National Library of Energy BETA

Sample records for water marin clean

  1. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. PDF icon Accomplishments Report: Water Power for a Clean Energy Future More Documents & Publications Water Power for a Clean Energy Future (Fact Sheet), Wind and Water

  2. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (WWPP) | Department of Energy Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. PDF icon 51315.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet 47688.pdf Before the House Science and Technology

  3. Clean Water Act | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Clean Water ActLegal Abstract The Clean Water Act (CWA) establishes the basic structure for...

  4. Cleaning Contaminated Water at Fukushima

    SciTech Connect (OSTI)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  5. Cleaning Contaminated Water at Fukushima

    ScienceCinema (OSTI)

    Rende, Dean; Nenoff, Tina

    2014-02-26

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  6. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Broader source: Energy.gov (indexed) [DOE]

    Water Power for a Clean Energy Future Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most

  7. LANL in Compliance with Clean Water Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disputes citizens' lawsuit February 7, 2008 LANL in Compliance with Clean Water Act LOS ALAMOS, NM, Feb. 7, 2008-Los Alamos National Laboratory officials today expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups against Los Alamos National Security LLC and the U.S. Department of Energy. "The Laboratory is in compliance with its storm water permit under the federal Clean Water Act," said Dick Watkins, associate director

  8. Clean Water Act and Regulations (EPA)

    Broader source: Energy.gov [DOE]

    The Clean Water Act (CWA; 33 U.S.C. §1251 et seq.) establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters.

  9. Access to Clean Water | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Water Innovations Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) What Works: Mark Little on Clean Water Innovations Mark Little, director of GE Global Research, answers the question: "What commodities can be used in new ways to allow more humans to have access to clean water?" You Might Also Like

  10. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  11. Title 40 CFR 230 Definitions - Clean Water Act | Open Energy...

    Open Energy Info (EERE)

    RegulationRegulation: Title 40 CFR 230 Definitions - Clean Water ActLegal Abstract Sets forth regulatory definitions under the Clean Water Act including the definition of waters of...

  12. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  13. Idaho Clean Water Act Section 401 Certification Webpage | Open...

    Open Energy Info (EERE)

    Clean Water Act Section 401 Certification Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Clean Water Act Section 401 Certification...

  14. Hawaii Department of Health Clean Water Branch | Open Energy...

    Open Energy Info (EERE)

    Clean Water Branch Jump to: navigation, search Name: Hawaii Department of Health Clean Water Branch Address: P.O. Box 3378 Place: Honolulu, Hawaii Zip: 96801 Website: hawaii.gov...

  15. Clean Water Act (excluding Section 404)

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    This Reference Book contains a current copy of the Clean Water Act (excluding Section 404) and those regulations that implement the statutes and appear to be most relevant to US Department of Energy (DOE) activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Updates that include important new requirements will be provided periodically. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  16. Microsoft PowerPoint - epa_clean_water_act.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview of the Clean Water Act Clean Water Act Jessica Franks, Ph.D. Jessica Franks, Ph.D. USEPA, Region 6 USEPA, Region 6 Continuing Planning Process TMDL Minimum Elements * Identify Watershed * Identify/locate pollutant sources * Estimate existing pollutant loading * Determine assimilative capacity Point Source NPDES Permits Control Nonpoint Sources List Impaired Waters Monitor/Assess WQS Attainment Water Quality Standards Integrated Watershed Plan Clean Water Act Framework 1992 Regulations

  17. Separations Technology for Clean Water and Energy

    SciTech Connect (OSTI)

    Jarvinen, Gordon D

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  18. EPA's Clean Water Act Section 319 Webpage | Open Energy Information

    Open Energy Info (EERE)

    and text of Section 319 of the Clean Water Act (33 U.S.C. 1329). Author United States Environmental Protection Agency Published United States Environmental Protection Agency,...

  19. The Environmental Protection Agency: Clean Water Act Section...

    Open Energy Info (EERE)

    The Environmental Protection Agency: Clean Water Act Section 319 Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: The Environmental Protection...

  20. Hawaii Clean Water Branch Forms Webpage | Open Energy Information

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Clean Water Branch Forms Webpage Citation State of Hawaii Department...

  1. Clean Water Act Section 401 Certification Webpage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Clean Water Act Section 401 Certification Webpage Author United State Environmental Protection...

  2. EPA Clean Water Rule Website | Open Energy Information

    Open Energy Info (EERE)

    Water Rule Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Clean Water Rule Website Abstract EPA's webpage tracking implementation of...

  3. 2013 Federal Energy and Water Management Award Winner Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego PDF icon fewm13usmcmcdepotsandiegohighres.pdf PDF icon ...

  4. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  5. Clean Water Act Section 319 Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Clean Water Act Section 319 Webpage Abstract This webpage provides an overview of the nonpoint...

  6. Clean Water Act Section 303(d) Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Clean Water Act Section 303(d) Webpage Abstract This webpage provides an overview of Section...

  7. Clean Water Act Section 401 Water Quality Certification: A Water...

    Open Energy Info (EERE)

    Certification: A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  8. Clean Water Act Section 401 Water Quality Certification A Water...

    Open Energy Info (EERE)

    Certification A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  9. 2014 Water Power Program Peer Review Compiled Presentations: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic Technologies | Department of Energy Marine and Hydrokinetic Technologies 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24-27. The compiled 2014 Marine and Hydrokinetic Technologies Peer Review Presentations listed below are available for download. Introduction Marine and Hydrokinetics

  10. Water Treatment System Cleans Marcellus Shale Wastewater | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated

  11. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Energy Savers [EERE]

    for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This fact sheet ...

  12. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Environmental Management (EM)

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer January 11, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  13. Water Power For a Clean Energy Future Cover Photo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Image icon Water Power For a Clean Energy Future Cover.JPG More Documents & Publications 2014 Water Power Peer Review Report Cover NOWEGIS Report Cover 2013 Wind Technologies Market Report Cover

  14. Chapter 4: Advancing Clean Electric Power Technologies | Marine and Hydrokinetic Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power

  15. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

    Broader source: Energy.gov [DOE]

    The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

  16. East Germany struggles to clean its air and water

    SciTech Connect (OSTI)

    Cherfas, J.

    1990-04-20

    East Germans are working hard on a strategy to improve their polluted environment. Industrial plants are largely responsible for this pollution. A shroud of haze veils the suburbs of East Berlin. Far to the south the giant power plants around Leipzig pour more dust and sulfur dioxide into the air than in any other country in Europe. More than 90% of the country's electricity comes from brown coal, accompanied by prodigious quantities of dust and sulfur dioxide: almost 6 million tones of sulfur dioxide and more than 2 million tones of dust in 1988. East Germany enjoys some of the cheapest energy in the world, and the world's third highest energy consumption per capita, behind the United States, and Canada. Naturally, is also suffers air quality and health problems. The country is trying to cut down on consumption and clean up on generation. Actually, water quality is the number one priority, which unlike air is in very short supply.

  17. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  18. STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION

    National Nuclear Security Administration (NNSA)

    STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN WATER COMMISSION MISSOURI STATE OPERATING PERMIT In compliance with the Missouri Clean Water Law, (Chapter 644 R.S. Mo. as amended, hereinafter, the Law), and the Federal Water Pollution Control Act (Public Law 92-500, 92 nd Congress) as amended, Permit No.: MO-0004863 Owner: United States Department of Energy (USDOE) Address: P.O. Box 410202, Kansas City, MO 64141-0202 Continuing Authority: United States Department of Energy

  19. Marine and Hydrokinetic Technologies Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Technologies Fact Sheet Marine and Hydrokinetic Technologies Fact Sheet This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies. PDF icon Marine and Hydrokinetic Technologies Fact Sheet More Documents & Publications 47688.pdf Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Leading the Nation in Clean Energy Deployment

  20. Clean Boiler Water-side Heat Transfer Surfaces - Steam Tip Sheet #7

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  2. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power

    Broader source: Energy.gov (indexed) [DOE]

    Devices | Department of Energy Watch the Energy 101 video above to find out how hydrokinetic technologies can harness the energy of the ocean's waves, tides, and currents and convert it into electricity. Ryan Sun Chee Fore Marine and Hydrokinetic Technology Manager With up to 1,400 terawatt hours of potential power generation per year, our nation's waves and tides represent vast, untapped resources that could provide clean, renewable electricity to millions of homes and businesses throughout

  3. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  4. The clean water act -- (Federal Water Pollution Control Act), what it means to utilities

    SciTech Connect (OSTI)

    Talt, L.A.

    1996-10-01

    Departing from previous policy, in August 1993 the USEPA`s Water Office recommended that the agency regulate a proposed electric power plant`s cooling pond as a water of the US. At issue was a proposal by Florida Power corp. to build a new electric power plant in Polk County, Florida. A 2,600 acre cooling pond to collect heated and discharged water was included in the proposal. Region 4 USEPA staff asked USEPA Headquarters in Washington, DC to decide whether the pond was exempt from the CWA or a water of the US. The pond could be a habitat for migratory birds according to a memo prepared by Region 4 staff. The USEPA Water Office used the presence of migratory birds to claim a nexus to interstate commerce and therefore concluded that the pond should be regulated under the CWA. Electric power industry proponents have argued that an overly expansive definition of waters of the US may result in any new power plant being required to construct cooling towers. Cooling towers are said to be a more expensive and wasteful method to cool heated water. Region 4 ultimately recanted its earlier position after considerable discussions with various other Environmental Protection Agency offices and, no doubt industry pressure. Florida Power Corp. was not required to obtain an NPDES permit for the cooling pond. The lesson of Florida Power Corp. is that the regulatory environment for utilities can be uncertain under the Clean Water Act even in the face of a relatively straightforward exemption from regulation.

  5. EERE Water Power Technologies FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean, domestic power generation from water resources across the United States (hydropower and marine and hydrokinetics). What We Do The Water Power Program strives to produce the ...

  6. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  7. U.S. Marine Corps Stand at Forefront of Energy and Water Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Marine Corps Stand at Forefront of Energy and Water Savings U.S. Marine Corps Stand at Forefront of Energy and Water Savings This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments. PDF icon usmc_energysavings.pdf More Documents & Publications Ameresco ESCO Qualification Sheet Energy Savings Performance Contract Success Stories Food and Drug Administration White Oak Campus Environmental Stewardship

  8. U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

  9. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity

    SciTech Connect (OSTI)

    2009-09-23

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  10. U.S. Marine Corps Stand at Forefront of Energy and Water Savings

    Broader source: Energy.gov [DOE]

    This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

  11. Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production

    Broader source: Energy.gov [DOE]

    A novel water cleaning technology currently being tested in field demonstrations could help significantly reduce potential environmental impacts from producing natural gas from the Marcellus shale and other geologic formations, according to the Department of Energy’s National Energy Technology Laboratory

  12. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  13. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Environmental Management (EM)

    & Hydrokinetic Technologies Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. PDF icon mhk_factsheet.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program

  14. Clean Water Act (excluding Section 404). Environmental guidance program reference book: Revision 6

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    This Reference Book contains a current copy of the Clean Water Act (excluding Section 404) and those regulations that implement the statutes and appear to be most relevant to US Department of Energy (DOE) activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Updates that include important new requirements will be provided periodically. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  15. 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Diego | Department of Energy Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego PDF icon fewm13_usmc_mcdepotsandiego_highres.pdf PDF icon fewm13_usmc_mcdepotsandiego.pdf More Documents & Publications Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries 2013 Federal Energy and Water Management Award Winners Chris Manis, Randy Monohan, Laura Nelson, Mark Rodriguez, and Mick Wasco CX-003226:

  16. Clean Water Act (Section 404) and Rivers and Harbors Act (Sections 9 and 10)

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This Reference Book contains a current copy of the Clean Water Act (Section 404) and the Rivers and Harbors Act (Sections 9 and 10) and those regulations that implement those sections of the statutes and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Updates that include important new requirements will be provided periodically. Questions concerning this Reference Book may be directed to Mark Petts, IH-231 (FTS 896-2609 or Commercial 202/586-2609).

  17. Acid mine drainage: Common law, SMCRA, and the Clean Water Act

    SciTech Connect (OSTI)

    Henrich, C.

    1995-12-31

    Acid mine drainage is a major problem related to coal mining which, if unabated, can severely damage the aquatic environment. Damage resulting from acid mine drainage was first addressed by common law and riparian principles. As societal laws changed, common law principles alone could not effectively control this problem. Preventing and controlling pollution including acid mine drainage are important goals of the Surface Mining Control Reclamation Act (SMCRA) and the Clean Water Act (CWA). This article examines how common law, SMCRA, and the CWA address the acid mine drainage issue independently, and how improvements in the control of acid mine drainage can be achieved.

  18. Modeling transport and dilution of produced water and the resulting uptake and biomagnification in marine biota

    SciTech Connect (OSTI)

    Rye, H.; Reed, M.; Slagstad, D.

    1996-12-31

    The paper explains the numerical modelling efforts undertaken in order to study possible marine biological impacts caused by releases of produced water from the Haltenbanken area outside the western coast of Norway. Acute effects on marine life from releases of produced water appear to be relatively small and confined to areas rather lose to the release site. Biomagnification may however be experienced for relatively low concentrations at larger distances from the release point. Such effects can he modeled by performing a step-wise approach which includes: The use of 3-D hydrodynamic models to determine the ocean current fields; The use of 3-D multi-source numerical models to determine the concentration fields from the produced water releases, given the current field; and The use of biologic models to simulate the behavior of and larvae (passive marine biota) and fish (active marine biota) and their interaction with the concentration field. The paper explains the experiences gained by using this approach for the calculation of possible influences on marine life below the EC{sub 50} or LC{sub 50} concentration levels. The models are used for simulating concentration fields from 5 simultaneous sources at the Haltenbank area and simulation of magnification in some marine species from 2 simultaneous sources in the same area. Naphthalenes and phenols, which are both present in the produced water, were used as the chemical substances in the simulations.

  19. Economic and environmental impacts of proposed changes to Clean Water Act thermal discharge requirements

    SciTech Connect (OSTI)

    Veil, J.A.

    1994-06-01

    This paper examines the economic and environmental impact to the power industry of limiting thermal mixing zones to 1000 feet and eliminating the Clean Water Act {section}316(a) variance. Power companies were asked what they would do if these two conditions were imposed. Most affected plants would retrofit cooling towers and some would retrofit diffusers. Assuming that all affected plants would proportionally follow the same options as the surveyed plants, the estimated capital cost of retrofitting cooling towers or diffusers at all affected plants exceeds $20 billion. Since both cooling towers and diffusers exert an energy penalty on a plant`s output, the power companies must generate additional power. The estimated cost of the additional power exceeds $10 billion over 20 years. Generation of the extra power would emit over 8 million tons per year of additional carbon dioxide. Operation of the new cooling towers would cause more than 1.5 million gallons per minute of additional evaporation.

  20. Consequences of proposed changes to Clean Water Act thermal discharge requirements

    SciTech Connect (OSTI)

    Veil, J.A.; Moses, D.O.

    1995-12-31

    This paper summarizes three studies that examined the economic and environmental impact on the power industry of (1) limiting thermal mixing zones to 1,000 feet, and (2) eliminating the Clean Water Act (CWA) {section}316(1) variance. Both of these proposed changes were included in S. 1081, a 1991 Senate bill to reauthorize the CWA. The bill would not have provided for grandfathering plants already using the variance or mixing zones larger than 1000 feet. Each of the two changes to the existing thermal discharge requirements were independently evaluated. Power companies were asked what they would do if these two changes were imposed. Most plants affected by the proposed changes would retrofit cooling towers and some would retrofit diffusers. Assuming that all affected plants would proportionally follow the same options as the surveyed plants, the estimated capital cost of retrofitting cooling towers or diffusers at all affected plants ranges from $21.4 to 24.4 billion. Both cooling towers and diffusers exert a 1%-5.8% energy penalty on a plant`s output. Consequently, the power companies must generate additional power if they install those technologies. The estimated cost of the additional power ranges from $10 to 18.4 billion over 20 years. Generation of the extra power would emit over 8 million tons per year of additional carbon dioxide. Operation of the new cooling towers would cause more than 1.5 million gallons per minute of additional evaporation. Neither the restricted mixing zone size nor the elimination of the {section}316(1) variance was adopted into law. More recent proposed changes to the Clean Water Act have not included either of these provisions, but in the future, other Congresses might attempt to reintroduce these types of changes.

  1. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect (OSTI)

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  2. Water Power Program FY 2017 Budget At-A-Glance

    Broader source: Energy.gov [DOE]

    The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics).

  3. U.S. Marine Corps Stand at Forefront of Energy and Water Savings

    SciTech Connect (OSTI)

    2012-12-01

    Located in the heart of South Carolina, the U.S. Marine Corps Air Station (MCAS) Beaufort is among the militarys most important installations. Located on 6,900 acres 70 miles southwest of Charleston, the installation has established an energy- and water-saving culture that explores and implements new strategies and management approaches aimed at surpassing presidential mandates.

  4. Cultivation of macroscopic marine algae and fresh water aquatic weeds

    SciTech Connect (OSTI)

    Ryther, J.H.

    1982-02-01

    The ORCA clone of the red seaweed Gracilaria tikvahiae has been in culture continuously for over two years. Yield for the past year has averaged 12 g ash-free dry wt/m/sup 2/ .day (17.5 t/a.y) in suspended 2600-1 aluminum tank cultures with four exchanges of enriched seawater per day and continuous aeration. Yields from nonintensive pond-bottom culture, similar to commercial Gracilaria culture methods in Taiwan, averaged 3 g afdw/m/sup 2/.day in preliminary experiments. Rope and spray cultures were not successful. Yields of water hyacinths from March 1978 to March 1979 averaged 25 g afdw/m/sup 2/.day (37 t/a.y). Season, nutrient availability (form and quantity) and stand density were found to affect the relative proportions of structural and nonstructural tissue in water hyacinths and thereby significantly affect digestibility of and methane production by the plants. Pennywort (Hydrocotyle) grew poorly in winter and its annual yield averaged only one-third that of water hyacinth. Water lettuce (Pistia) appears more comparable to hyacinths in preliminary studies and its yields will be monitored throughout a complete year. Stable, continuous anaerobic digestion of both water hyacinths and Gracilaria has been maintained with an average gas production from both species of 0.4 1/g volatile solids at 60% methane.

  5. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  6. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The

  7. Marine & Hydrokinetic Technologies, Wind and Water Power Program (WWPP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environ- mentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The

  8. U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus

    Broader source: Energy.gov [DOE]

    Today the U.S. Department of Energy (DOE) issued a $12.5 million Funding Opportunity Announcement (FOA) for a new technical track under the U.S.-China Clean Energy Research Center (CERC) that addresses water-related aspects of energy production and use. The solicitation calls for the formation of a U.S-based consortium to work with Chinese counterparts to bolster collaborative efforts to help ensure energy, water, and environmental security and combat climate change. The consortium will be funded with $12.5 million DOE support and $12.5 million recipient cost share for a total of $25 million over the 5 year period of performance.

  9. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Ronzio, N.J.; Smit, F.J.

    1985-12-31

    This report describes the results of process and cost refinement studies for the manufacture of ultra-clean coal-slurry fuel for direct-fired gas turbines. The work was performed as an extension to an earlier contract in which AMAX R and D supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines program. A conceptual design study and cost estimate supplied to METC at that time indicated that a combined physical and chemical cleaning process could produce ultra-clean fuel at a competitive price. Laboratory and pilot plant studies performed for the contract extension further defined the process conditions and operating and capital costs to prepare coals containing from 0.2 to 1.0% ash as slurry fuels. A base-case fuel containing coal cleaned to 0.5% ash in a 1000 cp slurry containing 55% coal was $4.16 per million Btu when produced in quantities required to fuel a 500 MW gas-turbine generating station. Coal slurry fuel production costs as low as $3.66 per million Btu were projected for coals cleaned to 1.0% ash. 12 refs., 23 figs., 63 tabs.

  10. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Semi-annual progress report

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Smit, F.J.; Ames, L.B.; Ronzio, N.J.

    1985-03-01

    The Department of Energy, through the Morgantown Energy Technology Center (METC), has initiated a program to determine the feasibility and potential applications for direct firing of coal and coal-derived fuels in heat engines, specifically gas turbines and diesel engines. AMAX Extractive Research and Development, Inc. supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines programs. One of the lots was of ultra-clean coal-water slurry fuel (UCCSF) for which a two-stage caustic and acid leaching procedure was developed to chemically clean the coal. As a part of the contract, AMAX R and D developed a conceptual design and preliminary cost estimate for a commercial-scale process for UCCSF manufacture. The contract was extended to include the following objectives: define chemical cleaning and slurry preparation process conditions and costs more precisely; investigate methods to reduce the product cost; and determine the relationship, in dollars per million Btu, between product cost and fuel quality. Laboratory investigations have been carried out to define the chemical cleaning process conditions required to generate fuels containing from 0.17 to 1.0% ash. Capital and operating cost refinements are to be performed on the basis of the preferred process operating conditions identified during the laboratory investigations. Several such areas for cost reductions have been identified. Caustic strengths from 2 to 7% NaOH are currently anticipated while 25% NaOH was used as the basis for the preliminary cost estimate. In addition, leaching times for each of the process steps have been reduced to half or less of the times used for the preliminary cost estimate. Improvement of fuel quality has been achieved by use of a proprietary hot-water leaching step to reduce the residual alkali content to less than 250 ppM (Na/sub 2/O plus K/sub 2/O) on a dry coal basis. 2 refs., 3 figs., 24 tabs.

  11. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  12. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  13. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Monthly report

    SciTech Connect (OSTI)

    Berggren, M.H.

    1985-02-22

    Test work centered on investigation of HCl leaching parameters. Some initial hot-water leaching tests were also performed.

  14. Case History of a Clean Water Act Compliance Agreement at the Rocky Flats Environmental Technology Site near Golden, Colorado

    SciTech Connect (OSTI)

    Thompson, J.S.

    1995-08-01

    A major Clean Water Act (CWA) Federal Facilities Compliance Agreement was signed on March 25, 1991 by the US Department of Energy, Rocky Flats Field Office (DOE, RFFO) and the Water Enforcement Division of the Environmental Protection Agency (EPA), Region VIII. The agreement revised the Rocky Flats Plant`s National Pollutant Discharge Elimination System (NPDES) permit and arose from pemittee-requested changes in effluent monitoring points and permit violations, most notably the February 22, 1989 Chromic Acid Incident. The Rocky Flats Plant, now called the Rocky Flats Environmental Technology Site (Site) near Golden Colorado was operated at that time by Rockwell International Corporation, who later plead guilty to six misdemeanor and felony counts of the CWA (the aforementioned NPDES permit violations) and paid a $4 million fine on March 26, 1992. The Compliance Agreement, hereafter referred to as the NPDES FFCA, called for three separate remedial action plans and contained a schedule for their submittal to the EPA. The compliance plans focussed on: (1) Waste Water Treatment Plant (WWTP) performance upgrades, (2) source control and surface water protection, and (3) characterization of the impacts from past sludge disposal practices. Projects that implemented the compliance plans were initiated soon after submittal to the EPA and are forecast to complete in 1997 at a total cost of over $35 million. This paper presents a case history of NPDES FFCA compliance projects and highlights the successes, failures, and lessons learned.

  15. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Monthly report

    SciTech Connect (OSTI)

    Berggren, M.

    1985-05-15

    Activity in April centered on performing hot-water leaching investigations. Analyses of caustic filtrates to be used for regeneration tests were completed. Modifications to the Inconel caustic-leach reactor were made to permit injection of caustic after preheating the coal-water feed slurry. Criteria for cost estimates and sensitivity analysis were established.

  16. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  17. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee's Summit, MO); Hand, Thomas E. (Lee's Summit, MO); Powers, Michael T. (Santa Rosa, CA)

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  18. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee's Summit, MO); Hand, Thomas E. (Lee's Summit, MO); Powers, Michael T. (Santa Rosa, CA)

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  19. A Holistic Look at Minimizing Adverse Environmental Impact Under Section 316(b) of the Clean Water Act

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Veil, John A.; Puder, Markus G.; Littleton, Debra J.; Johnson, Nancy

    2002-01-01

    Section 316(b) of the Clean Water Act (CWA) requires that “the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.” As the U.S. Environmental Protection Agency (EPA) develops new regulations to implement Section 316(b), much of the debate has centered on adverse impingement and entrainment impacts of cooling-water intake structures. Depending on the specific location and intake layout, once-through cooling systems withdrawing many millions of gallons of water per day can, to a varying degree, harm fish and other aquatic organisms in the water bodies from which the coolingmore » water is withdrawn. Therefore, opponents of once-through cooling systems have encouraged the EPA to require wet or dry cooling tower systems as the best technology available (BTA), without considering site-specific conditions. However, within the context of the broader scope of the CWA mandate, this focus seems too narrow. Therefore, this article examines the phrase “minimizing adverse environmental impact” in a holistic light. Emphasis is placed on the analysis of the terms “environmental” and “minimizing.” Congress chose “environmental” in lieu of other more narrowly focused terms like “impingement and entrainment,” “water quality,” or “aquatic life.” In this light, BTA for cooling-water intake structures must minimize the entire suite of environmental impacts, as opposed to just those associated with impingement and entrainment. Wet and dry cooling tower systems work well to minimize entrainment and impingement, but they introduce other equally important impacts because they impose an energy penalty on the power output of the generating unit. The energy penalty results from a reduction in plant operating efficiency and an increase in internal power consumption. As a consequence of the energy penalty, power companies must generate additional electricity to achieve the same net output. This added production leads to additional environmental impacts associated with extraction and processing of the fuel, air emissions from burning the fuel, and additional evaporation of freshwater supplies during the cooling process. Wet towers also require the use of toxic biocides that are subsequently discharged or disposed. The other term under consideration, “minimizing,” does not equal “eliminating.” Technologies may be available to minimize but not totally eliminate adverse environmental impacts.« less

  20. Applying Section 404(r) of the Clean Water Act to Federal Projects Which Involve the Discharge of Dredged or Fill Materials into Waters of the U.S., Including Wetlands (CEQ, 1980)

    Broader source: Energy.gov [DOE]

    This Council on Environmental Quality memorandum establishes procedures for coordinating agency views and formulating Administration policy prior to requesting Congressional action on projects that may be subject to Section 404(r) of the Clean Water Act (Federal Water Pollution Control Act, as amended).

  1. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  2. Clean the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean the Past Image of MDA B excavation with text overlay of 'How does LANL protect human health and the environment from impacts of legacy contamination?' LANL removes and stabilizes contaminants as one of three defenses in depth to protect human health and the environment. Clean the Past Home Google Earth Tour: Environmental Cleanup Protections: Cleanup What waters does LANL protect? How did contaminants get there?

  3. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    LD Antrim; NP Kohn

    2000-09-05

    This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.

  4. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  5. Self-Cleaning CSP Collectors

    Broader source: Energy.gov [DOE]

    This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

  6. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  7. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  8. Clean Water Act (Section 404) and Rivers and Harbors Act (Sections 9 and 10). Environmental Guidance Program Reference Book, Revision 4

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This Reference Book contains a current copy of the Clean Water Act (Section 404) and the Rivers and Harbors Act (Sections 9 and 10) and those regulations that implement those sections of the statutes and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Updates that include important new requirements will be provided periodically. Questions concerning this Reference Book may be directed to Mark Petts, IH-231 (FTS 896-2609 or Commercial 202/586-2609).

  9. Marine & Hydrokinetic Technologies (Fact Sheet) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies (Fact Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to...

  10. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    Open Energy Info (EERE)

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  11. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine and hydrokinetic energy technologies to capture energy from waves and currents. ... Energy Department Releases New Energy 101 Video on Ocean Power Riding the Clean Energy ...

  12. Clean Cities Internships

    Broader source: Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  13. Clean Cities: Ann Arbor Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  14. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  15. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  16. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  17. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  18. Marin Clean Energy- Feed-In Tariff

    Broader source: Energy.gov [DOE]

    Assembly Bill 117, passed in 2002, allows communities in California to aggregate their load and to procure electricity from their own preferred sources. Under the authority of this law, California...

  19. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  20. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  1. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect (OSTI)

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  2. Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.R.

    1983-09-30

    This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

  3. DOE Selects Projects for Up to $7.3 Million for R&D Clean Technology Water

    Broader source: Energy.gov (indexed) [DOE]

    Power Projects | Department of Energy WASHINGTON - The U.S. Department of Energy (DOE) today announced the selection of projects for negotiation of award of up to $7.3 million to 14 research teams, with a cost-shared value of over $18 million, under the DOE's competitive solicitation for Advanced Water Power Projects. The projects will advance commercial viability, cost-competitiveness, and market acceptance of new technologies that can harness renewable energy from oceans and rivers. These

  4. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  5. River Turbine Provides Clean Energy to Remote Alaskan Village | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  6. Water Power Program FY 2015 Budget At-A-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Budget At-A-Glance Water Power Program FY 2015 Budget At-A-Glance The Water Power Program, part of the Wind and Water Power Technologies Office, leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering research and development efforts in marine and hydrokinetic and hydropower technologies, which hold the promise of clean, affordable electricity, and will move our nation toward energy independence. PDF

  7. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  8. Clean Cities: Wisconsin Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  9. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  10. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  11. CT Clean Energy Communities

    Broader source: Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  12. Missouri Clean Energy District

    Broader source: Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  13. NCAT Harvesting Clean Energy

    Broader source: Energy.gov [DOE]

    The National Center for Appropriate Technology (NCAT) is hosting the 14th Annual Harvesting Clean Energy Conference to help advance rural economic development through clean energy development and...

  14. Hawaii National Marine Renewable Energy Center (HINMREC)

    SciTech Connect (OSTI)

    Rocheleau, Richard

    2011-09-27

    Presentation from the 2011 Water Peer Review in which the principal investigator discusses project progress to develop in-water testing facility for marine and hydrokinetics energy devices.

  15. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  16. Enhanced Chemical Cleaning

    Office of Environmental Management (EM)

    Enhanced Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap

  17. Pay for Clean Energy

    Broader source: Energy.gov [DOE]

    Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to paying for clean energy efforts. The resources available here aim to provide an overview of financing for state, local, and tribal governments who are designing and implementing clean energy financing programs.

  18. Cleaning process for EUV optical substrates

    DOE Patents [OSTI]

    Weber, Frank J. (Sunol, CA); Spiller, Eberhard A. (Mt. Kiso, NY)

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  19. NREL Furthers U.S. Marine Corps Air Station Miramars Move Toward Net Zero Energy (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy The U.S. Marine Corps Air Station (MCAS) Miramar is striving toward its goal of becoming a "net zero energy installation" (NZEI), which entails producing as much energy as it uses over the course of a year. In conjunction with the U.S. Department of Energy's Federal Energy Management Program, the National Renewable Energy Laboratory (NREL) has partnered with MCAS Miramar to develop a plan for meeting this

  20. Clean Cities: Los Angeles Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  1. Clean Cities: Norwich Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    administering and reporting on various programs and grant awards, including the Connecticut Clean Fuels Program and the recent Congestion Mitigation and Air Quality (CMAQ)...

  2. Clean Boiler Waterside Heat Transfer Surfaces

    Broader source: Energy.gov [DOE]

    This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  4. Clean Cities Program Contacts

    SciTech Connect (OSTI)

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  5. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  6. The Clean Energy Race

    Broader source: Energy.gov [DOE]

    Assistant Secretary David Sandalow documents his experiences at the inaugural Clean Cities Stakeholder Summit at the Indianapolis Motor Speedway.

  7. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  8. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  9. U.S.-China Clean Energy Research Center Issues Solicitation to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus ...

  10. U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficient chilled water systems; as well as low-flow water fixtures and energy use data tracking tools. The contract was a Trane Technology-Specific Geothermal Super ESPC that utilized the Department of Energy's umbrella ESPC. MCAS Beaufort was also able to claim renewable energy from its geothermal heat pump installations and installed a solar-powered hot water system at its Officer's Club. A cogeneration plant that supplies heating water along with 1 MW of electricity has also been installed.

  11. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  12. Clean Cities: Clean Cities-Georgia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  13. South Carolina Clean Energy Summit

    Broader source: Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  14. Harboring Pollution: Air Quality Impacts of Marine Ports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harboring Pollution: Air Quality Impacts of Marine Ports Harboring Pollution: Air Quality Impacts of Marine Ports 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Resources Defense Council PDF icon 2004_deer_bailey.pdf More Documents & Publications Cleaning Up Diesel Engines South Coast AQMD Clean Transportation Programs Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility

  15. Water Power Program FY 2016 Budget At-A-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Budget At-A-Glance Water Power Program FY 2016 Budget At-A-Glance The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States (hydropower and marine and hydrokinetics). PDF icon Water Power Program FY 2016 Budget At-A-Glance More Documents & Publications Water Power Program FY 2015 Budget At-A-Glance Wind and Water Power Technologies FY'14

  16. Sandia Energy - Investigations on Marine Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Foil Structural Health Monitoring Presented at GMREC METS Home Renewable Energy Energy Water Power News News & Events Systems Analysis Investigations on Marine...

  17. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  18. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Options for the Hawaii Clean Energy Initiative | Department of Energy Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy

  19. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  20. Marine and Hydrokinetic Energy Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-03-24

    This report covers the Wind and Water Power Technologies Office's Marine and Hydrokinetic Energy Projects from 2008 to 2014.

  1. Clean Energy Development Fund

    Broader source: Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  2. Clean Cities & Transportation Tools

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, presented on July 28, 2010, was on the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  3. Clean Fuels/Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... Twitter Google + Vimeo GovDelivery SlideShare Clean FuelsPower Home...

  4. Initial technical basis for late washing filter cleaning

    SciTech Connect (OSTI)

    Morrissey, M.F.; Dworjanyn, L.O.

    1992-07-23

    Bench scale filter cleaning tests at the Savannah River Technology Center have shown that cross-flow filter elements can be cleaned between late wash filtration runs and restored to original clean water flux conditions. The most effective cleaning technique was high flow axial recirculation, followed by flushing with caustic solution. Simple flushing with oxalic acid and caustic is less effective and is not recommended because of adverse experience in ITP filter cleaning and uncertainty in the.nature of radiolysis by-product contaminants.

  5. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  6. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Broader source: Energy.gov [DOE]

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  7. Clean Cities: Alamo Area Clean Cities (San Antonio) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other...

  8. Clean Cities: Yellowstone-Teton Clean Energy coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce...

  9. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  10. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  11. Clean Cities: Capitol Clean Cities of Connecticut coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  12. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Drive Economy: Clean Energy, Clean Sites More Documents & Publications SmallBusinessMemoMar2010.pdf Federal Incentives for Wind Power Deployment Remarks by David...

  13. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  14. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, Darryl D. (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM)

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  15. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  16. Clean Currents | Open Energy Information

    Open Energy Info (EERE)

    Currents Jump to: navigation, search Logo: Clean Currents Name: Clean Currents Address: 155 Gibbs St. Suite 425 Place: Rockville, Maryland Zip: 20850 Sector: Wind energy...

  17. Self-cleaning inlet screen to an ocean riser pipe

    SciTech Connect (OSTI)

    Wetmore, S.B.; Person, A.

    1980-06-17

    A long, vertically disposed ocean water upwelling pipe, such as a cold water riser in an ocean thermal energy conversion facility, is fitted at its lower inlet end with a self-cleaning inlet screen. The screen includes a right conical frustum of loose metal netting connected at its larger upper end to the lower end of the pipe. A heavy, negatively buoyant closure is connected across the lower end of the frustum. A weight is suspended below the closure on a line which passes loosely through the closure into the interior of the screen. The line tends to stay stationary as the lower end of the pipe moves, as in response to ocean current vortex shedding and other causes, thus causing the closure to rattle on the line and to shake the netting. The included half-angle of the frustum is approximately 20 so that, on shaking of the netting, marine life accumulated on the netting becomes loose and falls free of the netting. 6 claims.

  18. Exhaust gas clean up process

    DOE Patents [OSTI]

    Walker, Richard J. (McMurray, PA)

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  19. Exhaust gas clean up process

    DOE Patents [OSTI]

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  20. Energy Department Helps Advance Island Clean Energy Goals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Helps Advance Island Clean Energy Goals Energy Department Helps Advance Island Clean Energy Goals Highlights a solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. It describes how financial support from DOE and technical assistance from NREL enabled the USVI to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges-resulting in a $65 million

  1. Clean Energy Procurement

    Broader source: Energy.gov [DOE]

    Subsequently, in 2009, the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons," to contract for renewable energy through long-term power...

  2. Clean Energy Fund (CEF)

    Broader source: Energy.gov [DOE]

    On January 2016, the New York Public Service Commission (PUC) approved $5 billion Clean Energy Fund (CEF) as a successor to the New York’s Energy Efficiency Portfolio Standard (EEPS) and Renewable...

  3. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  4. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  5. #CleanTechNow

    SciTech Connect (OSTI)

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  6. #CleanTechNow

    ScienceCinema (OSTI)

    Moniz, Ernest

    2014-01-10

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  7. Marine and Hydrokinetic Technology Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Technology Resources Marine and Hydrokinetic Technology Resources Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts in R&D in this area. Learn where marine and hydrokinetic technology research and testing is being done

  8. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  9. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect (OSTI)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

  10. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  11. What is Clean Cities? (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  12. Global Marine Renewable Energy Conference (GMREC) | OpenEI Community

    Open Energy Info (EERE)

    Global Marine Renewable Energy Conference (GMREC) Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 3 April, 2013 - 14:26 The 6th annual Global Marine...

  13. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  14. Clean Tech Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a historic

  15. 2014 Water Power Program Peer Review Compiled Presentations:...

    Energy Savers [EERE]

    Marine and Hydrokinetic Technologies 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies The U.S. Department of Energy Water Power ...

  16. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  17. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  18. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coordinators Each Clean Cities coalition is led by a coordinator. Contact a coordinator to find out more about Clean Cities activities in your area. AL-Alabama Mark Bentley 205-402-2755 mark@alabamacleanfuels.org AR-Arkansas Patti Springs 501-682-8065 psprings@arkansasedc.com AZ-Valley of the Sun (Phoenix) Bill Sheaffer 480-314-0360 bill@cleanairaz.org AZ-Tucson Colleen Crowninshield 520-792-1093, x426 ccrowninshield@pagregion.com CA-Central Coast (San Luis Obispo) Melissa Guise 805-305-5491

  19. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, Thomas W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  20. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  1. Clean Cities Tools

    SciTech Connect (OSTI)

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  2. Hot Showers, Fresh Laundry, Clean Dishes | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes March 5, 2013 - 11:17am Addthis The GE GeoSpring™ Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into

  3. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  4. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  5. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Water Wall Turbine Region: Canada Sector: Marine and Hydrokinetic Website: www.wwturbine.com This company is listed in the Marine and Hydrokinetic...

  6. Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches

    Energy Savers [EERE]

    Sparking a Revolution in Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches Energy Materials Network Volume 2, No. 1, January/February 2016 What's Happening @ EERE 2 A Message from Dave............................................ 3 ENERGY MATERIALS NETWORK Accelerating Materials Innovation & Advanced Manufacturing .......................................................... 4 Sparking a Revolution in Clean Energy Materials

  7. Chapter 4: Advancing Clean Electric Power Technologies | Marine...

    Broader source: Energy.gov (indexed) [DOE]

    energy and reduce both capital and operating costs. Innovation mechanisms and a large body of knowledge to draw from other scientific and industrial sectors are available today...

  8. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other ...

  9. Clean Energy Solutions Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  10. clean energy | OpenEI Community

    Open Energy Info (EERE)

    Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  11. Turkey Clean Energy Partnership | Open Energy Information

    Open Energy Info (EERE)

    Turkey Clean Energy Partnership Jump to: navigation, search Logo: Turkey Clean Energy Partnership Name Turkey Clean Energy Partnership AgencyCompany Organization Argonne National...

  12. The Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Fund Jump to: navigation, search Name: The Clean Energy Fund Place: Santa Monica, California Zip: 90403 Product: The Clean Energy Fund hopes to begin investing in...

  13. Leaf Clean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Company Jump to: navigation, search Logo: Leaf Clean Energy Company Name: Leaf Clean Energy Company Place: London, United Kingdom Website: www.leafcleanenergy.com...

  14. Category:CLEAN Webinar | Open Energy Information

    Open Energy Info (EERE)

    CLEAN Webinar Jump to: navigation, search This page contains webinars hosted by the Coordinated Low Emissions Assistance Network (CLEAN). Pages in category "CLEAN Webinar" The...

  15. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  16. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Clean Energy Science and Innovation Clean Energy Hydrogen Production and Storage Nuclear Fuel Cycle Research and Development Renewable Energy Research Among the most ...

  17. Partnering for Clean Energy Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Libby Wayman Director, Clean Energy Manufacturing Initiative Partnering for Clean Energy ... Increase U.S. competitiveness in the production of clean energy products 2. Increase ...

  18. Sustainable development with clean coal

    SciTech Connect (OSTI)

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  19. Marine botany. Second edition

    SciTech Connect (OSTI)

    Dawes, C.J.

    1998-12-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses.

  20. Marine and Hydrokinetic Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Projects Marine and Hydrokinetic Energy Projects This report covers the Wind and Water Power Technologies Office's marine and hydrokinetic projects from fiscal years 2008 to 2014. PDF icon 2008-2014 Marine and Hydrokinetic Power Projects More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011 Peer Review Report Before the House Science and Technology Subcommittee on

  1. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  2. Healy Clean Coal Project

    SciTech Connect (OSTI)

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  3. New Request for Information on Strategy to Advance the Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 12, 2015 - 2:00pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research laboratories, ...

  4. Request for Information Regarding the Testing of Marine and Hydrokinet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 14, 2015 - 10:30am Addthis The Energy Department's Water Power Program is seeking information from the marine and hydrokinetic (MHK) industry, academia, research ...

  5. Request for Information for Marine and Hydrokinetic Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 22, 2015 - 12:13pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research laboratories, ...

  6. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  7. Vermont Section 401 Water Quality Certification Application ...

    Open Energy Info (EERE)

    Abstract Application required for Section 401 water quality certification under the Clean Water Act. Form Type ApplicationNotice Form Topic Section 401 Water Quality...

  8. Marine and Hydrokinetic Energy Research & Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is

  9. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  10. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach Activities Vehicle Technologies ...

  11. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach Activities Advanced Electric ...

  12. Revolutionizing Clean Energy Technology with Advanced Composites |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  13. Latest in Village Scale Clean Energy Technology

    Office of Environmental Management (EM)

    Latest in Village Scale Clean Energy Technology E. Ian Baring-Gould April 29, 2014 Alaska Native Village Energy Development Workshop Supported by the U.S. Department of Energy Innovation for Our Energy Future Range of Power Systems Renewable power system can be used to cover a wide range of needs, including: * Dedicated use: Power being used at point source without regulation such as water pumping and ice making. * Small or Simple systems: Power systems for small communities, individual

  14. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  15. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  16. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  17. Clean Cities: Northeast Ohio Clean Cities coalition (Cleveland...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Data Center. Cleveland Car Dealership Working Toward a More Sustainable Future Text version Search Coalitions Search for another coalition Northeast Ohio Clean...

  18. Clean Cities: Greater Lansing Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  19. Clean Cities: San Diego Regional Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Kevin Wood Kevin Wood is an associate program manager for transportation at the California Center for Sustainable Energy. He joined the San Diego Regional Clean Cities...

  20. Energy Department Announces Six Clean Energy Projects through Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Israel | Department of Energy Announces Six Clean Energy Projects through Partnership with Israel Energy Department Announces Six Clean Energy Projects through Partnership with Israel November 23, 2015 - 10:02am Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON, D.C. - The U.S. Department of Energy (DOE) and Israel's Ministry of National Infrastructure, Energy and Water Resources (MIEW) today announced $5.1 million for six newly selected clean energy projects as

  1. Making a Difference: Hydropower and Our Clean Energy Future | Department of

    Office of Environmental Management (EM)

    Energy Hydropower and Our Clean Energy Future Making a Difference: Hydropower and Our Clean Energy Future November 5, 2015 - 9:52am Addthis Making a Difference: Hydropower and Our Clean Energy Future Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Not much beats stepping outside and taking a deep breath of fresh air. Guess what-you can thank hydropower for contributing to that! Since hydropower is fueled by water, it is a climate-friendly

  2. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  3. International Clean Energy Coalition

    SciTech Connect (OSTI)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  4. Investments in Existing Hydropower Unlock More Clean Energy | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Investments in Existing Hydropower Unlock More Clean Energy Investments in Existing Hydropower Unlock More Clean Energy August 14, 2013 - 2:21pm Addthis Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power. Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that

  5. Energy Department and National Park Service Announce Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership to Drive Sustainable National Parks | Department of Energy National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks June 19, 2012 - 11:05am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water,

  6. Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind

    Energy Savers [EERE]

    Program (WP) | Department of Energy Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP) Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP) This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts. PDF icon eere_wind_water.pdf More Documents & Publications Wind Program Accomplishments Offshore Wind Projects Wind

  7. Alaska Native Tribes Receive Technical Assistance for Local Clean Energy

    Energy Savers [EERE]

    Projects | Department of Energy Tribes Receive Technical Assistance for Local Clean Energy Projects Alaska Native Tribes Receive Technical Assistance for Local Clean Energy Projects May 24, 2012 - 5:47pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water, the U.S. Energy Department and the Denali Commission announced today that five Alaska

  8. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  9. NREL: Technology Deployment - Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new

  10. Advancing Women in Clean Energy

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  11. Northwest National Marine Renewable Energy Center (OSUUW) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Northwest National Marine Renewable Energy Center (OSUUW) Northwest National Marine Renewable Energy Center (OSUUW) Northwest National Marine Renewable Energy Center (OSUUW) Office presentation icon 22_nnmrec_batten_final.ppt More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled

  12. Marine and Hydrokinetic Technology Development and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Development and Testing Marine and Hydrokinetic Technology Development and Testing The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. In order to meet its generation goals, the program supports the design, development, testing, and demonstration of technologies that can capture

  13. Local Option- Clean Energy Financing

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money through their local government to pay for energy improvements. The amount borrowed is typically...

  14. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  15. Connecting with Clean Tech CEO's

    Broader source: Energy.gov [DOE]

    Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

  16. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-01-01

    This 2-page fact sheet provides general information regarding Clean Cities International, including background, successful activities, importance of partnerships, accomplishments, and plans.

  17. EPA Clean Power Plan Seminar

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting an informational seminar addressing the opportunities and challenges presented by EPA's Clean Power Plan.

  18. CLEAN Reports | Open Energy Information

    Open Energy Info (EERE)

    methodologies and tools International Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends National Renewable Energy...

  19. Clean Markets | Open Energy Information

    Open Energy Info (EERE)

    Markets Jump to: navigation, search Name: Clean Markets Place: Philadelphia, Pennsylvania Zip: 19118 Sector: Services Product: Philadelphia-based provider of market development...

  20. Clean Vita | Open Energy Information

    Open Energy Info (EERE)

    Provider of products and services to the building trade. Involved in a distribution joint venture with Solco International. References: Clean Vita1 This article is a stub....

  1. Clean Fractionation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    separation, Clean Fractionation segregates cellulose, hemicellulose, and lignin into three high-purity streams for conversion into value-added products, including ethanol biofuel. ...

  2. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy ... and Counterintelligence, National Nuclear Security Administration, Fossil Energy, ...

  3. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    around strategic priorities to increase U.S. clean energy manufacturing competitiveness. ... energy technologies toward commercial production. www.cyclotronroad.org Small Business ...

  4. Hawaii Clean Energy Final PEIS

    Office of Environmental Management (EM)

    A 1 2 Public Notices 3 Notices about the Draft Programmatic EIS Appendix A Hawai i Clean Energy Final PEIS A-1 September 2015 DOE/EIS-0459 The following Notice of Availability appeared in the Federal Register on April 18, 2014. Appendix A Hawai i Clean Energy Final PEIS A-2 September 2015 DOE/EIS-0459 Appendix A Hawai i Clean Energy Final PEIS A-3 September 2015 DOE/EIS-0459 DOE-Hawaii placed the following advertisement in The Garden Island on May 5 and 9, 2014. Appendix A Hawai i Clean Energy

  5. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Leadership Perspectives: The Opportunity for Clean Energy Manufacturing Leadership Perspectives: The Opportunity for Clean Energy Manufacturing There is a tremendous opportunity for the United States to manufacture clean energy and energy efficiency products. Watch this video to learn more about industry and DOE leaders' vision for a clean energy manufacturing future. Read more Energy 101: Clean Energy Manufacturing Energy 101: Clean Energy Manufacturing

  6. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  7. Marine Services | Open Energy Information

    Open Energy Info (EERE)

    Marine Services Place: Florida Sector: Services Product: Marine Services is planning tidal energy projects off the coasts of California and Florida. References: Marine...

  8. Clean Energy Business Plan Competition

    ScienceCinema (OSTI)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

    2013-05-29

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  9. Clean Energy Business Plan Competition

    SciTech Connect (OSTI)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv

    2012-01-01

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  10. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  11. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  12. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  13. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  14. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  15. Clean Energy Manufacturing Initiative Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Events Clean Energy Manufacturing Initiative Events

  16. Clean Fleets Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Domain | Clean Fleets Announcement 4 of 14 4 of 14 Clean Fleets Announcement 4 of 14 Martha Johnson, General Services Administrator, speaks at a Clean Fleets event held at the...

  17. Clean Energy Fuels | OpenEI Community

    Open Energy Info (EERE)

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  18. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect (OSTI)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  19. E5 Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    E5 Clean Energy Jump to: navigation, search Name: e5 Clean Energy Place: Agoura Hills, California Zip: 91301 Sector: Solar Product: Sells solar energy systems. References: e5 Clean...

  20. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  1. Texas Clean Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Texas Clean Energy Project Texas Clean Energy Project On March 12, 2010, DOE announced the award of a Cooperative Agreement to Summit Texas Clean Energy, LLC to construct the Texas ...

  2. JEA- Clean Power Program

    Broader source: Energy.gov [DOE]

    In addition, under the Solar Incentive Program, JEA offers a rebate for residential and commercial solar water heating systems. JEA also provides training and curricula to high school teachers to...

  3. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  4. Clean Cities: Eastern Pennsylvania Alliance for Clean Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resides. In 2006, Bandiero was elected to the Board of Directors of the Greater Philadelphia Clean Cities (GPCC) Coalition, where he served for over 2-12 years. In 2009, he...

  5. Clean Cities: Silicon Valley Clean Cities (San Jose) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various programs at Breathe California of the Bay Area the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight lung disease and...

  6. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge

    Broader source: Energy.gov [DOE]

    Student team from Michigan State University takes top honors at the Eastern Midwest regional competition of the Energy Department’s National Clean Energy Business Plan Competition for its advanced turbomachinery system for geothermal power plants.

  7. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  8. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  9. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  10. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  11. baepgig-clean | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Feb 2003) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Combustion Engineering IGCC Repowering Project, Clean Energy ...

  12. Exploring the Business Link Opportunity: Transmission & Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLP PDF icon Centennial West Clean Line: Keith Sparks, Clean Line Energy Partners PDF ... in the Federal Market: Pilar Thomas, Deputy Directory, DOE Office of Indian ...

  13. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  14. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  15. Clean Energy Economy | Open Energy Information

    Open Energy Info (EERE)

    Portal Linkedin.jpg CleanTech Cleantech Venture Capital Global Renewable Energy Network (GReEN) MIT Club of Northern California CleanTech Renewable Energy Business...

  16. Clean Power Research | Open Energy Information

    Open Energy Info (EERE)

    search Name: Clean Power Research Place: Napa, California Product: California-based clean energy consulting and research company. Coordinates: 38.298855, -122.285194 Show...

  17. Hudson Clean Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Partners Jump to: navigation, search Name: Hudson Clean Energy Partners Place: Teaneck, New Jersey Zip: 7666 Product: New Jersey-based private equity fund manager...

  18. Evergreen Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Jump to: navigation, search Name: Evergreen Clean Energy Place: Provo, Utah Zip: 84604 Sector: Geothermal energy Product: Utah-based private equity fund targeting...

  19. Connecticut Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  20. Clean Pacific Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Clean Pacific Ventures Name: Clean Pacific Ventures Address: 425 California Street, Suite 2450 Place: San Francisco, California Zip:...

  1. Clean Diesel Technologies | Open Energy Information

    Open Energy Info (EERE)

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  2. Suncatcher Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Suncatcher Clean Energy Jump to: navigation, search Name: Suncatcher Clean Energy Place: Corinth, New Jersey Zip: 5039 Sector: Renewable Energy Product: Sun Catcher, is dedicated...

  3. Clean Energy Incubator | Open Energy Information

    Open Energy Info (EERE)

    Incubator Jump to: navigation, search Name: Clean Energy Incubator Place: Austin, Texas Zip: Texas 78759 Sector: Renewable Energy Product: The Clean Energy Incubator is a program...

  4. Clean Energy Group Virginia | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  5. Austin Clean Energy Incubator | Open Energy Information

    Open Energy Info (EERE)

    Incubator Jump to: navigation, search Logo: Austin Clean Energy Incubator Name: Austin Clean Energy Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region:...

  6. Clean Edge Inc | Open Energy Information

    Open Energy Info (EERE)

    Edge Inc Jump to: navigation, search Logo: Clean Edge Inc Name: Clean Edge Inc Place: Portland, Oregon Zip: 97213 Region: Pacific Northwest Area Website: www.cleanedge.com...

  7. FE Clean Energy Group | Open Energy Information

    Open Energy Info (EERE)

    FE Clean Energy Group Jump to: navigation, search Name: FE Clean Energy Group Place: Darien, Connecticut Zip: 6820 Sector: Efficiency Product: A Private Equity Fund Manager which...

  8. American Clean Coal Fuels | Open Energy Information

    Open Energy Info (EERE)

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  9. Clean Energy Portfolio Goal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewables Portfolio Standard Summary In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean...

  10. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  11. Clean Energy Manufacturing Initiative: Technology Research and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative: Technology Research and Development Clean Energy ... The Office of Nuclear Energy's Advanced Methods for Manufacturing subprogram accelerates ...

  12. New England Clean Fuels | Open Energy Information

    Open Energy Info (EERE)

    New England Clean Fuels Place: MA, Massachusetts Zip: 2420 Product: New England Clean Fuels, Inc (NECF) is a startup based on the concept of using photosynthetic microorganisms as...

  13. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  14. #CleanTechNow | Department of Energy

    Energy Savers [EERE]

    #CleanTechNow #CleanTechNow Addthis Speakers Secretary Ernest Moniz Duration :44 Topic Commercial Lighting Alternative Fuel Vehicles Solar Wind

  15. #CleanTechNow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #CleanTechNow #CleanTechNow Addthis Speakers Secretary Ernest Moniz Duration :44 Topic Commercial Lighting Alternative Fuel Vehicles Solar Wind

  16. Property Assessed Clean Energy Financing

    Broader source: Energy.gov [DOE]

    The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. PACE financing allows commercial and mulitfamily property owners in the district to borrow money to pay...

  17. Alternative and Clean Energy Program

    Broader source: Energy.gov [DOE]

    NOTE: It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean ...

  18. Clean Energy Solutions Center (Presentation)

    SciTech Connect (OSTI)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  19. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOE Patents [OSTI]

    Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  20. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOE Patents [OSTI]

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-05-04

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  1. Request for Information for Marine and Hydrokinetic Environmental

    Energy Savers [EERE]

    Monitoring Technologies and Field Testing Opportunities | Department of Energy Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities June 22, 2015 - 12:13pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research

  2. DOE Announces Marine and Hydrokinetic Open Data Effort | Department of

    Office of Environmental Management (EM)

    Energy DOE Announces Marine and Hydrokinetic Open Data Effort DOE Announces Marine and Hydrokinetic Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics (MHK) Data Repository to manage the receipt, protection, and dissemination of scientific and technical data generated by DOE funded awards. Capabilities of the proposed MHK Data Repository include: Secure and intuitive

  3. Hazardous waste contamination of water resources (Superfund clean-up policy and the Seymour recycling case). Hearings before the Subcommittee on Investigations and Oversight of the Committee on Public Works and Transportation, House of Representatives, Ninety-Eighth Congress, Second Session, March 13, 14, 15, 1984

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Nine witnesses testified over three days of hearings on water contamination due to illegal dumping of hazardous wastes and the administration of the Superfund Law to clean up designated sites. The witnesses were asked to evaluate the overall effect of the program and to consider whether Superfund has a positive or negative effect on the development of more environmentally benign technology. A focus for the testimony was on the Seymour waste site. The witnesses included representatives of the aluminum, automobile, chemical, and high technology industries, who were among the 24 industries making a settlement with the Environmental Protection Agency. Additional material submitted for the record by the witnesses and others follows the testimony.

  4. Clean Energy Application Center

    SciTech Connect (OSTI)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

  5. Marine and Hydrokinetic Energy Research & Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research &...

  6. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    SciTech Connect (OSTI)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Prele, G.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  7. Clean Energy and Bond Finance Initiative

    Broader source: Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  8. What is Clean Cities? May 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  9. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  10. Evaluating the Potential for Marine and Hydrokinetic Devices to Act as Artificial Reefs or Fish Aggregating Devices. Based on Analysis of Surrogates in Tropical, Subtropical, and Temperate U.S. West Coast and Hawaiian Coastal Waters

    SciTech Connect (OSTI)

    Kramer, Sharon H.; Hamilton, Christine D.; Spencer, Gregory C.; Ogston, Heather O.

    2015-05-12

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai‘i, and a better understanding of their ecological effects on fish, particularly on special-status fish (e.g., threatened and endangered) is needed to facilitate project design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef-associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs), forming the nuclei for groups of fishes. Little is known about the potential for WECs and TECs to function as artificial reefs and FADs in coastal waters of the U.S. West Coast and Hawai‘i. We evaluated these potential ecological interactions by reviewing relevant information about fish associations with surrogate structures, such as artificial reefs, natural reefs, kelps, floating debris, oil and gas platforms, marine debris, anchored FADs deployed to enhance fishing opportunities, net-cages used for mariculture, and piers and docks. Based on our review, we postulate that the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai‘i likely will function as small-scale artificial reefs and attract potentially high densities of reef-associated fishes (including special-status rockfish species [Sebastes spp.] along the mainland), and that the midwater and surface structures of WECs placed in the tropical waters of Hawai‘i likely will function as de facto FADs with species assemblages varying by distance from shore and deployment depth. Along the U.S. West Coast, frequent associations with midwater and surface structures may be less likely: juvenile, semipelagic, kelp-associated rockfishes may occur at midwater and surface structures of WECs in coastal waters of southern California to Washington, and occasional, seasonal, or transitory associations of coastal pelagic fishes such as jack mackerel (Trachurus symmetricus) may also occur at WECs in these waters. Importantly, our review indicated that negative effects of WEC structures on special-status fish species, such as increased predation of juvenile salmonids or rockfishes, are not likely. In addition, WECs installed in coastal California, especially in southern California waters, have the potential to attract high densities of reef-associated fishes and may even contribute to rockfish productivity, if fish respond to the WECs similarly to oil and gas platforms, which have some of the highest secondary production per unit area of seafloor of any marine habitat studied globally (Claisse et al. 2014). We encountered some information gaps, owing to the paucity or lack, in key locations, of comparable surrogate structures in which fish assemblages and ecological interactions were studied. TECs are most likely to be used in the Puget Sound area, but suitable surrogates are lacking there. However, in similarly cold-temperate waters of Europe and Maine, benthopelagic fish occurred around tidal turbines during lower tidal velocities, and this type of interaction may be expected by similar species at TECs in Puget Sound. To address information gaps in the near term, such as whether WECs would function as FADs in temperate waters, studies of navigation buoys using hydroacoustics are recommended.

  11. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  12. Clean Coal Technology Programs: Program Update 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y DOE/FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant

  13. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    April 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2009 Page 2 WELCOME! Welcome to the April 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2009 and April 15, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  14. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    January 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2009 Page 2 WELCOME! Welcome to the January 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 12, 2009 and January 30, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  15. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities Alternative Fuel Price Report July 2009 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2009 WELCOME! Welcome to the July 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 20, 2009 and July 31, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  16. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    July 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2008 Page 2 WELCOME! Welcome to the July 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 21, 2008 and July 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  17. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    October 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2008 Page 2 WELCOME! Welcome to the October 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2008 and October 16, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  18. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    9 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2009 Page 2 WELCOME! Welcome to the October 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 16, 2009 and October 26, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  19. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  20. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic...

  1. Water Power Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

  2. What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions. PDF icon What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) More Documents & Publications What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Technology Integration Overview Technology Integration Overview

  3. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites

    Energy Savers [EERE]

    1 Small Businesses Helping Drive Economy: Clean Energy, Clean Sites "We should start where most new jobs do - in small businesses, companies that begin when an entrepreneur takes a chance on a dream, or a worker decides its time she became her own boss." --- President Obama, State of the Union Address, January 27, 2010 "Jobs will be our number one focus in 2010. And we're going to start where most new jobs do - with small businesses." --- President Obama, Nashua, New

  4. Water Power Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database on OpenEI The DOE Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy. Read more The following resources about water power technologies

  5. Water Adsorption in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Water Adsorption in Metal-Organic Frameworks

  6. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial

    Office of Scientific and Technical Information (OSTI)

    Communities (Journal Article) | DOE PAGES The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities « Prev Next » Title: The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and

  7. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  8. Hands-On Lessons in Clean Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hands-On Lessons in Clean Energy Hands-On Lessons in Clean Energy December 24, 2013 - 9:40am Addthis Sixth graders compare emissions from a candle—invisible until they hold a mirror close to the flame and watch carbon blacken its surface. The same mirror grows steamy but clear when held up to the water vapor piping out of the tea kettle. Sharon Cosgrove, of the Energy Department’s Geothermal Technologies Office, talks with the students about energy options: burning hydrocarbons to boil

  9. Financing Clean Energy Infrastructure in Africa | Department of Energy

    Office of Environmental Management (EM)

    Financing Clean Energy Infrastructure in Africa Financing Clean Energy Infrastructure in Africa September 24, 2014 - 4:03pm Addthis Upon arrival to Addis Ababa, Ethiopia, for the U.S.-Africa Energy Ministerial, U.S. Secretary of Energy Ernest Moniz is greeted on the tarmac by Ethiopian Minister of Water and Energy, Alemayehu Tegenu (right), and U.S. Ambassador to Ethiopia, Patricia Haslach (center). | Photo courtesy of the U.S. Embassy in Addis Ababa. Upon arrival to Addis Ababa, Ethiopia, for

  10. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine...

    Office of Scientific and Technical Information (OSTI)

    The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities ... Country of Publication: United States Language: English Subject: 59 BASIC BIOLOGICAL ...

  11. Spring Cleaning | Department of Energy

    Energy Savers [EERE]

    Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the

  12. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power - NearyFig1 Permalink Gallery University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects Energy, Modeling & Analysis, News, Partnership, Renewable Energy, Water Power University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects Sandia Labs Water Power Technologies Department promotes open-source marine hydrokinetic research by disseminating information on MHK technology designs

  13. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power - Water PowerTara Camacho-Lopez2016-02-16T18:27:48+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  14. Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ministerial | Department of Energy Initiatives to Promote Clean Energy at First Clean Energy Ministerial Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial July 20, 2010 - 12:00am Addthis Washington, D.C. - At the world's first Clean Energy Ministerial, U.S. Energy Secretary Steven Chu today announced that the United States is helping launch more than 10 international clean energy initiatives. These initiatives will cut energy waste; help

  15. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

  16. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy ... Way for Grid Interconnection Almost 1,500 solar water heating and PV systems have popped ...

  17. Experts Offer Marines Energy-Efficiency Advice

    Broader source: Energy.gov [DOE]

    As an early adopter of cutting-edge technologies, the United States military is pioneering energy efficiency and renewable energy technologies in the field. Recently, the Commandant of the United States Marine Corps sent a team to visit bases and camps in Afghanistan to assess and make recommendations on the supply and use of energy and water.

  18. NREL: Water Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Access NREL publications on water power research. Snowberg, D., and Weber, J. 2015. Marine and Hydrokinetic Technology Development Risk Management Framework. NREL...

  19. Seawind Marine | Open Energy Information

    Open Energy Info (EERE)

    Seawind Marine Jump to: navigation, search Name: Seawind Marine Place: Plymouth, England, United Kingdom Zip: PL1 5NE Sector: Services, Wind energy Product: Focused on project...

  20. Marine Scotland | Open Energy Information

    Open Energy Info (EERE)

    Scotland Place: Edinburgh, Scotland, United Kingdom Zip: EH14 1TY Product: Marine science, planning, policy and management body. References: Marine Scotland1 This article is...

  1. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  2. Request for Information for Marine and Hydrokinetic Field Measurements

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

  3. Clean Electricity Initiatives in California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  4. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master’s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master’s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master’s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

  5. Critical cleaning agents for Di-2-ethylhexyl sebacate.

    SciTech Connect (OSTI)

    Hartley, Mya; Archuleta, Kim M.

    2013-08-01

    It is required that Di-2-ethylhexyl Sebacate oil, also commonly known as Dioctyl Sebacate oil, be thoroughly removed from certain metals, in this case stainless steel parts with narrow, enclosed spaces. Dioctyl Sebacate oil is a synthetic oil with a low compressibility. As such, it is ideally used for high pressure calibrations. The current method to remove the Dioctyl Sebacate from stainless steel parts with narrow, enclosed spaces is a labor-intensive, multi-step process, including a detergent clean, a deionized (DI) water rinse, and several solvent rinses, to achieve a nonvolatile residue of0.04 mg per 50 mL rinse effluent. This study was undertaken to determine a superior detergent/solvent cleaning method for the oil to reduce cleaning time and/or the amount of detergent/solvent used. It was determined that while some detergent clean the oil off the metal better than the current procedure, using only solvents obtained the best result. In addition, it can be inferred, based on elevated temperature test results, that raising the temperature of the oil-contaminated stainless steel parts to approximately 50%C2%B0C will provide for improved cleaning efficacy.

  6. A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams June 24, 2015 - 2:18pm Addthis A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams Hoyt Battey Market Acceleration and Deployment Program Manager, Wind and Water Power Technologies Office Summer is a time for going to the beach-or at least going out on the water to beat the heat. But not every splashy

  7. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  8. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore » agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  9. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Clean Energy Initiative (HCEI) Hawaii Clean Energy Initiative (HCEI) The Hawaii Clean Energy Initiative (HCEI) is an unprecedented effort to transform the entire Hawaii ...

  10. Design and Implement Clean Energy Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Implement Clean Energy Programs Design and Implement Clean Energy Programs DICEPedit.png State and local governments are uniquely positioned to advance clean energy...

  11. EESTech Aryan Clean Coal Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    EESTech Aryan Clean Coal Technologies JV Jump to: navigation, search Name: EESTech & Aryan Clean Coal Technologies JV Place: India Product: India-based JV formed to develop clean...

  12. National Clean Energy Business Plan Competition: Unified Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unified Solar Wins at MIT Clean Energy Prize National Clean Energy Business Plan ... MORE ON THE NATIONAL CLEAN ENERGY BUSINESS PLAN COMPETITION Cleantech New Venture ...

  13. Microsoft Word - EIR SOP Updated 101110 frank clean | Department...

    Energy Savers [EERE]

    Word - EIR SOP Updated 101110 frank clean Microsoft Word - EIR SOP Updated 101110 frank clean Microsoft Word - EIR SOP Updated 101110 frank clean More Documents & Publications EIR...

  14. CLEAN-Low Emission Development Planning Webinar | Open Energy...

    Open Energy Info (EERE)

    (CLEAN), National Renewable Energy Laboratory Resource Type: Webinar, Training materials, Lessons learnedbest practices Website: en.openei.orgwikiCLEAN References: CLEAN...

  15. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions Centers Fact Sheet More Documents & Publications Clean-Energy-Solutions-Centers-Fact...

  16. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Works Oregon's program background and the four easy steps to lender selection. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  17. New Jersey's Clean Energy Program | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Program Jump to: navigation, search Logo: New Jersey's Clean Energy Program Name: New Jersey's Clean Energy Program Address: 44 South Clinton Avenue Place: Trenton,...

  18. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: energy secretary Type...

  19. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Sunshot Initiative Type...

  20. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Innovation Type Term...

  1. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Partnerships Type Term...

  2. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Transportation Type Term...

  3. NREL State Clean Energy Policies Analysis Project (SCEPA) | Open...

    Open Energy Info (EERE)

    NREL State Clean Energy Policies Analysis Project (SCEPA) (Redirected from State Clean Energy Policies Analysis Project (SCEPA)) Jump to: navigation, search Name NREL State Clean...

  4. Guide to Federal Financing for Energy Efficiency and Clean Energy...

    Energy Savers [EERE]

    Home About the State & Local Solution Center Develop a Clean Energy Strategy Design and Implement Clean Energy Programs Pay for Clean Energy Efforts Access and Use Energy Data...

  5. Pay for Clean Energy Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pay for Clean Energy Efforts Pay for Clean Energy Efforts PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and...

  6. ITEP Clean Power Plan and Tribes Training

    Broader source: Energy.gov [DOE]

    The Institute of Environmental Professionals (ITEP) is hosting a Clean Power Plan and Tribes training provides detailed information for tribes to understand the Clean Power Plan and how it applies to their tribal lands.

  7. CleanLaunch | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Logo: CleanLaunch Name: CleanLaunch Address: 7706 Martin Luther King Blvd Place: Denver, Colorado Zip: 80238 Region: Rockies Area Number of Employees: 1-10...

  8. Clean Cities Now Vol. 17, No. 1

    SciTech Connect (OSTI)

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  9. OpenEI Community - clean energy

    Open Energy Info (EERE)

    +0000 Dc 1057 at http:en.openei.orgcommunity GE, Clean Energy Fuels Partner to Expand Natural Gas Highway http:en.openei.orgcommunityblogge-clean-energy-fuels-partner-expa...

  10. Clean Cities Now Vol. 16.1

    SciTech Connect (OSTI)

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  11. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  12. Indiana Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Jump to: navigation, search Name: Indiana Clean Energy Place: Frankfort, Indiana Zip: IN 46041 Product: Indiana-based company that will develop a 80m gallon biodiesel...

  13. Clean Air Trade Inc | Open Energy Information

    Open Energy Info (EERE)

    a company specialising in CER purchase as well as project development and investment in clean energy. References: Clean Air Trade Inc1 This article is a stub. You can help OpenEI...

  14. clean-tech | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  15. clean tech | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  16. Al Corn Clean Fuel | Open Energy Information

    Open Energy Info (EERE)

    Corn Clean Fuel Jump to: navigation, search Name: Al-Corn Clean Fuel Place: Claremont, North Dakota Product: Al-Corn is an ethanol plant located in Claremont, North Dakota, which...

  17. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  18. CleanTX Foundation | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  19. CleanTech Boston | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. CleanTech Boston is an organization based in Boston, Massachusetts. References "CleanTechBoston.com" Retrieved from...

  20. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  1. What is Clean Cities? July 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  2. Clean Cities Reaches Across the Sea

    Broader source: Energy.gov [DOE]

    Clean Cities International collaborates with leaders from Kazakhstan and Sweden share best practices and accomplish mutual goals.

  3. Clean Energy Manufacturing Analysis Center Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  4. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon ... its energy, environmental, and nuclear challenges through transformative ...

  5. What is Clean Cities? December 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  6. RETScreen International Clean Energy Project Analysis Tool |...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentretscreen-international-clean-energy- Language: String representation "English,Arabic, ... Urdu,Vietnamese" is too long. Policies:...

  7. Clean Energy Manufacturing Initiative | Department of Energy

    Energy Savers [EERE]

    Clean Energy Manufacturing Initiative Energy Materials Network Energy Materials Network The Energy Materials Network (EMN) is an enduring national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing Leadership Perspectives: The Opportunity for Clean Energy Manufacturing There is a tremendous opportunity for the

  8. Clean Cities Coalition Regions | Department of Energy

    Office of Environmental Management (EM)

    Clean Cities Coalition Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum

  9. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    1 Clean Cities Alternative Fuel Price Report April 2011 Page 2 WELCOME! Welcome to the April 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2011 and April 15, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information

  10. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    0 Clean Cities Alternative Fuel Price Report January 2010 Page 2 WELCOME! Welcome to the January 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 19, 2010 and January 29, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price

  11. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    1 Clean Cities Alternative Fuel Price Report October 2011 Page 2 WELCOME! Welcome to the October 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between September 30, 2011 and October 14, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price

  12. Buying Clean Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Buying & Making Electricity » Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy

  13. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  14. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  15. Ecotoxicology of tropical marine ecosystems

    SciTech Connect (OSTI)

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  16. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  17. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  18. Clean Cities Now, Vol. 18, No. 2

    SciTech Connect (OSTI)

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  19. Clean Transportation Education Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Education Project Clean Transportation Education Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti018_tazewell_2011_p.pdf More Documents & Publications Clean Cities Education & Outreach Activities Vehicle Technologies Office Merit Review 2014: Alternative Fuels Implementation Team (AFIT) for North Carolina Puget Sound Clean Cities Petroleum Reduction Project

  20. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Breakout Session Summary | Department of Energy Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013 PDF icon Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer

  1. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  2. Vermont Agency of Natural Resources Section 401 Water Quality...

    Open Energy Info (EERE)

    document outlines the Agency of Natural Resources coordination process with respect to Clean Water Act Section 401 water quality certification decisions. Author Vermont...

  3. ECIS-UNM: Biomimetic Membranes for Water Purification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... ECIS-UNM: Biomimetic Membranes for Water Purification Clean water scarcity leads ...

  4. Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

  5. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C. (Aiken, SC)

    1994-01-01

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  6. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C. (Aiken, SC)

    1996-01-01

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  7. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    MacKenzie, D.; Odell, C.

    1994-03-01

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  8. #CleanTechNow: America's Clean Energy Revolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #CleanTechNow: America's Clean Energy Revolution #CleanTechNow: America's Clean Energy Revolution September 17, 2013 - 10:21am Addthis Levi Tillemann Levi Tillemann Special Advisor for Policy and International Affairs How can I participate? Read a blog post from Secretary Ernest Moniz about the report and the Clean Energy revolution. All week on energy.gov, we'll be highlighting four key clean energy technologies that are already making America's clean energy future a reality. Share your photos

  9. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  10. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  11. Clean Air Act, Section 309

    Office of Environmental Management (EM)

    CLEAN AIR ACT § 309* §7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and responsibilities granted pursuant to this chapter or other provisions of the authority of Administrator, contained in any (1) legislation proposed by any Federal department or agency, (2) newly authorized Federal projects for construction and any major Federal agency action (other than a project for construction) to which section

  12. EPA The Clean Power Plan

    Office of Environmental Management (EM)

    4, 2015 National Tribal Energy Summit Summary 2 Climate change is a threat in the U.S. -- We are already feeling the dangerous and costly effects of a changing climate - affecting people's lives, family budgets, and businesses' bottom lines EPA is taking three actions that will significantly reduce carbon pollution from the power sector, the largest source of carbon pollution in the US o Clean Power Plan (CPP) - existing sources o Carbon Pollution Standards - new, modified and reconstructed

  13. The foul side of 'clean coal'

    SciTech Connect (OSTI)

    Johnson, J.

    2009-02-15

    As power plants face new air pollution control, ash piles and their environmental threats are poised to grow. Recent studies have shown that carcinogens and other contaminants in piles of waste ash from coal-fired power plants can leach into water supplies at concentrations exceeding drinking water standards. Last year an ash dam broke at the 55-year old power plant in Kingston, TN, destroying homes and rising doubts about clean coal. Despite the huge amounts of ash generated in the USA (131 mtons per year) no federal regulations control the fate of ash from coal-fired plants. 56% of this is not used in products such as concrete. The EPA has found proof of water contamination from many operating ash sites which are wet impoundments, ponds or reservoirs of some sort. Several member of Congress have show support for new ash-handling requirements and an inventory of waste sites. Meanwhile, the Kingston disaster may well drive utilities to consider dry handling. 3 photos.

  14. Clean Energy Ministerial | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Ministerial Clean Energy Ministerial Energy ministers and high-level delegates gathered for the Fifth Clean Energy Ministerial (CEM5) in Seoul, Korea on May 12-13, 2014. Photo courtesy of the CEM Secretariat. Energy ministers and high-level delegates gathered for the Fifth Clean Energy Ministerial (CEM5) in Seoul, Korea on May 12-13, 2014. Photo courtesy of the CEM Secretariat. The Clean Energy Ministerial (CEM) is a high-level global forum to share best practices and promote

  15. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: clean energy Type Term...

  16. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Clean Energy Fuels Type...

  17. Lab, Small Businesses Collaborate to Commercialize Clean Energy Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, Small Businesses Collaborate to Commercialize Clean Energy Products

  18. Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Water This map demonstrates the potential capacity to generate clean hydroelectric energy at existing non-powered dams across the U.S. Learn more. America has vast wave, tidal and hydropower resources - but much of this energy remains untapped. The Energy Department is committed to driving critical research and development efforts to expand electricity generation from these clean energy resources. This includes investments in existing hydropower facilities to equip them with the necessary

  19. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  20. The Clean Energy Economy in Three Charts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts January 6, 2014 - 5:55pm Addthis The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts America's cleantech industry has a bright -- and growing -- future. America's cleantech industry has a bright -- and growing -- future. The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts

  1. US-China clean energy report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China clean energy report US-China clean energy report US-China clean energy report PDF icon US-China clean energy report More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Before the U.S.-China Economic and Security Review Commission

  2. US-China Clean Energy Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Clean Energy Cooperation US-China Clean Energy Cooperation US-China Clean Energy Cooperation PDF icon US-China Clean Energy Cooperation More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China clean energy report THE WHITE HOUSE

  3. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Clean Energy Solutions Centers Fact Sheet Clean Energy Solutions Centers Fact Sheet A fact sheet describing the mission of the Clean Energy Solution Center. PDF icon Clean Energy Solutions Centers Fact Sheet More Documents & Publications Clean-Energy-Solutions-Centers-Fact-Sheet.pdf Clean Energy Ministerial Press Fact Sheet SLED-Fact-Sheet.pdf

  4. About the Water Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Water Power Program About the Water Power Program About the Water Power Program The U.S. Department of Energy's (DOE) Water Power Program is committed to developing and deploying a portfolio of innovative technologies for clean, domestic power generation from resources such as hydropower, waves, and tides. What We Do Leading the world in clean energy is critical to strengthening the American economy, and the Water Power Program is at the forefront of the nation's clean energy frontier.

  5. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  6. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  7. Plymouth Marine Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Marine Laboratory Jump to: navigation, search Name: Plymouth Marine Laboratory Place: United Kingdom Product: Carries out strategic and applied marine research. References:...

  8. Leviathan Marine Development | Open Energy Information

    Open Energy Info (EERE)

    Marine Development Jump to: navigation, search Name: Leviathan Marine Development Sector: Marine and Hydrokinetic Website: www.leviathanenergy.com This company is listed in the...

  9. IDEA Clean Energy Application Center

    SciTech Connect (OSTI)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nations energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEACs. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEACs for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEACs for EPAs Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the awards incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  10. Twenty Years of Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 e-mail: george_douglas@nrel.gov Golden, Colo., July 3, 1997--A doctor stores a life-saving vaccine in a solar-powered refrigerator in a remote Brazilian village, hundreds of miles from the nearest power line. Turbines in California harness the power of the wind to produce economically competitive electricity without producing pollution. Instead of fueling a forest fire, tinder-dry fallen timber littering the

  11. Water Power News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    858936+791+7+343Water Power News en Energy Department Awards 10.5 Million for Next-Generation Marine Energy Systems http:energy.goveerearticlesenergy-department-awards-105-...

  12. Water Power Program News

    SciTech Connect (OSTI)

    2012-01-19

    News stories about conventional hydropower and marine and hydrokinetic technologies from the U.S. Department of Energy, the Office of Energy Efficiency and Renewable Energy, the Wind and Water Power Program, and other federal agencies.

  13. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  14. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  15. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  16. Los Alamos to team with Procter & Gamble in clean energy manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    initiative Clean energy manufacturing initiative Los Alamos to team with Procter & Gamble in clean energy manufacturing initiative The areas of focus include energy, water, waste and transportation. September 17, 2015 Los Alamos National Laboratory and consumer products company Procter & Gamble will form one of the seven 'innovation pairs' working to bring sustainable ideas from some of the nations top scientists into the day-to-day world of manufacturing. Los Alamos National

  17. Get Current: Switch on Clean Energy Coloring Book | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coloring Book Get Current: Switch on Clean Energy Coloring Book Below is information about the student activity/lesson plan from your search. Grades K-4 Subject Energy Basics Summary Kids can be part of the Clean Energy Generation: This coloring book teaches them about renewable energies such as wind, water and solar, as well as good habits in energy efficiency to practice at home. (Available in both English and Spanish.) Curriculum Science, Language Arts Plan Time Varies by activity Materials

  18. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: marine energy Type Term Title Author Replies Last...

  19. Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (MHK) Databases and Systems Fact Sheet Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research. PDF icon Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on Energy and Natural Resourses Categorizing and Evaluating

  20. Marine Corps Base Camp Pendleton | Department of Energy

    Office of Environmental Management (EM)

    Camp Pendleton Marine Corps Base Camp Pendleton Fact sheet describes the Energy savings Performance Contract (ESPC) Success Story on how a comprehensive effort cuts energy use by 44% at Marine Corps Base Camp Pendleton in Camp Pendleton, California. PDF icon espc_ss_pendleton.pdf More Documents & Publications 2013 Federal Energy and Water Management Award Winner Jeff Allen 2001 FEMP Customer Survey Report (Appendices) Camp Pendleton Saves 91% in Parking Lot Lighting

  1. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) CLEAN C O A L RESEARCH PROGRAM 2012 TECHNOLOGY READINESS ASSESSMENT DECEMBER 2012 United States Department of Energy | Office of Fossil Energy -ANALYSIS OF ACTIVE RESEARCH PORTFOLIO ii 2012 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM iii DISCLAIMER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  2. Clean Air Act | Department of Energy

    Energy Savers [EERE]

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  3. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  4. What We Clean Up & Why

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship » Environmental Cleanup » What We Clean Up & Why What We Clean Up & Why We clean up legacy waste sites and contaminated areas for return to the public. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email An active approach to cleanup and environmental restoration One of the Laboratory's main environmental duties is to investigate where hazardous chemical and/or radioactive materials may

  5. Clean Coal Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Research Clean Coal Research DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled power plants by increasing overall system efficiencies and reducing capital costs. In the near-term, advanced technologies that increase the power generation efficiency for new plants and technologies to capture carbon dioxide (CO2) from new and existing

  6. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and

  7. Explore Clean Energy Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Explore Clean Energy Careers Explore Clean Energy Careers The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy accelerates research, development, and deployment of advanced energy technologies in renewables and energy efficiency. As these new technologies are launched into commercial use, they create new jobs for American workers-strengthening U.S. energy security, environmental quality, and economic vitality. A clean energy career can be any occupation that is

  8. biofouling studies on Sandia's marine hydrokinetic coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofouling studies on Sandia's marine hydrokinetic coatings - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  9. Navy/Marine Engineering Command Visits Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navy/Marine Engineering Command Visits Sandia - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  10. Marin Solar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94901 Sector: Solar Product: Marin Solar is a residential installer of photovoltaic systems. References: Marin Solar1 This article is a stub. You can help OpenEI by...

  11. 2015 Marine Energy Technology Symposium

    Broader source: Energy.gov [DOE]

    The 3rd Annual Marine Energy Technology Symposium (METS) will be held as part of the inaugural International Marine Energy Conference. This conference takes place April 27-29, 2015, at the Capital...

  12. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showcase innovations in clean energy technology manufacturing and advanced manufacturing ... The Southeast Regional Summit is free of charge and open to the public. Register to attend ...

  13. Clean Energy Innovation Center | Open Energy Information

    Open Energy Info (EERE)

    Innovation Center Jump to: navigation, search Name: Clean Energy Innovation Center Place: Denver, Colorado Product: US Business Incubator located in Denver, Colorado. Coordinates:...

  14. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  15. Clean Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 95742 Product: The company has developed oxyfuel technology for zero emission fossil fuel power plants. References: Clean Energy Systems1 This article is a stub. You can...

  16. Washington Clean Technology Alliance | Open Energy Information

    Open Energy Info (EERE)

    green tech or environmental technologies. Mission To secure the state's position as a leader in clean technologies by supporting businesses to take full advantage of industry...

  17. clean cities | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy security by supporting local actions to reduce petroleum consumption in transportation. A national network of nearly 100 Clean Cities coalitions brings together...

  18. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  19. Clean Cities Regional Support & Petroleum Displacement Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Support & Petroleum Displacement Awards Clean Cities Regional Support & Petroleum Displacement Awards 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  20. Clean Technology Sustainable Industries Organization | Open Energy...

    Open Energy Info (EERE)

    Sustainable Industries Organization Jump to: navigation, search Name: Clean Technology & Sustainable Industries Organization Place: Royal Oak, Michigan Zip: 48073 Product: A...

  1. Bio Clean Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuels Inc Jump to: navigation, search Name: Bio-Clean Fuels Inc Place: California Sector: Hydro Product: Califonia-based biofuel technology and engineering company. The company is...

  2. Energy Saver Heroes: Clean Cities Coordinators

    Broader source: Energy.gov [DOE]

    Clean Cities, the deployment arm of EERE’s Vehicle Technology Program, works to support local decisions to reduce petroleum consumption in transportation.

  3. Clean Cities Now, Vol. 10, No. 2

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

  4. Clean Tech Trade Alliance | Open Energy Information

    Open Energy Info (EERE)

    30351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: Clean Tech Trade Alliance Web Site1 This article is a stub. You can help...

  5. Clean Energy Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Clean Energy Technologies Place: Overland Park, Kansas Sector: Renewable Energy Product: Producer of ethanol and other renewable...

  6. Climate Clean Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Climate Clean, Inc. Place: Portland, Oregon Zip: 97205 Sector: Carbon Product: Early stage carbon offset buyer with focus on CDMJI projects...

  7. Clean Power Finance | Open Energy Information

    Open Energy Info (EERE)

    Finance Jump to: navigation, search Name: Clean Power Finance Place: San Francisco, California Zip: 94103-4004 Sector: Services, Solar Product: A San Francisco-based consultancy...

  8. Clean Wave Ventures | Open Energy Information

    Open Energy Info (EERE)

    Wave Ventures Jump to: navigation, search Name: Clean Wave Ventures Place: Indianapolis, Indiana Zip: 46204 Product: Midwest-based venture capital firm specializing in high growth...

  9. Clean Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Clean Energy Group Place: Montpelier, Vermont Zip: 5602 Product: Vermont-based non-profit organization that promotes the greater use of...

  10. Clean Fuels Ohio | Open Energy Information

    Open Energy Info (EERE)

    Ohio Jump to: navigation, search Name: Clean Fuels Ohio Address: 3400 North High Street, Suite 430 Place: Columbus, Ohio Zip: 43202 Website: www.cleanfuelsohio.org References:...

  11. DOE - Fossil Energy: Clean Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead

  12. Clean Mobile AG | Open Energy Information

    Open Energy Info (EERE)

    AG Place: Munich, Bavaria, Germany Sector: Vehicles Product: Manufacturer of fuel cell-powered drives for small vehicles. References: Clean Mobile AG1 This article is a...

  13. Clean Development Mechanism Pipeline | Open Energy Information

    Open Energy Info (EERE)

    Clean Development Mechanism Pipeline AgencyCompany Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation,...

  14. CleanStart | Open Energy Information

    Open Energy Info (EERE)

    search Name: CleanStart Place: McClellan, California Zip: CA 95652 Product: US Business Technology Incubator located in California. Coordinates: 38.668696, -121.394799...

  15. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  16. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  17. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  18. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    Analysis (ICEA) gateway promotes increased access to clean energy analysis tools, databases, methods and other technical resources which can be applied in developing countries....

  19. SRNL Science and Innovation - Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal hydrides Science and Innovation Clean Energy - Hydrogen Production and Storage ... radioactive isotope of hydrogen that is a vital component of modern nuclear defense. ...

  20. Microsoft Word - KCP FONSI 042913 clean version

    National Nuclear Security Administration (NNSA)

    TBD 1) SUMMARY: The National Nuclear Security ... website: http:nnsa.energy.govnepabfcea.The EA and FONSI ... remediated area with clean fill, which would ...

  1. DOE - NNSA/NFO -- Operation Clean Desert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher's Guide Return to Top Operation Clean Desert in the Classroom is a science module ... of contamination caused by historic nuclear testing at the Nevada National Security Site. ...

  2. Hawaii: A Model for Clean Energy Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Hawaii: A Model for Clean Energy Innovation Maurice Kaya, Project Director Hawaii ... Kuehnle AgroSystems Algae Biomass for Biofuel Production Oahu Sopogy Micro Concentrated ...

  3. Clean Cities Now, Vol. 10, No. 3

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

  4. Clean Earth Capital LLP | Open Energy Information

    Open Energy Info (EERE)

    Capital LLP Jump to: navigation, search Name: Clean Earth Capital LLP Place: EDINBURGH, United Kingdom Zip: EH6 4NW Sector: Renewable Energy Product: Edinburgh-based corporate...

  5. Through its Clean Coal Research Program, FE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This includes: Carbon Capture and Storage (CCS) Demonstration Program: Clean Coal Power Initiative (CCPI), FutureGen 2.0 and Industrial CCS Demonstrations funded by the American ...

  6. Canada-US Clean Energy Dialogue:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Carbon Capture and Storage (CCS) Collaboration Among the clean energy technologies available, we emphasized carbon capture and storage (CCS) as one that holds enormous ...

  7. CLEAN Webinar Series 5 | Open Energy Information

    Open Energy Info (EERE)

    CLEAN Webinar Series 5 Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve WebinarHeader.JPG...

  8. Buying Clean Electricity | Department of Energy

    Office of Environmental Management (EM)

    an optional service, called green pricing, that allows customers to pay a small premium in exchange for electricity generated from clean, renewable ("green") energy sources. ...

  9. Clean Technology & Sustainable Industries Organization | Open...

    Open Energy Info (EERE)

    leCleanTechnology%26SustainableIndustriesOrganization&oldid765712" Categories: Organizations Networking Organizations Trade Groups Stubs Articles with outstanding TODO tasks...

  10. Clean Energy Ministerial | Department of Energy

    Energy Savers [EERE]

    Clean Energy Ministerial Clean Energy Ministerial June 1, 2016 8:00AM EDT to June 2, 2016 4:00PM EDT The United States will host the seventh Clean Energy Ministerial (CEM7) in San Francisco, California, on June 1-2, 2016. The annual meeting of energy ministers and other high-level delegates from the 23 CEM member countries and the European Commission will provide an opportunity for the major economies to collaborate on solutions that advance clean energy globally and demonstrate tangible

  11. Clean Venture 21 Corp | Open Energy Information

    Open Energy Info (EERE)

    21 Corp Jump to: navigation, search Name: Clean Venture 21 Corp Place: Kyoto, Kyoto, Japan Zip: 601 8121 Product: Japan-based company that researches, manufactures, and retails...

  12. Global Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Place: Denver, Colorado Zip: 80231 Sector: Biofuels Product: Denver-based waste-to-energy and waste-to-biofuels technology developer. Coordinates: 39.74001,...

  13. Northern Colorado Clean Cities | Open Energy Information

    Open Energy Info (EERE)

    Cities Jump to: navigation, search Name: Northern Colorado Clean Cities Address: PO Box 759 Place: Johnstown, Colorado Zip: 80534 Region: Rockies Area Number of Employees:...

  14. Clean Energy Asset Management | Open Energy Information

    Open Energy Info (EERE)

    Asset Management Jump to: navigation, search Name: Clean Energy Asset Management Place: Santa Monica, California Zip: 94040 Sector: Efficiency, Renewable Energy Product: String...

  15. New Report Highlights Growth of America's Clean Energy Job Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean

  16. Pay for Clean Energy Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pay for Clean Energy Efforts Pay for Clean Energy Efforts PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to paying for clean energy efforts. The resources available here aim to provide an overview of financing for state, local, and tribal governments who are designing and implementing clean

  17. City of Palo Alto Utilities- Palo Alto CLEAN (Clean Local Energy Accessible Now)

    Broader source: Energy.gov [DOE]

    City Palo Alto Utility's Clean Local Energy Accessible Now (CLEAN) program provides fixed payments for electricity produced by approved photovoltaic systems over a fixed period of time. This type...

  18. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    SciTech Connect (OSTI)

    Suseno, Heny

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  19. What Is Clean Cities? Clean Cities Fact Sheet April 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  20. #CleanTechNow: Your Best Clean Energy Photos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos September 27, 2013 - 12:45pm Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy & Communications Learn More: Follow @energy on Instagram to check out more great photos and videos about energy technology. Read an Energy Department report about the recent advances of wind, solar panels, electric vehicles and LED lighting in the consumer marketplace. Check out Secretary Moniz's blog post