Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen Sulfide in Drinking Water: Causes and Treatment Alternatives  

E-Print Network [OSTI]

If drinking water has a nuisance "rotten egg odor, it contains hydrogen sulfide. This leaflet discusses how hydrogen sulfide is formed and how the problem can be corrected....

McFarland, Mark L.; Provin, Tony

1999-06-15T23:59:59.000Z

2

Geothermal hydrogen sulfide removal  

SciTech Connect (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

3

CODE OF PRACTICE HYDROGEN SULFIDE  

E-Print Network [OSTI]

CODE OF PRACTICE HYDROGEN SULFIDE Rev January 2013 1 The following generic Code of Practice applies to all work areas within the University of Alberta that use hydrogen sulfide gas or where hydrogen response procedure requirements. All work areas where hydrogen sulfide is used or may be present within

Machel, Hans

4

CODE OF PRACTICE HYDROGEN SULFIDE  

E-Print Network [OSTI]

CODE OF PRACTICE HYDROGEN SULFIDE 1 The following generic Code of Practice applies to all work areas within the University of Alberta that use hydrogen sulfide gas. It outlines responsibilities, safe procedure requirements. All work areas where hydrogen sulfide is used within the University of Alberta must

Machel, Hans

5

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network [OSTI]

as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular...

Harkness, J.; Doctor, R. D.

6

Guidance Document Safe Handling of Sulfides and Hydrogen Sulfide  

E-Print Network [OSTI]

Guidance Document Safe Handling of Sulfides and Hydrogen Sulfide [This is a brief summary. Read concern would be hydrogen sulfide, whether handling in the pure gaseous form or by generation from various threshold level, the oxidative enzymes would be overwhelmed. Uses: Sulfides and hydrogen sulfide are used

7

Membrane for hydrogen recovery from streams containing hydrogen sulfide  

DOE Patents [OSTI]

A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

Agarwal, Pradeep K.

2007-01-16T23:59:59.000Z

8

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents [OSTI]

A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

1993-05-18T23:59:59.000Z

9

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents [OSTI]

A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

1993-01-01T23:59:59.000Z

10

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect (OSTI)

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

11

Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water  

E-Print Network [OSTI]

the use of strong acids and bases, thus reducing their environmental impact and increasing Generation from Water Yujie Sun,,,, Chong Liu,, David C. Grauer,, Junko Yano, Jeffrey R. Long,*,, Peidong, and long-term aqueous stability, offer promising features for potential use in solar energy applications

12

Kinetic study of hydrogen sulfide absorption in aqueous chlorine solution  

E-Print Network [OSTI]

). This technique involves H2S mass transfer in an aqueous phase using a gas-liquid contactor. Since H2S is poorly. This scrubbing liquid is just drained when the salt accumulation due to H2S oxidation into sulfate anions becomes Hydrogen sulfide (H2S) is currently removed from gaseous effluents by chemical scrubbing using water

Paris-Sud XI, Université de

13

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 19 Gien N. Foss Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Bradley D. Julson Ocean Drilling Program Texas A&M University 1000 Discovery Drive

14

HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

15

High temperature regenerable hydrogen sulfide removal agents  

DOE Patents [OSTI]

A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

Copeland, Robert J. (Wheat Ridge, CO)

1993-01-01T23:59:59.000Z

16

Catalysts for the selective oxidation of hydrogen sulfide to sulfur  

DOE Patents [OSTI]

This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

2000-08-08T23:59:59.000Z

17

A study of the reactions of arsinic and arsonic acids with hydrogen sulfide and hydrogen selenide  

E-Print Network [OSTI]

A STUDY OF THE REACTIONS OF ARSINIC AND ARSONIC ACIDS WITH HYDROGEN SULFIDE AND HYDROGEN SELENIDE by CYNTHIA ANNETTE APPLEGATE Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Chemistry A STUDY OF THE REACTIONS OF ARSINIC AND ARSONIC ACIDS WITH HYDROGEN SULFIDE AND HYDROGEN SELENIDE A Thesis by CYNTHIA ANNETTE APPLEGATE Approved as to style and content by: Ralph A. ngaro...

Applegate, Cynthia Annette

2012-06-07T23:59:59.000Z

18

Quantitative evaluation of hydrogen sulfide at 0.3 M and 1.0 M-hydrogen-ion concentration  

E-Print Network [OSTI]

. In the present study, cobalt sulfide was quantitatively re? covered from a solution whose hydrogen-ion concentration -12was calculated to be 6.95 x 10 M. As in the case of zinc sulfide, this was to be expected, since a decreased hydrogen-ion concentration... quantitatively to an electrolysis beaker with distilled water. The copper 28 was deposited on a platinum gauze cathode in 9 hours from a solution containing a 5 ml. excess of 18 M sulfuric acid in 125 ml., and a current of 0.5 ampere. 12. Copper (II) - Zinc...

Machel, Albert R.

1958-01-01T23:59:59.000Z

19

The selective adsorption of hydrogen sulfide from natural gas streams  

E-Print Network [OSTI]

on the Magnolia Petroleum Company's Clayton Ranch No. 1 gas well. This well has 100 grains of hydrogen sulfide per 100 ft. of gas, or 0. 0016 m. f. Back Pressure Regulator I Smiley Tester (PbAc) Flare Well Reducing Regulator Separator Heater... to flare The gas out the top passed upward through the adsorbing column, through another back pressure regulator to the positive displacement meter, and thence to flare. Smiley testers were installed in the exit line to test for hydrogen sulfide, using...

Fails, James Clayton

1959-01-01T23:59:59.000Z

20

Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor  

E-Print Network [OSTI]

Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network.1063/1.3070237 Hydrogen sulfide H2S is a toxic, corrosive, and inflam- mable gas produced in sewage, coal mines, oil

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a metal boride, nitride, carbide and/or silicide catalyst  

SciTech Connect (OSTI)

Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a metal boride, carbide, nitride and/or silicide catalyst, such as titanium carbide, vanadium boride, manganese nitride or molybdenum silicide.

McGuiggan, M.F.; Kuch, P.L.

1984-05-08T23:59:59.000Z

22

Toxic sulfide concentrations in the sediments and water column of the Suwannee River estuary and its influence on hard clam survival  

E-Print Network [OSTI]

Toxic sulfide concentrations in the sediments and water column of the Suwannee River estuary that is grown to market size in estuarine sediments. Hydrogen sulfide, a natural metabolic poison known of hard clams used in field aquaculture areas in the Suwannee River estuary. Sulfide was found in sediment

Florida, University of

23

Effects of Hydrogen Sulfide on the Performance of a PEMFC R. Mohtadi,a,  

E-Print Network [OSTI]

October 7, 2003. In a ``hydrogen challenged'' economy, the fuel for proton ex- change membrane fuel cellsEffects of Hydrogen Sulfide on the Performance of a PEMFC R. Mohtadi,a, * W.-k. Lee,a, ** S. Cowan-products, such as carbon monoxide, ammonia, and hydrogen sulfide. While it is well known that H2S severely poisons Pt

Van Zee, John W.

24

Hydrogen sulfide spatial distribution and exposure in deep-pit swine housing.  

E-Print Network [OSTI]

??The objectives of this research focus on investigating spatial distribution of hydrogen sulfide gas associated with manure removal and agitation events in deep-pit swine production… (more)

Swestka, Randy John

2010-01-01T23:59:59.000Z

25

Methods for producing hydrogen (BI) sulfide and/or removing metals  

DOE Patents [OSTI]

The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

2002-05-14T23:59:59.000Z

26

Metal?organic frameworks for the storage and delivery of biologically active hydrogen sulfide  

SciTech Connect (OSTI)

Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

Allan, Phoebe K.; Wheatley, Paul S.; Aldous, David; Mohideen, M. Infas; Tang, Chiu; Hriljac, Joseph A.; Megson, Ian L.; Chapman, Karena W.; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E. (St Andrews)

2012-04-02T23:59:59.000Z

27

Mitigation of hydrogen sulfide emissions in The Geysers KGRA  

SciTech Connect (OSTI)

Violations of the ambient air quality standard (AAQS) for hydrogen sulfide (H/sub 2/S) are currently being experienced in The Geysers KGRA and could significantly increase in the future. Attainment and maintenance of the H/sub 2/S AAQS is a potential constraint to optimum development of this resource. The availability of reliable H/sub 2/S controls and the development of a validated air dispersion model are critical to alleviating this constraint. The purpose of this report is to assess the performance capabilities for state-of-the-art controls, to identify potential cost-effective alternative controls, and to identify the California Energy Commission (CEC) staff's efforts to develop a validated air dispersion model. Currently available controls (Stretford, Hydrogen Peroxide, and EIC) are capable of abating H/sub 2/S emissions from a proposed facility to five lbs/hr. Alternative controls, such as condensate stripping and condensate pH control, appear to be promising, cost-effective control options.

Buell, R.

1981-07-01T23:59:59.000Z

28

Household ceramic water filter evaluation using three simple low-cost methods : membrane filtration, 3M Petrifilm and hydrogen sulfide bacteria in northern region, Ghana  

E-Print Network [OSTI]

Drinking water continues to be a major source of waterborne diseases and death in the world because many points of water collection remain unsafe. This thesis reports high level of fecal contamination found in rivers and ...

Mattelet, Claire (Claire Eliane H. Y.)

2006-01-01T23:59:59.000Z

29

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

30

Updated cost estimates of meeting geothermal hydrogen sulfide emission regulations  

SciTech Connect (OSTI)

A means of estimating the cost of hydrogen sulfide (H/sub 2/S) emission control was investigated. This study was designed to derive H/sub 2/S emission abatement cost functions and illustrate the cost of H/sub 2/S emission abatement at a hydrothermal site. Four tasks were undertaken: document the release of H/sub 2/S associated with geothermal development; review H/sub 2/S environmental standards; develop functional relationships that may be used to estimate the most cose-effective available H/sub 2/S abatement process; and use the cost functions to generate abatement cost estimates for a specific site. The conclusions and recommendations derived from the research are presented. The definition of the term impacts as used in this research is discussed and current estimates of the highest expected H/sub 2/S concentrations of in geothermal reservoirs are provided. Regulations governing H/sub 2/S emissions are reviewed and a review of H/sub 2/S control technology and a summary of the control cost functions are included. A case study is presented to illustrate H/sub 2/S abatement costs at the Baca KGRA in New Mexico.

Wells, K.D.; Currie, J.W.; Weakley, S.A.; Ballinger, M.Y.

1981-08-01T23:59:59.000Z

31

Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide  

SciTech Connect (OSTI)

The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

2007-09-30T23:59:59.000Z

32

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

33

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

34

Journal of Power Sources 135 (2004) 184191 A solid oxide fuel cell system fed with hydrogen sulfide  

E-Print Network [OSTI]

Journal of Power Sources 135 (2004) 184­191 A solid oxide fuel cell system fed with hydrogen for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide

35

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

SciTech Connect (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

36

Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide  

SciTech Connect (OSTI)

The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that stea

Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

2008-05-31T23:59:59.000Z

37

Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent  

DOE Patents [OSTI]

A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

Jalan, Vinod M. (Concord, MA); Frost, David G. (Maynard, MA)

1984-01-01T23:59:59.000Z

38

Production of hydrogen in non oxygen-evolving systems: co-produced hydrogen as a bonus in the photodegradation of organic pollutants and hydrogen sulfide  

SciTech Connect (OSTI)

This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an order of magnitude) less energy is required and that sunlight can be used directly. In the case of photoproduction of hydrogen, as compared to water splitting, feeding the anodic compartment of the PEC with an organic pollutant, instead of the usual supporting electrolyte, will bring about a substantial increase of the photocurrent at a given illumination. Thus, the replacement of the photo-oxidation of water by the photodegradation of organic waste will be accompanied by a gain in solar-to-chemical conversion efficiency and hence by a decrease in the cost of the photoproduced hydrogen. Taking into account the benefits and possible revenues obtainable by the waste degradation, this would seem to be a promising approach to the photoproduction of hydrogen. Hydrogen sulfide (H{sub 2}S) is another waste effluent requiring extensive treatment, especially in petroleum refineries. The so-called Claus process is normally used to convert the H{sub 2}S to elemental sulfur. A sulfur recovery process developed at the Florida Solar Energy Center is described briefly in Chapter 4 by Dr. C. Linkous as a typical example of the photoproduction of hydrogen in a non oxygen-evolving system. The encouraging results obtained in these investigations of photoelectrochemical hydrogen production combined with organic waste degradation, have prompted a decision to continue the work under the new IEA Hydrogen Agreement Annex 14, Photoelectrolytic Hydrogen Production.

Sartoretti, C. Jorand; Ulmann, M.; Augustynski, J. (Electrochemistry Laboratory, Department of Chemistry, University of Geneva (CH)); Linkous, C.A. (Florida Solar Energy Center, University of Central Florida (US))

2000-01-01T23:59:59.000Z

39

Process for exchanging hydrogen isotopes between gaseous hydrogen and water  

DOE Patents [OSTI]

A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

1980-08-12T23:59:59.000Z

40

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, R.V.

1997-12-30T23:59:59.000Z

42

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, R.V.

1999-02-02T23:59:59.000Z

43

Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1999-01-01T23:59:59.000Z

44

State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979  

SciTech Connect (OSTI)

Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

1980-03-01T23:59:59.000Z

45

Electrochemical separation and concentration of hydrogen sulfide from gas mixtures  

DOE Patents [OSTI]

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (Atlanta, GA); Sather, Norman F. (Naperville, IL); Huang, Hann S. (Darian, IL)

1984-10-30T23:59:59.000Z

46

Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under Physiologically Relevant  

E-Print Network [OSTI]

Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under found that micromolar concentrations of H2S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H2S to generate superoxide, hydrogen peroxide, and

Gates, Kent. S.

47

Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors  

SciTech Connect (OSTI)

A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

2014-10-14T23:59:59.000Z

48

Conditions under which cracks occur in modified 13% chromium steel in wet hydrogen sulfide environments  

SciTech Connect (OSTI)

Occurrence of cracks in an API 13% Cr steel, modified 13% Cr steel, and duplex stainless steel were compared in various wet, mild hydrogen sulfide (H{sub 2}S) environments. The conditions under which cracks occurred in the modified 13% Cr steel in oil and gas production environments were made clear. No cracks occurred if pH > depassivation pH (pH{sub d}) and redox potential of sulfur (E{sub S(red/ax)}) < pitting potential (V{sub c}). Hydrogen embrittlement-type cracks occurred in pH > Ph{sub d} and E{sub S(red/ax)} > V{sub c}. The pH inside the pit decreased drastically and hydrogen embrittlement occurred. Cracks of the hydrogen embrittlement type occurred if pH < pH{sub d} and threshold hydrogen concentration under which cracks occur (H{sub th}) < hydrogen concentration in steel (H{sub 0}). No cracks occurred if pH < pH{sub d} and H{sub th} > H{sub 0}.

Hara, T.; Asahi, H.

2000-05-01T23:59:59.000Z

49

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

50

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

51

Hydrogen Cars and Water Vapor  

E-Print Network [OSTI]

misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

Colorado at Boulder, University of

52

Hydrogen Production From Metal-Water Reactions  

E-Print Network [OSTI]

Hydrogen Production From Metal-Water Reactions Why Hydrogen Production? Hydrogen is a critical. Current methods of hydrogen storage in automobiles are either too bulky (large storage space for gas phase) or require a high input energy (cooling or pressurization systems for liquid hydrogen), making widespread use

Barthelat, Francois

53

Mitigation of Hydrogen Sulfide Emissions in the Geysers KGRA (Staff Draft)  

SciTech Connect (OSTI)

Violations of the ambient air quality standard (AAQS) for hydrogen sulfide (H2S) are currently being experienced in The Geysers KGRA and could significantly increase in the future. Attainment and maintenance of the H2S AAQS is a potential constraint to optimum development of this resource. The availability of reliable H2S controls and the development of a validated air dispersion model are critical to alleviating this constraint. The purpose of this report is to assess the performance capabilities for state-of-the-art controls, to identify potential cost-effective alternative controls, and to identify the California Energy Commission (CEC) staffs efforts to develop a validated air dispersion model. Currently available controls (Stretford, Hydrogen Peroxide, and EIC) are capable of abating H2S emissions from a proposed facility to five lbs/hr. Alternative controls, such as condensate stripping and condensate pH control, appear to promising, cost-effective control option. The CEC staff is currently developing a validated air dispersion model for The Geysers KGRA. The CEC staff recommends investigation of retrofit control options for existing units, investigation of alternative control technologies, and dispersion analysis for optimum plant location in order to maximize the development potential of The Geysers KGRA. Energy cost studies suggest that the EIC process would be the most cost-effective for retrofits at The Geysers. (DJE-2005)

Buell, Richard

1981-07-01T23:59:59.000Z

54

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

55

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

56

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

57

Hydrogen and water reactor safety: proceedings  

SciTech Connect (OSTI)

Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

Not Available

1982-01-01T23:59:59.000Z

58

Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway  

SciTech Connect (OSTI)

Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 ?M) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 ?M) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 ?M), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 ?M). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

Módis, Katalin [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)] [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Asimakopoulou, Antonia [Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece)] [Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Coletta, Ciro [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)] [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Papapetropoulos, Andreas [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States) [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Szabo, Csaba, E-mail: szabocsaba@aol.com [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)] [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)

2013-04-19T23:59:59.000Z

59

E-Print Network 3.0 - anaerobic hydrogen producing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a small percentage of hydrogen sulfide, water vapor, carbon... Technology Biomethane (biogas) is an alternative and renewable energy source produced through the anaerobic... are...

60

Nanomaterials for Extracting Hydrogen from Water  

E-Print Network [OSTI]

to catalyze water oxidation. K E Y A C C O M P L I S H M E N T S Produced highly active iron oxide (hematiteNanomaterials for Extracting Hydrogen from Water P R O J E C T L E A D E R : Veronika Szalai (NIST water. R E F E R E N C E Effect of tin doping on -Fe2 O3 photoanodes for water splitting, C. D. Bohn, A

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water  

SciTech Connect (OSTI)

High-resolution characterizations of intergranular attack in alloy 600 (Ni-17Cr-9Fe) exposed to 325 °C simulated pressurized water reactor (PWR) primary water have been conducted using a combination of scanning electron microscopy, NanoSIMS, analytical transmission electron microscopy and atom probe tomography. The intergranular attack exhibited a two-stage microstructure that consisted of continuous corrosion/oxidation to a depth of ~200 nm from the surface followed by discrete Cr-rich sulfides to a further depth of ~500 nm. The continuous oxidation region contained primarily nanocrystalline MO-structure oxide particles and ended at Ni-rich, Cr-depleted grain boundaries with spaced CrS precipitates. Three-dimensional characterization of the sulfidized region using site-specific atom probe tomography revealed extraordinary grain boundary composition changes, including total depletion of Cr across a several nm wide dealloyed zone as a result of grain boundary migration.

Schreiber, Daniel K.; Olszta, Matthew J.; Saxey, David W.; Kruska, Karen; Moore, K. L.; Lozano-Perez, Sergio; Bruemmer, Stephen M.

2013-06-01T23:59:59.000Z

62

Cadmium sulfide membranes  

DOE Patents [OSTI]

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1991-10-22T23:59:59.000Z

63

Cadmium sulfide membranes  

DOE Patents [OSTI]

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1992-07-07T23:59:59.000Z

64

Cathodic hydrogen embrittlement of a 22% chromium 5% nickel duplex stainless steel in sulfide containing 3.5 wt% NaCl solution  

SciTech Connect (OSTI)

Hydrogen embrittlement (HE) of a 2,205 duplex stainless steel has been studied by slow straining of tensile specimens in sulfide containing 3.5 wt% NaCl solution. A more complex sulfide-concentration-dependent loss in ductility was discovered at controlled potentials in {minus}1,100 mV (SCE). It is believed that HE was controlled by the critical concentration of S as a promoter at lower sulfide levels and recovery of ductility at higher sulfide concentrations was attributed to the role of the sulfide as a cathodic inhibitor. No stress corrosion cracking (SCC) was observed at anodic polarization in this system. The electrochemical results indicate that the corrosion potentials of 2,205 duplex stainless steel in 3.5 wt% NaCl solution move to the less noble direction with increasing the sulfide concentration or with decreasing the solution acidity. This trend was not influenced by the presence of dissolved oxygen. Under severe HE environments transgranular cleavage is the favored path for cracking.

Tsai, S.Y. [Industrial Technology Research Inst., Hsinchu (Taiwan, Province of China). Materials Research Labs.; Shih, H.C. [National Tsing Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Materials Science and Engineering; Yen, K.P. [National Chung Hsing Univ., Taichung (Taiwan, Province of China). Inst. of Materials Engineering

1996-08-01T23:59:59.000Z

65

Reaction of Aluminum with Water to Produce Hydrogen: A Study...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum with Water to Produce Hydrogen: A...

66

Kinetic studies of the water gas shift reaction on a sulfided cobalt/molybdena/alumina catalyst  

SciTech Connect (OSTI)

In this study, the applicability of low temperature oxygen chemisorption (LTOC) to measure the specific surface area of several rare-earth oxides (La, Ce, Pr, Nd, Tb) and the kinetics of the water-gas shift reaction over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst are investigated. The LTOC results indicate that oxygen is possibly adsorbed in the molecular form, O/sub 2//sup -/, as observed by others after heat treatment of these oxides in vacuum. Lanthana and ceria were found to have ratios of total surface area to LTOC similar to those of chromia and molybdena respectively, after a comparable pretreatment. Furthermore, ceria is deduced to exist as a monolayer on the alumina support at loadings below 12%. An additional hour of reduction after the 6 hours of reduction shows a significant increase in LTOC on lanthana, neodymia and terbia which may be due to phase changes exhibited by these polymorphic oxides. The kinetics of the water-gas shift reaction has been extensively studied on iron oxide (high temperature shift) and copper oxide (low temperature shift) based catalysts. This investigation establishes the kinetics over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst in the medium temperature shift range, 250-300/sup 0/C. The catalyst was sulfided in-situ in a high pressure integrated Berty reactor system. Reaction rates were measured for different CO/H/sub 2/O feed ratios in the range 0.3-3.0, with and without CO/sub 2/ in the feed. The reaction was carried out at several pressures in the range 5-27 atm. and GHSV's in the range 4800-2400 hr/sup 1/.

Srivatsa, N.R.

1987-01-01T23:59:59.000Z

67

Synthesis of cadmium sulfide Q particles in water-in-CO{sub 2} microemulsions  

SciTech Connect (OSTI)

Semiconductor nanoparticles of cadmium sulfide were synthesized in ammonium perfluoropolyether (PFPE-NH{sub 4}) stabilized water-in-CO{sub 2} microemulsions. The particle size was tuned by varying the water-to-surfactant molar ratio ({omega}{sub 0}): {omega}{sub 0} ratios of 5 and 10 yielded nanocrystals with exciton energies of 3.86 and 3.09 eV, corresponding to mean particle radii of 0.9 and 1.8 nm, respectively. These exciton energies are significantly higher than the bulk band gap energy for CdS (2.45 eV) due to quantum confinement effects. Effectively, {omega}{sub 0} controls the size of the compartmentalized water droplets in which the particles grow.

Holmes, J.D.; Bhargava, P.A.; Korgel, B.A.; Johnston, K.P.

1999-09-28T23:59:59.000Z

68

Hydrogen production by the decomposition of water  

DOE Patents [OSTI]

How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

Hollabaugh, Charles M. (Los Alamos, NM); Bowman, Melvin G. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

69

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17TurbinesTurning Water

70

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

71

Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000  

SciTech Connect (OSTI)

The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.

Rachid B. Slimane; Francis S. Lau; Javad Abbasian

2000-10-01T23:59:59.000Z

72

Author's personal copy Photoelectrochemical hydrogen production from water/  

E-Print Network [OSTI]

coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesAuthor's personal copy Photoelectrochemical hydrogen production from water/ methanol decomposition

Wood, Thomas K.

73

Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments  

E-Print Network [OSTI]

Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments Chao Zhang contributions of each of the two hydrogen atoms to the vibrational modes 1 and 3 of water molecules the early works on the molecular structure of water, it has been accepted that a water molecule

Guidoni, Leonardo

74

Adenylate pool and radiological tracer studies of the metabolism of micro-metazoans of the sulfide system  

E-Print Network [OSTI]

The sulfide biome is the oxygen poor, sulfide rich ecosystem underlying the oxidized layers of most shallow water sea bottoms (Fenchel g Riedl, 1970). The organisms inhabiting this area of low redox potential are termed the "thiobios" (Boaden g Platt, 1971...-300ppm (Fenchel & Riedl, 1970). The transitional boundary between the two zones is termed the redox potential discontinuity or chemocline (Ott & Nachan, 1971). There, oxygen as well as hydrogen sulfide may occur in small amounts. The depth...

Fox, Catherine Alice

2012-06-07T23:59:59.000Z

75

Process for the production of hydrogen from water  

DOE Patents [OSTI]

A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

Miller, William E. (Naperville, IL); Maroni, Victor A. (Naperville, IL); Willit, James L. (Batavia, IL)

2010-05-25T23:59:59.000Z

76

HYDROGEN PRODUCTION THROUGH WATER GAS SHIFT REACTION OVER NICKEL CATALYSTS.  

E-Print Network [OSTI]

??The progress in fuel cell technology has resulted in an increased interest towards hydrogen fuel. Consequently, water gas shift reaction has found a renewed significance.… (more)

Haryanto, Agus

2008-01-01T23:59:59.000Z

77

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons… (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

78

Hydrogen and Water: An Engineering, Economic and Environmental Analysis  

SciTech Connect (OSTI)

The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally regional commodity. Water resources vary in quality and qu

Simon, A J; Daily, W; White, R G

2010-01-06T23:59:59.000Z

79

Heat Transfer Characteristics of Sulfur and Sulfur Diluted with Hydrogen Sulfide Flowing Through Circular Tubes  

E-Print Network [OSTI]

is called the pumping-power advantage factor, and has the value 2. 5 x 10 for sodium. The only metals having a higher value of H are 13 lithium 7 and bismuth. Lithium 7 comprises 92. 5% of natural lithium, but the cost of separating it from lithium 6...-section for thermal neutrons being 0. 130 barns. For comparison, water has an absorption cross-section of 0. 58 barns for thermal neutrons (2) . Sulfur is not activated by exposure to neutron flux in such a way as to produce a radioactive isotope which...

Stone, Porter Walwyn

1960-01-01T23:59:59.000Z

80

E-Print Network 3.0 - anoxic sulfide oxidation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cores increased. Sulfide Sulfide production was measured in all anoxic cores. All cores produced sulfide... into the water column over time ... Source: Vallino, Joseph J. -...

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation  

SciTech Connect (OSTI)

Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

2014-01-15T23:59:59.000Z

82

Zinc sulfide liquefaction catalyst  

DOE Patents [OSTI]

A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

83

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 1.0 - 2008 Page 1 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

84

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 #12 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

85

Water inertial reorientation: Hydrogen bond strength and the angular potential  

E-Print Network [OSTI]

Water inertial reorientation: Hydrogen bond strength and the angular potential David E. Moilanen) The short-time orientational relaxation of water is studied by ultrafast infrared pump-probe spectroscopy with recent molecular dynamics simulations employing the simple point charge-extended water model at room

Fayer, Michael D.

86

Spectroscopic investigations of hydrogen bond dynamics in liquid water  

E-Print Network [OSTI]

Many of the remarkable physical and chemical properties of liquid water are due to the strong influence hydrogen bonds have on its microscopic dynamics. However, because of the fast timescales involved, there are relatively ...

Fecko, Christopher J., 1975-

2004-01-01T23:59:59.000Z

87

Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

88

Ultrafast structural fluctuations and rearrangements of water's hydrogen bonded network  

E-Print Network [OSTI]

Aqueous chemistry is strongly influenced by water's ability to form an extended network of hydrogen bonds. It is the fluctuations and rearrangements of this network that stabilize reaction products and drive the transport ...

Loparo, Joseph J. (Joseph John)

2007-01-01T23:59:59.000Z

89

Hydrogen production from water: Recent advances in photosynthesis research  

SciTech Connect (OSTI)

The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-12-31T23:59:59.000Z

90

Molecular cobalt pentapyridine catalysts for generating hydrogen from water  

DOE Patents [OSTI]

A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

2013-11-05T23:59:59.000Z

91

Thermochemical generation of hydrogen and oxygen from water  

DOE Patents [OSTI]

A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

92

Thermochemical generation of hydrogen and oxygen from water  

DOE Patents [OSTI]

A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

1982-01-01T23:59:59.000Z

93

Process for producing cadmium sulfide on a cadmium telluride surface  

DOE Patents [OSTI]

A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

Levi, Dean H. (Lakewood, CO); Nelson, Art J. (Longmont, CO); Ahrenkiel, Richard K. (Lakewood, CO)

1996-01-01T23:59:59.000Z

94

Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice  

E-Print Network [OSTI]

Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.

Weijun Zheng; David Jewitt; Ralf I. Kaiser

2005-11-18T23:59:59.000Z

95

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets  

SciTech Connect (OSTI)

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

Duffin, Andrew M.; Saykally, Richard J.

2007-05-31T23:59:59.000Z

96

Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)  

SciTech Connect (OSTI)

Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

2014-03-24T23:59:59.000Z

97

Cedar Key Aquaculture Workshop Sulfide Concentrations in Sediments  

E-Print Network [OSTI]

Cedar Key Aquaculture Workshop Sulfide Concentrations in Sediments and Water: Influence on Hard;ObjectivesObjectives Examine sediment sulfide levels in the SuwanneeExamine sediment sulfide levels of sulfide on hard clam survivalsurvival #12;MethodsMethods SedimentSediment porewaterporewater samples

Florida, University of

98

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sulfide. Meanwhile, researchers at the Technical University of Denmark engineered light absorbers designed to capture as much solar energy as possible. The absorbers...

99

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review  

SciTech Connect (OSTI)

This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

Not Available

2009-09-01T23:59:59.000Z

100

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

SciTech Connect (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

Barton, Thomas; Argyle, Morris; Popa, Tiberiu

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Method of generating hydrogen by catalytic decomposition of water  

DOE Patents [OSTI]

A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

Balachandran, Uthamalingam (Hinsdale, IL); Dorris, Stephen E. (LaGrange Park, IL); Bose, Arun C. (Pittsburgh, PA); Stiegel, Gary J. (Library, PA); Lee, Tae-Hyun (Naperville, IL)

2002-01-01T23:59:59.000Z

102

Effect of hydrogen bond cooperativity on the behavior of water  

E-Print Network [OSTI]

Four scenarios have been proposed for the low--temperature phase behavior of liquid water, each predicting different thermodynamics. The physical mechanism which leads to each is debated. Moreover, it is still unclear which of the scenarios best describes water, as there is no definitive experimental test. Here we address both open issues within the framework of a microscopic cell model by performing a study combining mean field calculations and Monte Carlo simulations. We show that a common physical mechanism underlies each of the four scenarios, and that two key physical quantities determine which of the four scenarios describes water: (i) the strength of the directional component of the hydrogen bond and (ii) the strength of the cooperative component of the hydrogen bond. The four scenarios may be mapped in the space of these two quantities. We argue that our conclusions are model-independent. Using estimates from experimental data for H bond properties the model predicts that the low-temperature phase diagram of water exhibits a liquid--liquid critical point at positive pressure.

Kevin Stokely; Marco G. Mazza; H. Eugene Stanley; Giancarlo Franzese

2009-08-27T23:59:59.000Z

103

Hydrogen Generation from Water Disassociation Using Small Currents and Harmonics Trien N. Nguyen1  

E-Print Network [OSTI]

Hydrogen Generation from Water Disassociation Using Small Currents and Harmonics Trien N. Nguyen1 1 Department of Physics, Purdue School of Science Hydrogen can be produced cheaply and efficiently from water sources using a combination of harmonics and small currents. Hydrogen is a clean and virtually

Zhou, Yaoqi

104

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

105

Method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents [OSTI]

Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

Willms, R. Scott (Los Alamos, NM)

1996-01-01T23:59:59.000Z

106

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

107

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

108

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

109

Polymer formulation for removing hydrogen and liquid water from an enclosed space  

DOE Patents [OSTI]

This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

Shepodd, Timothy J. (Livermore, CA)

2006-02-21T23:59:59.000Z

110

Method for producing hydrogen  

SciTech Connect (OSTI)

In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

Preston, J.L.

1980-02-26T23:59:59.000Z

111

Hydrogen bond reorganization and vibrational relaxation in water studied with ultrafast infrared spectroscopy  

E-Print Network [OSTI]

Water consists of an extended hydrogen bond network that is constantly evolving. More than just a description of the time averaged structure is necessary to understand any process that occurs in water. In this thesis we ...

Nicodemus, Rebecca Anne

2011-01-01T23:59:59.000Z

112

Process for producing cadmium sulfide on a cadmium telluride surface  

DOE Patents [OSTI]

A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

1996-07-30T23:59:59.000Z

113

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

114

Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa  

SciTech Connect (OSTI)

We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy)] [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Universitŕ degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)] [Dipartimento di Fisica e Astronomia, Universitŕ degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

2014-04-28T23:59:59.000Z

115

Modification of the EIC hydrogen sulfide abatement process to produce valuable by-products. Final report, May 4, 1981-May 4, 1982  

SciTech Connect (OSTI)

A program of analytical and experimental studies has been carried out to develop modifications of the CUPROSUL process for the desulfurization of geothermal steam. The objective of the program was to devise practical means to manipulate the chemistry of the process so that the consumption of raw materials could be controlled and a variety of valuable by-products could be produced. The process had been demonstrated, at one-tenth commercial scale, for steam of the Geysers' average composition in a configuration which resulted in essentially complete oxidation of sulfide to sulfate. The ability to control the extent of oxidation would increase process flexibility and extend its range of applicability to steams of widely varying composition. Preliminary market surveys of raw materials required for the process and by-products which could be produced indicated that controlling the oxidation of sulfides to produce elemental sulfur would probably be the preferred process option. Use of lime to treat sulfate-containing purge streams to produce by-product gypsum and ammonia for recycle or sale could also be justified for certain steam compositions. Recovery of ammonium sulfate alone from the purge stream would not normally be justified unless corecovery of other valuable by-products, such as boric acid, was possible at incremental cost. It was found that ferric sulfate was a highly effective, selective oxidant for the controlled oxidation of copper sulfide solids to produce elemental sulfur for sale and copper sulfate for recycle.

Offenhartz, P. O'D.

1982-06-01T23:59:59.000Z

116

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

SciTech Connect (OSTI)

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

117

Hydrogen Ingress in Steels During High-Temperature Oxidation in Water Vapor  

SciTech Connect (OSTI)

It is well established that hydrogen derived from water vapour can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina- and chromia- forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D2O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapour effects by manipulation of alloy chemistry.

Brady, Michael P [ORNL; Fayek, Mostafa [ORNL; Keiser, James R [ORNL; Meyer III, Harry M [ORNL; More, Karren Leslie [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

2011-01-01T23:59:59.000Z

118

E-Print Network 3.0 - acid volatile sulfide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chromic acid, hydrocyanic acid, hydrogen sulfide, flammable liquids, flammable gases... , carbon disulfide, glycerin, ethylene glycol, ethyl acetate, ... Source: Hall, Sharon J. -...

119

DOE Annual Progress Report: Water Needs and Constraints for Hydrogen Pathways  

SciTech Connect (OSTI)

Water is a critical feedstock in the production of hydrogen. In fact, water and many of the energy transformations upon which society depends are inextricably linked. Approximately 39% of freshwater withdrawals are used for cooling of power plants, and another 8% are used in industry and mining (including oil and gas extraction and refining). Major changes in the energy infrastructure (as envisioned in a transformation to a hydrogen economy) will necessarily result in changes to the water infrastructure. Depending on the manner in which a hydrogen economy evolves, these changes could be large or small, detrimental or benign. Water is used as a chemical feedstock for hydrogen production and as a coolant for the production process. Process and cooling water must meet minimum quality specifications (limits on mineral and organic contaminants) at both the inlet to the process and at the point of discharge. If these specifications are not met, then the water must be treated, which involves extra expenditure on equipment and energy. There are multiple options for water treatment and cooling systems, each of which has a different profile of equipment cost and operational requirements. The engineering decisions that are made when building out the hydrogen infrastructure will play an important role in the cost of producing hydrogen, and those decisions will be influenced by the regional and national policies that help to manage water resources. In order to evaluate the impacts of water on hydrogen production and of a hydrogen economy on water resources, this project takes a narrowly-scoped lifecycle analysis approach. We begin with a process model of hydrogen production and calculate the process water, cooling, electricity and energy feedstock demands. We expand beyond the production process itself by analyzing the details of the cooling system and water treatment system. At a regional scale, we also consider the water use associated with the electricity and fuel that feed hydrogen production and distribution. The narrow scope of the lifecycle analysis enables economic optimization at the plant level with respect to cooling and water treatment technologies. As water withdrawal and disposal costs increase, more expensive, but more water-efficient technologies become more attractive. Some of the benefits of these technologies are offset by their increased energy usage. We use the H2A hydrogen production model to determine the overall cost of hydrogen under a range of water cost and technology scenarios. At the regional level, we are planning on following the hydrogen roll-out scenarios envisioned by Greene and Leiby (2008) to determine the impact of hydrogen market penetration on various watersheds. The economics of various water technologies will eventually be incorporated into the temporal and geographic Macro System Model via a water module that automates the spreadsheet models described. At the time of this progress report, the major achievement for FY2009 has been the completion of the framework and analytical results of the economic optimization of water technology for hydrogen production. This accomplishment required the collection of cost and performance data for multiple cooling and water treatment technologies, as well as the integration of a water and energy balance model with the H2A framework. 22 (twenty-two) different combinations of production method (SMR, electrolysis), scale (centralized, forecourt), cooling (evaporative tower, dry) and water treatment (reverse osmosis, ion exchange) were evaluated. The following data were collected: water withdrawal, water discharge, electricity consumption, equipment footprint, equipment cost, installation cost, annual equipment and material costs and annual labor costs. These data, when consolidated, fit into a small number of input cells in H2A. Items such as capital cost end up as line-items for which there is space in the existing H2A spreadsheets. Items such as electricity use are added to the values that already exist in H2A. Table 1 lists eight potential technology combina

Simon, A; Daily, W

2009-07-02T23:59:59.000Z

120

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen from Water in a Novel Recombinant Cyanobacterial System  

SciTech Connect (OSTI)

Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being “brought to life” from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80° C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

Weyman, Philip D [J. Craig Venter Institute; Smith, Hamillton O.

2014-12-03T23:59:59.000Z

122

Electrokinetic Hydrogen Generation from Liquid Water Microjets Andrew M. Duffin and Richard J. Saykally,*  

E-Print Network [OSTI]

of natural gas. These thermal methods are relatively cheap, but they do not mitigate difficulties associatedElectrokinetic Hydrogen Generation from Liquid Water Microjets Andrew M. Duffin and Richard J, 2007; In Final Form: May 31, 2007 We describe a method for generating molecular hydrogen directly from

Cohen, Ronald C.

123

Photoelectrochemical hydrogen production from water/ methanol decomposition using Ag/TiO2 nanocomposite  

E-Print Network [OSTI]

coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity A & M University, College Station, TX 77843 3136, USA a r t i c l e i n f o Article history: Received 18, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resources

124

Hydrogen production from the reaction of solvated electrons with benzene in water-ammonia mixtures  

SciTech Connect (OSTI)

Product analysis data for the reaction of the ammoniated electron with benzene-water mixtures in liquid ammonia show that the dominant product is evolved hydrogen and not 1,4-cyclohexadiene.

Dewald, R.R.; Jones, S.R.; Schwartz, B.S.

1980-11-27T23:59:59.000Z

125

Collective Hydrogen Bond Reorganization in Water Studied with Temperature-Dependent Ultrafast Infrared Spectroscopy  

E-Print Network [OSTI]

We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H2O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), ...

Nicodemus, Rebecca A.

126

Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR  

E-Print Network [OSTI]

We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

Nicodemus, Rebecca A.

127

Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes on the Hydrogen Bond Network  

E-Print Network [OSTI]

emissions energy source is hydrogen. Hydrogen powered vehicles using polymer electrolyte membrane fuel cells and hydrophilic aggregates.1-4 Hydrogen fuel cells operate through the oxidation of hydrogen gas at the anodeWater Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes

Fayer, Michael D.

128

Hydrogen Bonds, Water Rotation and Proton Mobility Liaisons Hydrog`ene, Rotation de l'eau et Mobilit'e du  

E-Print Network [OSTI]

Hydrogen Bonds, Water Rotation and Proton Mobility Liaisons Hydrog`ene, Rotation de l'eau et H 3 O + est presque immo­ bilis'e par des liaisons hydrog`ene extrâ??emement fortes. Ces derni liaisons hydrog`ene de l'eau pure. Dans l'eau en dessous de 20 0 C, la rotation des mol'ecules est plus

Agmon, Noam

129

The role of hydrogen in methane formation from carbon and water over metal catalysts  

E-Print Network [OSTI]

THE ROLE OF HYDROGEN IN METHANE FORMATION FROM CARBON AND WATER OVER METAL CATALYSTS A Thesis by STANLEY EDWIN MOORE Submitted to the Graduate College of Texas AaM University in partial fulfillment of the requirement for the degree MASTER... OF SCIENCE December 1982 Major subject: chemistry THE ROLE OF HYDROGEN IN METHANE FORMATION FROM CARBON AND WATER OVER METAL CATALYSTS A Thesis by STANLEY EDWIN MOORE Approved as to style and content by: hairman of Commi ee) (Me r) (Member) ( d...

Moore, Stanley Edwin

1982-01-01T23:59:59.000Z

130

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents [OSTI]

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

2003-01-01T23:59:59.000Z

131

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents [OSTI]

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

2006-05-02T23:59:59.000Z

132

Mpemba paradox: Hydrogen bond memory and water-skin supersolidity  

E-Print Network [OSTI]

Numerical reproduction of measurements, experimental evidence for skin super-solidity and hydrogen-bond memory clarified that Mpemba paradox integrates the heat emission-conduction-dissipation dynamics in the source-path-drain cycle system.

Chang Q Sun

2015-01-05T23:59:59.000Z

133

Molybdenum sulfide/carbide catalysts  

DOE Patents [OSTI]

The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

Alonso, Gabriel (Chihuahua, MX); Chianelli, Russell R. (El Paso, TX); Fuentes, Sergio (Ensenada, MX); Torres, Brenda (El Paso, TX)

2007-05-29T23:59:59.000Z

134

Study of four new, field-based, microbiological tests : verification of the hydrogen sulfide (H?S), Easygel®, Colilert and Petrifilm(tm) tests  

E-Print Network [OSTI]

Currently, the U.N. defines water sources as "improved" (e.g. public taps, protected dug wells and springs, rainwater collection) and "unimproved" (e.g. surface waters, unprotected dug well and spring, and vended water). ...

Trottier, Stephanie (Stephanie Marie Gisele)

2010-01-01T23:59:59.000Z

135

Water dimer hydrogen bond stretch, donor torsion overtone, and ``in-plane bend'' vibrations  

E-Print Network [OSTI]

Water dimer hydrogen bond stretch, donor torsion overtone, and ``in-plane bend'' vibrations Frank N. Brown Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Heather A. Harker and Poul B. © 2003 American Institute of Physics. DOI: 10.1063/1.1614774 I. INTRODUCTION Water clusters have been

Cohen, Ronald C.

136

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

137

Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network rearrangement dynamics  

E-Print Network [OSTI]

Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network of the potential energy fluctuation of liquid water is examined and found to yield so-called l/f frequency of hydrogen bond network relaxations in liquid water. A simple model of cellular dynamics is proposed

Ramaswamy, Ram

138

CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light  

E-Print Network [OSTI]

and for the conversion of carbon dioxides into methanol and hydrocarbons. Metal chalcogenides1­9 are promisingCdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible driven pathway to hydrogen. Hydrogen is not only an environmentally benign fuel for the generation

Osterloh, Frank

139

Hydrogen production from inexhaustible supplies of fresh and salt water using microbial  

E-Print Network [OSTI]

Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis, containing exoelectrogenic bacteria, and a cathode, forming a microbial reverse-electrodialysis electrolysis overpotential, while the reverse electrodialysis stack contributed 0.5­0.6 V at a salinity ratio (seawater

140

Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines  

E-Print Network [OSTI]

Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines Zhenhao, 2007 A thermodynamic model calculating the solubility of hydrogen sulfide (H2S) in pure water phase. With this specific interaction approach, this model is able to predict H2S solubility in other

Zhu, Chen

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Yields Energy in Darkness · CO supports both cell growth and ATP synthesis, in darkness · ATP can be used to regenerate more water-gas shift catalysts in darkness · Dark bioreactor simplifies reactor design, operation's comments that shift reaction can support cell growth yielding energy in darkness leading to sustained H2

142

Watching Hydrogen Bonds Break: A Transient Absorption Study of Water Tobias Steinel, John B. Asbury, Junrong Zheng, and M. D. Fayer*  

E-Print Network [OSTI]

Watching Hydrogen Bonds Break: A Transient Absorption Study of Water Tobias Steinel, John B. Asbury of picoseconds, observe hydrogen bond breaking and monitor the equilibration of the hydrogen bond network in water. In addition, the vibrational lifetime, the time constant for hydrogen bond breaking, and the rate

Fayer, Michael D.

143

Hydrogen Production: Thermochemical Water Splitting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact SheetThermochemical Water

144

Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.  

SciTech Connect (OSTI)

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

2009-07-01T23:59:59.000Z

145

On the role of interfacial hydrogen bonds in "on-water" catalysis  

E-Print Network [OSTI]

Numerous experiments have demonstrated that many classes of organic reactions exhibit increased reaction rates when performed in heterogeneous water emulsions. Despite enormous practical importance of the observed "on-water" catalytic effect and several mechanistic studies, its microscopic origins remains unclear. In this work, the second generation Car-Parrinello molecular dynamics method is extended to self-consistent charge density-functional based tight-binding in order to study "on-water" catalysis of the Diels-Alder reaction between dimethyl azodicarboxylate and quadricyclane. We find that the stabilization of the transition state by dangling hydrogen bonds exposed at the aqueous interfaces plays a significantly smaller role in "on-water" catalysis than has been suggested previously.

Kristof Karhan; Rustam Z. Khaliullin; Thomas D. Kühne

2014-08-21T23:59:59.000Z

146

Hydrogen bond rearrangements and the motion of charge defects in water viewed using multidimensional ultrafast infrared spectroscopy  

E-Print Network [OSTI]

Compared with other molecular liquids, water is highly structured due to its ability to form up to four hydrogen bonds to its nearest neighbors, resulting in a tetrahedral network of molecules. However, this network is ...

Roberts, Sean T. (Sean Thomas)

2010-01-01T23:59:59.000Z

147

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

148

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen High temperature options for nuclear generation of hydrogen on a commercial basis are several years in the future. Thermo-chemical water splitting has been proven to be...

149

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

150

Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate  

SciTech Connect (OSTI)

Conversion of carbon dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO{sub 2} + H{sub 2}O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO{sub 2} and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO{sub 2} to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures.

Hrbek, J.; Hoffmann, F.M.; Yang, Y.; Paul, J.; White, M.G.

2010-07-15T23:59:59.000Z

151

Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/  

DOE Patents [OSTI]

A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

Robinson, P.R.; Bamberger, C.E.

1980-02-08T23:59:59.000Z

152

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

153

Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents [OSTI]

Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbon feed material. The feed material is caused to flow over a heated catalyst which fosters the water-gas shift reaction (H.sub.2 O+COH.sub.2 +CO.sub.2) and the methane steam reforming reaction (CH.sub.4 +H.sub.2 O3 H.sub.2 +CO). Both of these reactions proceed only to partial completion. However, by use of a Pd/Ag membrane which is exclusively permeable to hydrogen isotopes in the vicinity of the above reactions and by maintaining a vacuum on the permeate side of the membrane, product hydrogen isotopes are removed and the reactions are caused to proceed further toward completion. A two-stage palladium membrane reactor was tested with a feed composition of 28% CQ.sub.4, 35% Q.sub.2 O (where Q=H, D, or T), and 31% Ar in 31 hours of continuous operation during which 4.5 g of tritium were processed. Decontamination factors were found to increase with decreasing inlet rate. The first stage was observed to have a decontamination factor of approximately 200, while the second stage had a decontamination factor of 2.9.times.10.sup.6. The overall decontamination factor was 5.8.times.10.sup.8. When a Pt/.alpha.-Al.sub.2 O.sub.3 catalyst is employed, decoking could be performed without catalyst degradation. However, by adjusting the carbon to oxygen ratio of the feed material with the addition of oxygen, coking could be altogether avoided.

Willms, R. Scott (Los Alamos, NM); Birdsell, Stephen A. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

154

The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys  

SciTech Connect (OSTI)

Essentially all alloys and coatings that are resistant to corrosion at high temperature require the formation of a protective (slowly-growing and adherent) oxide layer by a process known as selective oxidation. The fundamental understanding of this process has been developed over the years for exposure in pure oxygen or air. However, the atmospheres in most applications contain significant amounts of water vapor which can greatly modify the behavior of protective oxides. The development of oxy-fuel combustion systems in which fossil fuels are burned in a mixture of recirculated flue gas and oxygen, rather than in air, has caused renewed interest in the effects of water vapor and steam on alloy oxidation. The focus of this paper is on the ways the presence of water vapor can directly alter the selective oxidation process. The paper begins with a brief review of the fundamentals of selective oxidation followed by a description of recent experimental results regarding the effect of water vapor on the oxidation of a variety of chromia-forming alloys (Fe- and Ni-base) in the temperature range 600 to 700 °C. The atmospheres include air, air-H{sub 2}O, Ar-H{sub 2}O and Ar-H{sub 2}O-O{sub 2}. Then the behavior of alumina-forming alloys in H{sub 2}O-containing atmospheres is briefly described. As hydrogen is produced during oxidation of alloys in H{sub 2}O, it can be released back into the gas phase or injected into the metal (where it can diffuse through to the other side). Experiments in which hydrogen concentrations have been measured on both sides of thin specimens during oxidation by H{sub 2}O on only one side are described. Finally, it is attempted to catalogue the various experimental observations under a few general principles.

Mu, N.; Jung, K.; Yanar, N. M.; Pettit, F. S; Holcomb, G. R.; Howard, B. H.; Meier, G. H.

2013-06-01T23:59:59.000Z

155

Separating hydrogen from coal gasification gases with alumina membranes  

SciTech Connect (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

156

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

157

Efficient, sustainable production of molecular hydrogen -a promising alternative to batteries in terms of energy storage -is still an unsolved problem. Implementation of direct water splitting  

E-Print Network [OSTI]

in terms of energy storage - is still an unsolved problem. Implementation of direct water splitting usingEfficient, sustainable production of molecular hydrogen - a promising alternative to batteries

KuÂ?el, Petr

158

Oxidative Remobilization of Technetium Sequestered by Sulfide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron. Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent...

159

Purification of sulfide oxidase from rat liver  

E-Print Network [OSTI]

of sulfide oxidase, provided an initial precipitation of sulfide oxidase, and after chromatographic procedures a 21 fold purification of the enzyme was obtained....

Pu, Lixia

1994-01-01T23:59:59.000Z

160

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network [OSTI]

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

Water High-pressure hydrogen compressor Compressed hydrogenWater High-pressure hydrogen compressor Compressed hydrogenReciprocating gas compressor Figure 13 Hydrogen refueling

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

162

UNCORRECTEDPROOF The effect of temperature on the adsorption rate of hydrogen  

E-Print Network [OSTI]

size, and low operating temperatures. In a ``hydrogen challenged'' economy, the fuel for the PEMFCsUNCORRECTEDPROOF DTD 5 The effect of temperature on the adsorption rate of hydrogen sulfide on Pt adsorbed at lower temperatures. A value of the activation energy of hydrogen sulfide adsorption on Pt

Van Zee, John W.

163

PRODUCTION OF HYDROGEN BY SUPERADIABATIC DECOMPOSITION OF HYDROGEN SULFIDE  

E-Print Network [OSTI]

in a cylindrical vessel packed with a porous ceramic medium with a high thermal capacity. The intensive heat experimental and numerical studies analyzed chemical and thermal structures of the H2S-containing gases

164

High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting  

SciTech Connect (OSTI)

The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

2004-11-30T23:59:59.000Z

165

Ab initio Equation of State data for hydrogen, helium, and water and the internal structure of Jupiter  

E-Print Network [OSTI]

The equation of state of hydrogen, helium, and water effects interior structure models of giant planets significantly. We present a new equation of state data table, LM-REOS, generated by large scale quantum molecular dynamics simulations for hydrogen, helium, and water in the warm dense matter regime, i.e.for megabar pressures and temperatures of several thousand Kelvin, and by advanced chemical methods in the complementary regions. The influence of LM-REOS on the structure of Jupiter is investigated and compared with state-of-the-art results within a standard three-layer model consistent with astrophysical observations of Jupiter. Our new Jupiter models predict an important impact of mixing effects of helium in hydrogen with respect to an altered compressibility and immiscibility.

N. Nettelmann; B. Holst; A. Kietzmann; M. French; R. Redmer; D. Blaschke

2007-12-06T23:59:59.000Z

166

A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: An examination of salt effects  

E-Print Network [OSTI]

, purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally. Swiegersc , Leone Spicciaa * a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia b, University of Wollongong, Wollongong, NSW 2522, Australia ABSTRACT Most transport fuels are derived from

Lawson, Catherine L.

167

Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof  

DOE Patents [OSTI]

The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

Snyder, Seth W. (Lincolnwood, IL); Lin, Yupo J. (Naperville, IL); Hestekin' Jamie A. (Fayetteville, AR); Henry, Michael P. (Batavia, IL); Pujado, Peter (Kildeer, IL); Oroskar, Anil (Oak Brook, IL); Kulprathipanja, Santi (Inverness, IL); Randhava, Sarabjit (Evanston, IL)

2010-09-21T23:59:59.000Z

168

High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473e673 K  

E-Print Network [OSTI]

energy (above 120 MJ/kg); 2) water is the main by-product in hydrogen fuel cell or during combustion history: Received 13 December 2012 Received in revised form 29 March 2013 Accepted 30 March 2013 Available energy vector for two reasons: 1) after radioactive substances, it is the fuel with the highest specific

Montes-Hernandez, German

169

Synthesis of actinide nitrides, phosphides, sulfides and oxides  

DOE Patents [OSTI]

A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

Van Der Sluys, William G. (Missoula, MT); Burns, Carol J. (Los Alamos, NM); Smith, David C. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

170

The infrared spectroscopy of hydrogen-bonded bridges: 2-pyridone-,,water...n and 2-hydroxypyridine-,,water...n clusters, n1,2  

E-Print Network [OSTI]

The infrared spectroscopy of hydrogen-bonded bridges: 2-pyridone-,,water...n and 2-hydroxypyridine-pyridone 2PYR are studied in the hydride stretch region of the infrared using the techniques of resonant ion-dip infrared spectroscopy RIDIRS and fluorescence-dip infrared spectroscopy FDIRS . The results

Zwier, Timothy S.

171

Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allow reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.

Lewis, Nathan S. [California Institute of Technology] [California Institute of Technology

2014-03-26T23:59:59.000Z

172

The system ammonium fluoride-hydrogen fluoride-water at zero degrees centigrade and at minus twenty degrees centigrade  

E-Print Network [OSTI]

borate formed s1nce the boric acid itself is so weak that it has no measurable effect upon the hydrogen ion concentration. The 1ndicator recommended is brom cresol green and the reactions are: + NHs + HsBOs ? y NHg + HsBO3 HsO+ + HsBOs ? } Hs...ately neutralizes the hydrogen fluoride in the sample and prevents loss from reac- tion with the glass . The flask is then made up to volume. b) 50 milliliters each of saturated aqueous boric acid solution and distilled water are poured into a 500-ml...

Buettner, John Philip

1961-01-01T23:59:59.000Z

173

Hydrogen-permeable composite metal membrane and uses thereof  

DOE Patents [OSTI]

Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

1993-06-08T23:59:59.000Z

174

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network [OSTI]

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

175

Synthesis and Optical Properties of Sulfide Nanoparticles Prepared...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Properties of Sulfide Nanoparticles Prepared in Dimethylsulfoxide. Synthesis and Optical Properties of Sulfide Nanoparticles Prepared in Dimethylsulfoxide. Abstract: Many...

176

Characterization of a new magnesium hydrogen orthophosphate salt, Mg3.5H2(PO4)3, synthesized in supercritical water  

E-Print Network [OSTI]

Characterization of a new magnesium hydrogen orthophosphate salt, Mg3.5H2(PO4)3, synthesized 2007 Available online 31 March 2007 Abstract Beige crystals of a new magnesium hydrogen orthophosphate water; IR and Raman spectra; Magnesium; Orthophosphate; Nanomaterial 1. Introduction Inorganic

Ryan, Dominic

177

Catalytic reduction of CO with hydrogen sulfide. 3. Study of adsorption of O/sub 2/, CO, and CO coadsorbed with H/sub 2/S on anatase and rutile using Auger electron spectroscopy and temperature-programmed desorption  

SciTech Connect (OSTI)

In O/sub 2/ and CO adsorption on anatase, only one weakly bound molecular desorption state was observed. For CO on rutile, there was a strongly bound and a weakly bound state. For O/sub 2/ rutile, a weakly bound state and two strongly chemisorbed states were observed. These strongly bound states are associated with the surface lattice anion vacancies produced on rutile (110). The amount of chemisorption in one of the strongly bound oxygen desorption states is correlated with the initial rate of irreversible adsorption of H/sub 2/S on rutile. Coadsorption of CO and H/sub 2/S indicates that strongly chemisorbed CO interacts with strongly chemisorbed H/sub 2/S to yield intermediates which desorb as CH/sub 3/SH and CH/sub 4/ at T approx. 800 K. At higher temperatures the surface sulfide concentration dominates the -SH concentration, explaining the dominance of COS in the product mixture. Implications of commercial hydrodesulfurization catalysts are discussed.

Beck, D.D.; White, J.M.; Ratcliffe, C.T.

1986-07-03T23:59:59.000Z

178

Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect (OSTI)

The corrosion behavior of an austenitic stainless steel (UNS S30400) has been characterized in a 10,000 hour test conducted in hydrogenated, ammoniated water at 260 C. The corrosion kinetics were observed to follow a parabolic rate dependency, the parabolic rate constant being determined by chemical descaling to be 1.16 mg dm{sup -2} hr{sup -1/2}. X-ray photoelectron spectroscopy, in combination with argon ion milling and target factor analysis, was applied to provide an independent estimate of the rate constant that agreed with the gravimetric result. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and elemental state, it was found that: (a) corrosion occurs in a non-selective manner, and (b) the corrosion film consists of two spinel oxide layers--a ferrite-based outer layer (Ni{sub 0.2}Fe{sub 0.8})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.2}Fe{sub 0.8})(Cr{sub 0.7}Fe{sub 0.3}){sub 2}O{sub 4}. These compositions agree closely with the solvi phases created by immiscibility in the Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} binary, implying that immiscibility plays an important role in the phase separation process.

S.E. Ziemniak; M. Hanson

2001-05-04T23:59:59.000Z

179

Speeding up solar disinfection : effects of hydrogen peroxide, temperature, and copper plus ascorbate on the photoinactivation of E. coli in Charles River water  

E-Print Network [OSTI]

Sunlight efficiently disinfects drinking water in plastic bottles over two days, but simple additives may show promise for reducing this time to several hours. This study found that adding up to 500 [micro]M hydrogen ...

Fisher, Michael Benjamin, 1979-

2004-01-01T23:59:59.000Z

180

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect (OSTI)

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test after 10,000 hr. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, confirmed the presence of two spinel oxide phases and minor amounts of recrystallized nickel. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but approximately 30% of the oxidized iron is released to the water, and (b) the two spinel oxides exist as a ferrite-based outer layer (Ni{sub 0.1}Zn{sub 0.6}Fe{sub 0.3})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.1}Zn{sub 0.2}Fe{sub 0.7})(Fe{sub 0.4}Cr{sub 0.6}){sub 2}O{sub 4}. These results suggest that immiscibility in the Fe{sub 3}O{sub 4}-ZnFe{sub 2}O{sub 4} binary may play a role in controlling the zinc content of the outer layer. On the other hand, the lower corrosion rate caused by zinc additions is believed to be a consequence of corrosion oxide film stabilization due to the substitution reaction equilibrium: z Zn{sup 2+}(aq) + FeCr{sub 2}O{sub 4}(s) {approx} z Fe{sup 2+}(aq) + (Zn{sub z}Fe{sub 1-z})Cr{sub 2}O{sub 4}(s). The liquid-solid distribution coefficient for the reaction, defined by the ratio of total zinc to iron ion concentrations in solution divided by the Zn(II)/Fe(II) ratio in the solid, z/(1-z), was found to be 0.184. This interpretation is consistent with the benefits of zinc treatment being concentration dependent.

S.E. Ziemniak; M. Hanson

2001-03-20T23:59:59.000Z

182

Proceedings of the workshop on the impact of hydrogen on water reactor safety. Volume IV of IV  

SciTech Connect (OSTI)

Separate abstracts were prepared for papers presented in the following areas: (1) hydrogen mitigation, and (2) hydrogen research programs.

Berman, M. (ed.)

1981-09-01T23:59:59.000Z

183

Transition metal sulfide loaded catalyst  

DOE Patents [OSTI]

A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

1994-01-01T23:59:59.000Z

184

Transition metal sulfide loaded catalyst  

DOE Patents [OSTI]

A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

1994-04-26T23:59:59.000Z

185

HIGH TEMPERATURE SULFIDATION BEHAVIOR OF LOW Al IRON-ALUMINUM COMPOSITIONS  

E-Print Network [OSTI]

HIGH TEMPERATURE SULFIDATION BEHAVIOR OF LOW Al IRON-ALUMINUM COMPOSITIONS S.W. Banovic, J.N. Du (Received January 5, 1998) (Accepted March 23, 1998) Introduction Iron-aluminum weld overlay coatings, the application of iron-aluminum alloys is currently limited due to hydrogen cracking susceptibility subsequent

DuPont, John N.

186

Supercritical Water desulfurization of crude oil  

E-Print Network [OSTI]

Supercritical Water (SCW) desulfurization was investigated for both model sulfur compounds and Arab Heavy crude. In part 1, the reactions of alkyl sulfides in SCW were studied. During hexyl sulfide decomposition in SCW, ...

Kida, Yuko

2014-01-01T23:59:59.000Z

187

Stable catalyst layers for hydrogen permeable composite membranes  

DOE Patents [OSTI]

The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

Way, J. Douglas; Wolden, Colin A

2014-01-07T23:59:59.000Z

188

Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water  

E-Print Network [OSTI]

Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones potential and where we have relaxed or generalized the potential to arbitrary and possibly fractional powers. The theory then is a semi-classical theory as the repulsion of particles is incorporated in the Lennard-Jones -like potential's energy required to bring two molecules together, a repulsion of sorts. We derive distributions for the molecular species that are exactly solved, and are derived from maximum entropy, here the semi-classical analogue of the Hamiltonian superposition of quantum phase theory of fluids. We also derive the similar statistics from the microscopic SDEs stochastic differential dynamics equations, verifying the macroscopic state function entropic-thermodynamic derivation.

Fredrick Michael

2010-10-26T23:59:59.000Z

189

C. Plennevaux et al., Electrochemistry Communications 26 (2013) 1720 Contribution of CO2 on hydrogen evolution and hydrogen permeation in low  

E-Print Network [OSTI]

Introduction The risk of hydrogen embrittlement of steels is a primary concern for material selection in oil the risk of hydrogen embrittlement. Sulfide stress cracking (SSC) is one of the main risks of steel on hydrogen evolution and hydrogen permeation in low alloy steels exposed to H2S environment C. Plennevauxa

Paris-Sud XI, Université de

190

Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. • For the first time stability of such oxides were tested for 100 redox cycles. • Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. • Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

Datta, Pradyot, E-mail: pradyot.datta@gmail.com

2013-10-15T23:59:59.000Z

191

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy  

SciTech Connect (OSTI)

We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

2009-04-24T23:59:59.000Z

192

Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report  

SciTech Connect (OSTI)

The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

NONE

1997-12-01T23:59:59.000Z

193

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network [OSTI]

. (Barrier R ­ Cost) Generate public interest & support. (Barrier S­Siting) #12;Hawaii hydrogen power park H Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2Hawaii hydrogen power park H Hawaii Hydrogen Power Park 2003 Hydrogen & Fuel Cells Merit Review

194

Ion Hydration and Associated Defects in Hydrogen Bond Network of Water: Observation of Reorientationally Slow Water Molecules Beyond First Hydration Shell in Aqueous Solutions of MgCl$_2$  

E-Print Network [OSTI]

Effects of presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well known non-polarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl$_2$) induces perturbations in the hydrogen bond network of water leading to the formation of bulk-like domains with \\textquoteleft defect sites\\textquoteright~on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing down of reorientation times as a function of concentration in the case of MgCl$_2$. However, addition of cesium chloride(CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl$_2$ and CsCl is consistent with the well-known Hofmeister series.

Upayan Baul; Satyavani Vemparala

2014-12-18T23:59:59.000Z

195

Influence of physisorbed water on the conductivity of hydrogen terminated silicon-on-insulator surfaces  

E-Print Network [OSTI]

the water layer is displaced by inert gas purging, heating, or pumping. The observed conductivity changes active defects as the surface oxidizes. Surprisingly, physisorbed water via adsorption from ambient.1063/1.2822417 On semiconductor surfaces adsorption or reaction events which result in charge redistribution give rise to changes

196

Proceedings of the workshop on the impact of hydrogen on water reactor safety. Volume II of IV  

SciTech Connect (OSTI)

Separate abstracts were prepared for the papers presented in the subject area: hydrogen sources and detection.

Berman, M. (ed.)

1981-01-26T23:59:59.000Z

197

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Water Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

198

Theoretical Electron Density Distributions for Fe- and Cu-Sulfide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Theoretical Electron Density Distributions for Fe- and Cu-Sulfide...

199

Biogenic formation of photoactive arsenic-sulfide nanotubes by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41 . Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41 ....

200

Soluble Hydrogen-bonding Interpolymer Complexes in Water: A Small-Angle Neutron Scattering Study  

E-Print Network [OSTI]

The hydrogen-bonding interpolymer complexation between poly(acrylic acid) (PAA) and the poly(N,N-dimethylacrylamide) (PDMAM) side chains of the negatively charged graft copolymer poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM), containing 48 wt % of PDMAM, and shortly designated as G48, has been studied by small-angle neutron scattering in aqueous solution. Complexation occurs at low pH (pH < 3.75), resulting in the formation of negatively charged colloidal particles, consisting of PAA/PDMAM hydrogen-bonding interpolymer complexes, whose radius is estimated to be around 165 A. As these particles involve more than five graft copolymer chains, they act as stickers between the anionic chains of the graft copolymer backbone. This can explain the characteristic thickening observed in past rheological measurements with these mixtures in the semidilute solution, with decreasing pH. We have also examined the influence of pH and PAA molecular weight on the formation of these nanoparticles.

Maria Sotiropoulou; Julian Oberdisse; Georgios Staikos

2006-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets  

DOE Patents [OSTI]

A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

2013-02-12T23:59:59.000Z

202

anhydrous hydrogen fluoride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

203

Adsorption of Hydrogen Sulfide onto Activated Carbon Fibers: Effect of  

E-Print Network [OSTI]

. These processes include natural gas processing, petroleum refining, petrochemical plants, Kraft mills, coke ovens, and coal gasifiers. H2S concentrations in these processes vary from 0 to 60 vol % (6). The Claus process

Borguet, Eric

204

Evaluation of hydrogen sulfide concentrations in Norwegian reservoir fluids  

E-Print Network [OSTI]

exponential relationship between [HZS] and reservoir temperature, the others include additional fluid parameters. This contribution is considered of particular importance for planning [HZS] control strategies and for production management....

Haland, Kjersti

1998-01-01T23:59:59.000Z

205

Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor  

E-Print Network [OSTI]

monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures thanSulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor Yung Ho to hydrogen sulfide, even in the presence of hydrogen or oxygen at partial pressures of 20­600 times greater

Tobin, Roger G.

206

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network [OSTI]

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

207

Acid treatment removes zinc sulfide scale restriction  

SciTech Connect (OSTI)

This paper reports that removal of zinc sulfide (ZnS) scale with acid restored an offshore Louisiana well's production to original rates. The zinc sulfide scale was determined to be in the near well bore area. The selected acid had been proven to control iron sulfide (FeS) scales in sour wells without causing harm to surface production equipment, tubing, and other downhole hardware. The successful removal of the blockage re-established previous production rates with a 105% increase in flowing tubing pressure. On production for a number of months, a high rate, high-pressure offshore well was experiencing unusually rapid pressure and rate declines. A small sample of the restrictive material was obtained during the wire line operations. The well was subsequently shut in while a laboratory analysis determined that zinc sulfide was the major component of the obstruction.

Biggs, K. (Kerr McGee Corp., Lafayette, LA (US)); Allison, D. (Otis Engineering Corp., Lafayette, LA (US)); Ford, W.G.F. (Halliburton Co., Duncan, OK (United States))

1992-08-31T23:59:59.000Z

208

Is there a particle-size dependence for the mediation by colloidal redox catalysts of the light-induced hydrogen evolution from water  

SciTech Connect (OSTI)

Particle-size effects for the catalysis by platinum of the light-induced hydrogen evolution from water, using the (Ru(bpy)/sub 3//sup 2 +//methyl viologen/EDTA) model system, were investigated with widely polydispersed colloidal platinum hydrosols and samples with narrower size distributions obtained from the former hydrosols by centrifugation. The optimum values for the hydrogen-formation rates and yields were found to be very similar for all catalysts studied; this was true for those containing polydispersed or selected small (<100 A) as well as large particles (>1000 A). In fact, no platinum particle-size effects on the methyl viologen mediated hydrogen evolutions were observed in the investigated size range. These results are discussed in relation to studies on catalyst-dispersion effects in the field of heterogeous catalysis.

Keller, P.; Moradpour, A.

1980-11-19T23:59:59.000Z

209

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

SciTech Connect (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

210

ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS  

SciTech Connect (OSTI)

Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

Smith, R. G.; Wright, C. M.; Robinson, G. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Charnley, S. B. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pendleton, Y. J. [NASA Lunar Science Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Maldoni, M. M., E-mail: r.smith@adfa.edu.au, E-mail: c.wright@adfa.edu.au, E-mail: g.robinson@adfa.edu.au, E-mail: Steven.B.Charnley@nasa.gov, E-mail: yvonne.pendleton@nasa.gov [Geoscience Australia, Canberra, ACT 2601 (Australia)

2011-12-20T23:59:59.000Z

211

Sustainable hydrogen production  

SciTech Connect (OSTI)

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

212

THE PHOTOCATALYZED PRODUCTION OF HYDROGEN FROM WATER ON Pt-FREE SrTi03 SINGLE CRYSTALS IN THE PRESENCE OF ALKALI HYDROXIDES  

E-Print Network [OSTI]

Photocatalytic hydrogen production has been observed on theof NaOH. The rate of hydrogen production increases with thefor tens of hours. Hydrogen production was observe(! only in

Wagner, F.T.

2012-01-01T23:59:59.000Z

213

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

SciTech Connect (OSTI)

Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

2005-09-30T23:59:59.000Z

214

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

215

Photoelectrochemical Water Splitting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photoelectrochemical Water Splitting Photoelectrochemical Water Splitting Photo of hydrogen beam generated from PV cell In this process, hydrogen is produced from water using...

216

Photobiological Water Splitting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photobiological Water Splitting Photobiological Water Splitting Photo of system for photobiological algal hydrogen production. In this process, hydrogen is produced from water...

217

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

218

Neutron diffraction of hydrogenous materials: measuring incoherent and coherent intensities separately from liquid water - a 40-year-old puzzle solved  

E-Print Network [OSTI]

(short version) Accurate determination of the coherent static structure factor of disordered materials containing proton nuclei is prohibitively difficult by neutron diffraction, due to the large incoherent cross section of $^1$H. This notorious problem has set severe obstacles to the structure determination of hydrogenous materials up to now, via introducing large uncertainties into neutron diffraction data processing. Here we present the first accurate separate measurements, using polarized neutron diffraction, of the coherent and incoherent contributions to the total static structure factor of 5 mixtures of light and heavy water, over an unprecedentedly wide momentum transfer range. The structure factors of H$_2$O and D$_2$O mixtures derived in this work may signify the beginning of a new era in the structure determination of hydrogenous materials, using neutron diffraction.

László Temleitner; Anne Stunault; Gabriel Cuello; László Pusztai

2014-10-01T23:59:59.000Z

219

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

220

Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates  

DOE Patents [OSTI]

A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

Eser, Erten; Fields, Shannon

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

Pressure Relief Device (PRD) Liquid Hydrogen Storage TankCompressed hydrogen storage Ambient-air vaporizer Liquidreactor (PSA) Compressed hydrogen storage Feed water pump

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

222

argon-seeded hydrogen sheet: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

223

attenuates hydrogen peroxide-induced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effect of Hydrogen Booster System on exhaust gases emissions of an internal combustion engine. The hydrogen booster produces hydrogen and oxygen using six water fuel cells and...

224

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

225

Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water  

SciTech Connect (OSTI)

High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360°C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20–100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

2014-10-15T23:59:59.000Z

226

Hydrogen production from carbonaceous material  

DOE Patents [OSTI]

Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

2004-09-14T23:59:59.000Z

227

Chromatographic hydrogen isotope separation  

DOE Patents [OSTI]

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

228

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

229

First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible lightw  

E-Print Network [OSTI]

­10 but can produce H2 from aqueous solutions containing sacrificial electrons donors, such as Na2S and Na2SO3% aqueous methanol, a known sacrificial electron donor,21 the hydrogen evolution rate was about three to four times higher, producing a total H2 amount of 18.4 mmol after 5 h. The increase in the H2 rate

Osterloh, Frank

230

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional dynamics of the hydrogen  

E-Print Network [OSTI]

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional 1993) The far-infrared laservibration-rotation-tunneling (FIR-VRT) spectrumof the propane-water complex calculations. In the present paper and in its counterpart,13we present our results for the water-propane

Cohen, Ronald C.

231

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

232

Characterization and activity of ferric-sulfide-based catalyst in model reactions of direct coal liquefaction: Effect of preparation conditions  

SciTech Connect (OSTI)

The authors studied the activity of various ferric-sulfide-based catalysts in model hydrogenation and cracking reactions under conditions typical of direct coal liquefaction (DCL). The catalysts used were mixtures of FeS{sub 2} (pyrite, PY) and nonstoichiometric FeS{sub x} (pyrrhotite, PH) obtained by high-temperature disproportionation of ferric sulfide in a nitrogen atmosphere or a hydrogen atmosphere. The structural changes in the catalyst were also examined, both before and after the model reactions. The cracking functionality of the catalysts was studied by using cumene, and the hydrocracking functionality was studied by using diphenylmethane. Phenanthrene was used as a model compound for hydrogenation and hydrogen shuttling. Phenanthrene hydrogenation was studied in the presence of H{sub 2}(g), and hydrogen shuttling was studied when a hydrogen donor (tetralin) was present in the absence of H{sub 2}(g). All the model reactions were performed under conditions typical of DCL: 400 C and 1,000 psig for 30 min. The surface and bulk of the catalysts were characterized by Auger electron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic absorption spectroscopy. The performance of the catalysts was found to vary with the type of reaction, the initial ratio of FeS{sub x} to FeS{sub 2} (PH/PY) found in the catalyst, and the catalyst age. Catalysts freshly prepared in a nitrogen atmosphere were most active for model hydrogenation and hydrocracking runs. Catalysts freshly prepared in hydrogen were most active in shuttling. A simple model was developed to explain changes in the surface and bulk of the catalysts.

Chadha, A.; Stinespring, C.D.; Stiller, A.H.; Zondlo, J.W.; Dadyburjor, D.B. [West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering] [West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering

1997-02-01T23:59:59.000Z

233

Iron-sulfide redox flow batteries  

DOE Patents [OSTI]

Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

2013-12-17T23:59:59.000Z

234

Subsurface heaters with low sulfidation rates  

DOE Patents [OSTI]

A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

John, Randy Carl; Vinegar, Harold J

2013-12-10T23:59:59.000Z

235

Single-layer transition metal sulfide catalysts  

DOE Patents [OSTI]

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

236

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network [OSTI]

alternatives and assess economics and life cycle analysis of borohydride/water to hydrogen · Millennium CellChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

237

Metal sulfide initiators for metal oxide sorbent regeneration  

DOE Patents [OSTI]

A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

Turk, B.S.; Gupta, R.P.

1999-06-22T23:59:59.000Z

238

Sulfide scaling in low enthalpy geothermal environments; A survey  

SciTech Connect (OSTI)

A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are far less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.

Criaud, A.; Fouillac, C. (Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France))

1989-01-01T23:59:59.000Z

239

Comparative studies of hydrodenitrogenation by mixed metal sulfide catalysts  

E-Print Network [OSTI]

. , Sanchez, K. M. , and Reibenspies, J. , "Synthesis and characterization of [Et4N][M(CO)5SR] and [Et4N]2[M2 (CO) 8 (SR) 2] complexes (M = Cr, Mo, W) . Ligand substitution... to mimic the commercial catalyst (ie. no sulfide bridges prior to activation) l a Ni/Mo sulfide catalyst which consisted of Ni and Mo atoms brought in intimate contact by sulfide bridges; Ni/Mo and Co/Mo organometallic catalysts whose central metal had...

Luchsinger, Mary Margaret

1990-01-01T23:59:59.000Z

240

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

242

Oxidation resistant organic hydrogen getters  

DOE Patents [OSTI]

A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

2008-09-09T23:59:59.000Z

243

E-Print Network 3.0 - antimony sulfide colloid Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

separates, B:33 sulfides, B:37, 39 sulfides and sediments, B:45... -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

244

E-Print Network 3.0 - antimony sulfides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

separates, B:33 sulfides, B:37, 39 sulfides and sediments, B:45... -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

245

Code for Hydrogen Hydrogen Pipeline  

E-Print Network [OSTI]

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

246

Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith  

DOE Patents [OSTI]

New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

1999-02-16T23:59:59.000Z

247

Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith  

DOE Patents [OSTI]

New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y ›MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

Hilsenbeck, Shane J. (Ames, IA); McCarley, Robert E. (Ames, IA); Schrader, Glenn L. (Ames, IA); Xie, Xiaobing (College Station, TX)

1999-02-16T23:59:59.000Z

248

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

249

Renewable Hydrogen: Integration, Validation, and Demonstration  

SciTech Connect (OSTI)

This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

Harrison, K. W.; Martin, G. D.

2008-07-01T23:59:59.000Z

250

Transport and reduction of sulfate and immobilization of sulfide in marine black shales  

SciTech Connect (OSTI)

In fine-grained sediments in which the amount of reduced sulfur retained in stable phases substantially exceeds that present initially in pore waters, rates of sulfate reduction may have equaled or exceeded rates of sulfate transport, resulting in enrichment of [sup 34]S in pore waters and reduction products. Abundance and isotopic compositions of reduced sulfur compounds can be used to calculate the extent of sulfide retention and improve reconstructions of carbon-sulfur oxidation-reduction (redox) budgets. The Miocene Monterey Formation and Upper Devonian New Albany Shale represent distinct types of black shales that accumulated under different conditions of sulfate reduction. Our results suggest that the rate of sulfate reduction was controlled largely by mass transport in the Monterey and by the reduction process itself in the New Albany. Sulfide was more efficiently retained in the Monterey; thus each mole of sulfide in the New Albany represents a greater amount of sedimented organic carbon removed during sulfate reduction. 30 refs., 4 figs., 1 tab.

Zaback, D.A.; Pratt, L.M.; Hayes, J.M. (Indiana Univ., Bloomington (United States))

1993-02-01T23:59:59.000Z

251

Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen  

SciTech Connect (OSTI)

This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that these are highly preliminary, incomplete, and optimistic estimates. Biophotolysis processes, indirect or direct, clearly require considerable basic and applied R and D before a more detailed evaluation of their potential and plausible economics can be carried out. For example, it is not yet clear which type of algae, green algae, or cyanobacteria, would be preferred in biophotolysis. If lower-cost photobioreactors can be developed, then small-scale (<1 ha) single-stage biophotolysis processes may become economically feasible. A major basic and applied R and D effort will be required to develop such biophotolysis processes.

Benemann, J.R.

1998-03-31T23:59:59.000Z

252

An Overview of Hydrogen Production Technologies  

SciTech Connect (OSTI)

Currently, hydrogen is primarily used in the chemical industry, but in the near future it will become a significant fuel. There are many processes for hydrogen production. This paper reviews reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase), pyrolysis, hydrogen from biomass, electrolysis and other methods for generating hydrogen from water, and hydrogen storage. In addition, desulfurization, water-gas-shift, and hydrogen purification methods are discussed. Basics of these processes are presented with a large number of references for the interested reader to learn more.

Holladay, Jamie D.; Hu, Jianli; King, David L.; Wang, Yong

2009-01-30T23:59:59.000Z

253

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

254

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

255

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

256

A Comparative Study of Ozone and Ultraviolet Light/Hydrogen Peroxide for Decolorizing Textile Dyeing Waste Water  

E-Print Network [OSTI]

UVjperoxide batch reactor Description of Dyes Ten dyes representing a broad range of types of structure found in dye molecules were included in the study. Azo and anthraquinone structures were included as were water soluble and water insoluble dyes... Diazo o~-io--03~-o-, ~ '101' Yellow 44 29000 Diazo O~-o.-o?~ Table 2: Description of Acid Dyes CI Acid CINo. Classification Structure Red 1 Blue 25 18050 62055 Monazo Anthraquinone OH HMCOCHJ O-:(O,sor o HoO~ . c05'" o HH-Q Yellow 151...

Namboodri, C. G.; Perkins, W. S.; Walsh, W. K.

257

Effective hydrogen generation and resource circulation based on sulfur cycle system  

SciTech Connect (OSTI)

For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

2013-12-10T23:59:59.000Z

258

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen  

E-Print Network [OSTI]

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Catalyst Development Water and Thermal Management Economic Analysis of PEM Fuel Cell Systems #12; Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12

259

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

260

Photoelectrochemical Hydrogen Production  

SciTech Connect (OSTI)

The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (“5% STH” equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid p

Hu, Jian

2013-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Toward a quantitative model for the formation of gravitational magmatic sulfide deposits  

E-Print Network [OSTI]

concentration at sulfide saturation (referred to as sulfur solubility for simplicity) decreases. As the melt of sulfide liquid from a silicate melt, and the coupled growth kinetics and settling dynamics of sulfide liquid layer at the bottom of a magma chamber are referred to as the necessary criteria for sulfide ore

Zhang, Youxue

262

A Si Photocathode Protected and Activated with a Catalytic Ti and Ni Composite Film for Solar Hydrogen Production in Water  

E-Print Network [OSTI]

, stable and scalable hybrid photo- electrode for visible-light-driven H2 generation in an aque- ous pH 9.2 electrolyte solution is reported. The photoca- thode consists of a p-type Si substrate layered with a Ti and Ni-containing composite film, which acts... for several hours, and serves as a benchmark non-noble photocathode for solar H2 evolution that operates efficiently under neutral–alka- line conditions. Photoelectrochemical (PEC) water splitting is an attractive strategy to generate the renewable energy...

Lai, Yi-Hsuan; Park, Hyun S.; Zhang, Jenny Z.; Matthews, Peter D.; Wright, Dominic S.; Reisner, Erwin

2015-02-04T23:59:59.000Z

263

Hydordesulfurization of dibenzothiophene using hydrogen generated in situ by the water-gas shift reaction in a trickle bed reactor  

E-Print Network [OSTI]

is presented in Figure 3. The reactor used was a 63. 5 cm long, L91 cm O. D. stainless steel seamless tube placed vertically in a 45. 72 cm deep (10. 23 cm LD. ) bath filled with a molten eutectic salt. The reactor tube had an inside diameter of 1. 575 cm... simultaneously with a tube wrapped in heating tape prior to entering the reactor at the top. The gas feed was passed through a coil submerged in the molten salt bath and then introduced to the hydrocarbon and water feed upstream of the reactor entrance. Both...

Hook, Bruce David

1984-01-01T23:59:59.000Z

264

Hydrogen Production & Delivery Sara Dillich  

E-Print Network [OSTI]

(May 9, 2011) #12;2 Goals and Objectives: Develop technologies to produce hydrogen from clean, domestic Electrolysis (Solar) 2015-2020Today-2015 2020-2030 Coal Gasification (No Carbon Capture) Electrolysis Water (Grid) Coal Gasification (Carbon Capture) Biomass Gasification Water Electrolysis (Wind) High-Temp Water

265

PHOTOELECTROCHEMICAL SYSTEMS FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

to allow the overlap of the bandedges with the water redox potentials in the dark. Charge transfer analysis A photoelectrochemical (PEC) system combines the harvesting of solar energy with the electrolysis of water. When, the energy can be sufficient to split water into hydrogen and oxygen. Depending on the type of semiconductor

266

Potential Carriers and Approaches for Hydrogen Delivery  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Carriers Calculation Tools Truck Transport Available H 2 Carrier Solution (Oil or water) Additional Reactant H 2 Carrier 16 Storage and forecourt tabs have been...

267

Production of hydrogen from alcohols  

DOE Patents [OSTI]

A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

Deluga, Gregg A. (St. Paul, MN); Schmidt, Lanny D. (Minneapolis, MN)

2007-08-14T23:59:59.000Z

268

Iron-ceria Aerogels Doped with Palladium as Water-gas Shift Catalysts for the Production of Hydrogen  

SciTech Connect (OSTI)

Mixed 4.5% iron oxide-95.5% cerium oxide aerogels doped with 1% and 2% palladium (Pd) by weight have been synthesized, and their activities for the catalysis of water-gas shift (WGS) reaction have been determined. The aerogels were synthesized using propylene oxide as the proton scavenger for the initiation of hydrolysis and polycondensation of a homogeneous alcoholic solution of cerium(III) chloride heptahydrate and iron(III) chloride hexahydrate precursor. Palladium was doped onto some of these materials by gas-phase incorporation (GPI) using ({eta}{sup 3}-allyl)({eta}{sup 5}-cyclopentadienyl)palladium as the volatile Pd precursor. Water-gas shift catalytic activities were evaluated in a six-channel fixed-bed reactor at atmospheric pressure and reaction temperatures ranging from 150 to 350 C. Both 1% and 2% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels showed WGS activities that increased significantly from 150 to 350 C. The activities of 1% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels were also compared with that of the 1% Pd-doped ceria aerogel without iron. The WGS activity of 1% Pd on 4.5% iron oxide-95.5% cerium oxide aerogels is substantially higher (5 times) than the activity of 1% Pd-doped ceria aerogel without iron. The gas-phase incorporation results in a better Pd dispersion. Ceria aerogel provides a nonrigid structure wherein iron is not significantly incorporated inside the matrix, thereby resulting in better contact between the Fe and Pd and thus enhancing the WGS activity. Further, neither Fe nor Pd is reduced during the ceria-aerogel-catalyzed WGS reaction. This behavior contrasts with that noted for other Fe-based WGS catalysts, in which the original ferric oxide is typically reduced to a nonstoichiometric magnetite form.

Bali, S.; Huggins, F; Ernst, R; Pugmire, R; Huffman, G; Eyring, E

2010-01-01T23:59:59.000Z

269

AC03CH05-Levinger ARI 11 February 2010 22:19 Analysis of Water in Confined  

E-Print Network [OSTI]

of hydrogen fuel cells. Water's unique properties can be traced to its formation of an extended hydrogen micelles, nanoscopically confined water, hydrogen bond dynamics, orientational dynamics Abstract The properties of water depend on its extended hydrogen bond network and thecontinualpicosecond

Fayer, Michael D.

270

Energetics of Hydrogen Bond Network Rearrangements in Liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly...

271

Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis  

SciTech Connect (OSTI)

Electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten were characterized for the hydrogen evolution reaction (HER) in the electrolysis of 30 w/o KOH alkaline water at 25 C. The rate-determining step (rds) of the HER was suggested based on the Tafel slope of polarization and the capacitance of electrode-solution interface determined by ac impedance measurement. The HER on the nickel- and cobalt-based codeposits was enhanced significantly compared with that o the electrolytic nickel and cobalt with comparable deposit loadings. The decrease in the HER overpotential was more pronounced on the molybdenum-containing codeposits, particularly on cobalt-molybdenum which also showed a high stability. The enhancement of the HER was attributed to both the synergetic composition and the increased active surface of the codeposits. The real electrocatalytic activity of te electrodes and the effect of their and the increased active surface of the codeposits. The real electrocatalytic activity of the electrodes and the effect of their surface increase were distinguished quantitatively. The linear relations between HER overpotential and surface roughness factor of the electrodes on a Y-log(X) plot were obtained experimentally and interpreted based on the Tafel law.

Fan, C.; Piron, D.L.; Sleb, A.; Paradis, P. (Ecole Polytechnique de Montreal, Quebec (Canada). Dept. de Metallurgie et de Genie des Materiaux)

1994-02-01T23:59:59.000Z

272

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network [OSTI]

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

273

Support of a pathway to a hydrogen future  

SciTech Connect (OSTI)

This paper consists of viewgraphs which outline the content of the presentation. Subjects addressed include: hydrogen research program vision; electricity industry restructuring -- opportunities and challenges for hydrogen; transportation sector -- opportunities for hydrogen; near-term and mid-term opportunities for hydrogen; and hydrogen production technologies from water. It is concluded that the global climate change challenge is the potential driver for the development of hydrogen systems.

Hoffman, A.R. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

274

Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes  

E-Print Network [OSTI]

as potential sources of hydrogen for the "hydrogen economy". One of these hydrogen production processesMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis-electrochemical hydrogen production cycle that produces hydrogen from water, also using heat from a nuclear reactor

Yildiz, Bilge

275

Water-splitting using photocatalytic porphyrin-nanotube composite devices  

DOE Patents [OSTI]

A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

Shelnutt, John A. (Tijeras, NM); Miller, James E. (Albuquerque, NM); Wang, Zhongchun (Albuquerque, NM); Medforth, Craig J. (Winters, CA)

2008-03-04T23:59:59.000Z

276

Purdue Hydrogen Systems Laboratory  

SciTech Connect (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

277

Hydrogen Bibliography  

SciTech Connect (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

278

Reactions of Methylene Hydrogen  

E-Print Network [OSTI]

was orystallized out as a yellow solid from aloohol and then from ethyl aostate. Melting point 170°C Analysis: Calculated for C17H14O2U s - 10.10$ Found I = 10.00$ SUMMARY 0 It was found that the methods given in the literature for the preparation... following* 1. Metallic sodium replaces either one, or both of the hydrogens, the latter being given off as a free gas. 2. Sodium hydroxide replaces the hydrogen by the metal, with a splitting off of water. 3. Sodium ethylate reacts, giving the metal 3...

Griffin, E. L.

1912-05-15T23:59:59.000Z

279

Iron sulfide catalysts for coal liquefaction prepared using a micellar technique  

SciTech Connect (OSTI)

The authors have recently synthesized nanometer-size iron sulfide catalysts using a reverse micellar system. These particles are 40--70 nm in size and were used in laboratory-scale coal-liquefaction experiments. The catalyst particles were impregnated in situ on coal particles. The catalyst loading was 1.67% with respect to coal. The liquefaction run was carried out at 400 C for 30 min, at a pressure of 1,000 psia H{sub 2}(g) measured at ambient temperature (corresponding to approximately 2,000 psia at reaction conditions), tine absence of any solvent or hydrogen donor. The total conversion, as well as the yields of asphaltene plus preasphaltene and oil plus gas, increased after the run, relative to a thermal (noncatalytic) run. The activity of the micellar catalyst is slightly less than that of a nonmicellar catalyst. However, a slightly higher selectivity to oil plus gas is observed with the micellar catalyst.

Chadha, A.; Sharma, R.K.; Stinespring, C.D.; Dadyburjor, D.B. [West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering] [West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering

1996-09-01T23:59:59.000Z

280

FOCUS: HYDROGEN EXCHANGE AND COVALENT MODIFICATION ACCOUNT AND PERSPECTIVE  

E-Print Network [OSTI]

hydrogen exchange behavior, understand the underlying chemistry and structural physics of hydrogen exchange-protected by their H-bonding interactions, they engage in continual ex- change with the hydrogens of solvent water of the underlying chemistry and structural phys- ics of protein HX processes. The study of protein hydrogen exchange

Englander, S. Walter

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

SciTech Connect (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

282

Sulfide, phosphate, and minor element enrichment in the New Albany Shale (Devonian-Mississippian) of southern Indiana  

SciTech Connect (OSTI)

The upper part of the New Albany Shale is divided into three members, which in ascending order are: (1) the Morgan Trail Member, a laminated brownish-black shale; (2) the Camp Run Member, an interbedded brownish-black and greenish-gray shale; and (3) the Clegg Creek Member, also a laminated brownish-black shale. The Morgan Trail and Camp Run Members contain 5 to 6% total organic carbon (TOC) and 2% sulfide sulfur. Isotopic composition of sulfide in these members ranges from -5.0 to -20.0%. C/S plots indicate linear relationships between abundances of these elements characteristic of sediments deposited in a noneuxinic marine environment. The Clegg Creek Member contains 10 to 15% TOC and 2 to 6% sulfide sulfur. Isotopic composition of sulfide ranges from -5.0 to -40.0%. The most negative values are characteristic of syngenetic pyrite formed within an anoxic water column. Abundances of carbon and sulfur are higher and uncorrelated in this member, consistent with deposition in an euxinic environment. Further, DOP (degree of pyritization) values suggest that pyrite formation was generally iron limited throughout Clegg Creek deposition, but sulfur isotopes indicate that syngenetic (water column) pyrite becomes an important component in the sediment only in the upper part of the member. At the top of the Clegg Creek Member a zone of phosphate nodules and trace metal enrichment coincides with maximal TOC values. During euxinic deposition, phosphate and trace metals accumulated below the chemocline due to limited vertical circulation in the water column. Phosphate and trace metals released for organic matter during early diagenesis resulted in precipitation of metal-rich phosphate nodules.

Beier, J.A.

1988-01-01T23:59:59.000Z

283

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

284

Light Water Reactor Safety Research Program. Semiannual report, October 1982-March 1983. [Molten fuel/concrete interaction; core melt-coolant interaction; hydrogen detonation (Grand Gulf igniter)  

SciTech Connect (OSTI)

The Molten Fuel/Concrete Interactions (MFCI) Study investigates the mechanism of concrete erosion by molten core materials, the nature and rate of generation of evolved gases, and the effects on fission product release. The Core Melt/Coolant Interactions (CMCI) Study investigates the characteristics of explosive and nonexplosive interactions between molten core materials and concrete, and the probabilities and consequences of such interactions. In the Hydrogen Program, the HECTR code for modelling hydrogen deflagration is being developed, experiments (including those in the FITS facility) are being conducted, and the Grand Gulf Hydrogen Igniter System II is being reviewed. All activities are continuing.

Berman, M.

1984-05-01T23:59:59.000Z

285

Monday, February 23, 2009 Cheap Hydrogen from Scraps  

E-Print Network [OSTI]

because burning it creates only water as a waste product. MECs harness the electrons produced by certainMonday, February 23, 2009 Cheap Hydrogen from Scraps Turning organic waste into hydrogen now works scraps and waste water to generate clean hydrogen fuel. But over the past few years, researchers have

286

Energetics of hydrogen bonds in peptides Sheh-Yi Sheu*  

E-Print Network [OSTI]

for water. We find that the activation energy for the rupture of the hydrogen bond in a -sheet under calculation can be useful for the prediction of hydrogen bond strengths in various environments of interest extensively to calculate free energy changes caused by hydrogen bond rupture. Here the water environment

Sheu, Sheh-Yi

287

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is...

288

Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots  

E-Print Network [OSTI]

-scale ..................................................... 35 1.25 Atoms nucleation and growth rate during synthesis .................................. 36 1.26 The AM 1.5 solar spectrum as function of photon energy. ........................ 37 1.27 Thermal solar energy systems (A) parabolic dish (B... Page 1.1 Hydrogen production pathways ................................................................. 4 1.2 Solar to hydrogen conversion pathways, STC is solar thermochemical, CST is concentrating solar thermal, and PEC...

Alenzi, Naser D.

2012-02-14T23:59:59.000Z

289

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

290

Technical Analysis of Hydrogen Production  

SciTech Connect (OSTI)

The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

Ali T-Raissi

2005-01-14T23:59:59.000Z

291

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

292

Process for removing metals from water  

DOE Patents [OSTI]

A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

Napier, J.M.; Hancher, C.M.; Hackett, G.D.

1987-06-29T23:59:59.000Z

293

Hydrogen Outgassing from Lithium Hydride  

SciTech Connect (OSTI)

Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

2006-04-20T23:59:59.000Z

294

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Appendixes to Attachment 3: Appendix A, Hydrological services calculations: Appendix B, Ground water quality by location, Final report  

SciTech Connect (OSTI)

This report contains chemical analysis data for ground water for the following: elements; cyanides; chlorides; dissolved organic carbon; fluorides; silica; sulfates; sulfides; dissolved solids; nitrates; and nitrites.

Not Available

1994-06-01T23:59:59.000Z

295

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

296

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J and industry expectations · DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK

297

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

298

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

299

Hydrogen Transition Infrastructure Analysis  

SciTech Connect (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

300

Ionwater hydrogen-bond switching observed with 2D IR vibrational echo chemical  

E-Print Network [OSTI]

Ion­water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange for review November 8, 2008) The exchange of water hydroxyl hydrogen bonds between anions and water oxygens of anion­ water hydroxyl hydrogen bond switching under thermal equilib- rium conditions as Taw 7 1 ps. Pump

Fayer, Michael D.

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Hydrogen Program FY 2005 Progress Report IV.F Photoelectrochemical  

E-Print Network [OSTI]

barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells and Infrastructure TechnologiesDOE Hydrogen Program FY 2005 Progress Report 13 IV.F Photoelectrochemical IV.F.1 High-Efficiency Generation of Hydrogen Using Solar Thermochemical Splitting of Water - UNLV: Photoelectrochemical Hydrogen

302

Adsorption of carbonyl sulfide on nickel and tungsten films  

SciTech Connect (OSTI)

The interaction of carbonyl sulfide with evaporated nickel and tungsten films has been investigated in the temperature range 195-450 K using gas pressures ranging from 1 to 13 N m/sup -2/. Rapid but mainly associative chemisorption of COS occurred on both metals at 195 K. Further adsorption of COS on W at temperatures 293-450 K was extremely slow and accompanied by more CO desorption than COS adsorbed. Sulfidation of Ni film by COS occurred at temperatures greater than or equal to 293 K with the liberation of carbon monoxide. The rate of adsorption increased with temperature but was independent of COS pressure. The activation energy (E/sub x/) increased with extent (X) of sulfidation to a limiting value of 97 kJ mol/sup -1/. A linear relationship was obtained from the plot of E/sub x/ against 1/X, suggesting the applicability of Cabrera-Mott theory to the sulfidation of Ni film by COS. 20 references, 2 figures, 1 table.

Saleh, J.M.; Nasser, F.A.K.

1985-07-18T23:59:59.000Z

303

INTRODUCTION The massive sulfide deposits of southern Spain  

E-Print Network [OSTI]

INTRODUCTION The massive sulfide deposits of southern Spain and Portugal were formed about 300 Ma). Spain became a Roman province, and mining of the rich deposits of the Iberian pyrite belt for copper, California 94025 A. Palanques Instituto de Ciencias del Mar, 08039 Barcelona, Spain ABSTRACT A metal

van Geen, Alexander

304

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

305

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

306

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

307

The water-gas shift (WGS) reaction (CO + H2O = CO2+ H2) is an important reaction for hydrogen upgrading during fuel  

E-Print Network [OSTI]

-treatment units in practical low-temperature PEM fuel cell systems, whereby the deleterious CO should be totally for hydrogen upgrading during fuel gas processing. Emerging applications in fuel cells require active, non-pyrophoric, and cost-effective catalysts. Along with a new group of platinum catalysts with atomically dispersed Pt

Napp, Nils

308

Impact of three different TiO2 morphologies on hydrogen evolution by methonal assisted water-splitting: nanoparticles, nanotubes and  

E-Print Network [OSTI]

-splitting: nanoparticles, nanotubes and aerogels. (published in International Journal of Hydrogen Energy 36, 22 (2011, nanotubes and aerogels. These materials have shown different behaviours depending on both their composition of the samples (nanotubes or aerogels). Among all the tested samples, the TiO2 aerogel supported Pt one exhibited

Boyer, Edmond

309

DOE NSF Partnership to Address Critical Challenges in Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Splitting November 15, 2013 - 12:00am Addthis EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology...

310

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

311

Hydrogen sulfide decomposition into hydrogen and sulfur by quinone cycles. First annual report, June 1989-May 1990  

SciTech Connect (OSTI)

The research is evaluating the fundamental mechanisms for recovery of sulfur and H{sub 2} from H{sub 2}S, using mild condition cycles based on oxidation of H{sub 2}S by quinones. During this first year, the research focused on the reaction of H{sub 2}S with tertiary butyl anthraquinone to form tertiary butyl anthrahydroquinone. The progress achieved included extending the quinone conversion from 60-80% to complete conversion, significantly increasing the rate of conversion by varying the solvent, and developing a proposed mechanism for this part of the process.

Plummer, M.A.

1990-06-01T23:59:59.000Z

312

Wind Electrolysis: Hydrogen Cost Optimization  

SciTech Connect (OSTI)

This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

Saur, G.; Ramsden, T.

2011-05-01T23:59:59.000Z

313

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen...

314

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

315

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

316

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

317

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

318

The Role of Carbon in Catalytically Stabilized Transition Metal Sulfides  

SciTech Connect (OSTI)

Since WWII considerable progress has been made in understanding the basis for the activity and the selectivity of molybdenum and tungsten based hydrotreating catalysts. Recently, the focus of investigation has turned to the structure of the catalytically stabilized active catalyst. The surface of the catalytically stabilized MoS2 has been shown to be carbided with the formula MoSxCy under hydrotreating conditions. In this paper we review the basis for this finding and present new data extending the concept to the promoted TMS (transition metal sulfides) systems CoMoC and NiMoC. Freshly sulfided CoMoS and NiMoS catalyst have a strong tendency to form the carbided surface phases from any available carbon source.

Kelty,S.; Berhault, G.; Chianelli, R.

2007-01-01T23:59:59.000Z

319

Photoelectrochemical Water Systems for H2 Production (Presentation)  

SciTech Connect (OSTI)

This Photoelectrochemical Water Systems for Hydrogen Production presentation by the National Renewable Energy Laboratory's John Turner was given at the DOE Hydrogen Program's 2007 Annual Merit Review.

Turner, J. A.; Deutsch, T.; Head, J.; Vallett, P.

2007-05-17T23:59:59.000Z

320

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

322

CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE  

E-Print Network [OSTI]

1 CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE A. Vasilyev1 (Circulation Hydrogen Ultrahigh Purification System) is designed to solve these two tasks: providing, the total level of all contaminants (water, nitrogen, oxygen etc.) has to be lower than 0.01 ppm. Hydrogen

Kammel, Peter

323

Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila  

E-Print Network [OSTI]

Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila Sitindra S Accepted 7 September 2013 Available online 16 September 2013 a b s t r a c t Hydrogen isotope ratio values from recording the hydrogen isotope composition of ambient water, dD values of lipids also depend

324

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang*  

E-Print Network [OSTI]

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang* Department of Biochemistry, University of Zurich, Zurich, Switzerland Abstract Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change

Caflisch, Amedeo

325

PERGAMON Carbon 38 (2000) 17671774 High temperature hydrogen sulfide adsorption on activated  

E-Print Network [OSTI]

integrated gasification combined cycle (IGCC) power generation process. Part I of this series of papers treatment, Gasification; C. Adsorption 1. Introduction gasification combined cycle (IGCC) power generation

Cal, Mark P.

326

PERGAMON Carbon 38 (2000) 17571765 High temperature hydrogen sulfide adsorption on activated  

E-Print Network [OSTI]

directly, as in a traditional H , 23.1% CO, 5.8% CO , 6.6% H O, 0.5% H S, and2 2 2 2 coal-fired power plant types of activated carbon sorbents were evaluated for their ability to remove H S from a simulated coal temperature was examined as a2 function of carbon surface chemistry (oxidation, thermal desorption, and metal

Cal, Mark P.

327

Electrochemical Membrane Separation (EMS) of Hydrogen Sulfide from Coal Gasification Streams  

SciTech Connect (OSTI)

The goal of this work is to prepare an electrolytic cell for scale-up that is capable of removing H2S continuously. The major hurdles that remain are cathode selection and optimizing cell design and operating conditions. Studies have focused upon determining critical cell parameters for process scale-up as well as finding more stable and catalytically active cathode materials.

Burke, A.A.; Winnick, J.; Liu, M.; Li, S.

2002-09-20T23:59:59.000Z

328

The effect of hydrogen sulfide on straight-run gasoline during storage  

E-Print Network [OSTI]

'Ibtae Of libereeere & SS baca WXNtea sg i moireh in %t;ie fi xe aad miss~ Lo f@oas htrrs ';sea ls'rasgi NA bs~e of tbs ooeploxity' of this yrvblssb coach r?sokxw ~? . . i%i %s grcwgh of thbo yeeroletsn is@ssary? tii is sa4$sb4 l~ secor. ~ iaer:assg is isei~? olfor...O'M eoyabla of grcacbccr aocnmoag ia cba?arfbad by aeoocta". ac aad Oafd? obo aahe O. , f? de4eeCaabfos by Otvavcvtoa oteh ?ttvae sfoaaoa? '. ~ oy toa?roaoar oonafotvtoy? bbto faooax saoho4 aaa 5. . ~ ceo o ta ?cudy? Tha "deoost" oooo yvuvtCa4 a vore...

Miller, Alvin Junius

1934-01-01T23:59:59.000Z

329

The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas  

E-Print Network [OSTI]

.90 4000 2.06 3.76 6.10 11.71 25.05 3.71 3000 1.47 1.90 2.46 7.34 15.76 1.26 2000 0.83 0.59 0.83 2.37 4.31 0.88 1000 0.063 0.44 0.37 0.63 0.69 0.64 200 ?F 6000 15.7 23.12 32.87 62.83 109.40 44.50 5000 9.93 15.70 24.10 47.01 78.01 26.83 4000 3.58 8....30 2000 20.87 137.30 384.00 205.90 1000 8.98 37.04 136.50 123.20 CO CM CMO X O ? C>- ? ?oin-S- 437.50 359.50 300.20 234.70 57.50 9.20 972.60 797.20 587.50 264.50 67.70 17.10 2,027.00 970.10 658.40 278.40 64.50 20.30 ^ 9 TABLE 1 ( C...

Wieland, Denton R.

1958-01-01T23:59:59.000Z

330

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer waterhydrogen dispenser Reverse osmosis and deionizer water

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

331

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

332

Hydrogen Delivery Mark Paster  

E-Print Network [OSTI]

Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

333

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

334

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

335

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

336

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

337

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

338

THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS  

SciTech Connect (OSTI)

Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.

Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.; Fakra, Sirine C.; Beny, Jean Michel; Foster, Andrea L.

2010-07-16T23:59:59.000Z

339

Hydrogen Dissociation on Pd4S Surfaces  

SciTech Connect (OSTI)

Exposure of Pd-based hydrogen purification membranes to H,S. a common contaminant in coal gasification streams, can cause membrane performance to deteriorate, either by deactivating surface sites required for dissociative H, adsorption or by forming a low-permeability sulfide scale. In this work. the composition, structure, and catalytic activity of Pd4S, a surface scale commonly observed in Pd-membrane separation of hydrogen from sulfur-containing gas streams, were examined using a combination of experimental characterization and density functional theory (DFT) calculations. A Pd,S sample was prepared by exposing a 100 f1m Pd foil to H2S at 908 K. Both X-ray photoemission depth profiling and low energy ion scattering spectroscopic (LEISS) analysis reveal slight sulfur-enrichment of the top surface of the sample. This view is consistent with the predictions of DFT atomistic thermodynamic calculations. which identified S-terminated Pd,S surfaces as energetically favored over corresponding Pd-terminated surfaces. Activation barriers for H2 dissociation on the Pd,S surfaces were calculated. Although barriers are higher than on Pd(lll). transition state theory analysis identified reaction pathways on the S-terminated surfaces for which hydrogen dissociation rates are high enough to sustain the separation process at conditions relevant to gasification applications.

Miller, J.B.; Alfonso, D.R.; Howard, B.H.; O'Brien, C.P.; Morreale, B.D.

2009-01-01T23:59:59.000Z

340

Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations  

SciTech Connect (OSTI)

Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

2008-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - antimony sulfide thin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The strata-bound, sulfide- and ... Source: USGS Western Region Coastal and Marine Geology Collection: Geosciences 77 Experimental partitioning of uranium between liquid...

342

Anti-reflective nanoporous silicon for efficient hydrogen production  

DOE Patents [OSTI]

Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

Oh, Jihun; Branz, Howard M

2014-05-20T23:59:59.000Z

343

Hydrogen and Infrastructure Costs  

Broader source: Energy.gov (indexed) [DOE]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

344

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

345

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

346

Hydrogen Program Overview  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

347

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

348

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

349

Two-stage coal liquefaction without gas-phase hydrogen  

DOE Patents [OSTI]

A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

Stephens, H.P.

1986-06-05T23:59:59.000Z

350

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

Shepodd, Timothy J. (330 Thrasher Ave., Livermore, CA 94550); Even, Jr., William R. (4254 Drake Way, Livermore, CA 94550)

2000-01-01T23:59:59.000Z

351

Carbonate thermochemical cycle for the production of hydrogen  

DOE Patents [OSTI]

The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

Collins, Jack L (Knoxville, TN) [Knoxville, TN; Dole, Leslie R (Knoxville, TN) [Knoxville, TN; Ferrada, Juan J (Knoxville, TN) [Knoxville, TN; Forsberg, Charles W (Oak Ridge, TN) [Oak Ridge, TN; Haire, Marvin J (Oak Ridge, TN) [Oak Ridge, TN; Hunt, Rodney D (Oak Ridge, TN) [Oak Ridge, TN; Lewis Jr., Benjamin E (Knoxville, TN) [Knoxville, TN; Wymer, Raymond G (Oak Ridge, TN) [Oak Ridge, TN

2010-02-23T23:59:59.000Z

352

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

353

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network [OSTI]

hydrogen fuel by electrolysis meeting equal consumer costhydrogen fuel production by water electrolysis to provide lower fuel costFig. 2: Cost hydrogen bywater of (Coil) electrolysis as

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

354

Summary of research on hydrogen production from fossil fuels conducted at NETL  

SciTech Connect (OSTI)

In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100şC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

Shamsi, Abolghasem

2008-03-30T23:59:59.000Z

355

A water quality characterization of a tidally influenced flood control canal of Galveston Bay, Texas  

E-Print Network [OSTI]

H), specific conductance, sulfide, total organic carbon (TOC), and turbidity samples were collected at seven stations in HBDC and from the effluent of two municipal wastewater treatment plants (MWTP) discharging into HBDC in order to detect significant... to MWTP outfall. Specific conductance patterns mirrored salinity trends. TOC levels showed a steady bayward decrease. Turbidity levels were consistently highest in bottom waters. No trends were apparent for COD, pH, and sulfide. HBDC water quality...

Polasek, Jeffrey Steven

1992-01-01T23:59:59.000Z

356

Sulfide-Driven Arsenic Mobilization from Arsenopyrite and Black Shale Pyrite  

SciTech Connect (OSTI)

We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations.

Zhu, W.; Young, L; Yee, N; Serfes, M; Rhine, E; Reinfelder, J

2008-01-01T23:59:59.000Z

357

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network [OSTI]

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

358

Solar hydrogen production using Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} solid solutions via a thermochemical, two-step water-splitting cycle  

SciTech Connect (OSTI)

The reactivity of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.1) solid solutions during the redox and two-step water-splitting cycles has been investigated in this work. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) patterns and field-emission scanning electron microscopy (FE-SEM) indicate that there are two reaction mechanisms in the O{sub 2}-releasing step and the shift in the reaction mechanisms occurs in the O{sub 2}-releasing step because of sintering at high temperatures, and a decrease in the concentration of lattice oxygen occurs as the O{sub 2}-releasing step proceeds. The reaction in the O{sub 2}-releasing step follows a second-order mechanism over a temperature range of 1000-1170 Degree-Sign C and a contracting-area model over a temperature range of 1170-1500 Degree-Sign C. According to direct gas mass spectroscopy (DGMS), ceria doped at 5 mol% Li exhibits the highest reactivity in the O{sub 2}-releasing step during both redox cycles in air and two-step water-splitting cycles, whereas ceria doped at 2.5 mol% Li yields the highest amount of hydrogen (4.79 ml/g) in the H{sub 2}-generation step during the two-step water-splitting cycles, which is higher than ceria doped with other metals. DGMS and electrochemical impedance spectroscopy (EIS) suggest that the average reaction rate in the H{sub 2}-generation step is influenced by the concentration of extrinsic oxygen vacancies, and thus, the reactivity in the H{sub 2}-generation step, to some degree, could be tuned by varying the concentration of extrinsic oxygen vacancies (Li content). - Graphical abstract: Average reduction fraction of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.10) solid solutions versus Li content in the O{sub 2}-releasing step during the redox cycles in air and the two-step water-splitting cycles. Highlights: Black-Right-Pointing-Pointer We have investigated Li-doped ceria for hydrogen production using two-step water-splitting cycles. Black-Right-Pointing-Pointer The sintering effect on the reaction mechanisms was first clarified. Black-Right-Pointing-Pointer The shift of reaction mechanisms occurs during the O{sub 2}-releasing step. Black-Right-Pointing-Pointer The reaction-mechanism shift occurs because of sintering at high temperatures. Black-Right-Pointing-Pointer Doping at 2.5 mol% Li results in the highest H{sub 2} yield and cyclability for hydrogen production.

Meng, Qing-Long; Lee, Chong-il; Shigeta, Satoshi [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Kaneko, Hiroshi [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Tamaura, Yutaka, E-mail: ytamaura@chem.titech.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)

2012-10-15T23:59:59.000Z

359

Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys  

DOE Patents [OSTI]

High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

Natesan, K.; Baxter, D.J.

1983-07-26T23:59:59.000Z

360

Oxidation sulfidation resistance of Fe-Cr-Ni alloys  

DOE Patents [OSTI]

High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

Natesan, Ken (Naperville, IL); Baxter, David J. (Woodridge, IL)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph  

SciTech Connect (OSTI)

Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

McCloy, John S.; Tustison, Randal W.

2013-04-22T23:59:59.000Z

362

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

363

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

364

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network [OSTI]

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

365

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

366

Species measurements in a hypersonic, hydrogen-air, combustion wake  

SciTech Connect (OSTI)

A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

Skinner, K.A.; Stalker, R.J. [Univ. of Queensland, Brisbane, Queensland (Australia)] [Univ. of Queensland, Brisbane, Queensland (Australia)

1996-09-01T23:59:59.000Z

367

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

368

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

Kjelstrup, Signe

369

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

370

Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates  

SciTech Connect (OSTI)

Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

Zhao, Y.; Xu, Q.; Cheah, S.

2013-01-01T23:59:59.000Z

371

Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4  

SciTech Connect (OSTI)

Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results.

Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Peters, H.R. [Martin Marietta Corp., Schenectady, NY (United States). Knolls Atomic Power Lab.

1996-06-01T23:59:59.000Z

372

Hypersonic hydrogen combustion in the thin viscous shock layer  

SciTech Connect (OSTI)

Different models of hypersonic diffusive hydrogen combustion in a thin viscous shock layer (TVSL) at moderate Reynolds numbers have been developed. The study is based on computations of nonequilibrium multicomponent flowfield parameters of air-hydrogen mixture in the TVSL near the blunt probe. The structure of computed combustion zones is analyzed. Under conditions of slot and uniform injections the zone structures are essentially different. Hydrogen injection conditions are discovered at which the nonreacting hydrogen zone and the zone enriched with the hydrogen combustion products appear near the body surface. Hydrogen, water, and OH concentrations identify these zones. More effective cooling of the probe surface occurs at moderate injections compared to strong ones. Under the blowing conditions at moderate Reynolds numbers the most effective cooling of the body surface occurs at moderate uniform hydrogen injection. The results can be helpful for predicting the degree of supersonic hydrogen combustion in hypersonic vehicle engines. 21 refs.

Riabov, V.V.; Botin, A.V. [Worcester Polytechnic Inst, Worcester, MA (United States)

1995-04-01T23:59:59.000Z

373

Hydrolysis reactor for hydrogen production  

DOE Patents [OSTI]

In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

Davis, Thomas A.; Matthews, Michael A.

2012-12-04T23:59:59.000Z

374

Porous polymeric materials for hydrogen storage  

DOE Patents [OSTI]

A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

2013-04-02T23:59:59.000Z

375

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

376

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

377

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

378

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

379

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

380

Method in the production of hydrogen peroxide  

SciTech Connect (OSTI)

A method in the production of hydrogen peroxide by the anthraquinone process is described, in which method anthraquinone derivatives dissolved in a working solution are subjected alternatingly to hydrogenation and oxidation. To reduce the relative moisture in the working solution to a suitable level of 20-98%, preferably 40-85%, the working solution is dried prior to hydrogenation by contacting it with a gas or a gaseous mixture, the water vapor pressure of which is below that of the working solution. Suitable gases or gas mixtures are air or exhaust gases from the oxidation stage of the anthraquinone process.

Franzen, B. G.; Herrmann, W.

1985-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

382

The Copper Sulfide Coating on Polyacrylonitrile with Chelating Agents by an Electroless Deposition Method and its EMI Shielding Effectiveness  

SciTech Connect (OSTI)

In this study, a variety of concentrations of chelating agents were added to obtain the anchoring effect and chelating effect in the electroless plating bath. The mechanism of the Cu{sub x(x=1,2)}S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the composite were studied. It was found that the vinyl acetate residued in PAN substrate would be purged due to the swelling effect by chelating agents solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of PAN substrate and the chelating agent. Consequently, the copper sulfide layer deposited by the electroless plating reaction with EDTA and TEA. The swelling degree (S{sub d}) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA (C) is expressed as: S{sub d} = 0.13+0.90xe and (-15.15C). And TEA series is expressed as: S{sub d} = 0.07+1.00xe and (-15.15C). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00M to 0.20M. Consequently, the EMI SE of the composites increased from 10{approx}12 dB to 25{approx}27 dB. The GIA-XRD analyze indicated that the deposited layer consisted of CuS and Cu{sub 2}S.

Roan, M.-L. [Department of Electro-optical Engineering, Lan-Yan Institute of Technology, Taiwan (China); Chen, Y.-H.; Huang, C.-Y. [Department of Materials Engineering, Tatung University, Taiwan (China)

2008-08-28T23:59:59.000Z

383

Hydrogen Bus Technology Validation Program  

E-Print Network [OSTI]

and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

384

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

385

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

386

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

387

DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE  

SciTech Connect (OSTI)

Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

Angela D. Lueking; Qixiu Li; John V. Badding; Dania Fonseca; Humerto Gutierrez; Apurba Sakti; Kofi Adu; Michael Schimmel

2010-03-31T23:59:59.000Z

388

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

389

Effect of the Protein Denaturants Urea and Guanidinium on Water Structure: A Structural and Thermodynamic Study  

E-Print Network [OSTI]

in the hydrogen bond network of water in the first hydration shell of urea and guanidinium were analyzed in terms of the random network model using Monte Carlo simulations. Bulk water consists of two populations of hydrogen and more bent hydrogen bonds. In the first shell of urea, hydrogen bonds between waters solvating the amino

Sharp, Kim

390

Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases  

SciTech Connect (OSTI)

OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

Jian Feng; Paul A. Lindahl

2004-07-28T23:59:59.000Z

391

Role of Water States on Water Uptake and Proton Transport in Nafion using Molecular Simulations and Bimodal Network  

E-Print Network [OSTI]

hydrogen permeation properties and water uptake of Nfion 117 membrane and recast film for PEM fuel cell.

Hwang, Gi Suk

2013-01-01T23:59:59.000Z

392

A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries  

SciTech Connect (OSTI)

This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

2013-01-01T23:59:59.000Z

393

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

394

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

395

Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change  

SciTech Connect (OSTI)

Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

2011-02-16T23:59:59.000Z

396

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

397

anaerobic chelate bioegradation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

398

anaerobic dechlorinating bacteria: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment...

399

anaerobic thermophilic bacteria: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment...

400

anaerobic digestion processes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

anaerobic sludge digestion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

402

anaerobic digestion process: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

403

anaerobic digestion systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

404

anaerobic methanotrophic archaea: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

405

anaerobic methane-oxidizing archaea: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

406

anaerobic digestion system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

407

anaerobic ammonium-oxidizing anammox: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

408

anaerobe clostridium acetobutylicum: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

409

DOE Hydrogen Program Overview  

Broader source: Energy.gov (indexed) [DOE]

Intl. J. Hydrogen Energy 27: 1217-1228 Melis A, Seibert M and Happe T (2004) Genomics of green algal hydrogen research. Photosynth. Res. 82: 277- 288 Maness P-C, Smolinski...

410

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

411

Hydrogen transport membranes  

DOE Patents [OSTI]

Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

Mundschau, Michael V.

2005-05-31T23:59:59.000Z

412

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

413

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

414

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

415

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

416

DOE Working Group Meeting Renewable Hydrogen Production UsingRenewable Hydrogen Production Using  

E-Print Network [OSTI]

P-101 E-201 V-302 WASTE WATER VIRENT REACTOR SYSTEM R-100 B-201 AIR R-203 E-202 DI WATER HOT AIR in the aqueous phase and has highoperates in the aqueous phase and has high hydrogen selectivity at low temperaturehydrogen selectivity at low temperature.. ·· Impact:Impact: Sugars and sugar alcohols areSugars and sugar

417

Hydrogen Production CODES & STANDARDS  

E-Print Network [OSTI]

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

418

Sensitive hydrogen leak detector  

DOE Patents [OSTI]

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

419

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

420

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Examinations of Oxidation and Sulfidation of Grain Boundaries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressurized Water Reactor Abstract: High-resolution characterizations of intergranular attack in alloy 600 (Ni-17Cr-9Fe) exposed to 325 °C simulated pressurized water reactor...

422

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect (OSTI)

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

423

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

424

Materials for the scavanging of hydrogen at high temperatures  

DOE Patents [OSTI]

A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

1997-01-01T23:59:59.000Z

425

Materials for the scavanging of hydrogen at high temperatures  

DOE Patents [OSTI]

A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

1997-01-01T23:59:59.000Z

426

Three-dimensional defect characterization : focused ion beam tomography applied to tin sulfide thin films  

E-Print Network [OSTI]

Porosity is postulated to be one of the reasons for the low efficiency of tin sulfide-based devices. This work is a preliminary investigation of the effects of two film growth parameters deposition rate and substrate ...

Youssef, Amanda

2014-01-01T23:59:59.000Z

427

E-Print Network 3.0 - arsenic sulfides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Initial Reports and Scientific Results portions of Vol- Summary: -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

428

E-Print Network 3.0 - americium sulfides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Initial Reports and Scientific Results portions of Vol- Summary: -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

429

E-Print Network 3.0 - activated zinc sulfide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Initial Reports and Scientific Results portions of Vol- Summary: -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

430

Metal sulfide and rare-earth phosphate nanostructures and methods of making same  

DOE Patents [OSTI]

The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

Wong, Stanislaus; Zhang, Fen

2014-05-13T23:59:59.000Z

431

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

432

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary  

SciTech Connect (OSTI)

Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

Peterson, S

2007-09-05T23:59:59.000Z

433

Effect of sulfidity on the corrosivity of white, green, and black liquors  

SciTech Connect (OSTI)

Corrosion testing was performed in white, green, and black liquors from a kraft mill. The liquors were modified in composition to simulate conditions of high (40%) sulfidity and low (30%) sulfidity, and then heated in laboratory autoclaves to the temperatures of the respective tanks from which the samples were taken. Specimens of carbon and stainless steels were exposed under free corrosion potential conditions, and their corrosion rates determined from weight loss measurements. In white, green, 45% solids black, and flash tank liquors, active corrosion rates for the carbon steels were typically 20 to 75% higher in the higher sulfidity liquors. In 15% solids weak black liquor there was no appreciable difference in corrosion rates, with carbon steels remaining passive in both low and high sulfidity. In 26% solids intermediate black liquor there were large increases in the corrosion rates of carbon steel between low and high sulfidity liquors, resulting from a change from passive to active conditions. Stainless steels UNS S30403, S32304, and S31803 had very low corrosion rates in all the liquors tested, regardless of sulfidity.

Wensley, A.; Champagne, P.

1999-07-01T23:59:59.000Z

434

Method for the continuous production of hydrogen  

DOE Patents [OSTI]

The present invention is a method for the continuous production of hydrogen. The present method comprises reacting a metal catalyst with a degassed aqueous organic acid solution within a reaction vessel under anaerobic conditions at a constant temperature of .ltoreq.80.degree. C. and at a pH ranging from about 4 to about 9. The reaction forms a metal oxide when the metal catalyst reacts with the water component of the organic acid solution while generating hydrogen, then the organic acid solution reduces the metal oxide thereby regenerating the metal catalyst and producing water, thus permitting the oxidation and reduction to reoccur in a continual reaction cycle. The present method also allows the continuous production of hydrogen to be sustained by feeding the reaction with a continuous supply of degassed aqueous organic acid solution.

Getty, John Paul (Knoxville, TN); Orr, Mark T. (Kingsport, TN); Woodward, Jonathan (Kingston, TN)

2002-01-01T23:59:59.000Z

435

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

hydrogen than electrolysis of water (Silversand, 2002). Natural gas reforming is estimated to be the lowest cost

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

436

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report President Bush Launches the Hydrogen Fuel Initiative  

E-Print Network [OSTI]

of using hydrogen power, of course, will be energy independence for this nation... think about a legacy between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

437

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

438

SBIR/STTR FY15 Phase 2 Awards Announced-Includes Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by electrolyzing water. GVD Corp. of Cambridge, Massachusetts, will develop improved plastic and elastomer seals coatings to enable reliable performance of hydrogen systems...

439

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

440

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analysis of hydrogen isotope mixtures  

DOE Patents [OSTI]

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

442

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2011-01-01T23:59:59.000Z

443

Method for the purification of noble gases, nitrogen and hydrogen  

DOE Patents [OSTI]

A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

444

Method for the purification of noble gases, nitrogen and hydrogen  

DOE Patents [OSTI]

A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

1997-09-23T23:59:59.000Z

445

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

ScienceCinema (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2013-05-29T23:59:59.000Z

446

The oceanic cycle and global atmospheric budget of carbonyl sulfide  

SciTech Connect (OSTI)

A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

Weiss, P.S.

1994-12-31T23:59:59.000Z

447

Improved cell design for lithium alloy/metal sulfide battery  

DOE Patents [OSTI]

The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

Kaun, T.D.

1984-03-30T23:59:59.000Z

448

Cell design for lithium alloy/metal sulfide battery  

DOE Patents [OSTI]

The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

Kaun, Thomas D. (New Lennox, IL)

1985-01-01T23:59:59.000Z

449

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

450

High Pressure Hydrogen Materials Compatibility of Piezoelectric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

451

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

452

Hydrogen energy systems studies  

SciTech Connect (OSTI)

For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

1995-09-01T23:59:59.000Z

453

Formation and Dissociation of Intra-Intermolecular Hydrogen-Bonded Solute-Solvent Complexes: Chemical  

E-Print Network [OSTI]

architectures in supramolecular chemistry, molecular recognition, and self-assembly. The strength of hydrogen, such as the properties of water4 and biological recognition.3 Hydrogen bonding has been studied extensively in many contexts since the birth of the concept in the early 1900s.2,3,5 Hydrogen bonds can be separated into two

Fayer, Michael D.

454

Extent of Hydrogen-Bond Protection in Folded Proteins: A Constraint on Packing Architectures  

E-Print Network [OSTI]

Extent of Hydrogen-Bond Protection in Folded Proteins: A Constraint on Packing Architectures Ariel structuring and ultimately exclusion of water by hydrophobes surrounding backbone hydrogen bonds turn hydrophobes yields an optimal hydrogen-bond stabilization. This motif is shown to be nearly ubiquitous

Berry, R. Stephen

455

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized  

E-Print Network [OSTI]

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane

Nerenberg, Robert

456

Hydrogen storage composition and method  

DOE Patents [OSTI]

A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form C.sub.n H.sub.2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

Heung, Leung K (Aiken, SC); Wicks, George G. (Aiken, SC)

2003-01-01T23:59:59.000Z

457

Hydrogen storage composition and method  

DOE Patents [OSTI]

A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR){sub X} where R is an organic ligand of the form C{sub n}H{sub 2n+1}, and organometals of the form MO{sub x}Ry where R is an alkyl group, where M is an oxide-forming metal, n, x and y are integers and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 motes of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

Wicks, G.G.; Heung, L.K.

1994-01-01T23:59:59.000Z

458

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

459

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

460

Hydrogen Industrial Trucks  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

Note: This page contains sample records for the topic "water hydrogen sulfide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen purification system  

DOE Patents [OSTI]

The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

Golben, Peter Mark

2010-06-15T23:59:59.000Z

462

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

463

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

464

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

465

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

466

Hydrogen Delivery - Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

467

Enhancing hydrogen spillover and storage  

DOE Patents [OSTI]

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

2011-05-31T23:59:59.000Z

468

Enhancing hydrogen spillover and storage  

SciTech Connect (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

2013-02-12T23:59:59.000Z

469

ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE  

SciTech Connect (OSTI)

OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

2003-02-01T23:59:59.000Z

470

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

471

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

472

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

473

Methods and systems for the production of hydrogen  

DOE Patents [OSTI]

Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

2012-03-13T23:59:59.000Z

474

Hydrogen separation membranes annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-17T23:59:59.000Z

475

Fuel traps: mapping stability via water association.  

SciTech Connect (OSTI)

Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer; Sabo, Dubravko; Martin, Marcus Gary; Cygan, Randall Timothy

2007-03-01T23:59:59.000Z

476

Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide  

SciTech Connect (OSTI)

The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

Clary, L.R.; Vermeulen, T.; Lynn, S.

1980-12-01T23:59:59.000Z

477

Hydrogen Production: Photoelectrochemical Water Splitting | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet

478

Water Dynamics in Water/DMSO Binary Mixtures Daryl B. Wong, Kathleen P. Sokolowsky, Musa I. El-Barghouthi,  

E-Print Network [OSTI]

Water Dynamics in Water/DMSO Binary Mixtures Daryl B. Wong, Kathleen P. Sokolowsky, Musa I. El (DMSO)/ water solutions with a wide range of water concentrations are studied using polarization even at very low water concentrations that are associated with water- water and water-DMSO hydrogen

Fayer, Michael D.

479

EFFECT ON PERFORMANCE OF ENGINE BY INJECTING HYDROGEN  

E-Print Network [OSTI]

The principle of this type of combustion is to addition of hydrogen gas to the combustion reactions of either compression or spark ignition engines. The addition of hydrogen has been shown to decrease the formation of NOx, CO and unburnt hydrocarbons. Studies have shown that added hydrogen in percentages as low as 5-10 % of the hydrocarbon fuel can reduce that hydrocarbon fuel consumption. The theory behind this concept is that the addition of hydrogen can increase the lean operation limit, improve the lean burn ability, and decrease burning time. To apply this method to an engine a source of hydrogen is needed. At this time the simplest option would be to carry a tank of hydrogen. Research is being conducted to allow the hydrogen to be reformed from the vehicles hydrocarbon fuel supply or produce hydrogen from electrolysis of water. In the future, better methods could be developed for storing hydrogen in the vehicle or production of hydrogen on-board the vehicle.

Rob Res; Suryakant Sharma Et Al; Suryakant Sharma; Deepak Bhardwaj; Vinay Kumar; Corresponding Suryakant Sharma

480

Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC  

SciTech Connect (OSTI)

Alloys 600 and X-750 have been shown to exhibit a maximum in primary water stress corrosion cracking (PWSCC) susceptibility, when testing is conducted over a range of aqueous hydrogen (H{sub 2}) levels. Contact electric resistance (CER) and corrosion coupon testing using nickel specimens has shown that the maximum in SCC susceptibility occurs in proximity to the nickel-nickel oxide (Ni/NiO) phase transition. The measured location of the Ni/NiO transition has been shown to vary with temperature, from 25 scc/kg H{sub 2} at 360 C to 4 scc/kg H{sub 2} at 288 C. New CER measurements show that the Ni/NiO transition is located at 2 scc/kg H{sub 2} at 260 C. An updated correlation of the phase transition is provided. The present work also reports CER testing conducted using an Alloy 600 specimen at 316 C. A large change in resistance occurred between 5 and 10 scc/kg H{sub 2}, similar to the results obtained at 316 C using a nickel specimen. This result adds confidence in applying the Ni/NiO transition measurements to Ni-Cr-Fe alloys. The understanding of the importance of the Ni/NiO transition to PWSCC has been used previously to quantify H{sub 2} effects on SCC growth rate (SCCGR). Specifically, the difference in the electrochemical potential (EcP) of the specimen or component from the Ni/NiO transition (i.e., EcP{sub Ni/NiO}-EcP) has been used as a correlating parameter. In the present work, these SCCGR-H{sub 2} correlations, which were based on SCCGR data obtained at relatively high test temperatures (338 and 360 C), are evaluated via SCCGR tests at a reduced temperature (316 C). The 316 C data are in good agreement with the predictions, implying that the SCCGR-H{sub 2} correlations extrapolate well to reduced temperatures. The SCCGR-H{sub 2} correlations have been revised to reflect the updated Ni/NiO phase transition correlation. New data are presented for EN82H weld metal (also known as Alloy 82) at 338 C. Similar to other nickel alloys, SCC of EN82H is a function of the aqueous H{sub 2} level, with the SCCGR exhibiting a maximum near the Ni/NiO transition. For example, the SCCGR at 8 scc/kg H{sub 2} is {approx} 81 x higher than at 60 scc/kg H{sub 2}. The 8 scc/kg H{sub 2} condition is near the Ni/NiO transition (located at {approx} 14 scc/kg H{sub 2} at 338 C), while 60 scc/kg H{sub 2} is well into the nickel metal regime. A hydrogen-SCCGR correlation is provided for EN82H. The data and understanding obtained from the present work show that SCC can be mitigated by adjusting the aqueous H{sub 2} level. For example, SCCGR is typically minimized at relatively high aqueous H{sub 2} levels, that are well into the nickel metal regime (i.e., far from the Ni/NiO transition).

Steven A. Attanasio; David S. Morton

2003-06-16T23:59:59.000Z