repaired pipe section with damage, indicating that this type of liner is effective at restoring the pressure containing capability of pipe. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the next phase of this project.

  6. Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin)

    Broader source: Energy.gov [DOE]

    Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an application for Commission review.  These regulations ...

  7. Structural Genomics of Minimal Organisms: Pipeline and Results

    E-Print Network [OSTI]

    Kim, Sung-Hou

    2008-01-01T23:59:59.000Z

    of recombinant proteins. J. Struct. Funct. Genomics 5:69-74.proteins. J. Struct. Funct. Genomics 5:69-74. Oganesyan,Structural Genomics of Minimal Organisms: Pipeline and

  8. Ductile fracture and structural integrity of pipelines & risers

    E-Print Network [OSTI]

    Kofiani, Kirki N. (Kirki Nikolaos)

    2013-01-01T23:59:59.000Z

    The Oil and Gas (O&G) industry has recently turned its interest towards deep and ultra-deep offshore installations in order to address the global increase of energy demand. Pipelines and risers are key components for the ...

  9. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

  10. Extensible microprocessor without interlocked pipeline stages (emips), the reconfigurable microprocessor

    E-Print Network [OSTI]

    Pittman, Richard Neil

    2007-09-17T23:59:59.000Z

    have called our dynamically extensible microprocessor design the Extensible Microprocessor without Interlocked Pipeline Stages, or eMIPS. The eMIPS architecture uses the interaction of fixed and configurable logic available in modern...

  11. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee....

  12. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map StatesNetwork

  13. Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2010-10-18T23:59:59.000Z

    This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

  14. A Reconfigurable, On-The-Fly, Resource-Aware, Streaming Pipeline Scheduler

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    that create pipelines that are fully aware of the system's resources. In this paper, we present the design not offer enough expressiveness to cover all pipelines that can be constructed. Fully automated efficient pipeline construction presents multiple challenges. Some systems5, 17­19 build the pipeline on

  15. A Reconfigurable, OnTheFly, ResourceAware, Streaming Pipeline Scheduler

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    that create pipelines that are fully aware of the system's resources. In this paper, we present the design not offer enough expressiveness to cover all pipelines that can be constructed. Fully automated efficient pipeline construction presents multiple challenges. Some systems 5, 17--19 build the pipeline on

  16. The Pipeline Design Pattern Allan Vermeulen, Gabe BegedDov, Patrick Thompson

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    1 The Pipeline Design Pattern Allan Vermeulen, Gabe Beged­Dov, Patrick Thompson ã Copyright Rogue in the processing pipeline. For example, the Web browser pipeline can be constructed in various ways depending Wave Software, Inc., 1995 Intent Build data pipelines in a configurable and typesafe manner. Motivation

  17. Residual Magnetic Flux Leakage: A Possible Tool for Studying Pipeline Defects

    E-Print Network [OSTI]

    Clapham, Lynann

    Residual Magnetic Flux Leakage: A Possible Tool for Studying Pipeline Defects Vijay Babbar1 weaker flux signals. KEY WORDS: Magnetic flux leakage; residual magnetization; pipeline defects; pipeline pipelines, which may develop defects such as corrosion pits as they age in service.(1) Under the ef- fect

  18. High-Level Support for Pipeline Parallelism on Many-Core Architectures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High-Level Support for Pipeline Parallelism on Many-Core Architectures Siegfried Benkner1 , Enes the pipeline pattern. We propose C/C++ language annotations for specifying pipeline patterns and describe - International European Conference on Parallel and Distributed Computing - 2012 (2012)" #12;support for pipelined

  19. On the current conditions along the Ormen Lange pipeline path during an extreme, idealized storm

    E-Print Network [OSTI]

    Avlesen, Helge

    On the current conditions along the Ormen Lange pipeline path during an extreme, idealized storm-shore for processing by means of a pipeline. Due to the abrupt topography this pipeline will have many long free spans along a possible path for the pipeline, and in a simulation study the effects on the flow due

  20. A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones,

    E-Print Network [OSTI]

    Harris, David Money

    A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones The counterflow pipeline architecture [12] consists of two interacting pipelines in which data items flow in op. The maximum total throughput of the chip, which is the sum of the throughputs of the two pipelines, varies

  1. Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis Rola Kassem, Mika the description of the pipeline. The description is transformed into an automaton and a set of resources which. The blocks communicate and synchronise with each other in order to handle the pipeline hazards. A pipeline

  2. EIS-0152: Iroquois, Tenn. Phase I, Pipeline Line Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  3. Modeling fatique behavior of dents in petroleum pipelines

    E-Print Network [OSTI]

    Hoffmann, Roger Lynn

    1997-01-01T23:59:59.000Z

    MODELING FATIGUE BEHAVIOR OF DENTS IN PETROLEUM PIPELINES A Thesis by ROGER LYNN HOFFMANN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1997 Major Subject: Civil Engineering MODELING FATIGUE BEHAVIOR OF DENTS IN PETROLEUM PIPELINES A Thesis by ROGER LYNN HOFFMANN Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  4. Report of the Committee on oil pipeline regulation

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This report of the Committee on Oil Pipeline Regulations is divided into five sections. Section I addresses Order 561, a final rule entitled [open quotes]Revisions to Oil Pipeline Regulations Pursuant to the Energy Policy Act of 1992,[close quotes] which was released by the Federal Energy Regulatory Commission (FERC) on October 23, 1993. Section II discusses the question of FERC jurisdiction over partial abandments of service, focusing on the ARCO Pipe Line Co. case which centered on whether a pipeline may discontinue shipping in one direction even though the pipeline will continue to ship in another direction, and the Chevron Pipe Line Co. case in which the Commission ruled that it does not have the authority to prevent a pipeline from temporarily suspending service. Section II addresses the Lakehead Pipe Line Co., Ltd. Partnership case, in which the Administrative Law Judge issued an Initial Decision resolving Phase I issues. Section IV of the article discusses whether or not a pipeline may base its rates on the cost of leasing capacity from an other pipeline. Five cases are examined in which pipelines that proposed initial rates allegedly based on the cost of a lease found their tariffs protested. Section V reviews the matter of the Williams Pipe Line Co. rate case in which the Commission issued an order on complaint in which it granted in part and denied in part several shippers' request for an order directing Williams Pipe Line Co. to (1) cease levying unauthorized charges, (2) pay reparations to shippers, and (3) be subjected to sanction for violations of the Interstate Commerce Act.

  5. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  6. Nondestructive inspection of the condition of oil pipeline cleaning units

    SciTech Connect (OSTI)

    Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

    1989-02-01T23:59:59.000Z

    One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput.

  7. Consortium for coal log pipeline research and development. Final technical progress report, August 10, 1993--August 9, 1996

    SciTech Connect (OSTI)

    Marrero, T.R.

    1996-10-01T23:59:59.000Z

    The main objective of this project was to conduct intensive research and development of the Coal Log Pipeline (CLP). Specifically, the R & D was to concentrate on previously neglected and insufficiently studied aspects of CLP which were deemed significant. With improvements in these areas, CLP could be implemented for commercial use within five years. CLP technology is capable of transporting coal logs for long distances. The many potential advantages of CLP over truck and railroad transportation include: lower freight costs, less energy consumption, less air pollution, decreased environmental problems, increased safety, and improved reliability. Previous studies have shown that CLP is advantageous over slurry pipeline technology. First, CLP uses one-third the water required by a coal slurry pipeline. Second, CLP provides easier coal dewatering. Third, the CLP conveying capacity of coal is twice as much as a slurry transport line of equal diameter. In many situations, the cost for transporting each ton of coal is expected to be less expensive by CLP as compared to other competing modes of transportation such as: truck, unit train and slurry pipeline.

  8. For Immediate Release --Monday, March 18, 2013 From Glaciers to drinking water: University of Lethbridge

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    change and increasing demands due to human population and industrial activity to drinking water: University of Lethbridge Water Resource Experts Available on World gone? - Pipeline oil spills and river systems ­ how fast do

  9. Analysis and design of an in-pipe system for water leak detection

    E-Print Network [OSTI]

    Chatzigeorgiou, Dimitris M

    2010-01-01T23:59:59.000Z

    Leaks are a major factor for unaccounted water losses in almost every water distribution network. Pipeline leak may result, for example, from bad workmanship or from any destructive cause, due to sudden changes of pressure, ...

  10. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch

    2005-10-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on operating pipelines. Based on information recently found in published studies, it is believed that the operation of IACC on a pipeline will cause no interference with CP systems. Initial results on operating pipelines showed that IACC signals could be successfully propagated over a distance of 3.5 miles, and that simulated contact can be detected up to a distance of 1.4 miles, depending on the pipeline and soil conditions.

  11. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt

    2005-12-31T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring the pipeline and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method developed by Southwest Research Institute (SwRI) consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating (thus resulting in a signal path to ground) changes the signal received at the receiving stations. The IACC method was shown to be a viable method that can be used to continuously monitor pipelines for third-party contact. Electrical connections to the pipeline can be made through existing cathodic protection (CP) test points without the need to dig up the pipe. The instrumentation is relatively simple, consisting of (1) a transmitting station with a frequency-stable oscillator and amplifier and (2) a receiving station with a filter, lock-in amplifier, frequency-stable oscillator, and remote reporting device (e.g. cell phone system). Maximum distances between the transmitting and receiving stations are approximately 1.61 km (1 mile), although the length of pipeline monitored can be twice this using a single transmitter and one receiver on each side (since the signal travels in both directions). Certain conditions such as poor pipeline coatings or strong induced 60-Hz signals on the pipeline can degrade IACC performance, so localized testing should be performed to determine the suitability for an IACC installation at a given location. The method can be used with pipelines having active CP systems in place without causing interference with operation of the CP system. The most appropriate use of IACC is monitoring of localized high-consequence areas where there is a significant risk of third-party contact (e.g. construction activity). The method also lends itself to temporary, low-cost installation where there is a short-term need for monitoring.

  12. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch

    2004-10-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) Investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on buried pipe at a test site as well as on an operating pipeline. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

  13. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  14. Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    E-Print Network [OSTI]

    Yoon, Daejung

    2011-01-01T23:59:59.000Z

    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demappe...

  15. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alred E. Crouch

    2005-04-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) Investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on buried pipe at a test site as well as on an operating pipeline. Initial results showed that IACC signals could be successfully propagated over a distance of 3.5 miles, and that simulated contact can be detected up to a distance of 0.7 mile. Unexpected results were that the electrical impedance from the operating pipelines to the soil was very low and, therefore, the changes in impedance and signal resulting from third-party contact were unexpectedly low. Future work will involve further refinement of the method to resolve the issues with small signal change and additional testing on operating pipelines.

  16. The liquefied natural gas pipeline: a system study

    E-Print Network [OSTI]

    Hazel, Thomas Ray

    2012-06-07T23:59:59.000Z

    /hr-ft -'F. Norrie [11] also predicted a leak much less than Carbonnell's. Decreasing the 17 Table 2. 1 Optimum Diameter of a LNG Pipeline and Distance Between Two Refrigerated Stations [14] Flow rate, 1000 MMcf/day Optimum diameter, inch Distance...THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Major Subject...

  17. Student Preparedness Checklist K I have completed the emergency contact information in my Banner Pipeline and it accurately reflects

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Pipeline and it accurately reflects how I want to be notified in case of an emergency. (www.pipeline. (Sign into your account at www.pipeline.wayne.edu and follow the link for Broadcast Messaging.) K My

  18. Alternatives for reducing the environmental risks associated with natural disasters and their effects on pipelines

    E-Print Network [OSTI]

    Wellborn, Michael Wayne

    2012-06-07T23:59:59.000Z

    Past pipeline failure reports have typically focused on corrosion and third party related events. However, natural disasters pose a substantial risk to pipeline integrity as well. Therefore, it was the objective of this thesis to analyze the risks...

  19. Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel

    E-Print Network [OSTI]

    Cambridge, University of

    Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel M. S. Jooa , D the anisotropy of Charpy test energy. Keywords: pipeline steel, anisotropy, crystallographic texture, memory

  20. Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System

    E-Print Network [OSTI]

    Gough, Julian

    Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System Takeya, including an automated annotation pipeline that provides high-quality preliminary annotation for each

  1. Workgroup #2 Emerging Solutions and Technologies How can we keep the pipeline full of

    E-Print Network [OSTI]

    Workgroup #2 Emerging Solutions and Technologies ­ How can we keep the pipeline full of energy to keep the pipeline full of energy efficiency innovations for use in the Pacific Northwest." Our Phase 1

  2. Behavioral modeling and digital calibration of pipeline analog to digital converters

    E-Print Network [OSTI]

    Bilhan, Erkan

    2001-01-01T23:59:59.000Z

    This research focuses on digital calibration of pipeline analog to digital converters (ADCs) and also modeling of error sources and design parameters of pipeline ADCs. Modern applications such as communications systems require high resolution ADCs...

  3. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  4. On Achieving Balanced Power Consumption in Software Pipelined Loops #

    E-Print Network [OSTI]

    Gao, Guang R.

    . The benchmarks are executed on the Wattch power simulator. In comparison to the original (powerOn Achieving Balanced Power Consumption in Software Pipelined Loops # Hongbo Yang Dept of ECE Univ@capsl.udel.edu ABSTRACT While a significant body of work in compilers has been de­ voted to reducing energy consumption

  5. Northampton planners `thrilled' with affordable housing in pipeline

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Northampton planners `thrilled' with affordable housing in pipeline By CHAD CAIN Daily Hampshire and two other significant developments under construction for senior citizens and veterans elsewhere's senior land use planner, said both panels offered small design tweaks but lauded the project overall

  6. Planned oil pipeline vital to economy of Kazakhstan

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The West Kazakhstan-Kumkol pipeline project is extremely vital to the economy of the Republic of Kazakhstan`s ultimate goal of transporting crude oil produced from the western part of the country eastward to Kumkol, from where it is further transported through existing pipelines to refineries in Chimkent in the south and Pavoldar in the northeast. The two refineries are now mainly supplied with west Siberian crudes imported through a pipeline that approaches Kazakhstan via Omsk. The planned pipeline will allow increased use of local crudes, thereby considerably improving a secure supply for the consumers while also increasing the flexibility of the nation`s overall import/export situation. The importance of this project is stressed by the Kazakh government which has officially classified it as a national priority project. The technical feasibility study of the project was prepared by ILF Consulting Engineers of Germany and Price Waterhouse Financial Consultants is conducting a study to determine the economical viability of the project. The overall cost is estimated at $1.1 billion, with the cost of Phase 1 placed at $600 million.

  7. PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION

    E-Print Network [OSTI]

    PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Fusion Power Associates on Fast Ignition in Fusion Science and Technology, April 2006 · Strong International Collaboration (Osaka investment in lab facilities (Omega-EP, Z/PW,NIF and smaller facilities (Titan, Trident Upgrade

  8. Natural Gas Pipeline Research: Best Practices in Monitoring Technology

    E-Print Network [OSTI]

    Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

  9. A contingency plan helps companies prepare for oilfield, pipeline spills

    SciTech Connect (OSTI)

    Duey, R.

    1996-02-01T23:59:59.000Z

    There are many hazards associated with oilfield, pipeline spills such as fires, litigation, fines, etc. Operators and companies need to have a plan in place and make sure their employees know what to do when disaster strikes. This paper describes emergency preparedness plans.

  10. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch; Jay L. Fisher

    2004-04-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes a technology assessment, development of an IACC model to predict performance and assist with selection of signal operating parameters, and experimental measurements on a buried pipe at a test site. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

  11. Natural disasters and the gas pipeline system. Topical report, August 1994-June 1995

    SciTech Connect (OSTI)

    Atallah, S.; Saxena, S.; Martin, S.B.; Willowby, A.B.; Alger, R.

    1996-11-15T23:59:59.000Z

    Episodic descriptions are provided of the effect of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the City of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas` pipeline system. The emergency response plans and activities of South Carolina Electric & Gas Company during hurricane Hugo (1989) and of City Gas Company of Florida and other small gas companies during hurricane Andrew (1992) are also reviewed. Descriptions of the great Flood of 1993 and its effects on the operations of Iowa-Illinois Gas & Electric Company and Laclede Gas Company and of the San Jacinto River Floods on the transmission lines of Valero Gas Co. are also provided. Local and federal regulatory requirements, and the current practices by the gas industry for dealing with natural disasters, such as through preventive measures (e.g., strapping of water heaters, excess flow valves), and the tracking of weather-related events are described. The important role that preplanning and coordination with the local emergency response bodies and other gas utilities plays during a natural disaster is examined.

  12. Automatic Modeling and Validation of Pipeline Specifications driven by an Architecture Description Language

    E-Print Network [OSTI]

    Mishra, Prabhat

    ) design process. Many existing approaches employ a bottom-up approach to pipeline validation, where about the behavior of the pipelined ar- chitecture through ADL constructs, which allows a powerful topAutomatic Modeling and Validation of Pipeline Specifications driven by an Architecture Description

  13. An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys

    E-Print Network [OSTI]

    Johns Hopkins University, Department of Physics and Astonomy, Advanced Camera for Surveys Team

    are constructed similar to those used in STScI OPUS pipeline. Reading and manipulation of FITS images and tables and catalogs) for archiving purposes. Although Apsis was designed primarily as an automated pipeline, it canAn Automatic Image Reduction Pipeline for the Advanced Camera for Surveys John P. Blakeslee

  14. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01T23:59:59.000Z

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  15. Pipeline and Pressure Vessel R&D under the Hydrogen Regional Infrastructure

    E-Print Network [OSTI]

    Pipeline and Pressure Vessel R&D under the Hydrogen Regional Infrastructure Program In Pennsylvania Kevin L. Klug, Ph.D. 25 September 2007 DOE Hydrogen Pipeline Working Group Meeting, Aiken, SC & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen

  16. REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION AND QUANTIFICATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION detection Acellent has developed a Real-time Active Pipeline Integrity Detection (RAPID) system. The RAPID system utilizes a sensor network permanently bonded to the pipeline structure along with in

  17. Crystallographic Texture of Induction-welded and Heat-treated Pipeline Steel

    E-Print Network [OSTI]

    Cambridge, University of

    Crystallographic Texture of Induction-welded and Heat-treated Pipeline Steel P. Yan1,a, �. E.thibaux@arcelormittal.com, dhkdb@cam.ac.uk Keywords: crystallographic texture; pipeline steel; induction welding; induction heat°. Microstructural Characterisation Pipelines steels are normally hot­rolled at elevated temperatures

  18. Mapping pipeline skeletons onto heterogeneous platforms Anne Benoit and Yves Robert

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mapping pipeline skeletons onto heterogeneous platforms Anne Benoit and Yves Robert January 2007 mapping of the application. In this paper, we discuss the mapping of pipeline skeletons onto different, Fully Heterogeneous platforms. We assume that a pipeline stage must be mapped on a single processor

  19. Sandhills Vegetation Will heat from the pipeline affect the growth of vegetation?

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 Sandhills Vegetation Will heat from the pipeline affect the growth of vegetation? What we know. Will the Sandhills vegetation grow back after the pipeline is constructed? What we know ­ response by Professor Jerry issues, revegetation problems on the pipeline will be at discreet locations. If surrounding pastures

  20. Pipeline Safety Our goal is to provide standard test methods and critical data to

    E-Print Network [OSTI]

    Pipeline Safety METALS Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. Of particular interest is the testing of high-strength pipeline steels, which could enable higher volume gas transport and reduce energy costs. However

  1. TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1

    E-Print Network [OSTI]

    Standiford, Richard B.

    TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1 resources dur- ing construction of an oil and gas pipeline that crossed coastal reaches of 23 perennial, and representatives of Santa Barbara County. The Point Arguello pipeline was recently constructed by Chevron U

  2. Minimizing the Energy Cost of Throughput in a Linear Pipeline by Opportunistic Time Borrowing

    E-Print Network [OSTI]

    Pedram, Massoud

    Minimizing the Energy Cost of Throughput in a Linear Pipeline by Opportunistic Time Borrowing a technique to optimize the energy-delay product of a synchronous linear pipeline circuit with dynamic error and clock frequency of the design by exploiting slacks that are present in various stages of the pipeline

  3. An Integrated Docking Pipeline for the Prediction of Large-Scale Protein-Protein Interactions

    E-Print Network [OSTI]

    An Integrated Docking Pipeline for the Prediction of Large-Scale Protein-Protein Interactions Xin. In this study, we developed a protein-protein docking pipeline (PPDP) that integrates a variety of state studies. In this study, we developed a protein-protein docking pipeline by integrat

  4. A Computational Pipeline for Protein Structure Prediction and Analysis at Genome Scale

    E-Print Network [OSTI]

    1 A Computational Pipeline for Protein Structure Prediction and Analysis at Genome Scale Manesh that they can complement the existing experimental techniques. In this paper, we present an automated pipeline for protein structure prediction. The centerpiece of the pipeline is a threading-based protein structure

  5. An integrated pipeline for the development of novel panels of mapped microsatellite markers for Leishmania donovani

    E-Print Network [OSTI]

    Steve Kemp

    An integrated pipeline for the development of novel panels of mapped microsatellite markers incorporates a primer design pipeline that will design primers to amplify the selected loci. Using this pipeline 12 out of 17 primer sets designed against the L. infantum genome generated polymorphic PCR

  6. TASSEL 3.0 Universal Network Enabled Analysis Kit (UNEAK) pipeline documentation

    E-Print Network [OSTI]

    Buckler, Edward S.

    1 TASSEL 3.0 Universal Network Enabled Analysis Kit (UNEAK) pipeline documentation Authors: Fei Lu.............................................................................................................................. 8 Introduction The UNEAK is the non-reference Genotyping by Sequencing (GBS) SNP calling pipeline the command line in the following format (Linux or Mac operating system; for Windows use run_pipeline

  7. The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline

    E-Print Network [OSTI]

    Bruneau, Steve

    The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline D.W. (Don) Wilson, Director, North Atlantic Pipeline Partners, L.P. NOIA 2000 Conference June, 2000 #12;Grand Banks Multi-Purpose Pipeline Route January 2000 Grand Banks of Newfoundland Newfoundland Come by Chance St. John's Argentia 50o

  8. The data processing pipeline for the Herschel/SPIRE Imaging Fourier Transform Spectrometer

    E-Print Network [OSTI]

    Naylor, David A.

    The data processing pipeline for the Herschel/SPIRE Imaging Fourier Transform Spectrometer Trevor R the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer. The pipeline processes telemetry from SPIRE point

  9. A Mathematical Solution to Power Optimal Pipeline Design by Utilizing Soft Edge Flip-Flops

    E-Print Network [OSTI]

    Pedram, Massoud

    A Mathematical Solution to Power Optimal Pipeline Design by Utilizing Soft Edge Flip-Flops Mohammad a novel technique to minimize the total power consumption of a synchronous linear pipeline circuit by exploiting extra slacks available in some stages of the pipeline. The key idea is to utilize soft-edge flip

  10. PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction

    E-Print Network [OSTI]

    PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction Jun-tao Guo1 useful informa- tion for the biological research community. We have developed a prediction pipeline prediction. The pipeline consists of tools for (i) preprocessing of pro- tein sequences, which includes

  11. An analysis and validation pipeline for large-scale RNAi-based screens

    E-Print Network [OSTI]

    de Magalhães, João Pedro

    An analysis and validation pipeline for large-scale RNAi-based screens Michael Plank1 , Guang Hu2 pipeline to prioritize these candidates incorporating effect sizes, functional enrichment analysis associated with oxidative stress resistance, as a proof-of-concept of our pipeline we demonstrate

  12. Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults

    E-Print Network [OSTI]

    Ayers, Joseph

    Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults T. Feng fault model and its modeling and analysis methods in a clockless asynchronous wave pipeline fault rate model for establishing a sound theoretical foundation for clockless wave pipeline design

  13. Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1

    E-Print Network [OSTI]

    Gerstein, Mark

    1 Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1 pipeline Key words: high-density tiling microarray, high-density oligonucleotide microarray, microarray processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a completely

  14. Grid Workflow Software for a High-Throughput Proteome Annotation Pipeline

    E-Print Network [OSTI]

    Bourne, Philip E.

    Grid Workflow Software for a High-Throughput Proteome Annotation Pipeline Adam Birnbaum1 , James-Throughput Proteome 69 Protein Data Bank [9]. Despite the advent of high throughput crystallization pipelines [25 Annotation Pipeline (iGAP) [28]. iGAP, which incorporates a number of well established bioinformatics

  15. Using Self-Organizing Maps approach to pipeline localization Puttipipatkajorn Amornrit

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Using Self-Organizing Maps approach to pipeline localization Puttipipatkajorn Amornrit LIRMM the pipeline in sonar imagery. This work is performed in two steps. The first is to split an image (first experiment) or an transformed line image of pipeline image (second experiment) into regions of uniform

  16. Pipeline Safety Our goal is to provide standard test methods and critical data to

    E-Print Network [OSTI]

    Pipeline Safety METALS Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. Of particular interest is the testing of high strength pipeline steels, which could enable higher volume gas transport and reduce energy costs. However

  17. Controllability analysis of severe slugging in well-pipeline-riser systems

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Controllability analysis of severe slugging in well-pipeline-riser systems Esmaeil Jahanshahi analysis was performed on a pipeline-rise system using a 4-state model for comparing the results to the previous works. Next, using a 6-state model, the results were extended to a more general well-pipeline

  18. THE CITY UNIVERSITY OF NEW YORK Pipeline Programs for College Students

    E-Print Network [OSTI]

    Qiu, Weigang

    THE CITY UNIVERSITY OF NEW YORK Pipeline Programs for College Students CUNY BMI undergraduate students are encouraged to apply to pipeline programs to prepare for competitive graduate and professional school applications processes Pipeline Program Overview Deadline Contact Information Pre-Law Pre-Law Pre

  19. Strategic Pipeline and Recruitment Fund: Practical Tools for Chairs, Faculty, and Deans (6/11)

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Strategic Pipeline and Recruitment Fund: Practical Tools for Chairs, Faculty, and Deans (6/11) Goal: Enhance the University's capacity for pipeline development and competitive recruitment that strengthen to facilitate more robust pipeline and recruitment capacity. It complements, but does not duplicate, SHI

  20. Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks EWO University Oct 12, 2011 Ajit Gopalakrishnan (CMU) Economic NMPC for gas pipeline optimization Oct 12, 2011 1 Gopalakrishnan (CMU) Economic NMPC for gas pipeline optimization Oct 12, 2011 4 / 24 #12;Natural Gas Industry

  1. Parallel Implementation of a Bioinformatics Pipeline for the Design of Pathogen Diagnostic Assays

    E-Print Network [OSTI]

    Parallel Implementation of a Bioinformatics Pipeline for the Design of Pathogen Diagnostic Assays Identification), a high performance computing software pipeline that designs microarray probes for multiple related pathogens in a single run. The TOFI pipeline is extremely efficient in designing microarray

  2. Synchronization-Free Parallel Collision Detection Pipeline Quentin Avril Valerie Gouranton Bruno Arnaldi

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Synchronization-Free Parallel Collision Detection Pipeline Quentin Avril Val´erie Gouranton Bruno a first parallel and adaptive collision detection pipeline running on a multi-core architecture. This pipeline integrates a first global synchronization-free parallelization of its major steps and enables

  3. Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect

    E-Print Network [OSTI]

    Gerstein, Mark

    Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect High process through specialized "pipeline schematics". We find that the properties of a protein that are most the structural genomics pipeline,6 ­ 9 from target cloning, expression, purification, to structural determination

  4. AROW A 128 Channel Analogue Pipeline with Wilkinson ADC and Sparsification ASIC

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    AROW ­ A 128 Channel Analogue Pipeline with Wilkinson ADC and Sparsification ASIC Authors: FS on a capacitor pipeline. A level­1 trigger is sent to the front end electronics from the trigger processorA/fC, giving a combined gain of approximately 100mV/MIP. .Analogue storage capacitor pipeline with differential

  5. Preparation of a Data Management Plan, Development of the Data Pipeline, and Efficient Archiving

    E-Print Network [OSTI]

    Waliser, Duane E.

    Preparation of a Data Management Plan, Development of the Data Pipeline, and Efficient Archiving quality data archive is produced, design archive production into the instrument data pipeline, use PDS major archive design milestones, early generation of sample data, peer review of the pipeline

  6. Origin of a magnetic easy axis in pipeline steel L. Clapham,a)

    E-Print Network [OSTI]

    Clapham, Lynann

    Origin of a magnetic easy axis in pipeline steel L. Clapham,a) C. Heald, T. Krause, and D. L December 1998; accepted for publication 27 April 1999 Oil and gas pipelines are generally magnetically overlooked, the magnetic properties of oil and gas pipelines are an important consideration since the most

  7. RAILROAD STRATEGY FOR CRUDE OIL TRANSPORT: Considering Public Policy and Pipeline Competition

    E-Print Network [OSTI]

    Entekhabi, Dara

    [15] · Pipelines projects take several years (e.g. ~5 years for the original Keystone) to completeRAILROAD STRATEGY FOR CRUDE OIL TRANSPORT: Considering Public Policy and Pipeline Competition S transported by pipelines in North America, railroads have seen significant growth in this commodity, from just

  8. Theory and Algorithms for Software Pipelining with Minimal Cost on Nested Loops

    E-Print Network [OSTI]

    Sha, Edwin

    Theory and Algorithms for Software Pipelining with Minimal Cost on Nested Loops Qingfeng Zhuge. However, little research has been done for the software pipelining problem on nested loops. The existing software pipelining techniques for single loops can only explore the innermost loop parallelism of a nested

  9. PipelinePipelineJuly 2011 Volume 3, Issue 4 The Donhowe Building, located at the

    E-Print Network [OSTI]

    Webb, Peter

    to the building's mechanical and electrical systems' performance, including installing a heat pump equipped water on washing machines and water heaters, the EPA also administers a scoring system for buildings. This tool heater and optimizing the building's heating and cooling air flow rates. Energy Management intends

  10. Technology in water conservation

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01T23:59:59.000Z

    be accomplished with instruments a#22;ached to pipelines at manholes. #27;ese devices ?listen? to the water #16;ow in the pipe; when they detect the characteristic sound of a leak, they report by radio to permanent or mobile collection points. Even a small... leak can be detected. Rainwater catchment may be a good way to replace water from other potable sources. In some situations, this involves using the simple technology of capturing rainfall runo#21; from a roof or another surface. In a hot, dry...

  11. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    SciTech Connect (OSTI)

    Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

    2012-12-20T23:59:59.000Z

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  12. Hunter College Black Male Initiative-"Brothers for Excellence"-Summer Pipeline Programs Hunter College Black Male Initiative

    E-Print Network [OSTI]

    Qiu, Weigang

    Hunter College Black Male Initiative-"Brothers for Excellence"- Summer Pipeline Programs 1 Hunter College Black Male Initiative "Brothers for Excellence" Summer Pipeline Programs Table of Contents Page 11 Law Pipeline Programs 1 11 Graduate School, Earning a Ph.D., Conduct Research Pipeline Programs 24 16

  13. The NCBI Eukaryotic Genome Annotation Process Enhancing the value of assembled genomes through annotation using a standardized pipeline

    E-Print Network [OSTI]

    Levin, Judith G.

    annotation using a standardized pipeline http://www.ncbi.nlm.nih.gov/genome/ National Center Pipeline | Last Update August 19, 2013 Overview The NCBI eukaryotic genome annotation pipeline provides alignment services, and the Map Viewer genome browser. The pipeline uses a modular framework

  14. Analysis of Frequency, Magnitude and Consequence of Worst-Case Spills From the Proposed Keystone XL Pipeline

    E-Print Network [OSTI]

    Farritor, Shane

    approval to build the Keystone XL pipeline from Alber- ta, Canada to Texas. The pipeline will transport built Keystone pipeline, can be found on the US State Department web site. It is widely recognized that the environmental assessment docu- ments for the Keystone XL pipeline are inadequate, and that they do not properly

  15. Review of statistics of interstate natural gas pipeline companies

    SciTech Connect (OSTI)

    None

    1982-06-01T23:59:59.000Z

    This report presents the results of a review of the EIA publication Statistics of Interstate Natural Gas Pipeline Companies, DOE/EIA-0145. This review was conducted for the Development, Collection, Processing and Maintenance Branch of the Natural Gas Division. It was intended to review the format, distribution and production costs of the annual publication. The primary focus was examining alternative approaches for reducing the volume and complexity of the data contained in the report. Statistics of Interstate Natural Gas Pipeline Companies presents a tremendous amount of financial and operating detail on interstate pipeline companies subject to the Natural Gas Act. The report consists of more than 250 pages of tabular data with considerable amounts of overlap and redundancy among tables. Along with the obvious options of keeping the report in its current form or eliminating it entirely EIA has the option of condensing and streamlining the report. Primarily this would involve eliminating the appendices with their company level data and/or consolidating some of the 28 composite tables and placing them in a more manageable form. This would also help place a focus on the report which with its numerous, redundant and overlapping tables the current version lacks. Along with the consolidation and streamlining effort EIA could make the detailed information available upon request and at a charge. However, prior to any major revision the user community should be polled to determine how the report is currently used. (DMC)

  16. INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL

    2009-09-01T23:59:59.000Z

    Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI's report was carried out by the author. The comments and questions regarding the EDI report are categorized into four subjects, namely (1) piping vibration severity, (2) pulsation and its impact on the PS09 structure and piping, (3) strain-gage stress history profiles, and (4) the cavitation potential investigation, where the questions are stated at the end of the comments for further follow-on investigations.

  17. Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

    , impervious-lining of delivery canals, 24" pipelines replacing delivery canals, and on-farm delivery-site meters). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost...

  18. Engineering High Performance Service-Oriented Pipeline Applications with MeDICi

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan

    2011-01-07T23:59:59.000Z

    The pipeline software architecture pattern is commonly used in many application domains to structure a software system. A pipeline comprises a sequence of processing steps that progressively transform data to some desired outputs. As pipeline-based systems are required to handle increasingly large volumes of data and provide high throughput services, simple scripting-based technologies that have traditionally been used for constructing pipelines do not scale. In this paper we describe the MeDICI Integration Framework (MIF), which is specifically designed for building flexible, efficient and scalable pipelines that exploit distributed services as elements of the pipeline. We explain the core runtime and development infrastructures that MIF provides, and demonstrate how MIF has been used in two complex applications to improve performance and modifiability.

  19. Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

    SciTech Connect (OSTI)

    J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

    2006-09-30T23:59:59.000Z

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy currents in ferromagnetic pipes and tubes. Since this is a new inspection method, both theory and experiment were used to determine fundamental capabilities and limitations. Fundamental finite element modeling analysis and experimental investigations performed during this development have led to the derivation of a first order analytical equation for designing rotating magnetizers to induce current and positioning sensors to record signals from anomalies. Experimental results confirm the analytical equation and the finite element calculations provide a firm basis for the design of RPMI systems. Experimental results have shown that metal loss anomalies and wall thickness variations can be detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. The design exploits the phenomenon that circumferential currents are easily detectable at distances well away from the magnets. Current changes at anomalies were detectable with commercial low cost Hall Effect sensors. Commercial analog to digital converters can be used to measure the sensor output and data analysis can be performed in real time using PC computer systems. The technology was successfully demonstrated during two blind benchmark tests where numerous metal loss defects were detected. For this inspection technology, the detection threshold is a function of wall thickness and corrosion depth. For thinner materials, the detection threshold was experimentally shown to be comparable to magnetic flux leakage. For wall thicknesses greater than three tenths of an inch, the detection threshold increases with wall thickness. The potential for metal loss anomaly sizing was demonstrated in the second benchmarking study, again with accuracy comparable to existing magnetic flux leakage technologies. The rotating permanent magnet system has the potential for inspecting unpiggable pipelines since the magnetizer configurations can be sufficiently small with respect to the bore of the pipe to pass obstructions that limit the application of many i

  20. APPE forms task force to look at pipelines

    SciTech Connect (OSTI)

    NONE

    1994-06-29T23:59:59.000Z

    The Association of Petrochemicals Producers in Europe (APPE; Brussels) is embarking on an initiative to help with restructuring. Speaking at the recent meeting of the European Chemical Industry Council in Cernobbio, Italy, Jukka Viinanen, president of APPE, said that although the initial ethylene restructuring plan collapsed, {open_quotes}it was not a complete failure.{close_quotes} The association Viinanen says, is continuing to find ways and means to improve the situation. {open_quotes}One of the things that APPE is now doing is to study carefully the [ethylene] pipeline system.{close_quotes}

  1. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map States Dependent

  2. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map States

  3. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map

  4. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines MapFacilities

  5. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines

  6. West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1Feet) (Million

  7. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from SameperCubic9,195 7,707

  8. Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010 (Million Cubic

  9. Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010 (Million

  10. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million Cubic Feet)

  11. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million Cubic

  12. Waddington, NY Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb MarSeptember

  13. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet) YearIndustrial

  14. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)

  15. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14per ThousandOnshore3,678

  16. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May Jun JulIndustrial

  17. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May Jun

  18. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00 0Industrial

  19. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00

  20. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers (Number of Elements)

  1. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers (Number of

  2. Sherwood, ND Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,855 448,967 433,713 432,497

  3. Sherwood, ND Natural Gas Pipeline Exports (Price) Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,855 448,967 433,713

  4. Sherwood, ND Natural Gas Pipeline Exports (Price) Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,855 448,967 433,713Thousand

  5. South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,85520Elements)Feet)

  6. St. Clair, MI Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade

  7. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet)

  8. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet)per

  9. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic

  10. Sweetgrass, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009 2010 2011

  11. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009 2010

  12. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009

  13. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009Feet)

  14. Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (Million Cubic Feet)

  15. Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (Million Cubic Feet)Thousand

  16. Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (Million Cubic Feet) Texas

  17. U.S. Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan Feb

  18. U.S. Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan FebNoyes, MN Warroad,

  19. International Falls, MN Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYearper09

  20. International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYearper09per

  1. Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year JanDecadeCommercial (Million

  2. Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan FebYearIndustrial

  3. Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan

  4. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number of Elements)

  5. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number of

  6. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0Fuel ConsumptionIndustrial

  7. Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0Fuel

  8. Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 (Million Cubic

  9. Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0 Year-1FuelIndustrial

  10. Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0

  11. Marysville, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925 22,198

  12. Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925Year Jan

  13. Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925Year

  14. Marysville, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925YearFeet)

  15. Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Million Cubic

  16. Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Million

  17. Massena, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet) Vehicle3 10 * 0 *

  18. Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (Million Cubic

  19. Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (Million

  20. Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues,WithdrawalsIndustrial

  1. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15

  2. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million Cubic Feet)

  3. Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million Cubic

  4. Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousandFeet)Industrial

  5. Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year

  6. Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet)Feet)Industrial

  7. Montana Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384

  8. Crude Oil and Petroleum Products Movements by Pipeline between PAD

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcludingDistricts Pipeline

  9. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979 89 7,728

  10. U.S. Natural Gas Pipeline Exports (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (Number ofof(Number

  11. U.S. Natural Gas Pipeline Imports (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (NumberYear Jan Feb

  12. From PADD 1 to PADD 2 Movements by Pipeline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.Future of CoalSep-14

  13. Microsoft Word - Rockies Pipelines and Prices.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly80

  14. U.S. Natural Gas Pipeline Exports (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYearYearYear Jan Feb

  15. U.S. Natural Gas Pipeline Imports (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYearYearYear Jan

  16. Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet) Colorado

  17. Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)

  18. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic Feet)

  19. Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic Feet)Thousand

  20. Crosby, ND Natural Gas Pipeline Imports From Canada

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View