Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

2

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

3

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

4

City of Memphis, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Memphis, Tennessee (Utility Company) Memphis, Tennessee (Utility Company) (Redirected from Memphis Light, Gas and Water Division) Jump to: navigation, search Name Memphis City of Place Memphis, Tennessee Utility Id 12293 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Memphis Light, Gas and Water Division Smart Grid Project was awarded $5,063,469 Recovery Act Funding with a total project value of $13,112,363. Utility Rate Schedules Grid-background.png DRAINAGE PUMPING STATION RATE Commercial GENERAL POWER RATE - PART B Industrial

5

City of Memphis, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Memphis, Tennessee (Utility Company) Memphis, Tennessee (Utility Company) Jump to: navigation, search Name Memphis City of Place Memphis, Tennessee Utility Id 12293 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Memphis Light, Gas and Water Division Smart Grid Project was awarded $5,063,469 Recovery Act Funding with a total project value of $13,112,363. Utility Rate Schedules Grid-background.png DRAINAGE PUMPING STATION RATE Commercial GENERAL POWER RATE - PART B Industrial GENERAL POWER RATE - PART C Industrial

6

Light Water Reactor Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

7

Category:Memphis, TN | Open Energy Information  

Open Energy Info (EERE)

Memphis, TN Memphis, TN Jump to: navigation, search Go Back to PV Economics By Location Media in category "Memphis, TN" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Memphis TN City of Memphis Tennessee (Utility Company).png SVFullServiceRestauran... 66 KB SVHospital Memphis TN City of Memphis Tennessee (Utility Company).png SVHospital Memphis TN ... 69 KB SVLargeHotel Memphis TN City of Memphis Tennessee (Utility Company).png SVLargeHotel Memphis T... 67 KB SVLargeOffice Memphis TN City of Memphis Tennessee (Utility Company).png SVLargeOffice Memphis ... 70 KB SVMediumOffice Memphis TN City of Memphis Tennessee (Utility Company).png SVMediumOffice Memphis... 65 KB SVMidriseApartment Memphis TN City of Memphis Tennessee (Utility Company).png

8

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

9

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

10

Columbia Water and Light - HVAC and Lighting Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: 50% of invoiced cost up to $22,500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount HVAC Replacements: $570 - $3,770 Lighting: $300/kW reduction or half of project cost Provider Columbia Water and Light Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain measures are based upon the

11

Green Schools Energizing Memphis Area Students | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Energizing Memphis Area Students Green Schools Energizing Memphis Area Students May 6, 2010 - 4:55pm Addthis Paul Lester Communications Specialist, Office of Energy...

12

City of Memphis, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Memphis Memphis Place Missouri Utility Id 12294 Utility Location Yes Ownership M NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL/INDUSTRIAL C Commercial COMMERCIAL/INDUSTRIAL I Industrial Commercial/Industrial C ELECTRIC HEAT Commercial Commercial/Industrial I ELECTRIC HEAT Commercial RESIDENTIAL Residential RESIDENTIAL Electric Heat Residential Security Light Lighting Average Rates Residential: $0.1310/kWh Commercial: $0.1360/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

13

Colloid-facilitated transport of radium and thorium in the Memphis Aquifer, Memphis, Tennessee, U.S.A.  

E-Print Network (OSTI)

??The significance of groundwater colloidal transport was examined in the context of the Memphis Aquifer (Memphis, Tennessee) in the vicinity of the Sheahan well field. (more)

Todd, Vincent Michael

2013-01-01T23:59:59.000Z

14

Light Water Reactor Sustainability (LWRS) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Sustainability (LWRS) Program Login Instructions go here. User ID: Password: Log In Forgot your password?...

15

UNIVERSITY OF MEMPHIS SCHOOL OF PUBLIC HEALTH  

E-Print Network (OSTI)

in a health care setting as: _________________________________ 5. I have written translation skills. 6. Other Ralston Health Care Interpreter Training Program Instructor espiralston@gmail.com Phone: 901. 218. 46911 UNIVERSITY OF MEMPHIS SCHOOL OF PUBLIC HEALTH HEALTHCARE INTERPRETER TRAINING PROGRAM

Dasgupta, Dipankar

16

Light Water Reactor Sustainability Program Contact Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Organization LWRS Program Management Richard Reister Federal Project Director Light Water Reactor Deployment Office of Nuclear Energy U.S. Department of Energy...

17

Columbia Water and Light- Solar Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water and Light (CWL) offers rebates to its commercial and residential customers for the purchase of solar water heaters and solar photovoltaic systems. These rebates are available for...

18

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

and nuclear waste disposal. Dr. Corradini has extensive research experience in the phenomenology of beyond design basis Meet the New LWRS Program Pathway Lead accidents in light...

19

Memphis Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Memphis Biofuels LLC Place Memphis, Tennessee Product Biodiesel start-up planning to construct a 36-million-gallon-per-year production facility in Memphis. Coordinates 35.14968°, -90.048929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.14968,"lon":-90.048929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Energy Secretary Steven Chu to Visit Memphis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Steven Chu to Visit Memphis Energy Secretary Steven Chu to Visit Memphis Energy Secretary Steven Chu to Visit Memphis January 26, 2011 - 12:00am Addthis WASHINGTON, DC - Tomorrow, January 27th U.S. Secretary of Energy Steven Chu will travel to Memphis, Tenn. to visit Sharp Solar Manufacturing Plant and FedEx Memphis Superhub. The visit comes two days after President Obama outlined in his State of the Union speech his vision for a new clean energy economy. At Sharp Solar, Secretary Chu will review the company's innovative solar manufacturing techniques that provide clean energy power and job creation for Memphis residents. While at FedEx, Secretary Chu will tour the Superhub and participate in an electric vehicle demonstration. Sharp Solar Event WHAT: Secretary Steven Chu Tours Sharp Solar Manufacturing Plant

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

22

Memphis, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Memphis, TN) Memphis, TN) Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1495343,"lon":-90.0489801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Manufacturing Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $50,000 Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount $2,500 - $50,000 Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility (CLWU) provides loans for commercial,

24

Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light and Water Utility - Commercial Energy Efficiency Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Unspecified ($250,000 per bid cycle) Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Varies by measure Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility provides incentives for commercial,

25

Sun Prairie Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Sun Prairie Water & Light Comm Sun Prairie Water & Light Comm Jump to: navigation, search Name Sun Prairie Water & Light Comm Place Wisconsin Utility Id 18312 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 1000w Halide existing poles Lighting Area Lighting 1000w Halide provided poles Lighting Area Lighting 100w HPS existing poles Lighting Area Lighting 100w HPS provided poles Lighting Area Lighting 150w HPS existing poles Lighting

26

Light Water Reactor Sustainability (LWRS) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national laboratories, universities, industry, and international partners. Idaho National Laboratory serves as the Technical Integration Office and coordinates the research and development (R&D) projects in the following pathways: Materials Aging and Degradation Assessment, Advanced Instrumentation, Information, and Control Systems

27

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Light Water Reactor Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2013 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. April 30, 2013 Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and

28

Parkland Light & Water Company | Open Energy Information  

Open Energy Info (EERE)

Parkland Light & Water Company Parkland Light & Water Company Jump to: navigation, search Name Parkland Light & Water Company Place Washington Utility Id 14505 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial (Over 50kVA) Commercial Residential Rate Residential Security Lights-100 WATT HP SODIUM Lighting Security Lights-200 WATT HP SODIUM Lighting Security Lights-250 WATT HP SODIUM Lighting Security Lights-400 WATT HP SODIUM Lighting Small Commercial (Under 50kVA) Commercial Average Rates

29

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Water Gas & Light Comm Water Gas & Light Comm Jump to: navigation, search Name Albany Water Gas & Light Comm Place Georgia Utility Id 230 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Commercial Commercial Non-Demand Commercial Large Commercial Demand Commercial Residential Residential Security Lights 1000 Watt Metal Halide Metal Pole Lighting Security Lights 1000 Watt Metal Halide Wooden Pole Lighting Security Lights 150 HPSV Fixtures Metal Pole Lighting Security Lights 150 HPSV Fixtures Wooden Pole Lighting

30

Zircaloy performance in light water reactors  

SciTech Connect

Zircaloy has been successfully used as the primary light water reactor (LWR) core structural material since its introduction in the early days of the US naval nuclear program. Its unique combination of low neutron absorption cross section, fabricability, mechanical strength, and corrosion resistance in water and steam near 300{degrees}C has resulted in remarkable reliability of operation of pressurized and boiling water reactor (PWR, BWR) fuel through the years. At present time, BWRs use Zircaloy-2 and PWRs use Zircaloy-4 for fuel cladding. In BWRs, both Zircaloy-2 and -4 have been successfully used for spacer grids and channels, and in PWRs Zircaloy-4 is used for spacer grids and control rod guide tubes. Performance of fuel rods has been excellent thus far. The current trend for utilities worldwide is to expect both higher fuel reliability in the future. Fuel suppliers have already achieved extended exposures in lead use assemblies, and have demonstrated excellent performance in all areas; therefore unsuspected problems are not likely to arise. However, as exposure and expectations continue to increase, Zircaloy is being taken toward the limits of its known capabilities. This paper reviews Zircaloy performance capabilities in areas related to environmentally affected microstructure, mechanical properties, corrosion resistance, and dimensional stability. The effects of radiation and reactor environment on each property is illustrated with data, micrographs, and analysis.

Adamson, R.B.; Cheng, B.C.; Kruger, R.M. [GE Nuclear Energy, Pleasanton, CA (United States)

1992-12-31T23:59:59.000Z

31

Columbia Water and Light - Commercial Super Saver Loans | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - Commercial Super Saver Loans Columbia Water and Light - Commercial Super Saver Loans Columbia Water and Light - Commercial Super Saver Loans < Back Eligibility Commercial Fed. Government Industrial Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Solar Maximum Rebate $30,000 Program Info Start Date 06/01/2010 State Missouri Program Type Utility Loan Program Rebate Amount Up to $30,000 Provider Columbia Water and Light Columbia Water and Light (CWL) provides Commercial Super Saver Loans, which allow C&I rate customers to replace a furnace along with a new central air conditioner or heat pump with an efficiency rating 11 EER or greater for units 6 tons or larger. No prepayment penalties are enforced through the

32

Light water reactor lower head failure analysis  

SciTech Connect

This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-10-01T23:59:59.000Z

33

McMinnville Water and Light - Conservation Service Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Conservation Service Loan Program McMinnville Water and Light - Conservation Service Loan Program McMinnville Water and Light - Conservation Service Loan Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Windows, Doors, & Skylights Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $10,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount $500-$10,000 Provider McMinnville Water and Light McMinnville Water and Light offers financing to residential and commercial customers to make energy efficient improvements to eligible facilities and homes. Financing is available for pre-approved conservation measures only.

34

City Water Light and Power - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Light and Power - Commercial Energy Efficiency Rebate Water Light and Power - Commercial Energy Efficiency Rebate Programs City Water Light and Power - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Nonprofit Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Insulation: $3,000 Retro-Commissioning: $50,000 Lighting: $15,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500/ton Insulation: 30% Retro-Commissioning Study: $0.30 per sq. ft. of conditioned space Retro-Commissioning EMC: varies Lighting: $3 - $35/unit Lighting (Custom): $0.28/Watt reduced Water Loop Heat Pump: Contact CWLP

35

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

36

City Water Light and Power - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Water Light and Power - Residential Energy Efficiency Rebate City Water Light and Power - Residential Energy Efficiency Rebate Programs City Water Light and Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Maximum Rebate Refrigerator Recycling: 2 units Insulation: $1,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Clothes Washer: $150 Central Air Conditioner: $9 per kBTUh Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500 Refrigerator Recycling: $50 per appliance Insulation: 30% Provider Energy Services Office City Water Light and Power (CWLP) offers rebates to Springfield residential

37

ACKLESON, STEVEN G. Light in shallow waters: A brief research ...  

Science Journals Connector (OSTI)

Office of Naval Research, 800 N. Quincy Street, Arlington, Virginia 22043 ... ecosystems, such as coral reefs or seagrasses, the in-water light field is often...

2003-01-02T23:59:59.000Z

38

Light Water Reactor Sustainability Newsletter Rebecca Smith-Kevern  

NLE Websites -- All DOE Office Websites (Extended Search)

Rebecca Smith-Kevern Director, Office of Light Water Reactor Technologies. I am often asked why the Federal Government should fund a program that supports the continued operation...

39

Light Water Reactor Sustainability Newsletter Thomas M. Rosseel  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory (ORNL), through the Department of Energy's (DOE) Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC (a...

40

Light Water Reactor Sustainability Newsletter By John Gaertner  

NLE Websites -- All DOE Office Websites (Extended Search)

Year 2011 LWRS Program funding is very clear: "Regarding the Light Water Reactor Sustainability program, (Congress) expects a high cost share from industry." Cost sharing is...

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Light Water Reactors A DOE Energy Innovation Hub for Modeling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors CASL is focused on three issues for nuclear...

42

Moose Lake Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Lake Water & Light Comm Lake Water & Light Comm Jump to: navigation, search Name Moose Lake Water & Light Comm Place Minnesota Utility Id 12897 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2-250HPS-FRO Lighting 250 HPS ELEOLY Lighting 3-250 HPS Lighting 4-250 HPS Lighting 400 HPS Rent Lighting BEST OIL CO Commercial BIKE TRAIL Commercial CIP Commercial Commercial Demand Commercial Commercial Electricity Commercial Demand 1 Phase Industrial

43

Two Rivers Water & Light | Open Energy Information  

Open Energy Info (EERE)

Water & Light Water & Light Jump to: navigation, search Name Two Rivers Water & Light Place Wisconsin Utility Id 19324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business District Lighting- 150W HPS Lighting Business District Lighting- 200W HPS Lighting General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day- 7am-7pm Commercial General Service- Single-Phase- Time-of-Day- 8am-8pm Commercial

44

Duquesne Light Company - Residential Solar Water Heating Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

45

Azusa Light and Water - Solar Partnership Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Azusa Light and Water - Solar Partnership Program Azusa Light and Water - Solar Partnership Program Azusa Light and Water - Solar Partnership Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of system cost Program Info Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for fiscal year 2013-2014. New applicants will be placed on a wait list. $1.55/W-DC Provider Azusa Light and Water '''''This program is fully subscribed through fiscal year 2013/2014. New applicants will be placed on a wait list in the order they were received. ''''' Azusa Light and Water provides rebates to customers who install photovoltaic (PV) systems through the utility's Solar Partnership Program.

46

Secretary Chu Travels to Memphis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Travels to Memphis Travels to Memphis Secretary Chu Travels to Memphis January 31, 2011 - 2:33pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The Sharp solar manufacturing plant has produced more than 2 million solar panels since 2002, increased its staff from 300 to 480 employees over the last year, and produces enough solar paneling to power more than 140,000 homes. Worldwide, FedEx Express is operating 329 hybrid and 19 all-electric vehicles, reducing fuel use by almost 300,000 gallons and carbon dioxide emissions by approximately 3,000 metric tons. Hero_CHU_Sharp Secretary Steven Chu with Sharp executive T.C. Jones, standing in front of some of Sharp's solar panels. Following the State of the Union on Tuesday and his online town hall on

47

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect

This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

1992-05-01T23:59:59.000Z

48

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect

This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1992-05-01T23:59:59.000Z

49

Clarksville Light & Water Co | Open Energy Information  

Open Energy Info (EERE)

Clarksville Light & Water Co Clarksville Light & Water Co Jump to: navigation, search Name Clarksville Light & Water Co Place Arkansas Utility Id 3705 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial (Rate schedule p) Commercial Large Industrial (Rate schedule p) Industrial Residential (R1) Residential Residential Rate Schedule R-2 Residential Security Light Service (Rate schedule L)HPS 100 W Commercial Security Light Service 1000 W MH Commercial Security light service 150 W HPS Commercial

50

North Branch Municipal Water and Light - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Branch Municipal Water and Light - Residential Energy North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum

51

Columbia Water and Light - Residential Super Saver Loans | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Super Saver Loans Residential Super Saver Loans Columbia Water and Light - Residential Super Saver Loans < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Solar Maximum Rebate $15,000 Program Info State Missouri Program Type Utility Loan Program Rebate Amount Home Performance Super Saver Loan: up to $15,000 Provider Columbia Water and Light The Columbia Water and Light (CWL) Home Performance Super Saver Loan allows Columbia residents to finance energy improvements to homes with affordable, low interest loans with five to ten year terms. If a Water and Light

52

Light-water breeder reactors: preliminary safety and environmental information document. Volume III  

SciTech Connect

Information is presented concerning prebreeder and breeder reactors based on light-water-breeder (LWBR) Type 1 modules; light-water backfit prebreeder supplying advanced breeder; light-water backfit prebreeder/seed-blanket breeder system; and light-water backfit low-gain converter using medium-enrichment uranium, supplying a light-water backfit high-gain converter.

Not Available

1980-01-01T23:59:59.000Z

53

Paragould Light & Water Comm | Open Energy Information  

Open Energy Info (EERE)

Paragould Light & Water Comm Paragould Light & Water Comm Jump to: navigation, search Name Paragould Light & Water Comm Place Arkansas Utility Id 14446 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Single Phase Commercial General Three Phase Commercial Industrial Industrial Residential Residential Security Lighting 100 W HPS Lighting

54

Vikki G. Nolan University of Memphis, School of Public Health  

E-Print Network (OSTI)

in Sickle Cell Disease; Gerontology, New England Centenarian Study 11/2000 ­ 9/2002 New York City Department with sickle cell disease in Memphis, TN. (In preparation) Smeltzer M, Nolan VG, Gurney J, Nottage K, Hankins J. Incidence of Sickle Cell Trait and Sickle Cell Disease in Shelby County, TN compared with Rio de Janeiro

Dasgupta, Dipankar

55

Light Water Reactors [Corrosion and Mechanics of Materials] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share To continue safe operation of current LWRs, the aging degradation of the

56

Lockwood Water & Light Company | Open Energy Information  

Open Energy Info (EERE)

Lockwood Water & Light Company Lockwood Water & Light Company Jump to: navigation, search Name Lockwood Water & Light Company Place Missouri Utility Id 11121 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Demand Industrial Industrial Residential Residential Average Rates Residential: $0.1060/kWh Commercial: $0.1110/kWh Industrial: $0.0926/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lockwood_Water_%26_Light_Company&oldid=410998

57

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

58

Light Water Reactor Sustainability Program - Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program - Integrated Program Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants, utilizing the unique capabilities of the national laboratory system. Sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer than-initially-licensed lifetime. It has two facets

59

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the operation of commercial nuclear power plants, require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including

60

Columbia Water and Light- Residential HVAC Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water and Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plasmonic Photoanodes for Solar Water Splitting with Visible Light  

Science Journals Connector (OSTI)

Plasmonic Photoanodes for Solar Water Splitting with Visible Light ... The contribution of X.J. was supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada and by National Science Foundation grant no. ...

Joun Lee; Syed Mubeen; Xiulei Ji; Galen D. Stucky; Martin Moskovits

2012-08-23T23:59:59.000Z

62

Salt and Light Water Purification System.  

E-Print Network (OSTI)

??The need for a proposed solution to help mitigate the worlds water crisis is presented. This need is not a new development in the 21st (more)

Ewing, Emile

2012-01-01T23:59:59.000Z

63

Chapter 19 - Nanostructured Visible-Light Photocatalysts for Water Purification  

Science Journals Connector (OSTI)

Titanium oxide (TiO,) photocatalysts have been widely studied for both solar energy conversion and environmental applications in the past several decades because of their high chemical stability, good photoactivity, relatively low cost, and nontoxicity. However, the photocatalytic capability of TiO, is limited to only ultraviolet light (wavelength, A,water disinfection and removal of organic contaminants in water.

Qi Li; Pinggui Wu; Jian Ku Shang

2014-01-01T23:59:59.000Z

64

Characterization of light gluten and light steep water from a corn wet milling plant  

E-Print Network (OSTI)

Characterization of light gluten and light steep water from a corn wet milling plant K.D. Rausch March 2003; accepted 10 March 2003 Abstract The primary commodity of corn wet milling is starch, but two Ltd. All rights reserved. Keywords: Coproducts; Corn gluten meal; Corn gluten feed; Corn wet milling

65

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

66

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

67

City of West Memphis, Arkansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

West Memphis West Memphis Place Arkansas Utility Id 20382 Utility Location Yes Ownership M NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Large Power Service Commercial Public Authority Commercial Residential Residential Small Power Service Industrial Average Rates Residential: $0.0741/kWh Commercial: $0.0756/kWh Industrial: $0.0542/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

68

Cedarburg Light & Water Comm | Open Energy Information  

Open Energy Info (EERE)

Cedarburg Light & Water Comm Cedarburg Light & Water Comm Jump to: navigation, search Name Cedarburg Light & Water Comm Place Wisconsin Utility Id 3208 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - Regular Rate - Single Phase Commercial General Service - Regular rate - Three Phase Commercial General Service Optional Time-of-Day Rate - Single Phase 7am-7pm Commercial General Service Optional Time-of-Day Rate - Single Phase 8am-8pm Commercial

69

Brodhead Water & Lighting Comm | Open Energy Information  

Open Energy Info (EERE)

Brodhead Water & Lighting Comm Brodhead Water & Lighting Comm Jump to: navigation, search Name Brodhead Water & Lighting Comm Place Wisconsin Utility Id 2273 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service - GS-1 - Single Phase Commercial General Service - GS-1 Three Phase Commercial General-OTD 1-Three Phase Commercial General-OTD- Single Phase Commercial Industrial Power Time of day CP-3 above 1,000kW Demand Primary Metering and Transformer Discount Industrial Industrial Power Time of day CP-3 above 1,000kW Demand Industrial

70

Waterloo Light & Water Comm | Open Energy Information  

Open Energy Info (EERE)

Waterloo Light & Water Comm Waterloo Light & Water Comm Jump to: navigation, search Name Waterloo Light & Water Comm Place Wisconsin Utility Id 20182 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Three Phase Commercial General Service Single Phase Commercial General Service TOU Single Phase Commercial General Service TOU Three Phase Commercial Industrial TOU Industrial Large Power TOU Industrial Renewable Energy Rider 1 Commercial Renewable Energy Rider 2 Industrial

71

Light Water Reactor Sustainability Nondestructive Evaluation for Concrete  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nondestructive Evaluation for Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. The purpose of the US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend

72

Superior Water, Light and Power Co | Open Energy Information  

Open Energy Info (EERE)

Water, Light and Power Co Water, Light and Power Co Jump to: navigation, search Name Superior Water, Light and Power Co Place Wisconsin Utility Id 18336 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1050/kWh Commercial: $0.0835/kWh Industrial: $0.0674/kWh The following table contains monthly sales and revenue data for Superior Water, Light and Power Co (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

73

Near-infrared light scattering by particles in coastal waters  

E-Print Network (OSTI)

Near-infrared light scattering by particles in coastal waters David Doxaran* , Marcel Babin extend over the near-infrared spectral region to up to 870 nm. The measurements were conducted in three in the near-infrared very closely matched a - spectral dependence, which is expected when the particle size

Babin, Marcel

74

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of High Value Surveillance Materials Assessment of High Value Surveillance Materials Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely

75

Large passive pressure tube light water reactor with voided calandria  

SciTech Connect

A reactor concept has been developed that can survive loss-of-coolant accidents (LOCAs) without scram and without replenishing primary coolant inventory while maintaining safe temperature limits on the fuel and pressure tube. The proposed concept is a pressure tube reactor of similar design to Canada deuterium uranium reactors but differing in three key aspects. First, a solid silicon carbide-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low-pressure gas instead of heavy water moderator, and this normally voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation while during a LOCA or loss of heat sink accident, it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. The fuel elements can operate under post-critical-heat-flux conditions even at full power without exceeding fuel design limits. The heterogeneous arrangement of the fuel and moderator ensures a negative void coefficient under all circumstances. Although light water is used as both coolant and moderator, the reactor exhibits a high degree of neutron thermalization and a large prompt neutron lifetime, similar to D{sub 2}O-moderated cores. Moreover, the extremely large neutron migration length results in a strongly coupled core with a flat thermal flux profile and inherent stability against xenon spatial oscillations.

Hejzlar, P.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

1996-02-01T23:59:59.000Z

76

McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Commercial Energy Efficiency Rebate McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Oregon Program Type Utility Rebate Program Rebate Amount McMinnville Water and Light Company Provider McMinnville Water and Light McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in three categories: Lighting retrofits, motor replacements, and process efficiency. Past lighting projects have included fluorescent lighting retrofits, mercury vapor

77

LBLOCA in CANDU-NG cooled by light water  

Science Journals Connector (OSTI)

The purpose of this work is to develop methodologies for the evaluation of LBLOCA in CANDU-NG reactors with the codes DONJON and DRAGON. CANDU-NG reactor differ from traditional CANDU reactors in being cooled by light water, using enriched fuel and burnable poisons, having significantly lesser quantity of heavy water moderator. The evaluation shows that methodology developed for CANDU-NG LBLOCA properly detects positive reactivity introduced in the core by initial voiding in checkerboard pattern, peaking at 143pcm. Such reactivity quickly becomes negative, however, bottoming at ?804pcm and the reactor shuts down by itself without the intervention of any engineered system.

Alexi V. Popov; Andrei Olekhnovitch; Majid Fassi Fehri

2012-01-01T23:59:59.000Z

78

North Branch Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

North Branch Water & Light Comm North Branch Water & Light Comm Place Minnesota Utility Id 13681 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Large General Service Industrial Residential Residential Residential- Seasonal Residential Average Rates Residential: $0.1250/kWh Commercial: $0.1140/kWh Industrial: $0.0750/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

79

An Evaluation of the Proliferation Resistant Characteristics of Light Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Evaluation of the Proliferation Resistant Characteristics of An Evaluation of the Proliferation Resistant Characteristics of Light Water Reactor Fuel with the Potential for Recycle in the United States An Evaluation of the Proliferation Resistant Characteristics of Light Water Reactor Fuel with the Potential for Recycle in the United States The Advanced Fuel Cycle Initiative (AFCI) of the Department of Energy has been formulated to perform research leading to advanced fuels and fuel cycles for advanced nuclear power systems. One of the objectives of AFCI is to determine if partitioning and transmutation of spent nuclear fuel will reduce the burden on the geologic repository. The AFCI program is periodically reviewed by the Advanced Nuclear Transmutation Technology (ANTT) subcommittee of the Nuclear Energy Research Advisory Committee

80

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oconto Falls Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Oconto Falls Water & Light Comm Oconto Falls Water & Light Comm Place Wisconsin Utility Id 13965 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering Discount Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount

82

Newberry Water & Light Board | Open Energy Information  

Open Energy Info (EERE)

Board Board Jump to: navigation, search Name Newberry Water & Light Board Place Michigan Utility Id 13525 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Residential Electric Residential Average Rates Residential: $0.1100/kWh Commercial: $0.1030/kWh Industrial: $0.1390/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Newberry_Water_%26_Light_Board&oldid=411182

83

City Water and Light Plant | Open Energy Information  

Open Energy Info (EERE)

and Light Plant and Light Plant Jump to: navigation, search Name City Water and Light Plant Place Arkansas Utility Id 9879 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Large Industrial General Service- Large(Primary Metering) Industrial General Service- Small Electric Rate Commercial General service (Residential Electric Rate) Residential

84

Lansing Board of Water and Light - Hometown Energy Savers Commercial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers Savers Commercial Rebates Lansing Board of Water and Light - Hometown Energy Savers Commercial Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 100% of the total project cost, or $50,000 per electric meter per year. Incentives for Custom measures may not exceed 40% of the total project cost, or $20,000. Program Info Expiration Date 11/30/2013 State Michigan Program Type Utility Rebate Program Rebate Amount Small Business Direct Install Program: No cost or purchase necessary for participation Custom $0.08/kWh Commercial Cooking Equipment: Varies

85

Lake Mills Light & Water | Open Energy Information  

Open Energy Info (EERE)

Water Water Jump to: navigation, search Name Lake Mills Light & Water Place Wisconsin Utility Id 10605 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount Industrial

86

Accident Performance of Light Water Reactor Cladding Materials  

SciTech Connect

During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

87

Light Water Reactor Sustainability Program: Materials Aging and Degradation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Aging and Materials Aging and Degradation Technical Program Plan Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However, understanding and managing materials degradation is a key for the continued safe and reliable operation of nuclear power plants. Extending reactor service to beyond 60 years will increase the demands on materials and components. Therefore, an early evaluation of the possible effects of extended lifetime is critical. The recent NUREG/CR-6923 gives a

88

Light Water Reactor Sustainability Program - Non-Destructive Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program - Non-Destructive Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters.

89

Light Water Reactor Sustainability Program: Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Program Plan Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power

90

Materials Inventory Database for the Light Water Reactor Sustainability Program  

SciTech Connect

Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items fabrication, processing, splitting, and more by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

Kazi Ahmed; Shannon M. Bragg-Sitton

2013-08-01T23:59:59.000Z

91

Fuel Performance Code Benchmark for Uncertainty Analysis in Light Water Reactor Modeling.  

E-Print Network (OSTI)

??Fuel performance codes are used in the design and safety analysis of light water reactors. The differences in the physical models and the numerics of (more)

Blyth, Taylor

2012-01-01T23:59:59.000Z

92

Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

R. Johansen

2013-09-01T23:59:59.000Z

93

Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

R. Johansen

2012-09-01T23:59:59.000Z

94

Characterization of light gluten and light steep water from a corn wet milling plant  

Science Journals Connector (OSTI)

The primary commodity of corn wet milling is starch, but two coproducts (corn gluten feed, CGF and corn gluten meal, CGM) also are produced. CGM and CGF are marketed as animal foodstuffs and are important economically; however, variation in composition reduces quality. There are few data on the effect of composition of the parent process streams, light steep water (LSW) and light gluten (LG), respectively, on composition of CGF and CGM. The objective was to characterize LG and LSW. Samples of LG and LSW were collected: (1) hourly for one day, (2) every 3 h for 3 days, and (3) daily for 3 weeks. Dry matter, N and ash were determined. Variation in composition of LG and LSW was greatest during longer periods of time (days and weeks) rather than shorter (hourly or every 3 h). There was significant variation in DM (solids) content, which directly affected the concentration of other components. Variation in N (protein) of LG and LSW accounted for much of the variation in CGF and CG. Processes that modify processing and reduce variation could increase the quality of CGF and CGM.

K.D Rausch; C.I Thompson; R.L Belyea; M.E Tumbleson

2003-01-01T23:59:59.000Z

95

Chemical and light-stable isotope characteristics of waters from the raft  

Open Energy Info (EERE)

light-stable isotope characteristics of waters from the raft light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Details Activities (1) Areas (1) Regions (0) Abstract: Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed

96

A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Review of Stress Corrosion Cracking/Fatigue Modeling for Light A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the 104 light-water reactors (LWRs) in the United States generated approximately 100 GWe, equivalent to 20% of total US electricity production. Most of the US reactors were built before 1970 and the initial design lives of most of the reactors are 40 years. It is expected that by 2030, even those reactors that have received 20-year life extension license from the US Nuclear Regulatory Commission

97

Sustainability Considerations in Spent Light-water Nuclear Fuel Retrievability  

SciTech Connect

This paper examines long-term cost differences between two competing Light Water Reactor (LWR) fuels: Uranium Oxide (UOX) and Mixed Uranium Oxide-Plutonium Oxide (MOX). Since these costs are calculated on a life-cycle basis, expected savings from lower future MOX fuel prices can be used to value the option of substituting MOX for UOX, including the value of maintaining access to the used UOX fuel that could be reprocessed to make MOX. The two most influential cost drivers are the price of natural uranium and the cost of reprocessing. Significant and sustained reductions in reprocessing costs and/or sustained increases in uranium prices are required to give positive value to the retrievability of Spent Nuclear Fuel. While this option has positive economic value, it might not be exercised for 50 to 200 years. Therefore, there are many years for a program during which reprocessing technology can be researched, developed, demonstrated, and deployed. Further research is required to determine whether the cost of such a program would yield positive net present value and/or increases the sustainability of LWR energy systems.

Wood, Thomas W.; Rothwell, Geoffrey

2012-01-10T23:59:59.000Z

98

Chemical and light-stable isotope characteristics of waters from...  

Open Energy Info (EERE)

water; (2) there is a single deep hot water, and the range of chloride concentrations is produced by the water passing through a zone of highly soluble materials (most likely in...

99

Water, Light and Heat Stress Effects on Fremont Cottonwood Photosynthesis.  

E-Print Network (OSTI)

?? Seedlings of Fremont cottonwood (Populus fremontii), a California native riparian foundation species, are vulnerable to water stress from rapid water-table declines and the interactions (more)

Tozzi, Emily Sharp

2011-01-01T23:59:59.000Z

100

Columbia Water and Light - New Home Energy Star Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - New Home Energy Star Rebate Columbia Water and Light - New Home Energy Star Rebate Columbia Water and Light - New Home Energy Star Rebate < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Missouri Program Type Utility Rebate Program Rebate Amount 1,000 Provider Columbia Water and Light Columbia Water and Light offers a $1,000 rebate to customers for the construction of new homes that achieve certification as Energy Star homes. The Energy Star designation is given to homes that receive an 85 or less on the Home Energy Rating System (HERS) index, meaning that they can be expected to use 15% less energy on average than a standard home (i.e., the

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energys Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administrations energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Programs plans.

Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

2013-04-01T23:59:59.000Z

102

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energys Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administrations energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Programs plans.

McCarthy, Kathryn A [INL; Busby, Jeremy [ORNL; Hallbert, Bruce [INL; Bragg-Sitton, Shannon [INL; Smith, Curtis [INL; Barnard, Cathy [INL

2014-04-01T23:59:59.000Z

103

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

2012-01-01T23:59:59.000Z

104

McMinnville Water and Light - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Residential Energy Efficiency Rebate McMinnville Water and Light - Residential Energy Efficiency Rebate Program McMinnville Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Water Heating Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Energy Star Homes: up to $1,180 Energy Star Manufactured Homes: $850 Clothes Washer: $20 - $70 Refrigerator: $15 Freezer: $15 Refrigerator/Freezer Decommissioning: $100 Electric Water Heater: $25 - $50, varies by warranty Heat Pump PTCS Tune-up: contact utility Weatherization Measures: contact utility Provider McMinnville Water and Light

105

Cross section generation strategy for high conversion light water reactors  

E-Print Network (OSTI)

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

106

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

SciTech Connect

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

107

University of Memphis University Libraries Alternate Use of Library Space -Request  

E-Print Network (OSTI)

University of Memphis University Libraries Alternate Use of Library Space - Request The facilities of the University Libraries are provided to support study and the use of library resources. Use of library space of the request form that has been properly approved and signed. If granted permission to use library space

Dasgupta, Dipankar

108

Light emission from water irradiated with high energy electrons.  

E-Print Network (OSTI)

??Luminescence has been observed from water Irradiated with an intense pulse of high energy electrons. The angular dependence, electron energy dependence, visible spectrum, lifetime and (more)

Shaede, Eric Albert

2012-01-01T23:59:59.000Z

109

Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors  

E-Print Network (OSTI)

- ical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly. This Account describes our approach to two problems in solar water splitting: the organization of molecules in photochemistry.1,2 Efficient photocatalytic water-splitting systems could have practical value for solar energy

110

EIS-0288: Production of Tritium in a Commercial Light Water Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

288: Production of Tritium in a Commercial Light Water Reactor 288: Production of Tritium in a Commercial Light Water Reactor EIS-0288: Production of Tritium in a Commercial Light Water Reactor SUMMARY This Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS) evaluates the environmental impacts associated with producing tritium at one or more of the following five CLWRs: (1) Watts Bar Nuclear Plant Unit 1 (Spring City, Tennessee); (2) Sequoyah Nuclear Plant Unit 1 (Soddy Daisy, Tennessee); (3) Sequoyah Nuclear Plant Unit 2 (Soddy Daisy, Tennessee); (4) Bellefonte Nuclear Plant Unit 1 (Hollywood, Alabama); and (5) Bellefonte Nuclear Plant Unit 2 (Hollywood, Alabama). Specifically, this EIS analyzes the potential environmental impacts associated with fabricating tritium-producing

111

EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-S1: Production of Tritium in a Commercial Light Water 8-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement Summary This Supplemental EIS updates the environmental analyses in DOE's 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods. Public Comment Opportunities No public comment opportunities at this time. Documents Available for Download September 28, 2011 EIS-0288-S1: Notice of Intent to Prepare a Supplemental Environmental

112

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national

113

City Water Light and Power - Solar Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City Water Light and Power - Solar Rewards Program City Water Light and Power - Solar Rewards Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 per account Program Info Start Date 01/23/2012 State Illinois Program Type Utility Rebate Program Rebate Amount $1,500/kW Provider City Water Light and Power '''''Note: Funding for the Solar Rewards program has been exhausted. Check the program web site for more information regarding additional funding, expected March 2013.''''' City Water, Light and Power (CWLP) is now offering residential and commercial customers a $1,500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems. Rebates are limited to $15,000 per customer

114

Pseudomorphic Mid-Ultraviolet Light-Emitting Diodes for Water Purification  

Science Journals Connector (OSTI)

UVC light output of 66 mW at 300 mA CW has been achieved from LEDs on AlN substrates with extensive photon extraction. Proper vessel design allows for efficient irradiation of a water...

Moe, Craig; Chen, Jianfeng; Grandusky, James R; Mendrick, Mark C; Randive, Rajul; Rodak, Lee E; Sampath, Anand V; Wraback, Michael; Schowalter, Leo

115

E-Print Network 3.0 - advanced light-water nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced light-water nuclear Page: << < 1 2 3 4 5 > >> 1 1 Managed by UT-Battelle for the...

116

Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing  

E-Print Network (OSTI)

Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

El-Magboub, Sadek Abdulhafid.

117

Conceptual Design of a Large, Passive Pressure-Tube Light Water Reactor  

E-Print Network (OSTI)

A design for a large, passive, light water reactor has been developed. The proposed concept is a pressure tube reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated ...

Hejzlar, P.

118

INL/EXT-14-33257 Light Water Reactor Sustainability Program  

NLE Websites -- All DOE Office Websites (Extended Search)

57 Light Water Reactor Sustainability Program 3D J-Integral Capability in Grizzly September 2014 DOE Office of Nuclear Energy DISCLAIMER This information was prepared as an account...

119

Fatigue and environmentally assisted cracking in light water reactors  

SciTech Connect

Fatigue and stress corrosion cracking (SCC) for low-alloy steel used in piping and in steam generator and reactor pressure vessels have been investigated. Fatigue data were obtained on medium-sulfur-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor water, and in air. Analytical studies focused on the behavior of carbon steels in boiling water reactor (BWR) environments. Crack-growth rates of composite fracture-mechanics specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B steel were determined under small-amplitude cyclic loading in HP water with {approx}300 pbb dissolved oxygen. Radiation-induced segregation and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence also have been investigated. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain-rate tensile tests were conducted on tubular specimens in air and in simulated BWR water at 289{degrees}C.

Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

1992-03-01T23:59:59.000Z

120

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Physics characteristics of a large, passive, pressure tube light water reactor with voided calandria  

SciTech Connect

A light water cooled and moderated pressure tube reactor concept has been developed that can survive loss-of-coolant accidents (LOCAs) without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tube. The reactor employs a solid SiC-coated graphite fuel matrix in the pressure tubes and a calandria tank containing a low-pressure gas, surrounded by a graphite reflector. This normally voided calandria is connected to a light water heat sink. The cover gas displaces light water from the calandria during normal operation, while during LOCAs it allows passive calandria flooding. It is shown that such a system, with high void fraction in the core region, exhibits a high degree of neutron thermalization and a large prompt neutron lifetime, similar to D{sub 2}O moderated cores, although light water is used as both coolant and moderator. Moreover, the extremely large neutron migration length results in a strongly coupled core with a flat thermal flux profile and inherent stability against xenon spatial oscillations. The heterogeneous arrangement of the fuel and moderator ensures a negative void coefficient under all circumstances. Flooding of the calandria space with light water results in redundant reactor shutdown. Use of particle fuel allows attainment of high burnups.

Hejzlar, P.; Driscoll, M.J.; Todreas, N.E. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Nuclear Engineering

1995-11-01T23:59:59.000Z

122

Lansing Board of Water and Light - Hometown Energy Savers® Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers® Savers® Residential Rebates Lansing Board of Water and Light - Hometown Energy Savers® Residential Rebates < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Other Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Small Business Direct Install Program: No cost or purchase necessary for participation Custom $0.08/kWh Commercial Cooking Equipment: Varies Commercial Refrigeration Equipment: Varies Lighting Compact Fluorescent Lamps: $1.50-$8 Compact Fluorescent Lamp Fixtures: $20 LED Lamps: $5-$15 LED Fixtures: $20 LED Exit Signs: $12.50

123

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

124

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

125

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

126

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS  

Open Energy Info (EERE)

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Details Activities (1) Areas (1) Regions (0) Abstract: Measurement of organic compounds in Karaha- Telaga Bodas and Coso fluid inclusions shows there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which alkane compounds predominate, type 2 fluids that have ethane and propylene and no

127

Environmentally assisted cracking of light-water reactor materials  

SciTech Connect

Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

1996-02-01T23:59:59.000Z

128

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real-Time Sub-Millimeter Imaging Device and Methods  

E-Print Network (OSTI)

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu The image scanning methodology makes #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

129

Sample geometry effects on incoherent small-angle scattering of light water  

Science Journals Connector (OSTI)

It is shown that the scattering intensities of light water collected with different ratios of sample-to-beam dimension present large differences as a function of sample thickness. In particular, ratios smaller and larger than unity are considered and the results are discussed and compared with Monte Carlo simulations.

Carsughi, F.

2000-02-01T23:59:59.000Z

130

Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report  

SciTech Connect

Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

R. Johansen

2011-09-01T23:59:59.000Z

131

Thermophysical properties of saturated light and heavy water for advanced neutron source applications  

SciTech Connect

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

132

Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications  

SciTech Connect

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

133

Seismic fragility analysis of equipment and structures in a Memphis Electric substation. Technical report  

SciTech Connect

This report presents a seismic fragility analysis of equipment and structures in an electric substation in Memphis, Tennessee. These include the pothead structure, 115 kv switch structure, 97 kv lightning arresters, control house, capacitor banks, 115/12 kv transformers, 12 kv regulators, 115 kv oil circuit breakers, and 12 kv oil circuit breakers. The results from this fragility analysis provide the expected performance of equipment and structures in a substation. They can also be used to evaluate the seismic performance of the entire electric substation and to perform a system reliability analysis of the electric transmission system.

Huo, J.R.; Hwang, H.H.M.

1995-08-10T23:59:59.000Z

134

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

135

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(LWRS) Program - R&D Roadmap (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national laboratories, academia, vendors, EPRI, and NRC were invited to each

136

Effects of light water reactor coolant environment on the fatigue lives of  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of light water reactor coolant environment on the fatigue lives of Effects of light water reactor coolant environment on the fatigue lives of reactor materials July 8, 2013 A metal component can become progressively degraded, and its structural integrity can be adversely impacted when it is subjected to repeated fluctuating loads, or fatigue loading. Fatigue loadings on nuclear reactor pressure vessel components can occur because of changes in pressure and temperature caused by transients during operation, such as reactor startup or shutdown and turbine trip events. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code recognizes fatigue as a possible cause of failure of reactor materials and provides rules for designing nuclear power plant components to avoid fatigue failures. For various materials, the ASME Code defines the

137

Overview of the US Department of Energy Light Water Reactor Sustainability Program  

SciTech Connect

The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

K. A. McCarthy; D. L. Williams; R. Reister

2012-05-01T23:59:59.000Z

138

End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)  

SciTech Connect

Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580/sup 0/F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs.

Richardson, K.D.

1987-10-01T23:59:59.000Z

139

Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons  

SciTech Connect

Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

Chao, K.C.

1990-01-01T23:59:59.000Z

140

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless Compact Radar  

E-Print Network (OSTI)

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless 1: Ramp signals obtained from Target #12;Kevin P. Boggs || Office of Technology Transfer || 901.242 m. #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu AutoWitness  

E-Print Network (OSTI)

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Auto and lifelong traumatic experience for its victims. #12;Kevin P. Boggs || Office of Technology Transfer || 901://www.popsci.com/science/article/2010-10/brilliant-10-santosh-kumar-sensor-guru #12;Kevin P. Boggs || Office of Technology Transfer

Dasgupta, Dipankar

142

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production  

SciTech Connect

The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

2002-01-01T23:59:59.000Z

143

Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development  

SciTech Connect

Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

Shannon M. Bragg-Sitton

2013-09-01T23:59:59.000Z

144

General features of direct-cycle, supercritical-pressure, light-water-cooled reactors  

SciTech Connect

The concept of direct-cycle, supercritical-pressure, light-water-cooled reactors is developed. Breeding is possible in the tight lattice core. The power output can be maximized in the fast converter reactor. The gross thermal efficiency of the high temperature reactor adopting Inconel as fuel cladding is expected to be 44.8%. The plant system is similar to the supercritical-fossil-fired power plant which adopts once-through type coolant circulation system. The volume and height of the containment are approximately half of the BWR. The basic safety principles follows those of LWRs. The reactor will solve the economic problems of LWR and LMFBR.

Oka, Y.; Koshizuka, S. [Univ. of Tokyo (Japan). Nuclear Engineering Research Lab.

1996-07-01T23:59:59.000Z

145

Depolarized light scattering and dielectric response of a peptide dissolved in water  

SciTech Connect

The density and orientational relaxation of bulk water can be separately studied by depolarized light scattering (DLS) and dielectric spectroscopy (DS), respectively. Here, we ask the question of what are the leading collective modes responsible for polarization anisotropy relaxation (DLS) and dipole moment relaxation (DS) of solutions involving mostly hydrophobic solute-water interfaces. We study, by atomistic molecular dynamics simulations, the dynamics and structure of hydration water interfacing N-Acetyl-leucine-methylamide dipeptide. The DLS response of the solution is consistent with three relaxation processes: bulk water, rotations of single solutes, and collective dipole-induced-dipole polarizability of the solutes, with the time-scale of 130200 ps. No separate DLS response of the hydration shell has been identified by our simulations. Density fluctuations of the hydration layer, which largely contribute to the response, do not produce a dynamical process distinct from bulk water. We find that the structural perturbation of the orientational distribution of hydration waters by the dipeptide solute is quite significant and propagates ?3?5 hydration layers into the bulk. This perturbation is still below that produced by hydrated globular proteins. Despite this structural perturbation, there is little change in the orientational dynamics of the hydration layers, compared to the bulk, as probed by both single-particle orientational dynamics and collective dynamics of the dipole moment of the shells. There is a clear distinction between the perturbation of the interfacial structure by the solute-solvent interaction potential and the perturbation of the interfacial dynamics by the corresponding forces.

Martin, Daniel R. [Department of Physics, Arizona State University, PO Box 871604, Tempe, Arizona 85287-1604 (United States)] [Department of Physics, Arizona State University, PO Box 871604, Tempe, Arizona 85287-1604 (United States); Fioretto, Daniele [Dipartimento di Fisica, Universita di Perugia, via Pascoli, 06123 Perugia (Italy)] [Dipartimento di Fisica, Universita di Perugia, via Pascoli, 06123 Perugia (Italy); Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, Arizona 85287-1604 (United States)

2014-01-21T23:59:59.000Z

146

Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)  

SciTech Connect

The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

1997-11-30T23:59:59.000Z

147

Light  

Science Journals Connector (OSTI)

Sunlight contains energy which can be directly converted into electricity in solar cells of various types. This is an example of what is called 'direct conversion', involving no moving parts or heat conversion processes. This chapter looks at photovoltaic and photoelectric devices and also at other ideas for using light energy, some of which operate in the infrared part of the spectrum. Solar electric power is a rapidly developing field, opening up many opportunities for novel applications, as well as requirements, including for storage, with one idea being solar-powered hydrogen production and then direct conversion to electricity in fuel cells. Direct conversion is not always efficient, and this chapter introduces the concept of 'energy return on energy invested'. In speculative mood this chapter also looks at the idea of a global grid, allowing daytime solar generation to be used on the night side of the planet.

David Elliott ? Pages 4-1 to 4-20

148

Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage  

SciTech Connect

The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

Bailey, W.J.

1987-11-01T23:59:59.000Z

149

Advanced dry head-end reprocessing of light water reactor spent nuclear fuel  

SciTech Connect

A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

2014-06-10T23:59:59.000Z

150

Chemical aspects of pellet-cladding interaction in light water reactor fuel elements  

SciTech Connect

In contrast to the extensive literature on the mechanical aspects of pellet-cladding interaction (PCI) in light water reactor fuel elements, the chemical features of this phenomenon are so poorly understood that there is still disagreement concerning the chemical agent responsible. Since the earliest work by Rosenbaum, Davies and Pon, laboratory and in-reactor experiments designed to elucidate the mechanism of PCI fuel rod failures have concentrated almost exclusively on iodine. The assumption that this is the reponsible chemical agent is contained in models of PCI which have been constructed for incorporation into fuel performance codes. The evidence implicating iodine is circumstantial, being based primarily upon the volatility and significant fission yield of this element and on the microstructural similarity of the failed Zircaloy specimens exposed to iodine in laboratory stress corrosion cracking (SCC) tests to cladding failures by PCI.

Olander, D.R.

1982-01-01T23:59:59.000Z

151

Vibrational spectra of light and heavy water with application to neutron cross section calculations  

SciTech Connect

The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

Damian, J. I. Marquez; Granada, J. R. [Neutron Physics Department and Instituto Balseiro, Centro Atomico Bariloche, CNEA (Argentina); Malaspina, D. C. [Department of Biomedical Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

2013-07-14T23:59:59.000Z

152

Advanced dry head-end reprocessing of light water reactor spent nuclear fuel  

DOE Patents (OSTI)

A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

2013-11-05T23:59:59.000Z

153

Direct Water Splitting under Visible Light with a Nanostructured Photoanode and GaInP2 Photocathode  

SciTech Connect

Thin films of hematite nanorod and GaInP2 were used for direct water splitting under visible light. In open circuit conditions, the potential of hematite shifted cathodically and that of GaInP2 anodically, which generated an open circuit voltage between the two electrodes. In short circuit condition, the combination of the two photoelectrodes can split water under visible light illumination, though with a very low current of {micro}A/cm2 level even at 1 W/cm2 light. By means of chopped light, we found that hematite nanorod has a low photocurrent, which is responsible for the low short circuit current of the 2-electrode combination. The low photoresponse of hematite nanorods is due to the recombination of photo- generated charges, low holes mobility, and short diffusion length.

Wang, H.; Deutsch, T.; Turner, J.

2008-01-01T23:59:59.000Z

154

Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed  

SciTech Connect

A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

Smirnov, A. Yu., E-mail: a.y.smirnoff@rambler.ru; Sulaberidze, G. A. [National Research Nuclear University MEPhI (Russian Federation); Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A., E-mail: neva@dhtp.kiae.ru; Proselkov, V. N.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2012-12-15T23:59:59.000Z

155

Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors  

SciTech Connect

The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding material both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 m. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

Rebak, Raul B. [General Electric] (ORCID:0000000280704475)

2014-12-30T23:59:59.000Z

156

Adaptation of gas tagging for failed fuel identification in light water reactors  

SciTech Connect

This paper discusses experience with noble gas tagging and its adaptation to commercial reactors. It reviews the recent incidence of fuel failures in light water reactors, and methods used to identify failures, and concludes that the on-line technique of gas tagging could significantly augment present flux tilting, sipping and ultrasonic testing of assemblies. The paper describes calculations on tag gas stability in-reactor, and tag injection tests that were carried out collaboratively with Commonwealth Edison Company in the Byron-2 pressurized water reactor (P%a) and with Duke Power Company and Babcock and Wilcox Fuel Company in the Oconee-2 PWM. The tests gave information on: (a) noble gas concentration dynamics as the tag gases were dissolved in and eventually removed from subsystems of the RCS; and (b) the suitability of candidate Ar, Ne, Kr and Xe isotopes for tagging PWR fuel. It was found that the activity of Xe{sup 125} (the activation product of the tag isotope Xe{sup 124}) acted as a ``tag of a tag`` and tracked gas through the reactor; measured activities are being used to model gas movement in the RCS. Several interference molecules (trace contaminants normally present at sub-ppM concentrations in RCS samples) and entrained air in the RCS were found to affect mass spectrometer sensitivity for tag isotopes. In all instances the contaminants could be differentiated from the tag isotopes by operating the mass spectrometer at high resolution (2500). Similarly, it was possible to distinguish all the candidate tag gases against a high background of air. The test results suggested, however, that for routine analysis a high resolution static mass spectrometer will be preferable to the dynamic instrument used for the present analyses.

Lambert, J.D.B.; Gross, K.C.; Depiante, E.V. [Argonne National Lab., IL (United States); Callis, E.L. [Los Alamos National Lab., NM (United States); Egebrecht, P.M. [Commonwealth Edison Company, Downers Grove, IL (United States)

1996-03-01T23:59:59.000Z

157

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report  

SciTech Connect

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

Mac Donald, Philip Elsworth

2002-06-01T23:59:59.000Z

158

Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors  

SciTech Connect

Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

2013-08-01T23:59:59.000Z

159

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary  

SciTech Connect

Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. Metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

160

Analysis of assembly serial number usage in domestic light-water reactors  

SciTech Connect

Domestic light-water reactor (LWR) fuel assemblies are identified by a serial number that is placed on each assembly. These serial numbers are used as identifiers throughout the life of the fuel. The uniqueness of assembly serial numbers is important in determining their effectiveness as unambiguous identifiers. The purpose of this study is to determine what serial numbering schemes are used, the effectiveness of these schemes, and to quantify how many duplicate serial numbers occur on domestic LWR fuel assemblies. The serial numbering scheme adopted by the American National Standards Institute (ANSI) ensures uniqueness of assembly serial numbers. The latest numbering scheme adopted by General Electric (GE), was also found to be unique. Analysis of 70,971 fuel assembly serial numbers from permanently discharged fuel identified 11,948 serial number duplicates. Three duplicate serial numbers were found when analysis focused on duplication within the individual fuel inventory at each reactor site, but these were traced back to data entry errors and will be corrected by the Energy Information Administration (EIA). There were also three instances where the serial numbers used to identify assemblies used for hot cell studies differed from the serial numbers reported to the EIA. It is recommended that fuel fabricators and utilities adhere to the ANSI serial numbering scheme to ensure serial number uniqueness. In addition, organizations collecting serial number information, should request that all known serial numbers physically attached or associated with each assembly be reported and identified by the corresponding number scheme. 10 refs., 5 tabs.

Reich, W.J. (Oak Ridge National Lab., TN (USA)); Moore, R.S. (Automated Sciences Group, Inc., Oak Ridge, TN (USA))

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of the use of extended burnup fuel in light water power reactors  

SciTech Connect

This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

1988-02-01T23:59:59.000Z

162

Electrolytic Reduction of Spent Light Water Reactor Fuel Bench-Scale Experiment Results  

SciTech Connect

A series of experiments were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex. The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl 1 wt% Li2O electrolyte at 650 C. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and the fuel was sampled, revealing an extent of uranium oxide reduction in excess of 98%.

Steven D. Herrmann

2007-04-01T23:59:59.000Z

163

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

164

Improved growth and water use efficiency of cherry saplings under reduced light intensity  

Science Journals Connector (OSTI)

Cherry (Prunus avium...L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increas...

Mauro Centritto; Francesco Loreto; Angelo Massacci

2000-12-01T23:59:59.000Z

165

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics  

SciTech Connect

The safe, reliable and economic operation of the nations nuclear power reactor fleet has always been a top priority for the United States nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industrys success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

166

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Programs understanding of the cost drivers that will determine nuclear powers cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

167

MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting  

SciTech Connect

The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNTs weight percentages were prepared by solgel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ?4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 C under 1000 Wm{sup ?2} visible photo-illumination. Display Omitted - Highlights: MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using solgel derived method. TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

Yousefzadeh, Samira [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Reyhani, Ali [Physics Department, Faculty of Science, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin (Iran, Islamic Republic of); Naseri, Naimeh [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

2013-08-15T23:59:59.000Z

168

Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology  

SciTech Connect

A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which has the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.

Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu; Kinoshita, Kensuke

2005-05-15T23:59:59.000Z

169

Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, October 1990--March 1991: Volume 13  

SciTech Connect

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties.

Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1992-07-01T23:59:59.000Z

170

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013  

SciTech Connect

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert; Ken Thomas

2014-07-01T23:59:59.000Z

171

3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods  

SciTech Connect

The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

2012-09-01T23:59:59.000Z

172

Research and Development of High Temperature Light Water Cooled Reactor Operating at Supercritical-Pressure in Japan  

SciTech Connect

This paper summarizes the status and future plans of research and development of the high temperature light water cooled reactor operating at supercritical-pressure in Japan. It includes; the concept development; material for the fuel cladding; water chemistry under supercritical pressure; thermal hydraulics of supercritical fluid; and the conceptual design of core and plant system. Elements of concept development of the once-through coolant cycle reactor are described, which consists of fuel, core, reactor and plant system, stability and safety. Material studies include corrosion tests with supercritical water loops and simulated irradiation tests using a high-energy transmission electron microscope. Possibilities of oxide dispersion strengthening steels for the cladding material are studied. The water chemistry research includes radiolysis and kinetics of supercritical pressure water, influence of radiolysis and radiation damage on corrosion and behavior on the interface between water and material. The thermal hydraulic research includes heat transfer tests of single tube, single rod and three-rod bundles with a supercritical Freon loop and numerical simulations. The conceptual designs include core design with a three-dimensional core simulator and sub-channel analysis, and balance of plant. (authors)

Yoshiaki Oka [Nuclear Engineering Research Laboratory, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 112-0006 (Japan); Katsumi Yamada [Isogo Nuclear Engineering Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan)

2004-07-01T23:59:59.000Z

173

E-Print Network 3.0 - abb-ce light water Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplier Beginning in 1999... , community water supply systems must provide an annual report describ- ing the quality of their drinking Source: Fernndez-Juricic, Esteban -...

174

Influence of air humidity and lighting period on growth, vase life and water relations of 14 rose cultivars  

Science Journals Connector (OSTI)

The influence of three relative air humidities (RH) (75, 83 and 91% RH corresponding to vapour pressure deficits of 550, 390 and 200Pa, respectively) and two lighting periods (18 and 24h day?1) on growth, vase life and leafwater relations was studied in 14 rose cultivars. Air humidity had no effect on the number of flowering shoots while shoot fresh weight decreased by 11% as a mean of all cultivars when RH was raised from 83 to 91%. An increase in the lighting period (LP) enhanced the number of flowering shoots by 12% and fresh weight per shoot by 5%. A rise in air humidity from 75 to 91% RH reduced the vase life by 30% (varying from 12 to 75% in the different cultivars) at 18h LP and by 44% (varying from 31 to 78% in the different cultivars) at 24h LP, while an increase in LP reduced vase life by 23 and 38% at 75 and 91% RH, respectively. The magnitude of the responses differed significantly among cultivars. Generally, a close relationship was found between reduction in vase life and rate of water loss of detached leaves from all cultivars. It is concluded that high air humidity and continuous lighting in general should be avoided in the production of greenhouse roses.

Leiv M Mortensen; Hans R Gislerd

1999-01-01T23:59:59.000Z

175

Light Water Reactor Sustainability Program Grizzly Year-End Progress Report  

SciTech Connect

The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INLs MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i.e. late blooming phases) to become active later in life beyond the current operational experience. To develop a tool that can eventually serve a role in decision-making, it is clear that research and development must be perfomed at multiple scales. At the engineering scale, a multiphysics analysis code that can capture the thermomechanical response of the RPV under accident conditions, including detailed fracture mechanics evaluations of flaws with arbitrary geometry and orientation, is needed to assess whether the fracture toughness, as defined by the master curve, including the effects of embrittlement, is exceeded. At the atomistic scale, the fundamental mechanisms of degradation need to be understood, including the effects of that degradation on the relevant material properties. In addition, there is a need to better understand the mechanisms leading to the transition from ductile to brittle fracture through improved continuum mechanics modeling at the fracture coupon scale. Work is currently being conducted at all of these levels with the goal of creating a usable engineering tool informed by lower length-scale modeling. This report summarizes progress made in these efforts during FY 2013.

Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

2013-09-01T23:59:59.000Z

176

Reorganization of the cluster state in a C60/N-Methylpyrrolidone/water solution: Comparative characteristics of dynamic light scattering and small-angle neutron scattering data  

Science Journals Connector (OSTI)

Data on dynamic light scattering from cluster solutions of C60 fullerenes in N-methylpyrrolidone (NMP) and its mixture with water are analyzed. Initial C60.../NMP solutions kept for two weeks (i.e., fresher than ...

A. A. Kaznacheevskaya; O. A. Kizima

2013-11-01T23:59:59.000Z

177

Visible Light-Driven Water Oxidation by Ir oxide Clusters Coupledto Single Cr Centers in Mesoporous Silica  

SciTech Connect

Visible light-induced water oxidation has been demonstrated at an Ir oxide nanocluster coupled to a single Cr{sup VI} site on the pore surface of MCM-41 mesoporous silica. The photocatalytic unit was assembled by the reaction of surface Cr=O groups with Ir(acac){sub 3} precursor followed by calcination at 300 C and bond formation monitored by FT-Raman and FT-IR spectroscopy. High-resolution Z-contrast electron micrographs of the calcined material combined with energy-dispersive X-ray spot analysis confirmed the occlusion of Ir oxide nanoparticles inside the mesopores. Oxygen evolution of an aqueous suspension of the Ir{sub x}O{sub y}-CrMCM-41 upon visible light irradiation of the Cr{sup VI}-O ligand-to-metal charge-transfer absorption was monitored mass-spectrometrically. Comparison of the product yields for samples with low Cr content (Cr/Si {le} 0.02) and high Cr content (Cr/Si = 0.05) indicates that only isolated Cr centers are capable of extracting electrons from Ir oxide clusters, while di- or polychromate species are not. Water oxidation at a multielectron-transfer catalyst coupled to a single metal center has not been demonstrated before. The ability to drive water oxidation with a single metal center as electron pump offers opportunities for coupling the oxygen-evolving photocatalytic unit to reducing sites in the nanoporous scaffold.

Nakamura, Ryuhei; Frei, Heinz

2006-07-10T23:59:59.000Z

178

Light hydrocarbons in the surface water of the mid-Atlantic  

Science Journals Connector (OSTI)

During a cruise of RV Polarstern over the Atlantic in September/October 1988, C2?C4 hydrocarbons were measured in surface sea water. The ship passed through three different ocean ... at 8 N and 3 S. Hydrocarbon

C. Plass; R. Koppmann; J. Rudolph

1992-11-01T23:59:59.000Z

179

CHANGES IN SHALLOW GROUNDWATER QUALITY BENEATH RECENTLY URBANIZED AREAS IN THE MEMPHIS, TENNESSEE AREA1  

E-Print Network (OSTI)

Resources Association (JAWRA). Received March 17, 2011; accepted October 7, 2011. ª 2011 American Water

180

A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building  

SciTech Connect

Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region.

Travis, J.R. [ESSI Inc. (United States); Wilson, T.L.; Spore, J.W.; Lam, K.L. [Los Alamos National Lab., NM (United States); Rao, D.V. [SEA Inc. (United States)

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 14, Semiannual report, April 1991--September 1991  

SciTech Connect

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR`s); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991.

Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1992-07-01T23:59:59.000Z

182

Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 15, Semiannual report: October 1991--March 1992  

SciTech Connect

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from October 1991 through March 1992.

Doctor, S.R.; Diaz, A.A.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-09-01T23:59:59.000Z

183

Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, April 1992--September 1992: Volume 16  

SciTech Connect

The Evaluation and Improvement of NDE Reliability for Inservice inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs);using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel and other components inspected in accordance with Section XI of the ASME Code. This is a programs report covering the programmatic work from April 1992 through September 1992.

Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Greenwood, M.S.; Heasler, P.G.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01T23:59:59.000Z

184

Laser light scattering by bubbles in water: Fundamentals and applications to acoustics.  

Science Journals Connector (OSTI)

Laser light scattering is sometimes used as an alternative to acoustical methods for monitoring bubbles in seawater. There has also been interest in using lasers to investigate bubbles in wakes. In some cases light scattering by bubbles has been used in conjunction with acoustical measurements to characterize dynamics of bubbles radiating sound [J. S. Stroud and P. L. Marston J. Acoust. Soc. Am. 94 27882792 (1993)]. In applications such as these it is important to understand the optical properties of bubbles that differ significantly from drops and particles. Examples include critical angle scattering and the transition to total reflection [D. S. Langley and P. L. Marston Appl. Opt. 23 10441054 (1984)] forward scattering and extinction [D. S. Langley and P. L. Marston Appl. Opt. 30 34523458 (1991); J. S. Stroud and P. L. Marston cited previously] glory back?scattering enhancements and shape effects [W. P. Arnott and P. L. Marston J. Opt. Soc. Am. A5 496506 (1988); Appl. Opt. 30 34293442 (1991)] and Brewster angle scattering. Some optical effects of coatings on bubbles (which can occur naturally) have also been modeled [P. L. Marston Appl. Opt. 30 34793484 (1991)]. [Research supported by ONR between 1980 and 1995.

2009-01-01T23:59:59.000Z

185

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

186

Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1994--September 30, 1995  

SciTech Connect

The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

NONE

1998-09-01T23:59:59.000Z

187

Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors  

SciTech Connect

Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

2005-10-01T23:59:59.000Z

188

Application of steam injector to improved safety of light water reactors  

Science Journals Connector (OSTI)

Abstract Steam injector (SI) is a simply designed passive jet pump which does not require external power source or internal mechanical parts. The SI utilizes direct contact condensation between steam and water as an operational mechanism and is capable of producing higher pressure water than the inlet fluid pressures. The accident in Fukushima Daiichi Nuclear Power Plant caused setback to the credibility and reliability of nuclear power. One way to regain its trust from the global community, it is suggested to develop and install passive coolant injection systems that are operable even during the station black out. In this review paper, thorough and complete review of the SI system was completed and applicability of the SI system as the passive core cooling system is discussed in details. Due to its high heat removal capability, the system can possibly be applied as a high efficiency heat exchanger as well. Its design and operational mechanisms, and fundamental thermal-hydraulic theory utilized in the analysis and experimental work are reviewed. In addition, its possible application towards existing nuclear power plant systems is reviewed.

Yuto Takeya; Shuichiro Miwa; Takashi Hibiki; Michitsugu Mori

2015-01-01T23:59:59.000Z

189

An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration  

SciTech Connect

As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

Simon, A J

2009-08-21T23:59:59.000Z

190

Spent Nuclear Fuel (SNF) Project Acceptance Criteria for Light Water Reactor Spent Fuel Storage System [OCRWM PER REV2  

SciTech Connect

As part of the decommissioning of the 324 Building Radiochemical Engineering Cells there is a need to remove commercial Light Water Reactor (LWR) spent nuclear fuel (SNF) presently stored in these hot cells. To enable fuel removal from the hot cells, the commercial LWR SNF will be packaged and shipped to the 200 Area Interim Storage Area (ISA) in a manner that satisfies site requirements for SNF interim storage. This document identifies the criteria that the 324 Building Radiochemical Engineering Cell Clean-out Project must satisfy for acceptance of the LWR SNF by the SNF Project at the 200 Area ISA. In addition to the acceptance criteria identified herein, acceptance is contingent on adherence to applicable Project Hanford Management Contract requirements and procedures in place at the time of work execution.

JOHNSON, D.M.

2000-12-20T23:59:59.000Z

191

Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan  

SciTech Connect

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated, primarily based on engineering judgment.

Curtis Smith; Cristian Rabiti; Richard Martineau

2012-11-01T23:59:59.000Z

192

Acoustic Emission and Guided Ultrasonic Waves for Detection and Continuous Monitoring of Cracks in Light Water Reactor Components  

SciTech Connect

Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth where distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at 41 mm and 46 mm.

Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Watson, Bruce E.; Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.

2012-06-28T23:59:59.000Z

193

Computerized operating procedures for shearing and dissolution of segments from LWBR (Light Water Breeder Reactor) fuel rods  

SciTech Connect

This report presents two detailed computerized operating procedures developed to assist and control the shearing and dissolution of irradiated fuel rods. The procedures were employed in the destructive analysis of end-of-life fuel rods from the Light Water Breeder Reactor (LWBR) that was designed by the Westinghouse Electric Corporation Bettis Atomic Power Laboratory. Seventeen entire fuel rods from the end-of-life core of the LWBR were sheared into 169 precisely characterized segments, and more than 150 of these segments were dissolved during execution of the LWBR Proof-of-Breeding (LWBR-POB) Analytical Support Project at Argonne National Laboratory. The procedures illustrate our approaches to process monitoring, data reduction, and quality assurance during the LWBR-POB work.

Osudar, J.; Deeken, P.G.; Graczyk, D.G.; Fagan, J.E.; Martino, F.J.; Parks, J.E.; Levitz, N.M.; Kessie, R.W.; Leddin, J.M.

1987-05-01T23:59:59.000Z

194

EIS-0288; Final Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

iii iii COVER SHEET Responsible Agency: United States Department of Energy Cooperating Agency: Tennessee Valley Authority Title: Final Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor Contact: For additional information on this Final Environmental Impact Statement, write or call: Jay Rose Office of Defense Programs U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Attention: CLWR EIS Telephone: (202) 586-5484 For copies of the CLWR Final EIS call: 1-800-332-0801 | For general information on the DOE National Environmental Policy Act (NEPA) process, write or call: Carol M. Borgstrom, Director Office of NEPA Policy and Assistance (EH-42) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585

195

Direct Water Splitting under Visible Light with Nanostructured Hematite and WO3 Photoanodes and a GaInP2 Photocathode  

SciTech Connect

A p-GaInP{sub 2} photocathode was paired with nanostructured hematite and tungsten trioxide photoanodes to investigate the utility of these systems for direct water splitting under visible light illumination. For the hematite system, under illumination at open-circuit conditions, the potential of hematite shifts cathodically and that of the GaInP{sub 2} shifts anodically. Under short-circuit condition and visible light illumination, the combination of the two photoelectrodes can split water, though with a very low rate of a few {micro}A/cm{sup 2} even at an intensity of 1 W/cm{sup 2}. It was determined that the very low photocurrent from the hematite nanorod photoelectrode limits the short-circuit current of the two-photoelectrode combination. Similar potential shifts were observed with the nanostructured WO{sub 3}/GaInP{sub 2} combination. However, at light intensities below 0.2 W/cm{sup 2}, the short-circuited combination would not split water due to an insufficient potential difference. Above 0.2 W/cm{sup 2}, the combination can split water under visible light, with {approx}20 {micro}A/cm{sup 2} obtained at 1 W/cm{sup 2}. A linear photocurrent-light intensity relationship was observed and was attributed to efficient charge transfer and a low recombination of the charge carriers. The bandgap and the associated absorption limit of WO{sub 3} remain a challenge for a higher efficiency system.

Wang, H.; Deutsch, T.; Turner, J. A.

2008-01-01T23:59:59.000Z

196

A MELCOR Application to Two Light Water Reactor Nuclear Power Plant Core Melt Scenarios with Assumed Cavity Flooding Action  

SciTech Connect

The MELCOR 1.8.4 code Bottom Head package has been applied to simulate two reactor cavity flooding scenarios for when the corium material relocates to the lower-plenum region in postulated severe accidents. The applications were preceded by a review of two main physical models, which highly impacted the results. A model comparison to available bibliography models was done, which allowed some code modifications on selected default assumptions to be undertaken. First, the corium convective heat transfer to the wall when it becomes liquid was modified, and second, the default nucleate boiling regime curve in a submerged hemisphere was replaced by a new curve (and, to a much lesser extent, the critical heat flux curve was slightly varied).The applications were devoted to two prototypical light water reactor nuclear power plants, a 2700-MW(thermal) pressurized water reactor (PWR) and a 1381-MW(thermal) boiling water reactor (BWR). The main conclusions of the cavity flooding simulations were that the PWR lower-head survivability is extended although it is clearly not guaranteed, while in the BWR sequence the corium seems to be successfully arrested in the lower plenum.Three applications of the CFX 4.4 computational fluid dynamics code were carried out in the context of the BWR scenario to support the first modification of the aforementioned two scenarios for MELCOR.Finally, in the same BWR context, a statistic predictor of selected output parameters as a function of input parameters is presented, which provides reasonable results when compared to MELCOR full calculations in much shorter CPU processing times.

Martin-Fuertes, Francisco; Martin-Valdepenas, Juan Manuel; Mira, Jose; Sanchez, Maria Jesus [Universidad Politecnica de Madrid (Spain)

2003-10-15T23:59:59.000Z

197

Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors  

SciTech Connect

The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

Gary S. Was; Michael Atzmon; Lumin Wang

2003-04-28T23:59:59.000Z

198

Review of experiments to evaluate the ability of electrical heater rods to simulate nuclear fuel rod behavior during postulated loss-of-coolant accidents in light water reactors  

SciTech Connect

Issues related to using electrical fuel rod simulators to simulate nuclear fuel rod behavior during postulated loss-of-coolant accident (LOCA) conditions in light water reactors are summarized. Experimental programs which will provide a data base for comparing electrical heater rod and nuclear fuel rod LOCA responses are reviewed.

McPherson, G D; Tolman, E L

1980-01-01T23:59:59.000Z

199

Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code  

E-Print Network (OSTI)

The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited...

Bellanger, Philippe

2012-06-07T23:59:59.000Z

200

Advanced Light Water Reactor Plants System 80+{trademark} Design Certification Program. Annual progress report, October 1, 1992--September 30, 1993  

SciTech Connect

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW{sub t} (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment.

Not Available

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transmutation Performance Analysis for Inert Matrix Fuels in Light Water Reactors and Computational Neutronics Methods Capabilities at INL  

SciTech Connect

The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.

Michael A. Pope; Samuel E. Bays; S. Piet; R. Ferrer; Mehdi Asgari; Benoit Forget

2009-05-01T23:59:59.000Z

202

Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle  

SciTech Connect

Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-12-15T23:59:59.000Z

203

A global approach of the representativity concept: Application on a high-conversion light water reactor MOX lattice case  

SciTech Connect

The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)

Santos, N. D.; Blaise, P.; Santamarina, A. [CEA, DEN/DER/SPRC Cadarache, F-13108 Saint Paul-lez-Durance (France)

2013-07-01T23:59:59.000Z

204

Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining  

SciTech Connect

A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

S. D. Herrmann; S. X. Li

2010-09-01T23:59:59.000Z

205

Gigawatt-year nuclear-geothermal energy storage for light-water and high-temperature reactors  

SciTech Connect

Capital-intensive, low-operating cost nuclear plants are most economical when operated under base-load conditions. However, electricity demand varies on a daily, weekly, and seasonal basis. In deregulated utility markets this implies high prices for electricity at times of high electricity demand and low prices for electricity at times of low electricity demand. We examined coupling nuclear heat sources to geothermal heat storage systems to enable these power sources to meet hourly to seasonal variable electricity demand. At times of low electricity demand the reactor heats a fluid that is then injected a kilometer or more underground to heat rock to high temperatures. The fluid travels through the permeable-rock heat-storage zone, transfers heat to the rock, is returned to the surface to be reheated, and re-injected underground. At times of high electricity demand the cycle is reversed, heat is extracted, and the heat is used to power a geothermal power plant to produce intermediate or peak power. When coupling geothermal heat storage with light-water reactors (LWRs), pressurized water (<300 deg. C) is the preferred heat transfer fluid. When coupling geothermal heat storage with high temperature reactors at higher temperatures, supercritical carbon dioxide is the preferred heat transfer fluid. The non-ideal characteristics of supercritical carbon dioxide create the potential for efficient coupling with supercritical carbon dioxide power cycles. Underground rock cannot be insulated, thus small heat storage systems with high surface to volume ratios are not feasible because of excessive heat losses. The minimum heat storage capacity to enable seasonal storage is {approx}0.1 Gigawatt-year. Three technologies can create the required permeable rock: (1) hydro-fracture, (2) cave-block mining, and (3) selective rock dissolution. The economic assessments indicated a potentially competitive system for production of intermediate load electricity. The basis for a nuclear geothermal system with LWRs exists today; but, there is need for added research and development before deployment. There are significantly greater challenges for geothermal heat storage at higher temperatures. Such systems are strongly dependent upon the local geology. (authors)

Forsberg, C. W.; Lee, Y.; Kulhanek, M.; Driscoll, M. J. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

2012-07-01T23:59:59.000Z

206

Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system?  

Science Journals Connector (OSTI)

We examined sediment resuspension and light attenuation in relation to the ... and clay resulted in frequent periods of sediment resuspension. As calculated (wave theory) shear stress ... measured experimentally)...

William F. James; Elly P. Best; John W. Barko

2004-03-01T23:59:59.000Z

207

Characterization of leaf resistance to water loss in two clones of eastern cottonwood (Populus deltoides Bartr.) with respect to light intensity, leaf water potential, and drought  

E-Print Network (OSTI)

occurred. The magnitude of resistance in the critical range increased as soil water supply decreased below 20X by volume. Soil water supply conditioned the influence of the measured atmospheric variables. At high soil water supplies (&20X by volume... Atmospheric Evaporative Demand Total Radiation Total Leaf Area 23 24 24 Analysis 24 IV RESULTS 26 Environmental Conditions and Growth Environmental Conditions Growth Trends of Leaf Resistance to Water Loss 26 26 31 Average Trends of Leaf...

Dougherty, Phillip Merle

2012-06-07T23:59:59.000Z

208

Vibrational Energy Relaxation of Thiocyanate Ions in Liquid-to-Supercritical Light and Heavy Water. A Fermis Golden Rule Analysis  

Science Journals Connector (OSTI)

As was discussed above, the solute stretching excitation is resonantly transferred to the bendinglibrational combination level (direct VVR), and the energy transfer decelerates because the solvent acceptor level experiences an energetic downshift upon isobaric heating, thereby gradually lifting the solutesolvent resonance. ... Clearly, this infrared activity cannot correspond to the (?b + ?L) band of heavy water because the bendinglibrational combination tone should shift to lower energies with increasing temperature as it does for light water (see the absorption edge at 2300 cm1 in Figure 4a). ...

Denis Czurlok; Jeannine Gleim; Jrg Lindner; Peter Vhringer

2014-09-15T23:59:59.000Z

209

Superwetting of TiO2 by light-induced water-layer growth via delocalized surface electrons  

Science Journals Connector (OSTI)

...Luzar A ( 2011 ) Electric control of wetting...ICT and Future Planning) (No...eV. The binding energy was calibrated by...presents the density distribution of the water...different adsorption energy of bonding for water...configurations and energies of amino acids on...

Kunyoung Lee; QHwan Kim; Sangmin An; JeongHoon An; Jongwoo Kim; Bongsu Kim; Wonho Jhe

2014-01-01T23:59:59.000Z

210

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

211

Development and validation of a real-time SAFT-UT system for the inspection of light water reactor components. Semiannual report, April 1984-September 1984. Volume 1  

SciTech Connect

The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is for inservice inspection of light water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This process report covers the programmatic work from April 1984 through September 1984. 58 figs.

Doctor, S.R.; Busse, L.J.; Crawford, S.L.; Hall, T.E.; Gribble, R.P.; Baldwin, A.J.; Van Houten, L.P.

1986-05-01T23:59:59.000Z

212

Development and validation of a real-time SAFT-UT system for the inspection of light water reactor components: Annual report, October 1984-September 1985  

SciTech Connect

The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1984 through September 1985.

Doctor, S.R.; Hall, T.E.; Reid, L.D.; Crawford, S.L.; Littlefield, R.J.; Gilbert, R.W.

1987-06-01T23:59:59.000Z

213

Investigation of the use of nanofluids to enhance the In-Vessel Retention capabilities of Advanced Light Water Reactors  

E-Print Network (OSTI)

Nanofluids at very low concentrations experimentally exhibit a substantial increase in Critical Heat Flux (CHF) compared to water. The use of a nanofluid in the In-Vessel Retention (IVR) severe accident management strategy, ...

Hannink, Ryan Christopher

2007-01-01T23:59:59.000Z

214

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report  

SciTech Connect

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

215

Light Induced Water Oxidation on Cobalt-Phosphate (Co-Pi) Catalyst Modified Semi-Transparent, Porous SiO2-BiVO4 Electrodes  

SciTech Connect

A facile and simple procedure for the synthesis of semi-transparent and porous SiO{sub 2}-BiVO{sub 4} electrodes is reported. The method involves a surfactant assisted metal-organic decomposition at 500 C. An earth abundant oxygen evolution catalyst (OEC), cobalt phosphate (Co-Pi), has been used to modify the SiO{sub 2}-BiVO{sub 4} electrode by electrodeposition (ED) and photoassisted electrodeposition (PED) methods. Modified electrodes by these two methods have been examined for light induced water oxidation and compared to the unmodified SiO{sub 2}-BiVO{sub 4} electrodes by various photoelectrochemical techniques. The PED method was a more effective method of OEC preparation than the ED method as evidenced by an increased photocurrent magnitude during photocurrent-potential (I-V) characterizations. Electrode surfaces catalyzed by PED exhibited a very large cathodic shift (420 mV) in the onset potential for water oxidation. The chopped-light I-V measurements performed at different intervals over 24-hour extended testing under illumination and applied bias conditions show a fair photostability for PED Co-Pi modified SiO{sub 2}-BiVO{sub 4}.

Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Turner, J. A.; Brown, L. D.; Herring, A. M.

2012-04-21T23:59:59.000Z

216

CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light  

E-Print Network (OSTI)

and for the conversion of carbon dioxides into methanol and hydrocarbons. Metal chalcogenides1­9 are promisingCdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible driven pathway to hydrogen. Hydrogen is not only an environmentally benign fuel for the generation

Osterloh, Frank

217

An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors  

SciTech Connect

This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

218

Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors  

SciTech Connect

A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

1989-10-01T23:59:59.000Z

219

Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels  

SciTech Connect

This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs.

Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

1991-10-01T23:59:59.000Z

220

Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN  

SciTech Connect

The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Experimental measurements of the diffusion parameters of light hydrocarbons in water-saturated sedimentary rocks: II. Results and geochemical significance  

SciTech Connect

Diffusion parameters (diffusion coefficient, diffusion permeability, solubility coefficient) for methane, ethane, propane, n-butane, methylpropane and 2,2-dimethylpropane were measured on 21 samples of water-saturated sedimentary rocks at different temperatures (30, 50, and 70 C). The rock samples include sandstones, siltstones, and claystones with porosities ranging from 0.4 to 16.5% and permeabilities from <0.005 to 33.4 millidarcy. Experimental diffusion coefficients ranged from c. 6 {times} 10{sup {minus}10} to 9 {times} 10{sup {minus}13} m{sup 2}/s, solubility coefficients covered a range from c. 5 {times} 10{sup {minus}1} to 5 {times} 10{sup {minus}4}, and diffusion permeabilities lay between c. 4 {times} 10{sup {minus}12} and 1 {times} 10{sup {minus}14} m{sup 2}/s. Diffusion coefficients decrease with increasing molecular weight of the hydrocarbon compound, the decrease depending on the petrophysical properties and the mineralogy of the rocks and being most drastic in shales. None of the petrophysical parameters examined in this study (porosity, permeability, formation resistivity factor) gave a good correlation with the nonsteady-state diffusion coefficient, D. An excellent correlation was found between the formation resistivity factor, F, and the steady-state diffusion permeability. P. A possibly useful-though less significant-relation bearing some resemblance with Archie's law appears to exist between the porosity and the diffusion permeability. The temperature dependence of the diffusion parameters was determined on two calcareous sandstones. Based on an activated diffusion model activation energies for the diffusion process ranging around 50 kJ/mol were calculated for all hydrocarbons examined.

Krooss, B.M.; Leythaeuser, D. (Institute of petroleum and Organic Geochemistry, Juelich (Germany, F.R.))

1988-01-01T23:59:59.000Z

222

A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors  

SciTech Connect

This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of a small set of comprehensive event trees and fault trees and recommendation for future work.

S. Khericha

2011-06-01T23:59:59.000Z

223

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

The small volume required for such analysis is beneficial for correlating with the small-scale mechanical testing currently being investigated. Further studies on the...

224

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

the operation of commercial nuclear power plants require conservative mar- gins of fracture toughness for the RPV materials, both during normal operation and under accident...

225

Comparison of the relationships between lidar integrated backscattered light and accumulated depolarization ratios for linear and circular polarization for water droplets, fog oil, and dust  

Science Journals Connector (OSTI)

Recently, an empirical relationship between the layer integrated backscattered light and the layer accumulated depolarization ratio has been established for linear polarization for...

Cao, Xiaoying; Roy, Gilles; Roy, Nathalie; Bernier, Robert

2009-01-01T23:59:59.000Z

226

Light Portal  

Science Journals Connector (OSTI)

The Light Portal was designed to organize and mark the pedestrian paths that circumnavigate the rectangle of the...

2006-01-01T23:59:59.000Z

227

Light's twist  

Science Journals Connector (OSTI)

...equal to the optical power divided by the speed of light, and hence go unnoticed in our everyday lives...approaching object equal to the power in the light beam (P) divided by the speed of light. The movement of the approaching object does...

2014-01-01T23:59:59.000Z

228

Light Properties Light travels at the speed of light `c'  

E-Print Network (OSTI)

LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190.nasa.gov #12;The speed of light The speed of light `c' is equal to the frequency ` times the wavelength,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light

Mojzsis, Stephen J.

229

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

230

Development and validation of a real-time SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) system for the inspection of light water reactor components: Annual report, October 1985-September 1986  

SciTech Connect

The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1985 through September 1986. 45 figs., 8 tabs.

Doctor, S.R.; Hall, T.E.; Reid, L.D.; Mart, G.A.

1987-07-01T23:59:59.000Z

231

Inhibitory Effect of Green Tea in the Drinking Water on Tumorigenesis by Ultraviolet Light and 12-O-Tetradecanoylphorbol-13-acetate in the Skin of SKH-1 Mice  

Science Journals Connector (OSTI)

...mm I.D.). The green tea water extracts...phase contained three solvents (Solvent A, acetonitrile...Solvent B, 5% Solvent C); and 24 to 30 min (100% Solvent A). The retention...min, respectively. Green tea extracts were...

Zhi-Yuan Wang; Mou-Tuan Huang; Thomas Ferraro; Ching-Quo Wong; You-Rong Lou; Kenneth Reuhl; Michael Iatropoulos; Chung S. Yang; and Allan H. Conney

1992-03-01T23:59:59.000Z

232

Lighting Renovations  

Energy.gov (U.S. Department of Energy (DOE))

When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

233

Cerenkov Light  

ScienceCinema (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2014-05-22T23:59:59.000Z

234

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Electric Company Smart Grid Project Atlantic City Electric Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Consolidated Edison Company of New York Inc Smart Grid Project Consolidated Edison Company of New York Inc Smart Grid Project New York New York New Jersey El Paso Electric Smart Grid Project El Paso Electric Smart Grid Project El Paso Texas New Mexico Hawaii Electric Co Inc Smart Grid Project Hawaii Electric Co Inc Smart Grid Project Oahu Hawaii Memphis Light Gas and Water Division Smart Grid Project Memphis Light Gas and Water Division Smart Grid Project Memphis Tennessee Municipal Electric Authority of Georgia Smart Grid Project Municipal

235

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

236

Photoelectrochemical Water Splitting  

Energy.gov (U.S. Department of Energy (DOE))

In this process, hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials. In the photoelectrochemical (PEC) system, the semiconductor uses light energy to directly dissociate water molecules into hydrogen and oxygen. Different semiconductor materials work at particular wavelengths of light and energies.

237

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

238

Tennessee's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Tennessee. Tennessee. US Recovery Act Smart Grid Projects in Tennessee's 7th congressional district Memphis Light, Gas and Water Division Smart Grid Project Registered Energy Companies in Tennessee's 7th congressional district Agri Energy Inc Biofuels America Inc Eco Energy Inc Memphis Biofuels LLC Nashville Electric Service NES Ocean Motion International LLC Solar Pathfinder Universal Lighting Technologies Utility Companies in Tennessee's 7th congressional district City of Memphis, Tennessee (Utility Company) Retrieved from "http://en.openei.org/w/index.php?title=Tennessee%27s_7th_congressional_district&oldid=204325" Categories: Places Stubs Congressional Districts What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

239

Calculation of the Cherenkov light yield from low energetic secondary particles accompanying high-energy muons in ice and water with Geant4 simulations  

Science Journals Connector (OSTI)

In this work we investigate and parameterize the amount and angular distribution of Cherenkov photons, which are generated by low-energy secondary particles (typically ? 500 MeV), which accompany a muon track in water or ice. These secondary particles originate from small energy loss processes. We investigate the contributions of the different energy loss processes as a function of the muon energy and the maximum transferred energy. For the calculation of the angular distribution we have developed a generic transformation method, which allows us to derive the angular distribution of Cherenkov photons for an arbitrary distribution of track directions and their velocities.

Leif Rdel; Christopher Wiebusch

2012-01-01T23:59:59.000Z

240

Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory [NSTec

2014-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Light's twist  

Science Journals Connector (OSTI)

...Glasgow G12 8QQ, UK An invited Perspective to mark the election of Miles Padgett to the fellowship of the Royal Society in 2014. That...energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These...

2014-01-01T23:59:59.000Z

242

Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation  

SciTech Connect

In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

Souza Dos Santos, R. [Instituto de Engenharia Nuclear CNEN/IEN, Cidade Universitaria, Rua Helio de Almeida, 75 - Ilha do Fundiao, 21945-970 Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores / CNPq (Brazil)

2012-07-01T23:59:59.000Z

243

Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100)  

SciTech Connect

Energy storage is a key challenge in solar-driven renewable energy conversion. We promote a photochemical diode based on dilute nitride GaPN grown lattice-matched on Si(100), which could reach both high photovoltaic efficiencies and evolve hydrogen directly without external bias. Homoepitaxial GaP(100) surface preparation was shown to have a significant impact on the semiconductor-water interface formation. Here, we grow a thin, pseudomorphic GaP nucleation buffer on almost single-domain Si(100) prior to GaPN growth and compare the GaP{sub 0.98}N{sub 0.02}/Si(100) surface preparation to established P- and Ga-rich surfaces of GaP/Si(100). We apply reflection anisotropy spectroscopy to study the surface preparation of GaP{sub 0.98}N{sub 0.02} in situ in vapor phase epitaxy ambient and benchmark the signals to low energy electron diffraction, photoelectron spectroscopy, and x-ray diffraction. While the preparation of the Ga-rich surface is hardly influenced by the presence of the nitrogen precursor 1,1-dimethylhydrazine (UDMH), we find that stabilization with UDMH after growth hinders well-defined formation of the V-rich GaP{sub 0.98}N{sub 0.02}/Si(100) surface. Additional features in the reflection anisotropy spectra are suggested to be related to nitrogen incorporation in the GaP bulk.

Supplie, Oliver, E-mail: oliver.supplie@tu-ilmenau.de [Technische Universitt Ilmenau, Institut fr Physik, Gustav-Kirchhoff-Str. 5, 98684 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Humboldt-Universitt zu Berlin, Institut fr Physik, Newtonstr. 15, 12489 Berlin (Germany); May, Matthias M.; Stange, Helena [Helmholtz-Zentrum Berlin, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Humboldt-Universitt zu Berlin, Institut fr Physik, Newtonstr. 15, 12489 Berlin (Germany); Hhn, Christian [Helmholtz-Zentrum Berlin, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Lewerenz, Hans-Joachim [Helmholtz-Zentrum Berlin, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); California Institute of Technology, Joint Center for Artificial Photosynthesis, 1200 East California Boulevard, Pasadena, California 91125 (United States); Hannappel, Thomas [Technische Universitt Ilmenau, Institut fr Physik, Gustav-Kirchhoff-Str. 5, 98684 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

2014-03-21T23:59:59.000Z

244

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

245

RESEARCH ARTICLE Comparing streambed light availability and canopy cover  

E-Print Network (OSTI)

structure when quantifying stream light. Keywords Riparian forest Á Stream light Á PAR Á Solar radiation ÁRESEARCH ARTICLE Comparing streambed light availability and canopy cover in streams with old Abstract Light availability strongly influences stream primary production, water temperatures and resource

Vermont, University of

246

Water quality Water quantity  

E-Print Network (OSTI)

01-1 · Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

247

Water quality Water quantity  

E-Print Network (OSTI)

· Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

248

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

249

Lighting Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Custom Projects Lighting Test Facilities SSL Guidelines Industrial Federal Agriculture LED Street and Area Lighting Field Test of Exterior LED Down Lights Abstract Outdoor...

250

Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697  

SciTech Connect

The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

NONE

1997-05-01T23:59:59.000Z

251

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

252

Oil droplets as light absorbents in seawater  

Science Journals Connector (OSTI)

This paper presents spectra of light absorption coefficient of oil-in-water emulsion, derived using the Mie theory. In order to achieve that concentration of oil, degree of oil...

Otremba, Zbigniew

2007-01-01T23:59:59.000Z

253

Alliant Energy Interstate Power and Light (Electric)- Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a number of energy efficiency rebates for Minnesota residential customers which implement HVAC, lighting, appliance, window, insulation and water heating upgrades. Eligible...

254

Murase, Jun, and Atsuko Sugimoto. Inhibitory effect of light on ...  

Science Journals Connector (OSTI)

Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic ... tion by injection on board the ship, giving a final concen- tration of

2005-07-06T23:59:59.000Z

255

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

256

Light Bodies: Exploring Interactions with Responsive Lights  

E-Print Network (OSTI)

reinterpretation of street lighting. Before fixed infrastructure illuminated cities at night, people carried Urban street lighting today is a networked, fixed infrastructure that relies on the electrical grid. WeLight Bodies: Exploring Interactions with Responsive Lights Susanne Seitinger MIT Media Laboratory

Hunt, Galen

257

Radiation Protection at Light Water Reactors  

Science Journals Connector (OSTI)

......refers primarily to US regulatory guidelines (e.g...worker monitoring. Regulatory limits such as contamination...appropriate references to regulatory guidelines for these...monitoring sections review particulate, radio-iodine...permits, ALARA work plans and scaffold management......

Ken Veinot

2013-11-01T23:59:59.000Z

258

Radiation Protection at Light Water Reactors  

Science Journals Connector (OSTI)

......volumes of radioactive wastes generated. Outage...chemistry has reduced the long-term buildup of source...treatment of radioactive waste treatment systems...waste planning and storage as well as commentary...planning for efficient waste storage and disposal. CHAPTER......

Ken Veinot

2013-11-01T23:59:59.000Z

259

Rethinking the light water reactor fuel cycle  

E-Print Network (OSTI)

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

260

Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices to Save You Money Light your home for less money while using the same amount of light. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home.

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Water, water everywhere  

Science Journals Connector (OSTI)

... available water resources, either locally or globally, are by no means exhausted. At present desalination -- the removal of salt from sea water or brackish water -- is very ... or brackish water -- is very expensive, mainly because it consumes so much energy. Desalination provides less than 0.2 per cent of all the water used in the world ...

Philip Ball

2000-01-27T23:59:59.000Z

262

Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program  

SciTech Connect

The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

2012-09-20T23:59:59.000Z

263

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory Architectural Lighting Analysis in Virtual Lighting Laboratory Speaker(s): Mehlika Inanici Date: July 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Virtual Lighting Laboratory is a Radiance-based lighting analysis tool and methodology that proposes transformations in the utilization of computer visualization in lighting analysis and design decision-making. It is a computer environment, where the user has been provided with matrices of illuminance and luminance values extracted from high dynamic range images. The principal idea is to provide the laboratory to the designer and researcher to explore various lighting analysis techniques instead of imposing limited number of predetermined metrics. In addition, it introduces an analysis approach for temporal and spatial lighting

264

Water Resources Water Quality and Water Treatment  

E-Print Network (OSTI)

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

265

Mobile lighting apparatus  

DOE Patents (OSTI)

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

266

Light Old and New  

Science Journals Connector (OSTI)

The Sun, Moon and stars have been our lights since the earliest times. We have learned ... have much more recently filled our homes and streets with artificial lighting. We are, however, in danger of...natural lights

Bob Mizon

2002-01-01T23:59:59.000Z

267

Specific light in sculpture  

E-Print Network (OSTI)

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

268

Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to installing LEDs in existing fixtures. Tips and Advice Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes...

269

Natural lighting and skylights  

E-Print Network (OSTI)

There are many physiological and psychological factors which enter into the proper design of space for human occupancy. One of these elements is light. Both natural light and manufactured light are basic tools with which any designer must work...

Evans, Benjamin Hampton

1961-01-01T23:59:59.000Z

270

Parametric light generation  

Science Journals Connector (OSTI)

...potential to deliver coherent light with high spectral purity...universal constants such as the speed of light. Single- frequency CW...assessment of optical switching speeds in telecommunication technology...A (2003) Parametric light generation 2749 ment of...

2003-01-01T23:59:59.000Z

271

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

272

Northern Lights Inc. - Energy Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Lights Inc. - Energy Conservation Rebate Program Northern Lights Inc. - Energy Conservation Rebate Program Northern Lights Inc. - Energy Conservation Rebate Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Nonprofit Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer: $15 each Clothes Washer: $30 Energy Star Manufactured Home: $1,000 Water Heater: $25 - $100 Window Replacement: $6/sq ft Insulation: Varies Duct Sealing: Free Ductless Heat Pumps: $1,500

273

Lighting Group: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

274

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

275

Modeling LED street lighting  

Science Journals Connector (OSTI)

LED luminaires may deliver precise illumination patterns to control light pollution, comfort, visibility, and light utilization efficiency. Here, we provide simple equations to...

Moreno, Ivan; Avendao-Alejo, Maximino; Saucedo-A, Tonatiuh; Bugarin, Alejandra

2014-01-01T23:59:59.000Z

276

Lighting | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Lighting Incentives Retrieved from "http:en.openei.orgwindex.php?titleLighting&oldid267174" Category: Articles with outstanding TODO tasks...

277

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...  

Open Energy Info (EERE)

LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name: Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place: Morrisville,...

278

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

279

How Do You Light Your Home Efficiently? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Your Home Efficiently? Light Your Home Efficiently? How Do You Light Your Home Efficiently? July 22, 2009 - 4:30pm Addthis An average household dedicates 11% of its energy budget to lighting. Installing efficient lighting technologies, using task lighting, flipping the switch, and taking advantage of natural daylight can all help you save on your lighting costs. How do you light your home efficiently? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Do You Save Energy in Your Apartment or Rental? How Do You Save Water When Caring for Your Lawn? How Do You Encourage Your Family to Use Less Water

280

Water Efficiency  

Energy Savers (EERE)

Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water...

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Duquesne Light Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Commercial and Industrial Energy Duquesne Light Company - Commercial and Industrial Energy Efficiency Program Duquesne Light Company - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Commercial Weatherization Manufacturing Appliances & Electronics Commercial Lighting Lighting Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom: Varies Lighting: Varies widely by type Controls and Sensors: $10-$75 VFD for Chilled Water Loop $150/hp VFD for HVAC Fans: $80/hp Packaged Terminal AC: $45-$75/ton Food Service Equipment: Varies widely by type Refrigeration Equipment: Varies widely by type

282

Memphis, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1495343°, -90.0489801° 1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1495343,"lon":-90.0489801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

www.memphis.edu/logo Introduction 2  

E-Print Network (OSTI)

is our image. Our brand is the reputation we've spent years building. It's one of the most valuable one factor that reduces the strength of a brand. By consistently putting forth a unified image of M brand images simple. The design elements, artwork and most up-to-date information are easily

Dasgupta, Dipankar

284

Light Management with Nanostructures for Optoelectronic Devices  

Science Journals Connector (OSTI)

Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China ... It is worth pointing out that due to the different application scale requirement, low-cost approaches are desired for effective light management in PV applications. ... Here, we demonstrate a new approach to light management by forming whispering-gallery resonant modes inside a spherical nanoshell structure. ...

Siu-Fung Leung; Qianpeng Zhang; Fei Xiu; Dongliang Yu; Johnny C. Ho; Dongdong Li; Zhiyong Fan

2014-04-03T23:59:59.000Z

285

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

286

Chapter 5: Lighting, HVAC, and Plumbing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Lighting, : Lighting, HVAC, and Plumbing High-Performance Engineering Design Lighting System Design Mechanical System Design Central Plant Systems Plumbing and Water Use Building Control Systems Electrical Power Systems Metering LANL | Chapter 5 High-Performance Engineering Design Lighting, HVAC, and Plumbing By now, the building envelope serves multiple roles. It protects the occupants from changing weather condi- tions and it plays a key part in meeting the occupants' comfort needs. The heating, ventilating, air-conditioning, and lighting (HVAC&L) systems complement the archi- tectural design, govern the building's operation and maintenance costs, and shape the building's long-term environmental impact. The architectural design maximizes the potential for a high-performance building, but it is the

287

Waverly Light and Power - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebates Energy Efficiency Rebates Waverly Light and Power - Residential Energy Efficiency Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Maximum Rebate Appliance Recycling: $150 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $1,300 Heat Pump Water Heater: $500 LED Lighting: 50% of cost, up to $200 Central AC: $150 Air-Source Heat Pump: $150 Geothermal Heat Pump: $450 Clothes Washer: $75 Refrigerator: $50 Appliance Recycling: $75 Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for the purchase and

288

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric) - Farm Gas and Electric) - Farm Equipment Energy Efficiency Incentives Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Heating & Cooling Heating Commercial Lighting Lighting Manufacturing Water Heating Program Info Start Date 1/1/2012 State Iowa Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $100 Refrigerator Replacement: $50 Dishwasher Replacement: $20 Freezer: $25 Room Air Conditioner: $25 Water Heater: $50 Electric Heat Pump Water Heaters: $100 Circulating Fans: $25 - $75

289

Building Technologies Office: Water Heating Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

290

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

291

Lighting Group: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

292

Smart street lighting management  

Science Journals Connector (OSTI)

In this work, we propose a new street lighting energy management system in order to reduce ... demand meaning that energy, in this case light, is provided only when needed. In ... demand model, which in the case...

S. Pizzuti; M. Annunziato; F. Moretti

2013-08-01T23:59:59.000Z

293

Adaptive Street Lighting Controls  

Energy.gov (U.S. Department of Energy (DOE))

This two-partDOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

294

Kyler Nelson Light Timer  

E-Print Network (OSTI)

designated by the user, the Arduino board will dim the light to save energy. The user designates the time instance, the light is dimmed using pulse width modulation (PWM) in the Arduino's pin number 11

Kachroo, Pushkin

295

LIGHT AND PHOTOSYNTHESIS IN THE SEA, SPRING 2010 Instructor: Dr. Michael Durako BIO 495 009  

E-Print Network (OSTI)

LIGHT AND PHOTOSYNTHESIS IN THE SEA, SPRING 2010 Instructor: Dr. Michael Durako BIO 495 009 Class/14 Photosynthesis vs Light Dr. Durako 3 1/21 Utilization of Light in Aquatic Systems Dr. Durako 4 1/28* Carbon of Light Attenuation in Aquatic Systems - TSS, CDOM, Water Photosynthesis versus Irradiance Measurement

Durako, Michael J.

296

Street light holography  

Science Journals Connector (OSTI)

The production of a hologram is demonstrated using only a camera aluminum foil and a mercury vapor street light.

R. R. Turtle

1977-01-01T23:59:59.000Z

297

Outdoor Lighting Resources  

Energy.gov (U.S. Department of Energy (DOE))

DOE offers a variety of resources to guide municipalities, utilities, and others in their evaluation of LED street lighting products.

298

Light emitting device comprising phosphorescent materials for white light generation  

DOE Patents (OSTI)

The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

Thompson, Mark E.; Dapkus, P. Daniel

2014-07-22T23:59:59.000Z

299

Resonant energy transfer in light harvesting and light emitting applications.  

E-Print Network (OSTI)

??The performance of light emitting and light harvesting devices is improved by utilising resonant energy transfer. In lighting applications, the emission energy of a semiconductor (more)

Chanyawadee, Soontorn

2009-01-01T23:59:59.000Z

300

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

302

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

303

Solid-State Lighting: Adaptive Street Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Street Lighting Adaptive Street Lighting Controls to someone by E-mail Share Solid-State Lighting: Adaptive Street Lighting Controls on Facebook Tweet about Solid-State Lighting: Adaptive Street Lighting Controls on Twitter Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Google Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Delicious Rank Solid-State Lighting: Adaptive Street Lighting Controls on Digg Find More places to share Solid-State Lighting: Adaptive Street Lighting Controls on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components.

304

Control of light speed: From slow light to superluminal light  

E-Print Network (OSTI)

A scheme for controlling light speed from slower-than-c to faster-than-c in an atomic system is presented in this paper. The scheme is based on far detuning Raman effect. Two far detuning coupling fields with small frequency difference will produce two absorptive peaks for the probe field in a $\\Lambda$ structure, and an optical pump between the two ground states can change the absorptive peaks into enhanced peaks, which makes the normal dispersion between the two peaks change into anomalous dispersion, so the probe field can change from slow light to superluminal propagation.

Qun-Feng Chen; Yong-Sheng Zhang; Bao-Sen Shi; Guang-Can Guo

2008-07-01T23:59:59.000Z

305

Wakefield Municipal Gas and Light Department - Residential Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wakefield Municipal Gas and Light Department - Residential Wakefield Municipal Gas and Light Department - Residential Conservation Services Program Wakefield Municipal Gas and Light Department - Residential Conservation Services Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate Energy Audit Recommended Measures: $300 Programmable Thermostats: 2 units Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Energy Audit Recommended Measures: 25% of total cost Refrigerators: $50 Clothes Washer: $50 Dishwasher: $50 Room AC: $50

306

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Electric) - Business Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate See program web site Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings New Construction: Varies widely

307

Emerging Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Lighting Technology Emerging Lighting Technology Bruce Kinzey Pacific Northwest National Laboratory FUPWG - Portland, OR April 20, 2011 www.ssl.energy.gov 2 | Solid-State Lighting Program GATEWAY Demonstration Program * Purpose: demonstrate new SSL products in real-world applications that save energy, match or improve illumination, and are cost- effective * Demos generate critical field experience providing: - Feedback to manufacturers - Data for utility incentives - Market readiness of specific applications to users - Advancement in lighting knowledge Central Park, NY Photo: Ryan Pyle Smithsonian American Art Museum, Washington, D.C. Photo: Scott Rosenfeld www.ssl.energy.gov 3 | Solid-State Lighting Program LED Product Explosion www.ssl.energy.gov 4 | Solid-State Lighting Program LEDs are Not a Universal Lighting

308

Independence Power and Light - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Power and Light - Residential Energy Efficiency Rebate Independence Power and Light - Residential Energy Efficiency Rebate Program Independence Power and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Central A/C: $109 - $384 Heat Pumps: $259 - $701 Heat Pumps Water Heaters: $300 Provider Independence Power and Light Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps, and water heaters. Rebates on equipment vary based upon size, capacity, and efficiency of the unit. See

309

Duquesne Light Company - Residential Energy Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Energy Efficiency Program Duquesne Light Company - Residential Energy Efficiency Program Duquesne Light Company - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heating Commercial Lighting Lighting Heat Pumps Water Heating Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Energy Star Dehumidifier: $24 Energy Star Freezer: $10 Energy Star Refrigerator: $24 Energy Star Room A/C: $24 Energy Star Dishwasher with Electric Water Heater: $24 Energy Star Clothes Washer - (Electric Water Heating Only): $24 Electric Clothes Dryer with Moisture Sensor: $24 Swimming Pool Pump, Two-Speed or Variable Speed: $57

310

SMART LIGHTING SYSTEMS ULTIMATE LIGHTING The Smart Lighting  

E-Print Network (OSTI)

Integration (Holistic Integrated Design) · Sensors as important as LEDs · Interconnected systems (human, building, grid) · Artistic Design Freedom · Lighting is Health, Entertainment, Information and Illumination Cost at any brightness · Chip level integrated electronics THE ERC RESEARCH COVERS THE ENTIRE SUPPLY

Linhardt, Robert J.

311

Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates  

SciTech Connect

As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

Sebastien Teysseyre

2014-04-01T23:59:59.000Z

312

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

313

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

May 1912), 783. 8. "New Street Lights Increase Trade 3 5 Perlight, including street light, became part of America'sBeautiful-inspired street lights graced wealthy residen

Holden, Alfred

1992-01-01T23:59:59.000Z

314

And the Oscar for Sustainable Mobile Lighting Goes to. Lighting Up Operations with Hydrogen and Fuel Cell Technology  

Office of Energy Efficiency and Renewable Energy (EERE)

An Energy Department-supported project is addressing these problems by designing, building, and testing a mobile lighting tower powered by hydrogen fuel cell technology, which is quiet and emits nothing but water while generating electricity.

315

PorphyrinNanoclay Photosensitizers for Visible Light Induced Oxidation of Phenol in Aqueous Media  

Science Journals Connector (OSTI)

PorphyrinNanoclay Photosensitizers for Visible Light Induced Oxidation of Phenol in Aqueous Media ... from water characteristic of nanoclays, on the other. ...

Dominik Drozd; Krzysztof Szczubia?ka; Micha? Skiba; Mariusz Kepczynski; Maria Nowakowska

2014-04-09T23:59:59.000Z

316

Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Pedestrian-Friendly Nighttime Pedestrian-Friendly Nighttime Lighting to someone by E-mail Share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Facebook Tweet about Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Twitter Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Google Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Delicious Rank Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Digg Find More places to share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety,

317

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

318

Lighting Group: Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software Lighting Software The Lighting Group has developed several computer programs in the course of conducting research on energy efficient lighting. Several of these programs have proven useful outside the research environment. One of the most popular programs for advanced lighting applications is Radiance. For more information on this program and its availability, click on the link below. RADIANCE Radiance is a suite of programs for the analysis and visualization of lighting in design. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new

319

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

320

High efficiency incandescent lighting  

DOE Patents (OSTI)

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Immersible solar water heater  

SciTech Connect

The invention consists in an immersible solar heat collecting means capable of being laid at the bottom of a pool where it can be walked upon. The substantially laminar portions of the collector each includes a surface of higher light absorbence than the other side thereof so that by folding or otherwise overlapping and rearranging the various portions a different number of higher light absorbence surfaces can be presented to the sun to heat the water at any particular time. Such an apparatus makes possible the controlled solar heating of a pool.

Caroon, R.S.

1980-12-09T23:59:59.000Z

322

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

323

Domestic Lighting and Heating  

Science Journals Connector (OSTI)

... a 14 22 feet room with a nice spacious window at each end admitting surreptitious draughts in proportion to the amount of light they let in. ...

M. GHEURY DE BRAY

1926-02-06T23:59:59.000Z

324

Comparing Light Bulbs  

Energy.gov (U.S. Department of Energy (DOE))

In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

325

Using small molecule complexes to elucidate features of photosynthetic water oxidation  

Science Journals Connector (OSTI)

...cofactors. In Photosystem II: the light-driven water: plastoquinone...Springer. Vincent, J.B , Christmas, C, Chang, H.R, Li, Q...Wydrzynski, T Photosystem II: the light-driven water: plastoquinone...ions. In Photosystem II: the light-driven water: plastoquinone...

2008-01-01T23:59:59.000Z

326

Lakeview Light and Power - Commercial Lighting Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Funded by Bonneville Power Administration Expiration Date 9/1/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial Lighting Installation: Up to 70% of cost Provider Lakeview Light and Power Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is funded by BPA and ends in September of 2010 or earlier if the funding is exhausted. Lakeview Light

327

Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Interfaith Power and Light - Energy Improvement Grants Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) < Back Eligibility Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Solar Program Info Funding Source The Kendeda Fund State Georgia Program Type Non-Profit Grant Program Provider Georgia Interfaith Power and Light Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools.

328

Alexandria Light and Power - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexandria Light and Power - Commercial Energy Efficiency Rebate Alexandria Light and Power - Commercial Energy Efficiency Rebate Program Alexandria Light and Power - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate All Incentives: Limited to 75% of total project cost Custom Program: $100,000 per calendar year per customer Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Targeted Audit: Varies by building type and size Lighting (New Construction): Varies widely Lighting (Existing Buildings): Varies widely Custom Measures: $300 kW; $0.01/kWh; $0.40/Therm

329

AIRPORT LIGHTING Session Highlights  

E-Print Network (OSTI)

. These sessions were designed to offer practical-yet-specialized training and information outreach for personnel information on airport lighting and navigational aid equipment selection, funding, maintenance, and operation known as AirTAP, sponsored three airport-lighting training sessions at different locations in Minnesota

Minnesota, University of

330

LED Lighting Facts  

Energy.gov (U.S. Department of Energy (DOE))

DOE's LED Lighting Facts program showcases LED products for general illumination from manufacturers who commit to testing products and reporting performance results according to industry standards. For lighting buyers, designers, and energy efficiency programs, the program provides information essential to evaluating SSL products.

331

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

332

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

333

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Tank Water Heater: $50 Furnace: $250-$400 Boiler: $150 or $400 Programmable Thermostat: $25 Windows/Sash: $20 Custom: Based on Annual Energy Dollar Savings Provider

334

Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Muscatine Power and Water (MP&W) offers rebates for energy efficient upgrades to commercial and industrial customers. Rebates are available for commercial lighting retrofits, energy efficient...

335

Induction Lighting: An Old Lighting Technology Made New Again | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up to 100,000 hours. To put this in perspective, an induction lighting system lasting 100,000 hours will last more than 11 years in continuous 24/7 operation, and 25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,

336

Reading Municipal Light Department - Business Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

337

Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel  

SciTech Connect

Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

Eley, C.; Tolen, T. (Eley (Charles) Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

338

Light and Bread Mold  

NLE Websites -- All DOE Office Websites (Extended Search)

Light and Bread Mold Light and Bread Mold Name: CHASE Location: N/A Country: N/A Date: N/A Question: HOW CAN I EFICTIVELY TEST THE EFFECTS OF LIGHT ON BREAD MOLD? Replies: Hello Chase, In order to test the effects of light on bread mould you need to set up an experiment. There are two things you need to have in your experiment to make it a good experiment: 1. A 'control'. 2. Replicates 1. The 'control' Obviously in order to test the effects of light on bread mold you will need to actually shine some light on some bread mold and see what happens. This is your 'treatment'. However, it is vitally important that you know what would have happened without the treatment (in this case added light). Let's pretend that you do a test a you find that the bread mold under the light actually dies. How do you know if your bread mold died because light was added or because at that time of year all bread mold would die naturally or because by adding light you caused the temperature to rise and that killed the bread mold? The answer is that you do not know unless you have taken the trouble to find out with anouther test called the 'control'. The 'control' is a piece of bread mold, identical to the 'treatment' bread mold, which is placed in identical conditions to the 'treatment' piece of bread mold except that light is removed. Your 'control' piece of bread mold will need to be (to the best of your abillity) at the same temperature, in the same area, at similar humidity, etc. Part of the skill of designing a scientific experiment is being able think of all the possible things which might be affecting the bread mold and keeping them the same in both the 'treatment' and the 'control' (except, of course, for the presence of light) so that when you find a difference between the 'treatment' and the 'control' you are sure that it is the result of the light rather than something else.

339

Water Electrolysis  

Science Journals Connector (OSTI)

In this chapter, water electrolysis technology and its applications for nuclear hydrogen ... of the chapter, a general classification of water electrolysis systems is given, the fundamentals of water electrolysis

Greg F. Naterer; Ibrahim Dincer

2013-01-01T23:59:59.000Z

340

Water Intoxication  

E-Print Network (OSTI)

2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

Lingampalli, Nithya

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Independence Power and Light - New Homes Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Power and Light - New Homes Rebate Program Independence Power and Light - New Homes Rebate Program Independence Power and Light - New Homes Rebate Program < Back Eligibility Construction Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Energy Star Certification Cost: $500 Central air conditioner: $300 Central heat pump (fossil fuel back-up): $600 Central heat pump system (electric back-up): $700 Central heat pump system (fossil fuel back-up); electric water heater: $700 Central heat pump system (electric back-up); electric water heater: $800 Provider Independence Power and Light

342

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

343

Carbon Power and Light - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Power and Light - Residential and Commercial Energy Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Water Heater: $75 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $1.50 - $3 /gallon, plus $50 Tri-State G&T incentive Resistive Heat: $8 /kW Electric Thermal Storage: $50 /unit or $12 /kW Air-Source Heat Pump: $125 - $150 /ton Geothermal Heat Pump: $150 /ton Terminal Unit: $85 Motors: $8 - $13 /hp (CPL and Tri-State Combined Rebate) Provider Carbon Power and Light, Inc.

344

City of Water Valley, Mississippi (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mississippi (Utility Company) Mississippi (Utility Company) Jump to: navigation, search Name City of Water Valley Place Mississippi Utility Id 20176 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power 1 Commercial General Power 2 Commercial General Power 3 Commercial Lighting Service- 100W HPS Lighting Lighting Service- 175W Mercury Vapor Lighting Lighting Service- 250W HPS Lighting Lighting Service- 400W HPS Lighting Lighting Service- 400W Mercury Vapor Lighting Lighting Service- 400W Metal Halide Lighting

345

Alexandria Light and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexandria Light and Power - Residential Energy Efficiency Rebate Alexandria Light and Power - Residential Energy Efficiency Rebate Program Alexandria Light and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 - $75 Refrigerator: $50, with recycling of old, working model Dishwasher: $25 Dehumidifier: $10 Room Air Conditioner: $15 Heat Pump Water Heater: $300 Central A/C: $200 Mini-Split Ductless A/C: $100 ECM in New Furnace/Air Handler/Fan Coil: $150 Air-Source Heat Pump: $250 - $350 Programmable Thermostat: $25 Geothermal Heat Pump: $200/ton

346

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Construction Design & Remodeling Water Heating Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New Construction: Varies, see program web site Custom: Based on Annual Dollar Energy Savings

347

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

348

Lighting Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Renovations Lighting Renovations Lighting Renovations October 16, 2013 - 4:54pm Addthis When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide focuses on the renewable energy opportunities, energy efficiency may also present amble opportunity for energy and cost savings. Renewable Energy Options for Lighting Renovations Daylighting Photovoltaics Daylighting Daylighting maximizes the use of natural light in a space to reduce the need for artificial lighting. Incorporating daylighting into a lighting strategy should occur during the planning stage of design since it affects all aspects. Ambient light dimming controls are critical in daylighting, since the

349

Lighting Group: Controls: IBECS  

NLE Websites -- All DOE Office Websites (Extended Search)

IBECS IBECS Integrated Building Environmental Communications System Objective The overall technical goal of the IBECS project is to develop an integrated building equipment communications network that will allow appropriate automation of lighting and envelope systems to increase energy efficiency, improve building performance, and enhance occupant experience in the space. This network will provide a low-cost means for occupants to control local lighting and window systems, thereby improving occupant comfort, satisfaction and performance. A related goal is to improve existing lighting control components and accelerate development of new daylighting technologies that will allow daylighting to be more extensively applied to a larger proportion of building floor space.

350

Green Light Pulse Oximeter  

DOE Patents (OSTI)

A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

Scharf, John Edward (Oldsmar, FL)

1998-11-03T23:59:59.000Z

351

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1997-01-01T23:59:59.000Z

352

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1997-06-24T23:59:59.000Z

353

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1999-01-01T23:59:59.000Z

354

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1999-06-08T23:59:59.000Z

355

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Spectrally enhanced lighting (SEL) is a cost-effective, low-risk design method for achieving significant energy savings. It entails shifting the color of lamps from the warmer to the cooler (whiter) end of the color spectrum, more closely matching daylight. Studies show that, with this color shift, occupants perceive lighting to be brighter and they are able to see more clearly. Since SEL provides the same levels of visual acuity with fewer lumens of output, SEL installations can be designed using fewer lamps or lower wattage lamps than traditional lighting.

356

Peninsula Light Company - Commercial Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peninsula Light Company - Commercial Efficient Lighting Rebate Peninsula Light Company - Commercial Efficient Lighting Rebate Program Peninsula Light Company - Commercial Efficient Lighting Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount General: 30% - 70% of cost Provider Peninsula Light Company Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service. Customers who upgrade to highly efficient fixtures and systems are eligible to receive a rebate generally covering 30% - 70% of the project cost. These retrofits improve light quality and reduce energy costs in participating facilities. PLC

357

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

358

Alliant Energy Interstate Power and Light - Residential Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Residential Renewable Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar Thermal Water Heater: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: $1.25/kWh x estimated first year output Standard Solar PV: $0.75/kWh x estimated first year output Energy Efficient Wind: $0.75/kWh x estimated first year output Standard Wind: 0.25/kWh x estimated first year output Solar Thermal Water Heater (electric): $0.35 x annual kWh savings Solar Thermal Water Heater (natural gas): $2.50 x annual therm savings

359

Effect of wettability on light oil steamflooding  

SciTech Connect

This report summarizes NIPER's research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

Olsen, D.K.

1991-12-01T23:59:59.000Z

360

Effect of wettability on light oil steamflooding  

SciTech Connect

This report summarizes NIPER`s research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

Olsen, D.K.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lots of Light Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Lots of Light Literature Lots of Light Literature The Teacher Resource Center contains a great variety of resources for all areas of science K-12. For the concepts of light here is a sampling of some of these resources. Science is Elementary - Spring 1995, vol. 6, no. 4. Science is Elementary is produced by the Museum Institute for Teaching Science, 79 Milk Street, Suite 210, Boston, MA 02109-3903. Science is Elementary is a newsletter we have admired for years. The topic of this issue deals with Color and Light. It contains content information to the teacher, trade secrets or teaching tips, "Book Looking" section and the section call "Sciencing" which includes a variety of activities. Science is Elementary is published quarterly. Subscription cost is: $22.00/year.

362

Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-U.S. Senator Jeff Bingaman, Chair, Senate Committee on Energy and Natural Resources 2013-2025 * The Future of LED General Lighting 2013-2025 * The Promise of OLED General...

363

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

364

Comparing Light Bulbs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Light Bulbs Grades: K-4, 5-8 Topic: Energy Efficiency and Conservation Owner: U.S. Environmental Protection Agency This educational material is brought to you by the U.S....

365

Nexxus Lighting Inc | Open Energy Information  

Open Energy Info (EERE)

Nexxus Lighting Inc Nexxus Lighting Inc Jump to: navigation, search Name Nexxus Lighting, Inc. Place Charlotte, North Carolina Zip 28269 Product Manufacturer Of LED Lamps and related products for use in swimming pools, decorative water falls, entertainment and other areas. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Sandia National Laboratories: (Lighting and) Solid-State Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

367

FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION  

E-Print Network (OSTI)

FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION supposed to require two light reactions for the transfer of one hydrogen atom from water to carbon dioxide the existence of this second trap. With increase in intensity of green light, I,, the differential fluorescence

Govindjee

368

Lighting Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Lighting Design July 29, 2012 - 6:28pm Addthis Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. How does it work? Buy ENERGY STAR-rated lighting for the highest quality, energy-efficient lighting. Use timers and other controls to turn lights on and off. Use outdoor solar lighting. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. If you're constructing a new house, consider lighting as part of your whole-house design -- an

369

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting LED Lighting July 29, 2012 - 4:43pm Addthis LED Lighting What are the key facts? Quality LED products can last 25 times longer than an incandescent bulb and use 75% less energy. LEDs are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally change the future of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least

370

Light and Energy -Daylight measurements  

E-Print Network (OSTI)

Light and Energy - Daylight measurements #12;Light and Energy - Daylight measurements Authors: Jens;3 Title Light and Energy Subtitle Daylight measurements Authors Jens Christoffersen, Ásta Logadóttir ............................................................................... 7 Measurement results: Kyosemi.................................................................. 9

371

Energy Conservation in Industrial Lighting  

E-Print Network (OSTI)

In order to reduce energy use in lighting Union Carbide recently issued drastically reduced new lighting level standards. A computerized lighting cost program was also developed. Using this program a number of additional energy saving techniques...

Meharg, E.

1979-01-01T23:59:59.000Z

372

Light diffusing fiber optic chamber  

DOE Patents (OSTI)

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

373

Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Angeles, CA to someone Los Angeles, CA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Facebook Tweet about Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Twitter Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Google Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Delicious Rank Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Digg Find More places to share Solid-State Lighting: Municipal Consortium

374

Dayton Power and Light - Business and Government Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dayton Power and Light - Business and Government Energy Efficiency Dayton Power and Light - Business and Government Energy Efficiency Rebate Program Dayton Power and Light - Business and Government Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom Lighting: $0.05/kWh saved + $50/kW saved Custom Heating, Ventilation and Air Conditioning: $0.10/kWh saved + $100/kW saved Custom Other: $0.08/kWh saved + $100/kW saved New Construction Rebates: Custom

375

Marketing water  

E-Print Network (OSTI)

management, water conservation programs Story by Kathy Wythe tx H2O | pg. 17 public information programs and materials that increase awareness about regional water issues. The company recently opened the TecH2O, a water resource learning center...tx H2O | pg. 16 W ith rapid population growth and the memory of the worst drought in 50 years, cities and groups are promoting programs that educate their constituents about water quality, water conservation, and landscape management. Many...

Wythe, Kathy

2008-01-01T23:59:59.000Z

376

Better Medicine Through Proper Lighting  

Science Journals Connector (OSTI)

Adverse lighting conditions can seriously hinder medical diagnoses. Through the use of properly filtered light, medical professionals may dramatically improve viewing conditions for...

Czajkowski, Amber

377

Solar lighting | Open Energy Information  

Open Energy Info (EERE)

lighting lighting Jump to: navigation, search Introductory Facts About Solar Lights It is not just a normal light bulb.The solar light consists of a LED or Light Emitting Diode, which draw little power. Coupled with constantly recharging batteries, you will never run out of light! They will save the customer money. By Replacing all outdoor lighting with solar lights there is no need to plug in to the electrical system. The lights will automatically turn on at dusk and will be charged during the day. They help out the environment.Not only does not plugging in to the power system save money but also energy, therefore protecting the Earth. Easy to Install No wires necessary, just pop in the battery. They come in all designs Just because they are solar lights doesn't

378

ECE 466: LED Lighting Systems -Incandescent lightings rise and  

E-Print Network (OSTI)

versus cost - Power Electronic Drives for CFL and LED light sources to achieve dimmable operation - Basic electric AC and DC circuits at Sophomore level or equivalents Absolutes Lighting System Requirements index as a metric of a light source - Power Electronic Energy sources driving light sources in a compact

Schumacher, Russ

379

Sandia National Laboratories: White Light Creation Architectures  

NLE Websites -- All DOE Office Websites (Extended Search)

TechnologiesWhite Light Creation Architectures White Light Creation Architectures Overview of SSL White Light Creation Architectures The entire spectral range of visible light can...

380

Wisconsin Business Sheds Light on Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting April 29, 2010 - 4:59pm Addthis When this photograph was taken, the upper floors of Wisconsin’s Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC When this photograph was taken, the upper floors of Wisconsin's Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC Joshua DeLung Wisconsin-based Energy Performance Specialists LLC is helping clients reduce energy consumption in a very simple way-by just using less.

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

382

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

383

Light harvesting arrays  

DOE Patents (OSTI)

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

384

Locations Everyone: Lights, Camera, Action!  

Science Journals Connector (OSTI)

Locations Everyone: Lights, Camera, Action! ... Harvard Institute of Proteomics Harvard Medical School ...

Robert F. Murphy; Joshua LaBaer

2008-12-05T23:59:59.000Z

385

Extreme Ultraviolet Light Chris Cosio  

E-Print Network (OSTI)

Prospectus Extreme Ultraviolet Light Chris Cosio #12;The field of extreme ultraviolet light (XUV to the way XUV interacts with object, XUV properties are difficult to observe. Extreme ultraviolet light is absorbed by all objects it comes in contact with. Furthermore, extreme ultraviolet light also has low

Hart, Gus

386

Nonlinear theory of slow light  

Science Journals Connector (OSTI)

...describes a signal moving with the speed of light on a constant background (fast...profile, propagates with the speed of light, reaches the slow-light soliton...field and propagating with the speed of light has reached the soliton. In figure-6...

2011-01-01T23:59:59.000Z

387

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate $25,000 Program Info State Iowa Program Type Utility Loan Program Rebate Amount $1,500 - $25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells

388

Wonewoc Electric & Water Util | Open Energy Information  

Open Energy Info (EERE)

Wonewoc Electric & Water Util Wonewoc Electric & Water Util Jump to: navigation, search Name Wonewoc Electric & Water Util Place Wisconsin Utility Id 20924 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Three-Phase Commercial Large Power Commercial Off Peak Water Heating Residential Residential Single Phase Residential Residential Three Phase Residential Street Lighting- 100W HPS Lighting Street Lighting- 144W F Lighting Street Lighting- 150W HPS Lighting

389

Chicopee Electric Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Energy Efficiency Rebate Chicopee Electric Light - Residential Energy Efficiency Rebate Program Chicopee Electric Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate Insulation: $300 maximum rebate Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $50 Freezer: $50 Dishwasher: $25 Heat Pump Water Heater: $300 Central A/C: Up to $500 Ductless Mini-Split AC: Up to $500 Air Source Heat Pump: Up to $500 Insulation: 30% of installed cost Provider EFI Municipal Rebates Chicopee Electric Light (CEL) offers a variety of incentives for its

390

Orcas Power and Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orcas Power and Light - Residential Energy Efficiency Rebate Orcas Power and Light - Residential Energy Efficiency Rebate Program Orcas Power and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $300 - $1,900 Ductless Heat Pump: $1,500 Insulation: $0.05 - $0.85 per square foot Duct Sealing: $400 - $500 Window Replacement: $6 per square foot Clothes Washer: $20 - $70 Refrigerator/Freezer: $15 Water Heaters: $25 Provider Orcas Power and Light Cooperative

391

Another Side of Light - D  

NLE Websites -- All DOE Office Websites (Extended Search)

D. Three quantum phenomena D. Three quantum phenomena In fluorescence, matter absorbs light waves of a high frequency and then emits light of the same or lower frequency. This process was studied and named by George Gabriel Stokes in the mid-19th century. Today, fluorescence is familiar to us from fluorescent light bulbs. A fluorescent bulb's filament produces ultraviolet light, which is absorbed by the bulb's inner coating, which then emits lower-frequency visible light-more visible light than an incandescent bulb produces with the same wattage. According to the hypothesis of light quanta, during fluorescence an atom absorbs a quantum of light whose energy is proportional to the light wave's frequency. If the atom doesn't supply any extra energy of its own, the light quantum emitted should either have the same energy or less energy

392

Tips: Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Tips: Lighting May 4, 2012 - 3:16pm Addthis Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. What does this mean for me? Replacing 15 inefficient incandescent bulbs in your home with energy-saving bulbs could save you about $50 per year. For the greatest savings, replace your old incandescent bulbs with ENERGY STAR-qualified bulbs. An average household dedicates about 10% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. Timers and motion sensors save you even more money by reducing the amount of time lights are on but not being used.

393

Tokyo Street Lights  

E-Print Network (OSTI)

that you have only 17, no 16, no 15 seconds left to get to the other side before the light changes and the impatient American drivers put the pedal to the metal and it's road kill time. Talk about stress! In Tokyo, crossing the street is a leisurely...

Hacker, Randi; Tsutsui, William

2008-03-12T23:59:59.000Z

394

Radioluminescent polymer lights  

SciTech Connect

The preparation of radioluminescent light sources where the tritium is located on the aryl-ring in a polymer has been demonstrated with deuterium/tritium substitution. This report discusses tests, results, and future applications of radioluminescent polymers. 10 refs. (FI)

Jensen, G.A.; Nelson, D.A.; Molton, P.M.

1990-09-01T23:59:59.000Z

395

Environmental Preferences LIGHT: Sunny.  

E-Print Network (OSTI)

Environmental Preferences LIGHT: Sunny. SOIL: Well-drained, deep sandy loam. FERTILITY: Medium beans BeansDiane Relf, Extension Specialist, Horticulture, Virginia Tech Alan McDaniel, Extension Specialist, Horticulture, Virginia Tech are yellow and waxy in appearance, their flavor is only subtly

Liskiewicz, Maciej

396

Studies in Light Production  

Science Journals Connector (OSTI)

... interested in that subject. The collection consists of ten chapters which have appeared in The Electrician, together with two others. It may at once be said that the contents are ... contents are not only extremely interesting, but will also serve as a useful and important handbook for lighting engineers. ...

1912-12-26T23:59:59.000Z

397

Effects of light  

Science Journals Connector (OSTI)

does not oc- cur under ... under conditions in which growth does not occur (such as ..... practical handbook of sea water analysis, 2nd ed. Bull. Fish. Res. Bd. Can

2000-11-02T23:59:59.000Z

398

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-Print Network (OSTI)

Actions - Isolate and restore sand filter beds (~10 acres) - Remove UV light sanitation system ­ evaluateENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance adhering to them. · Develop recharge basins for disposal of treated waste water. Polythiocarbonate

Homes, Christopher C.

399

CHAPTER ____ THE AIR-WATER INTERFACE: TURBULENCE  

E-Print Network (OSTI)

.g. from paper mills. The desorption of dissolved substances, like PCBs, from inland and coastal water at an unsheared air-water interface, i.e., a situation in which the winds are light and the fluid motions category, we consider situations with significant wind shear at the surface. In this case, the turbulence

California at Santa Barbara, University of

400

Temporary Waters  

Science Journals Connector (OSTI)

Temporary waters are lakes, ponds, streams, seeps, microhabitats, and other areas that hold water periodically and then dry. They occur across the globe, at all latitudes, and in all biomes, wherever water can collect long enough for aquatic life to develop. These waters are numerous, mostly small, and easily studied. Their biological communities are diverse, have much among-site variation, often include endemic species, and differ from those in permanent waters, contributing to regional biodiversity. Organisms survive through species-specific behavioral, physiological, and life-history adaptations. Community composition and structure change in response to environmental variations. Temporary waters are highly productive and their food webs are relatively simple. For all of these reasons, temporary waters lend themselves to surveys and experimental manipulations designed to test hypotheses about biological adaptation, population regulation, evolutionary processes, community composition and structure, and ecosystem functioning. In many parts of the world, most temporary waters have been lost. The conservation and restoration of vulnerable temporary waters is a major thrust of applied ecology. Also important are applications of ecological understanding to the control of disease vectors, especially pathogen-transmitting mosquitoes, from temporary water habitats. This article describes temporary waters, examines their biota and adaptations, and summarizes key questions about their ecology.

E.A. Colburn

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Water Bugs  

NLE Websites -- All DOE Office Websites (Extended Search)

Bugs Bugs Nature Bulletin No. 221-A March 12, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation WATER BUGS It is fascinating to lie in a boat or on a log at the edge of the water and watch the drama that unfolds among the small water animals. Among the star performers in small streams and ponds are the Water Bugs. These are aquatic members of that large group of insects called the "true bugs", most of which live on land. Moreover, unlike many other types of water insects, they do not have gills but get their oxygen directly from the air. Those that do go beneath the surface usually carry an oxygen supply with them in the form of a shiny glistening sheath of air imprisoned among a covering of fine waterproof hairs. The common water insect known to small boys at the "Whirligig Bug" is not a water bug but a beetle.

402

Modern Electric Water Company | Open Energy Information  

Open Energy Info (EERE)

Modern Electric Water Company Modern Electric Water Company Jump to: navigation, search Name Modern Electric Water Company Place Washington Utility Id 12744 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SCHEDULE 30 Industrial COMMERCIAL - SCHEDULE 32 Industrial RESIDENTIAL - SCHEDULE 35 Residential STREET LIGHTS 100 Watt Lighting STREET LIGHTS 200 Watt Lighting Average Rates Residential: $0.0559/kWh Commercial: $0.0551/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

403

UNL WATER CENTER WATER CURRENT  

E-Print Network (OSTI)

INSIDE UNL WATER CENTER WATER CURRENT PROTECTING NEBRASKAíS WATER RESOURCES THROUGH RESEARCH with a vision, thereís an untapped market using resources right under our feet,î the University of Nebraska outdoors in India, Bangladesh, China and Viet- nam. Thousands of them have been grown to harvest

Nebraska-Lincoln, University of

404

Reading Municipal Light Department - Residential ENERGY STAR Appliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate One rebate per Energy Star appliance or two rebates on the purchase of programmable thermostats Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Electric Heat Pump Water Heater: $250 Air Source Heat Pump: $100 Central AC: $100 Refrigerator: $50 Washing Machine: $50 Dishwasher: $50 Room A/C: $25 Dehumidifier: $25 Programmable Thermostat:$15 (limit 2) Ceiling Fan: $10

405

Embodied Energy and Off-Grid Lighting  

E-Print Network (OSTI)

solar and wind energy systems. 7 If anticipated improvements in LED lighting system performance (Lighting Africa,

Alstone, Peter

2012-01-01T23:59:59.000Z

406

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

407

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

408

Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting October 17, 2013 - 5:44pm Addthis Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline lamps -- typically used for task lighting such as garages and under cabinet fixtures, and for lighting large areas in commercial buildings. CFLs CFLs combine the energy efficiency of fluorescent lighting with the convenience and popularity of incandescent fixtures. CFLs fit most fixtures

409

Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cape Light Compact - Commercial, Industrial and Municipal Buildings Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Commercial Weatherization Water Heating Maximum Rebate Retrofit: 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. New Construction: 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple

410

Florida Power and Light - Business Energy Efficiency Rebates | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Business Energy Efficiency Rebates Florida Power and Light - Business Energy Efficiency Rebates Florida Power and Light - Business Energy Efficiency Rebates < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Chillers: $99/kW reduced Thermal Energy Storage: $580/kW shifted DX AC: $165/kW reduced (Unitary); $495/kW reduced (Room Unit) Energy Recovery Ventilators: $415/kW reduced Demand Control Ventilation: $600/kW reduced ECM Motors for DX Systems: $100/kW reduced

411

Alliant Energy Interstate Power and Light - New Home Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - New Home Construction Alliant Energy Interstate Power and Light - New Home Construction Incentives Alliant Energy Interstate Power and Light - New Home Construction Incentives < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Option Package: Up to $2,000 Advanced Builder Option Package: Up to $2,800 Energy Star Qualified Home: Up to $3,500 Multi-Family Incentives: See program web site Provider

412

Indianapolis Power and Light - Business Energy Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indianapolis Power and Light - Business Energy Incentives Program Indianapolis Power and Light - Business Energy Incentives Program Indianapolis Power and Light - Business Energy Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: 30% of project costs or 50% of incremental costs, up to $25,000 Targeted Projects exceeding $20,000 must be evaluated by the Business Energy Incentives Program for funding availability. Program Info Start Date 9/1/10 State Indiana Program Type Utility Rebate Program Rebate Amount Pumps: $22.50 - $300/pump Central Air Conditioning/Heat Pumps (Rooftop/Unitary): $35/ton Water Heater: $20 Window Film: $1/sq ft

413

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

414

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

415

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation (Wall/Ceiling/Floor): $750 Insulation (Duct): $170 Infiltration Control: $200 Duct Sealing: $285 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Required for Infiltration Control, Insulation, Duct Sealing, and Window Rebates

416

water pipeline gallery  

Science Journals Connector (OSTI)

water pipeline gallery, water pipeline drift; water pipeline tunnel (US) ? Wasserleitungsrohrstollen m

2014-08-01T23:59:59.000Z

417

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network (OSTI)

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

418

Light with nonzero chemical potential  

Science Journals Connector (OSTI)

Thermodynamic states and processes involving light are discussed in which the chemical potential of light is nonzero. Light with nonzero chemical potential is produced in photochemical reactions for example in a light emitting diode. The chemical potential of black-body radiation becomes negative upon a Joule expansion. The isothermal diffusion of light which is a common phenomenon is driven by the gradient in the chemical potential. These and other examples support the idea that light can be interpreted as a gas of photons with properties similar to a material gas.

F. Herrmann; P. Wrfel

2005-01-01T23:59:59.000Z

419

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

420

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2012 (EIA)

of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lmW). Lamps with a higher efficacy value are...

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lighting Designer Roundtable on Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Roundtable meeting in Chicago of a group of lighting designers focused on examining solid-state lighting (SSL) market and technology issues and encouraging a discussion of designers experiences, ideas, and recommendations regarding SSL & SSL industry.

422

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

423

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

424

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

425

OLEDS FOR GENERAL LIGHTING  

SciTech Connect

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

426

Structural basis of photosynthetic water-splitting  

SciTech Connect

Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 resolution, from which, the detailed structure of the Mn{sub 4}CaO{sub 5}-cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed.

Shen, Jian-Ren [Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama (Japan); Umena, Yasufumi [The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan and PRESTO, JST (Japan); Kawakami, Keisuke [The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka (Japan); Kamiya, Nobuo [The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan and Department of Chemistry, Graduate School of Science, Osaka City University, Osaka (Japan)

2013-12-10T23:59:59.000Z

427

First Light SOFIA Instruments  

E-Print Network (OSTI)

The Stratospheric Observatory For Infrared Astronomy SOFIA will become operational with the next two years. It will be the biggest astronomical airborne observatory ever build, comprising a 3m-class telescope onboard a Boeing 747SP. A suite of first-light instruments is under development striving for cutting edge technology to make SOFIA a milestone in infrared astronomy. Here we present an overview over the instrumentation and an update on the current status.

Alfred Krabbe; Sean C. Casey

2002-07-19T23:59:59.000Z

428

Reusing Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Reusing Water Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment cleaner than when it was pumped. How many times does LANL reuse water? Wastewater is generated from some of the facilities responsible for the Lab's biggest missions, such as the cooling towers of the Los Alamos Neutron Science Center, one of the Lab's premier science research

429

Viscosity and Light Scattering in Critical Mixtures  

Science Journals Connector (OSTI)

Simultaneous measurements of both viscosity and light scattering are performed on two critical mixtures. The first one is a triethylamine-water solution, which exhibits a lower consolute point, the second one a methanol-ciclohexane mixture with an upper consolute point. It is found that the singular behavior of viscosity cannot be fitted by a simple power law, nor by a logarithmic one, in the entire range of temperature. The asymptotic behavior, however, tends to become logarithmic as the critical temperature is approached. The simultaneous observation of scattered light allows one to exclude the intervention of spurious processes, like a breaking of correlations because of impurities. In addition, it is shown that the correlation length seems to depend mainly on the reduced temperature, irrespective of the system under examination.

S. Ballaro'; G. Maisano; P. Migliardo; F. Wanderlingh

1972-10-01T23:59:59.000Z

430

A three-phase K-value study for pure hydrocarbons/water and crude oil/water systems  

E-Print Network (OSTI)

Steam distillation, or vaporization of crude oil in porous media is on of the major mechanisms responsible for high oil recovery by steamflooding from heavy oil as well as light oil reservoir systems. Several authors have reported steam dsitillation...-phase equilibrium data for hydrocarbon/water systems ranging from light to heavy crude oil fractions. ! Experimental data describing the phase behavior and the hydrocarbon/water separation process for multi-component hydrocarbon/water and crude oil...

Lanclos, Ritchie Paul

1990-01-01T23:59:59.000Z

431

Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Management This department applies multi-disciplinary science and technology-based modeling to assess complex environmental systems. It integrates ecology, anthropology, and...

432

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

433

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

434

Plastics That Play on Light  

Science Journals Connector (OSTI)

...instrument. In most materials, the "strings" respond with the same note, only...reduced when light sets the electrons oscillating. The loss ofaromatic stability sets...double bonds, light sets electrons oscillating between electron-attract-ing (right...

David Bradley

1993-09-03T23:59:59.000Z

435

Webinar: Fuel Cell Mobile Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

436

Photodetector with enhanced light absorption  

DOE Patents (OSTI)

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

437

Enhancement of Afterglow in ZnS:Cu,Co Water-Soluble Nanoparticles by Aging  

Science Journals Connector (OSTI)

In addition to illuminations and lighting, water-soluble afterglow nanoparticles may also find applications in disease treatment and medical imaging. ... Moreover, nanosized afterglow materials can be used as light sources to activate photodynamic therapy for deep cancer treatment. ...

Lun Ma; Wei Chen

2011-04-14T23:59:59.000Z

438

Bath Electric Gas & Water Sys | Open Energy Information  

Open Energy Info (EERE)

Electric Gas & Water Sys Electric Gas & Water Sys Jump to: navigation, search Name Bath Electric Gas & Water Sys Place New York Utility Id 1343 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (20 KW to 75 KW demand) Commercial Industrial (Over 75 KW demand) Industrial Outdoor Lighting (175W MV-150W HPS) Lighting Outdoor Lighting (250W HPS) Lighting Outdoor Lighting (400W MV/HPS) Lighting Residential Residential Small Commercial ( Under 20 KW demand) Commercial

439

Arnold Schwarzenegger, LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

;#12;Prepared By: Lighting Research Center Andrew Bierman, Project Lead Troy, New York 12180 Managed ByArnold Schwarzenegger, Governor LIGHTING RESEARCH PROGRAM PROJECT 3.2 ENERGY EFFICIENT LOAD- SHEDDING LIGHTING TECHNOLOGY Prepared For: California Energy Commission Public Interest Energy Research

440

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

on specific industry issues, CASL engages an Industry Council chaired by the Electric Power Research Institute. CASL is committed to engaging the nuclear power industry to...

442

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

but also assure quality, flexibility, extensibility, reuse of software, and development efficiency. Use of these methodologies in the development of VERA demonstrates their...

443

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior in AP1000 reactor core Test run signals emergence of the next generation in nuclear power reactor analysis tools OAK RIDGE, Tenn., Feb. 18, 2014 - Scientists and...

444

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Center News Obama highlights next generation nuclear reactors in the SOTU Posted: January 27, 2011 President Obama, in his State of the Union address Tuesday, cited work...

445

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

interface between analysis codes (e.g,. a physics simulation) and iterative systems analysis methods such as optimization or uncertainty quantification. It includes algorithms...

446

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel performance...

447

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

the better understanding of the system uncertainties and sensitivities afforded by the virtual reactor will identify improvements in both the operation and design of the fuel...

448

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortly after that modeling prediction, a significant-sized sample of that actual phase material was discovered in the coolant system of an LWR. This instance is encouraging...

449

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

nation's carbon-free energy and safely provides reliable baseload electricity for the US grid. CASL Names Bennett Johnston to Board of Directors Posted: August 31, 2010 Former...

450

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotels Oak Ridge Hotels Knoxville Hotels ORNL Guest House Car Rental Taxi Service Tourism Information Regional Information Staff Directory Connect with CASL Visitor...

451

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Zircaloy); iii) hydrogen embrittlement of the cladding.cladding, even though hydrogen embrittlement has occurred.

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

452

Light Water Reactor Sustainability Program - Non-Destructive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rates depending on temperature or radiation dose rate. However, cross-linked polyethylene has been shown in laboratory experiments to experience an inverse temperature...

453

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel...

454

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surrogate Models for Uncertainty Quantification presented by Dr. Ralph Smith, NCSU Resources OverviewFact Sheets Software ComputerComputational Science and Applied Mathematics...

455

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal and Conference Papers 2014 2013 2012 2011 2010 Technical Reports 2014 2013 2012 2011 Invited Presentations 2014 2013 2012 2011 2010 CASL scientists, engineers,...

456

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

the VERA 2013 Test & Evaluation Release software will be provided through the Radiation Safety Information Computational Center (RSICC). The package will be transmitted on...

457

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

requirements) and formality (with an eye on quality standards such as DOE O 414.1D, ISO 9001, and NQA-1-2008). Radiation Transport Methods (RTM) - Develop neutron transport...

458

Microsoft Word - Light Water Reactor Sustainability Program Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

on operator attention demands and limitations on operator activities based on the current conduct of operations protocols. This report will identify opportunities to maximize...

459

The burnup dependence of light water reactor spent fuel oxidation  

SciTech Connect

Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5).

Hanson, B.D.

1998-07-01T23:59:59.000Z

460

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

mission. Industry Council Members AREVA ANSYS, Inc. Battelle Memorial Institute Bettis Atomic Power Laboratory Cray Inc. Dominion Duke Energy The EDF Group Electric Power...

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Consortium for Advanced Simulation of Light Water Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

state of the art in contemporary MODSIM technology g maximize value 3. Establish a self-sustaining organization, drawing from the CASL Industry Council, that is dedicated to the...

462

Neutron economic reactivity control system for light water reactors  

DOE Patents (OSTI)

A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

Luce, Robert G. (Glenville, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY); Gregurech, Steve (Scotia, NY)

1989-01-01T23:59:59.000Z

463

Advanced Fuel Performance: Modeling and Simulation Light Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

models, and will be designed for implementa- tion not only on today's leadership- class computers, but also for advanced architecture platforms now under de- velopment by DOE, as...

464

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

PWR Fuel CRUD," Proceedings of the TMS 2013 142nd Annual Meeting and Exhibition, March 3-7, 2013, San Antonio, TX, 2013. Tryggvason, G., S. Dabiri, B. Aboulhasanzadeh, J. Lu.,...

465

Strategic Plan for Light Water Reactor Research and Development  

SciTech Connect

The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R&D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R&D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R&D that addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually.

None

2004-02-01T23:59:59.000Z

466

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

in nuclear energy R&D, as well as a record of accomplishment in leading large-scale scientific collaborations. The participation of Idaho National Laboratory (INL), Los...

467

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

to the coolant, resulting in a lower efficiency in power production. Excessive bubble production through subcooled boiling can result in undesirable local hotspots and the...

468

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

been identified at present covering the following six Challenge Problems: CRUD, GTRF PCI, RIA, LOCA and DNB; more are expected as CASL continues to evolve. The Overall Product...

469

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

integrity issues System: accessibility to RELAP5 capabilities Infrastructure: buildtest system, LIME and coupling model evaluators, data transfer and coupling toolkits,...

470

CASL: The Consortium for Advanced Simulation of Light Water Reactors...  

NLE Websites -- All DOE Office Websites (Extended Search)

best operational practices (CRUD, GTRF). Functional capability and partial assessment for RIA- and LOCA-based transient problems. * Radiation Transport Methods (RTM) - Robust 3D...

471

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

650-855-8529 Rose Montgomery Deputy Lead rmontgomery@tva.gov 865-576-1381 Steve Hess Test Stands shess@epri.com 484-753-3677 Product Integrators and Cross-Cutting Technologies...

472

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

29, 2014. Torres-Tan, S.A., Coupled Fluid Structure Simulations for Application to Grid-to-Rod Fretting, December 15, 2014. Stagg, A.K., M.A. Christon and K. Frick, Native...

473

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

a general non-linear 3D heat transport equation for the crud layer including localized heat sinks due to the internal boiling within the crud layer, (2) an adaptive grid which...

474

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations 2015 back to top Smith, K., Advances in Reactor Physics and Computational Science, Physor 2014 International Conference, "The Role of Reactor Physics toward a...

475

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Uncertainties in Predictive Science presented by Dr. Hany Abdel-Khalik and Dr. Ralph Smith, NCSU Resources OverviewFact Sheets Software ComputerComputational Science and...

476

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...  

Open Energy Info (EERE)

driven. Calculations explain why benzene is a common constituent of geothermal fluids. Methane will react to form benzene at relatively high hydrogen fugacities. The...

477

Light Water Reactor Sustainability Newsletter By George Griffith  

NLE Websites -- All DOE Office Websites (Extended Search)

structure, and component (SSC) behavior will be coupled more closely to scenar- io phenomenology than is practical in today's simula- tion codes. The main output of R7 is a...

478

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration and Ideation (C&I) Technology Paradigms to Propel Energy Science Innovation Objectives and Strategies Facilitate collaboration and ideation through the Virtual...

479

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

480

Red light, green light | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Red light, green light Red light, green light Red light, green light Posted: December 4, 2013 - 6:28pm After the National Nuclear Security Administration signaled Y-12 to begin resuming full operations after a potential furlough, Production Vice President Bill Tindal said Production had two objectives: refocus production employees on safety, security and quality, and ensure preparedness for normal operations. "It's tempting to jump right back in when you get the green light," Tindal said. "We were in an abnormal state that really shook people. Focusing on people came first." Production began with return-to-work briefings. "During the briefings, we asked employees what they were concerned about, what was causing them stress," Tindal said. "Another concept from the briefing was the theme

Note: This page contains sample records for the topic "water memphis light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Contribution of light-by-light scattering to energy levels of light muonic atoms  

Science Journals Connector (OSTI)

The complete contribution of diagrams with the light-by-light scattering to the Lamb shift is found for muonic hydrogen, deuterium and helium ion. The results are obtained in the static-muon approximation and ...

S. G. Karshenboim; E. Yu. Korzinin; V. G. Ivanov; V. A. Shelyuto

2010-07-01T23:59:59.000Z

482

Pedestrian Friendly Outdoor Lighting  

SciTech Connect

This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

Miller, Naomi J.; Koltai, Rita; McGowan, Terry

2013-12-31T23:59:59.000Z

483

Radiation, Matter and Energy What is light?  

E-Print Network (OSTI)

Radiation, Matter and Energy #12;What is light? #12;Light is an electromagnetic wave #12;Light the visible spectrum, blue light has higher energy than red light Within the electromagnetic spectrum, X-rays have the highest energy, followed by UV, visible light, IR, and radio Remember: Light is just one form

Shirley, Yancy

484

Relationships of Light Transmission, Stratification and Fluorescence in the Hypoxic Region of the Texas-Louisiana Shelf in Spring/Summer 2009  

E-Print Network (OSTI)

The growth of phytoplankton in hypoxic waters requires nutrients and light. In river plumes of the coastal ocean, river borne surface nutrient concentrations decrease with distance from the river mouth. Light availability at the surface also changes...

Towns, Jenny L

2012-07-11T23:59:59.000Z

485

Lighting Group: Controls and Communications  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Communications Controls and Communications The Controls and Communications research activity investigates how digital technologies, such as Bluetooth, can be applied to building lighting control systems to increase building efficiency and improve occupant comfort and productivity. Projects range from embedded device networks applied to building lighting systems, to WiFi and environmental sensing and monitoring. light switch Current Projects IBECS (Integrated Building Environmental Communications System) Wireless Lighting Controls (with DUST Networks) HPCBS Advanced Digital Controls Building Control Systems Integration Completed Projects CEC Public Interest Energy Research (PIER) Projects 450 Golden Gate Project New Publications Standardizing Communication Between Lighting Devices: A Role for

486

Commercial Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Commercial Lighting At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and algorithms, researchers at the National Renewable Energy Lab developed an occupancy sensor can recognize the presence of human occupants more than 90 percent of the time -- an advancement that could lead to enormous energy savings in commercial buildings. At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and

487

Fluorinated Phenoxy Boron Subphthalocyanines in Organic Light-Emitting Diodes  

Science Journals Connector (OSTI)

Fluorinated Phenoxy Boron Subphthalocyanines in Organic Light-Emitting Diodes ... All nuclear magnetic resonance (NMR) spectra were acquired on a Varian Mercury 400 MHz system in deuterated chloroform (CDCl3) purchased from Cambridge Isotope Laboratories which was used as received. ... Mass spectrometry was performed on a Waters GC time-of-flight mass spectrometer with an electron ionization probe and accurate mass determination. ...

Graham E. Morse; Michael G. Helander; Jozef F. Maka; Zheng-Hong Lu; Timothy P. Bender

2010-06-22T23:59:59.000Z

488

Suppressed Light Emission of the Reaction Zone in Detonation  

Science Journals Connector (OSTI)

... In detonation with high velocity the original surface of the explosive is luminous due to the emission ... sharply defined surfaces with different light intensities. Sometimes dark coherent sections appear. In transmitting detonation through water between two coaxial cylindrical charges with plane ends, the receptor charge has ...

C. H. JOHANSSON; L. STERNHOFF