Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Burning of Hydrocarbon Fuels Directly in a Water-Based Heat Carrier  

Science Journals Connector (OSTI)

A principal possibility of burning hydrocarbon fuels directly in a water-based heat carrier is demonstrated. The first experimental results are presented by an example of burning acetylene in water with initia...

V. S. Teslenko; V. I. Manzhalei; R. N. Medvedev…

2010-07-01T23:59:59.000Z

2

Prediction of heat transfer for a supercritical water test with a four pin fuel bundle  

SciTech Connect (OSTI)

As a next step to validate prediction methods for core design of a Supercritical Water Cooled Reactor, a small, electrically heated fuel bundle with 4 pins is planned to be tested. This paper summarizes first heat transfer predictions for such a test, which were performed based on supercritical and subcritical sub-channel analyses. For heat transfer under supercritical pressure conditions, the sub-channel code STAFAS has been applied, which had been tested successfully already for a supercritical water reactor design. Design studies with different assembly box sizes at a given pin diameter and pitch have been performed to optimize the coolant temperature distribution. With a fuel pin outer diameter of 10 mm and a pitch to diameter ratio of 1.15, an optimum inner width of the assembly box was determined to be 24 mm. Coolant and cladding surface temperatures to be expected at subcritical pressure conditions have been predicted with the sub-channel code MATRA. As, different from typical PWR or BWR conditions, a dryout has been foreseen for the tests, this code had to be extended to include suitable dryout criteria as well as post dryout heat transfer correlations at higher enthalpies and pressures. Different from PWR or BWR design, the cladding surface temperature of fuel pins in supercritical water reactors can vary significantly around the circumference of each pin, causing bending towards its hotter side which, in turn, can cause additional sub-channel heat-up and thus additional thermal bending of the pin. To avoid a thermal instability by this effect, a sensitivity study with respect to thermal bending of fuel pins has been performed, which determines the minimum number of grid spacers needed for this test. (authors)

Behnke, L. [RWE Power AG, Essen (Germany); Himmel, S.; Waata, C.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, PO Box 3640, D-76021 Karlsruhe (Germany); Laurien, E. [University of Stuttgart (Germany)

2006-07-01T23:59:59.000Z

3

Heat and water transport in a polymer electrolyte fuel cell electrode  

SciTech Connect (OSTI)

In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

2010-01-01T23:59:59.000Z

4

Wood Heating Fuel Exemption  

Broader source: Energy.gov [DOE]

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

5

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

6

Heat exchanger for fuel cell power plant reformer  

DOE Patents [OSTI]

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

7

Method and apparatus for fuel gas moisturization and heating  

DOE Patents [OSTI]

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

8

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

9

Research and Development Roadmap for Emerging Water Heating Technologi...  

Energy Savers [EERE]

fuels are split approximately evenly between gas and electric, with other (e.g., fuel oil, propane) representing only 5% of residential water heating energy consumption. Figure...

10

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

11

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

12

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

13

Water-Heating Dehumidifier  

Energy Innovation Portal (Marketing Summaries) [EERE]

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

14

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

15

Solar Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

16

Heating subsurface formations by oxidizing fuel on a fuel carrier  

DOE Patents [OSTI]

A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

Costello, Michael; Vinegar, Harold J.

2012-10-02T23:59:59.000Z

17

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network [OSTI]

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

18

Thermoacoustic device for nuclear fuel monitoring and heat transfer enhancement  

Science Journals Connector (OSTI)

The Fukushima Dai’ichi nuclear disaster of 2011 exposed the need for self-powered sensors that could transmit the status of the fuel rods within the reactor and in spent fuel ponds that was not dependent upon availability of external electrical power for either sensing or telemetry. One possible solution is the use of a thermoacoustic standing wave engine incorporated within a fuel rod which is heated by the nuclear fuel. The engine’s resonance frequency is correlated to the fuel rod temperature and will be transmitted by sound radiation through the reactor's or storage pond’s surrounding water. In addition to acting as a passive temperature sensor the thermoacoustic device will serve to enhance heat transfer from the fuel to the surrounding heat transfer fluid. When activated the acoustically-driven streaming flow of the gas within the fuel rod will circulate gas away from the nuclear fuel and convectively enhance heat transfer to the surrounding coolant. We will present results for a thermoacousticresonator built into a Nitonic® 60 (stainless steel) fuel rod that can be substituted for conventional fuel rods in the Idaho National Laboratory’s Advanced Test Reactor. This laboratory version is heated electrically. [Work supported by the U.S. Department of Energy.

Randall A. Ali; Steven L. Garrett; James A. Smith; Dale K. Kotter

2012-01-01T23:59:59.000Z

19

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

20

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers [EERE]

Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Water Heating Standing Technical Committee Presentation | Department...  

Energy Savers [EERE]

Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

22

Refundable Clean Heating Fuel Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Refundable Clean Heating Fuel Tax Credit (Corporate) Refundable Clean Heating Fuel Tax Credit (Corporate) Refundable Clean Heating Fuel Tax Credit (Corporate) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate 0.20/gallon Program Info Start Date 01/01/2008 (2008 reinstatement) Expiration Date 12/31/2016 State New York Program Type Corporate Tax Credit Rebate Amount 0.01/gallon for each percent of biodiesel Provider New York State Department of Taxation and Finance The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized for only one year from July 1, 2006 to June 30, 2007. However, in 2008 the law was amended to reinstate the credit for purchases made between January 1, 2008 and

23

Refundable Clean Heating Fuel Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Refundable Clean Heating Fuel Tax Credit (Personal) Refundable Clean Heating Fuel Tax Credit (Personal) Refundable Clean Heating Fuel Tax Credit (Personal) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $0.20/gallon Program Info Start Date 01/01/2008 (2008 reinstatement) Expiration Date 12/31/2016 State New York Program Type Personal Tax Credit Rebate Amount $0.01/gallon for each percent of biodiesel Provider New York State Department of Taxation and Finance The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized for only one year from July 1, 2006 to June 30, 2007. However, in 2008 the law was amended to reinstate the credit for purchases made between January 1, 2008 and

24

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

25

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

26

Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

27

Absorption Heat Pump Water Heater  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

28

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

29

Multi-Function Fuel-Fired Heat Pump  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Function Fuel-Fired Heat Pump Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, Building Equipment Research vineyardea@ornl.gov, 865-576-0576 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: 55% residential building energy use for space conditioning & water heating; highly efficient systems needed to facilitate DOE/BTO goal for 50% reduction in building energy use by 2030 Impact of Project: Cumulative energy savings potential of 0.25 Quads

30

FEMP--Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

31

Combined Heat and Power Market Potential for Opportunity Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

32

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

33

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

34

Building Technologies Office: Water Heating Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

35

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

36

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

37

Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation  

E-Print Network [OSTI]

/cm2 240 260 280 300 320 340 360 0.4 0.6 0.8 1 1.2 1.4 1.6 TFC [ K ] C O P COPEn at tmem = 0.016 cm COPEx at tmem = 0.016 cm COPEn at tmem = 0.017 cm COPEx at tmem = 0.017 cm COPEn at tmem = 0.018 cm COPEx at tmem = 0.018 cm PFC = 3... + QFC s 7,ammonia = s ( 'Ammonia' , P = P7 , h =h7 ) s 7,water = s ( 'Water' , P = P7 , h =h7 ) s 7 = x7 ? s 7,ammonia + ( 1 ? x7 ) ? s 7,water h 19,ammonia = h ( 'Ammonia' , T =T19 , P = P19 ) h 19,water = h ( 'Water' , T =T19...

Gadalla, M.; Ratlamwala, T.; Dincer, I.

2010-01-01T23:59:59.000Z

38

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

39

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per...

40

Solar Water Heating Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heating Incentive Program Solar Water Heating Incentive Program Solar Water Heating Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Varies by sector, location, technology, and electric or gas provider; see below for details Program Info Start Date October 2003 State Oregon Program Type State Rebate Program Rebate Amount Varies by sector, water heating fuel, and electric or gas provider; see below for details Provider Energy Trust of Oregon Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who install solar water or pool

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water Heating Basics | Department of Energy  

Energy Savers [EERE]

Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional...

42

Cost Effective Water Heating Solutions  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

43

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

44

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

45

Water Heating Technologies Research and Development Roadmap ...  

Energy Savers [EERE]

Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

46

Emerging Water Heating Technologies Research & Development Roadmap...  

Energy Savers [EERE]

Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

47

Solar Water Heating Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

48

Energy Saver 101: Water Heating Infographic | Department of Energy  

Energy Savers [EERE]

Energy Saver 101: Water Heating Infographic Energy Saver 101: Water Heating Infographic Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic...

49

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Water into Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin, Materials Science NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 PNNL Contacts: Loel Kathmann, Loel.Kathmann@pnnl.gov, +1 509 371 6068 Artwork from this catalysis research graced the cover of Physical Chemistry Chemical Physics. Image reproduced by permission of Dr Igor Lyubinetsky and the PCCP Owner Societies from Phys. Chem. Chem. Phys. 2012. Build a surface of titanium and oxygen atoms arranged just so, coat with water, and add sunshine. What do you get? In theory, energy-rich hydrogen produced by photolysis-a process by which water molecules placed on a catalytic surface and exposed to sunlight (electromagnetic radiation) are

50

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss Factors—PhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

51

Fuel cell system with combustor-heated reformer  

DOE Patents [OSTI]

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

52

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

53

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

54

Fuel-Flexible Microturbine and Gasifier System for Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in...

55

Microfabricated fuel heating value monitoring device  

DOE Patents [OSTI]

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

56

Multi-Function Fuel-Fired Heat Pump Research Project  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy is currently conducting research into multi-function fuel-fired heat pumps. Multi-function fuel-fired heat pump technology has the potential for a significant impact...

57

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network [OSTI]

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

58

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

59

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

60

In situ PEM fuel cell water measurements  

SciTech Connect (OSTI)

Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendalow, Jacob S [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Dawdon Mine Water Heat Pump Trial  

E-Print Network [OSTI]

14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

Oak Ridge National Laboratory

62

Be Sun-sible? about Heating Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat and transmit it to the water, and study the relationship between insulation and heat loss. Teacher background, assessment questions, and extensions are provided. The...

63

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

64

Solar Water Heating and Design Processes  

Science Journals Connector (OSTI)

Solar energy has been used to heat water for many years, and the design requirements of solar water heating equipment have been studied for ... because that upto this time other sources of energy have been more economical

H. P. Garg

1987-01-01T23:59:59.000Z

65

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect (OSTI)

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

66

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

67

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

68

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department...  

Energy Savers [EERE]

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the...

69

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

70

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

71

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

72

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

73

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Broader source: Energy.gov (indexed) [DOE]

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

74

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protection—followed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

75

Winter Heating Fuels - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear...

76

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

77

Water Heating Standing Technical Committee Presentation  

Broader source: Energy.gov (indexed) [DOE]

Standing Technical Committee Standing Technical Committee Water Heating Residential Energy Efficiency Stakeholder's Meeting February 29, 2012 - Austin, Texas 2 STC Chairman Responsibilities * To maintain the Water Heating Strategic Plan (living document) * To work with stakeholders to identify research activities that resolve gaps & barriers towards achieving Water Heating Strategic Goals * To work with stakeholders to prioritize gaps leading to future BA research efforts * To serve as a collection point for BA research activities and outside research * To facilitate collaboration among BA researchers and the marketplace 3 Water Heating as a Significant End Use According to DOE RECS data, residential water heating represents 20% of the energy delivered to U.S. households. 4 Water Heating Strategic Goals

78

Solar Water Heating in Dragash Municipality, Kosovo.  

E-Print Network [OSTI]

?? Water has been heated with the sun has almost as long as there have been humans, but itis not until recently that more advanced… (more)

Dahl Håkans, Mia

2010-01-01T23:59:59.000Z

79

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

80

HVAC, Water Heating, and Appliances | Department of Energy  

Energy Savers [EERE]

HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances How a Small Business is Transforming the Cold Climate Heating Market How a Small Business is Transforming...

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Residential Absorption Heat Pump Water Heater | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pump Water Heater Residential Absorption Heat Pump Water Heater Photo credit: Oak Ridge National Lab Photo credit: Oak Ridge National Lab Diagram of absorption heat...

82

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

83

Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications  

SciTech Connect (OSTI)

Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

Jalalzadeh-Azar, A. A.

2004-01-01T23:59:59.000Z

84

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

85

Fuel Cell Animation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen...

86

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

87

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

88

In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification Explores...

89

Water injected fuel cell system compressor  

DOE Patents [OSTI]

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

90

Natural convection heat transfer analysis of ATR fuel elements  

SciTech Connect (OSTI)

Natural convection air cooling of the Advanced Test Reactor (ATR) fuel assemblies is analyzed to determine the level of decay heat that can be removed without exceeding the melting temperature of the fuel. The study was conducted to assist in the level 2 PRA analysis of a hypothetical ATR water canal draining accident. The heat transfer process is characterized by a very low Rayleigh number (Ra {approx} 10{sup {minus}5}) and a high temperature ratio. Since neither data nor analytical models were available for Ra < 0.1, an analytical approach is presented based upon the integral boundary layer equations. All assumptions and simplifications are presented and assessed and two models are developed from similar foundations. In one model, the well-known Boussinesq approximations are employed, the results from which are used to assess the modeling philosophy through comparison to existing data and published analytical results. In the other model, the Boussinesq approximations are not used, thus making the model more general and applicable to the ATR analysis.

Langerman, M.A.

1992-05-01T23:59:59.000Z

91

Improving the technology of creating water-coal fuel from lignites  

SciTech Connect (OSTI)

This paper describes the preparation of coal-water fuel slurries from lignite. The heat of combustion as related to the preparation of the lignite was investigated. The hydrobarothermal processing of suspensions of lignites was studied in autoclaves.

Gorlov, E.G.; Golovin, G.S.; Zotova, O.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

92

Heat Pump Water Heating Modeling in EnergyPlus  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

93

Fuel Cell Technologies Office: Water Electrolysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Electrolysis Water Electrolysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Water Electrolysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Water Electrolysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Google Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Delicious Rank Fuel Cell Technologies Office: Water Electrolysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Water Electrolysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

94

A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments  

SciTech Connect (OSTI)

Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

2014-01-01T23:59:59.000Z

95

Native Village of Teller Addresses Heating Fuel Shortage, Improves...  

Broader source: Energy.gov (indexed) [DOE]

amounts of heating oil back to Teller. Brevig Mission, which was also running low on fuel, had plans to increase the price per gallon, thus raising the cost for Teller...

96

Building America Standing Technical Committee - Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Standing Technical Committee Strategic Plan, v2012a Revised: January 2012 Committee Chair: 2011, 2012 Marc Hoeschele mhoesch@davisenergy.com 530-753-1100 x23 ARBI Page 2 Background on Residential Water Heating According to the U.S. Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS), annual residential water heating totals 2.11 quads of energy annually, or 20% of the energy delivered to residential buildings 1 . Over the past 70 years, gas and electric storage water heaters have been the predominant water heater type in the United States 2 . Recently, gas tankless water heaters have made inroads in market share with current industry projected gas tankless sales estimated at 400,000+ annually, and an

97

Technology data characterizing water heating in commercial buildings: Application to end-use forecasting  

SciTech Connect (OSTI)

Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

98

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heater CO2 Heat Pump Water Heater CO2 Heat Pump Water Heater Prototype
Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab...

99

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: EnergyA Specification for Residential Heat Pump Water Heaters

Franco, Victor

2011-01-01T23:59:59.000Z

100

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

so, coat with water, and add sunshine. What do you get? In theory, energy-rich hydrogen produced by photolysis-a process by which water molecules placed on a catalytic surface...

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Research & Development Roadmap: Emerging Water Heating Technologies  

Broader source: Energy.gov [DOE]

The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

102

Report on Solar Water Heating Quantitative Survey  

SciTech Connect (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

Focus Marketing Services

1999-05-06T23:59:59.000Z

103

Emerging Water Heating Technologies Research & Development Roadmap  

Broader source: Energy.gov [DOE]

The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

104

Heat Pump Water Heaters Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

105

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Broader source: Energy.gov (indexed) [DOE]

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

106

Absorption Heat Pump Water Heater - 2013 Peer Review | Department...  

Energy Savers [EERE]

Absorption Heat Pump Water Heater - 2013 Peer Review Absorption Heat Pump Water Heater - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's...

107

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and...

108

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

109

Heat-Release Behavior of Fuel Combustion Additives  

Science Journals Connector (OSTI)

Heat-Release Behavior of Fuel Combustion Additives ... Heats of combustion were determined in a constant-volume calorimeter by an independent test laboratory using ASTM procedure D 240.14 ... We probed for a solvent effect using several hydrocarbons and hydrocarbon mixtures. ...

Jimmie C. Oxley; James L. Smith; Evan Rogers; Wen Ye; Allen A. Aradi; Timothy J. Henly

2001-08-25T23:59:59.000Z

110

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

111

Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions  

E-Print Network [OSTI]

schematically in Fig. 1, a fuel cell supplies two reactant streams, consisting of a fuel (hydrogen, H2Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water. Trabolda, * a General Motors Fuel Cell Laboratory, 10 Carriage Street, Honeoye Falls, New York, USA b

Kandlikar, Satish

112

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

113

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

114

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

115

A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments  

SciTech Connect (OSTI)

The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

2014-01-01T23:59:59.000Z

116

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld  

E-Print Network [OSTI]

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld Department of Mechanical and Process fuels make use of concentrated solar radiation as the energy source of high-temperature process heat Engineering, ETH Zurich, Switzerland and Solar Technology Laboratory, Paul Scherrer Institute, Switzerland

Ponce, V. Miguel

117

Combustion and fuel characterization of coal-water fuels  

SciTech Connect (OSTI)

Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

1987-06-01T23:59:59.000Z

118

Heat exchanger optimization for geothermal district heating systems: A fuel saving approach  

Science Journals Connector (OSTI)

One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered.

Ahmet Dagdas

2007-01-01T23:59:59.000Z

119

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

120

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Grid-Interactive Renewable Water Heating Economic and Environmental Value  

Broader source: Energy.gov (indexed) [DOE]

1 1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and charge level, factoring in renewable generation and other critical needs of the grid; thereby significantly reducing carbon emissions and bringing a new dimension of conservation and efficiency to the electric grid. The Steffes grid-interactive renewable water heater controller provides utilities with an affordable and effective way to integrate renewable generation into the grid while providing uninterrupted hot water to the consumer. In recent years, many states have set Renewable Portfolio Standards (RPS) to reduce the need for traditional fossil fuel-based power generation, thereby improving our environment and decreasing

122

Fuel from Water: The Photochemical Generation of Hydrogen from Water  

Science Journals Connector (OSTI)

Fuel from Water: The Photochemical Generation of Hydrogen from Water ... Hydrogen can be generated from fossil fuels using well established industrial scale chem.; while this is clearly not green, it can provide the transitional capacity as infrastructure is developed and alternate ways of generating hydrogen using solar, nuclear, hydro, wind, or wave energy come to the fore. ... Our renewed interest in alternative energy has fuelled research in understanding this simplest, in terms of active site organization, of the known hydrogenases over the last two decades. ...

Zhiji Han; Richard Eisenberg

2014-06-26T23:59:59.000Z

123

Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems May 16, 2013 - 3:02pm Addthis Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional change in length (or sometimes in volume, when specified) of a material for a unit change in temperature Viscosity - resistance of a liquid to sheer forces (and hence to flow) Thermal capacity - the ability of matter to store heat Freezing point - the temperature below which a liquid turns into a

124

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

125

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

126

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

127

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

128

New and Underutilized Technology: Solar Water Heating | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

129

FS: heat pump water heaters | The Better Buildings Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

130

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect (OSTI)

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

131

Building America Standing Technical Committee- Water Heating  

Broader source: Energy.gov [DOE]

The Building America program is focused on delivering market acceptable energy efficiency solutions to homeowners, builders, and contractors. Near term goals of 30-50% source energy savings are currently targeted. This document examines water heating gaps and barriers, and is updated as of Feb. 2012.

132

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

133

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

134

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

135

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

136

#AskEnergySaver: Home Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric systems, like solar electric and onsite wind power, have substantial energy loss when converting electricity to heat. With solar thermal water heating, there are a...

137

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

138

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

139

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 TDA...

140

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department...  

Energy Savers [EERE]

RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil...

142

Dual-water mixture fuel burner  

DOE Patents [OSTI]

A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

1986-08-05T23:59:59.000Z

143

Federal Energy Management Program: New and Underutilized Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heating Technologies to someone by E-mail Water Heating Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Water Heating Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Water Heating Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Water Heating Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Water Heating Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting

144

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

145

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers [EERE]

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

146

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers [EERE]

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST This...

147

Central Multifamily Water Heating Systems | Department of Energy  

Energy Savers [EERE]

Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST The Building America Program is hosting a no-cost,...

148

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers [EERE]

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 11:00AM to 12:30PM MST...

149

Everything You Wanted to Know About Solar Water Heating Systems...  

Broader source: Energy.gov (indexed) [DOE]

Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to...

150

Water Management in Polymer Electrolyte Membrane (PEM) Fuel Cells  

E-Print Network [OSTI]

Water Management in Polymer Electrolyte Membrane (PEM) Fuel Cells Catherine Chan & Lauren Isbell objectives Important variables that lead to results Conclusion #12;Basic Operation of a PEM Fuel Cell fuel cell? A flow channel? The importance of water management Experimental setup and methods Project

Petta, Jason

151

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

152

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

153

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

154

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network [OSTI]

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS By HUI JIN Bachelor of Science validation of the water-to-air heat pump model. It's hard to find any words to express the thanks to my BASED MODELS OF WATER SLOURCE HEAT PUMPS Thesis Approved: Thesis Adviser Dean of the Graduate College ii

155

City of Tallahassee Utilities - Solar Water Heating Rebate | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tallahassee Utilities - Solar Water Heating Rebate Tallahassee Utilities - Solar Water Heating Rebate City of Tallahassee Utilities - Solar Water Heating Rebate < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount 450 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the replacement of an older solar water-heating system. Homebuilders may also apply for the rebate when installing a solar water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit

156

Fuel Cell Animation- Fuel Cell Stack (Text Version)  

Broader source: Energy.gov [DOE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

157

Fuel Cell Animation- Fuel Cell Components (Text Version)  

Broader source: Energy.gov [DOE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

158

Santa Clara Water and Sewer - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water and Sewer - Solar Water Heating Program Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program < Back Eligibility Commercial Local Government Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Commercial Heating & Cooling Program Info State California Program Type Leasing Program Provider City of Santa Clara Water and Sewer Utility In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. Solar equipment is available from the city for heating swimming pools,

159

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

160

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Organic combustion fingerprints of three common home heating fuels  

SciTech Connect (OSTI)

The paper discusses the chemical structures of three common home heating fuels: wood, coal, and No. 2 fuel oil. GC and GC/MS data are then presented which demonstrate how the thermal destruction of each fuel results in the production of a characteristic group of organic 'fingerprint' compounds. For wood, where the chief structural element is lignin polymer, they are methoxy benzenes, methoxy phenols, and alkyl bezenes. For coal, where the polymer contains more fused-ring structures, the chief products are fused-ring aromatics with structures of three or more rings, benzothiophenes, and to a lesser extent methyl-substituted phenols. For oil, the chief byproducts are unburned droplets of the oil. The paper concludes with a brief discussion of how these fingerprints can be used as apportionment guides in complex airsheds.

Steiber, R.S.

1993-01-01T23:59:59.000Z

162

Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses  

SciTech Connect (OSTI)

This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

1986-12-01T23:59:59.000Z

163

Residential Solar Water Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

164

Modeling Water Management in Polymer-Electrolyte Fuel Cells  

SciTech Connect (OSTI)

Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential on the cathode) and the resulting effects of the kinetic reactions. Next, at low currents, the behavior of a PEFC is dominated by kinetic losses. These losses mainly stem from the high overpotential of the oxygen-reduction reaction (ORR). As the current is increased, ohmic losses become a factor in lowering the overall cell potential. These ohmic losses are mainly from ionic losses in the electrodes and separator. At high currents, mass-transport limitations become increasingly important. These losses are due to reactants not being able to reach the electrocatalytic sites. Key among the issues facing PEFCs today is water management. Due to their low operating temperature (< 100 C), water exists in both liquid and vapor phases. Furthermore, state-of-the-art membranes require the use of water to provide high conductivity and fast proton transport. Thus, there is a tradeoff between having enough water for proton conduction (ohmic losses), but not too much or else the buildup of liquid water will cause a situation in which the reactant-gas-transport pathways are flooded (mass-transfer limitations). Figure 3 displays experimental evidence of the effects of water management on performance. In Figure 3(a), a neutron image of water content displays flooding near the outlet of the cell due to accumulation of liquid water and a decrease in the gas flowrates. The serpentine flow field is clearly visible with the water mainly underneath the ribs. Figure 3(b) shows polarization performance at 0.4 and 0.8 V and high-frequency resistance at 0.8 V as a function of cathode humidification temperature. At low current densities, as the inlet air becomes more humid, the membrane resistance decreases, and the performance increases. At higher current densities, the same effect occurs; however, the higher temperatures and more humid air also results in a lower inlet oxygen partial pressure.

Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

2007-09-07T23:59:59.000Z

165

Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Function Multi-Function Fuel-Fired Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Google Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Delicious Rank Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities

166

Marine engine with water cooled fuel line from remote tank  

SciTech Connect (OSTI)

This patent describes a marine propulsion system. It comprises: a water cooled internal combustion engine, a remote fuel tank, a conduit connected between the fuel tank and the engine, the conduit having a first passage supplying fuel from the tank to the engine, the conduit having a second passage supplying cooling water from the engine towards the tank, the conduit having a third passage returning water from the second passage back to the engine.

Arms, J.F.

1990-07-10T23:59:59.000Z

167

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

168

Tomographic Detection of Water in Fuel Cell Systems  

Science Journals Connector (OSTI)

We present method and results for in situ characterization of water diffusion and other degradation mechanisms in fuel cell membranes using interferometric phase ...

Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George

169

Tomographic Detection of Water in Fuel Cell Systems  

Science Journals Connector (OSTI)

We present method and results for in situ characterization of water diffusion and other degradation mechanisms in fuel cell membranes using interferometric phase tomography.

Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George

170

Surface Wettability Impact on Water Management in PEM Fuel Cell.  

E-Print Network [OSTI]

??Excessive water formation inside the polymer electrolyte membrane (PEM) fuel cell’s structures leads to the flooding of the cathode gas diffusion layer (GDL) and cathode… (more)

Al Shakhshir, Saher

2012-01-01T23:59:59.000Z

171

Heat Pump Water Heater Performance in  

Broader source: Energy.gov (indexed) [DOE]

searc searc e er tra A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida searc e er tra Heat Pump Water Heater Performance in Laboratory House Building America Technical Update 2013 ACI National Home Performance Conference April 29- 30 , 2013 Carlos J. Colon carlos@fsec.ucf.edu A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Grounds, Florida (east coast) 2009 -Present (Currently fourth testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida

172

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

173

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

174

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

175

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

176

Beaches Energy Services - Solar Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per customer Rebates will not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater: $500 Provider Beaches Energy Services Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and solar pool heating systems do not qualify for the rebate payment. Systems must be installed by a licensed Florida contractor and must be FSEC certified. Rebates will not

177

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

178

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network [OSTI]

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

179

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

180

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review was produced from water in a linked cyanobacterial- hydrogenase hybrid system Isolated mutants and cloned 2

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A liquid water management strategy for PEM fuel cell stacks  

E-Print Network [OSTI]

Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

Van Nguyen, Trung; Knobbe, M. W.

2003-02-25T23:59:59.000Z

182

Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element  

SciTech Connect (OSTI)

The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

Ruggles, A.E.

1990-10-12T23:59:59.000Z

183

Evaluation of water source heat pumps for the Juneau, Alaska Area  

SciTech Connect (OSTI)

The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

1980-07-01T23:59:59.000Z

184

High Performance Catalytic Heat Exchanger for SOFC Systems - FuelCell Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Heat Catalytic Heat Exchanger for SOFC Systems-FuelCell Energy Background In a typical solid oxide fuel cell (SOFC) power generation system, hot (~900 °C) effluent gas from a catalytic combustor serves as the heat source within a high-temperature heat exchanger, preheating incoming fresh air for the SOFC's cathode. The catalytic combustor and the cathode air heat exchanger together represent the largest opportunity for cost

185

Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels  

Science Journals Connector (OSTI)

This study explores the use of wet ethanol as a fuel for HCCI engines while using exhaust heat recovery to provide the high input energy required for igniting wet ethanol. Experiments were conducted on a 4-cylinder Volkswagen engine modified for HCCI operation and retrofitted with an exhaust gas heat exchanger connected to one cylinder. Tested fuel blends ranged from 100% ethanol to 80% ethanol by volume, with the balance being water. These blends are directly formed in the process of ethanol production from biomass. Comprehensive data was collected for operating conditions ranging from intake pressures of 1.4–2.0 bar and equivalence ratios from 0.25 to 0.55. The heat exchanger was used to preheat the intake air allowing HCCI combustion without electrical air heating. The results suggest that the best operating conditions for the HCCI engine and heat exchanger system in terms of high power output, low ringing, and low nitrogen oxide emissions occur with high intake pressures, high equivalence ratios, and highly delayed combustion timings. Removing the final 20% of water from ethanol is a major energy sink. The results of this study show that HCCI engines can use ethanol fuels with up to 20% water while maintaining favorable operating conditions. This can remove the need for the most energy-intensive portion of the water removal process.

Samveg Saxena; Silvan Schneider; Salvador Aceves; Robert Dibble

2012-01-01T23:59:59.000Z

186

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network [OSTI]

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

187

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

communications). Heat transfer fluid is 60% o-o1vco1 bycharacteristics, heat transfer fluids, flow resistances,of a non- freezing heat transfer fluid circulating in a loop

Mertol, Atila

2012-01-01T23:59:59.000Z

188

Field Monitoring Protocol: Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SHR Sensible heat ratio T&RH Temperature and relative humidity TC Thermocouple UA Heat loss coefficient v Table of Contents List of Figures ......

189

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water  

Science Journals Connector (OSTI)

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water ... Energy Fuels, 2009, 23 (12), ...

Jason W. Picou; Jonathan E. Wenzel; H. Brian Lanterman; Sunggyu Lee

2009-10-07T23:59:59.000Z

190

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

191

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lower Water Heating Temperature Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

192

In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification  

Broader source: Energy.gov [DOE]

Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

193

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power  

Broader source: Energy.gov [DOE]

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

194

Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating  

Science Journals Connector (OSTI)

A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear a...

A. V. Timofeev

2009-11-01T23:59:59.000Z

195

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

196

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)  

SciTech Connect (OSTI)

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

Hudon, K.

2012-05-01T23:59:59.000Z

197

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

198

Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)  

Broader source: Energy.gov [DOE]

'''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

199

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

200

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

as conventional electric resistance water heaters, with thetwo technologies: (1) an electric resistance storage watertransfers heat from the electric resistance element to the

Franco, Victor

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future, Vol.VIII-8-1 Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-conditioning System Chunlei Zhang Suilin Wang Hongbing Chen...

Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

2006-01-01T23:59:59.000Z

202

Water Consumption from Freeze Protection Valves for Solar Water Heating Systems  

SciTech Connect (OSTI)

Conference paper regarding research in the use of freeze protection valves for solar domestic water heating systems in cold climates.

Burch, J.; Salasovich, J.

2005-12-01T23:59:59.000Z

203

Rethinking the light water reactor fuel cycle  

E-Print Network [OSTI]

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

204

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

205

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

206

Solar Water Heating Requirement for New Residential Construction |  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

207

Duquesne Light Company - Residential Solar Water Heating Program |  

Broader source: Energy.gov (indexed) [DOE]

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

208

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

209

Valley Electric Association - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

210

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Broader source: Energy.gov [DOE]

Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

211

Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pump - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

212

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

213

Save on Home Water Heating | Department of Energy  

Office of Environmental Management (EM)

and money, or choose an on-demand hot water heater to save even more. Tips: Water Heating Solar energy systems are among the renewable and efficiency purchases that are...

214

Comparative Life-Cycle Assessment of Residential Heating Systems, Focused on Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

This study aims to analyze a Solid Oxide Fuel Cell (SOFC) for residential heating applications by...producer, the user as an individual and the user...intended as the heating demand of a building, applied by defa...

Alba Cánovas; Rainer Zah; Santiago Gassó

2013-01-01T23:59:59.000Z

215

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...  

Broader source: Energy.gov (indexed) [DOE]

Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

216

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network [OSTI]

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

217

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Idaho) Idaho) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Idaho) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State Idaho Program Type Non-Profit Rebate Program The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

218

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Oregon) Oregon) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Oregon) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Oregon Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

219

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Montana) Montana) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Montana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Montana Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

220

Simulation and Validation of a Single Tank Heat Pump Assisted Solar Domestic Water Heating System.  

E-Print Network [OSTI]

??This thesis is a study of an indirect heat pump assisted solar domestic hot water (I-HPASDHW) system, where the investigated configuration is called the Dual… (more)

Wagar, William Robert

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dynamic modelling and simulation of a polymer electrolyte membrane fuel cell used in vehicle considering heat transfer effects  

Science Journals Connector (OSTI)

Fuel cell technology is recently becoming one of the most interesting fields for the car companies to invest in. This interest is because of their high efficiency and zero environmental pollution. Polymer electrolyte membrane fuel cells are the most appropriate type of fuel cells for use in vehicles due to their low performance temperature and high power density. Air and fuel mass flow rate and partial pressure fuel cell stack temperature relative humidity of fuel cellmembrane and heat and water management are the effective parameters of fuel cellpower systems. Good transient behavior is one of the important factors that affect the success of fuel cell vehicles. In order to avoid stack voltage drop during transient condition the control system of fuel cell vehicle is required to preserve optimal temperature membrane hydration and partial pressure of reactants across the membrane. In this paper we developed a dynamic model for fuel cellpower system. The compressor dynamic supply and return manifold filling dynamics (anode and cathode) cooling system dynamic membrane hydration and time-evolving reactant partial pressure are the most significant parameters in transient and steady state of system. The effects of membrane humidity varying inlet air pressure and compressor performance condition on the generated power are studied in this paper.

S. M. Hosseini; A. H. Shamekhi; A. Yazdani

2012-01-01T23:59:59.000Z

222

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

223

Innovative Fresh Water Production Process for Fossil Fuel Plants  

SciTech Connect (OSTI)

This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be significant advantage when using the heated air/heated water process with a less dense less specific surface area packed bed. Use of one configuration over the other depends upon the environment and the desired operating conditions.

James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

2006-09-29T23:59:59.000Z

224

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

225

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

226

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network [OSTI]

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

227

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents [OSTI]

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

228

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

229

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

230

Environmental assessment for radioisotope heat source fuel processing and fabrication  

SciTech Connect (OSTI)

DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

Not Available

1991-07-01T23:59:59.000Z

231

Interferometric tomography of fuel cells for monitoring membrane water content  

E-Print Network [OSTI]

We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered ...

Waller, Laura

232

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect (OSTI)

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

233

Calculating and reporting changes in net heat of combustion of wood fuel  

SciTech Connect (OSTI)

There is often confusion when reporting net heat of combustion changes in wood fuel due to changes in moisture content (MC) of the fuel. This paper was written to identify and clarify the bases on which changes in net heat of combustion can be calculated. Formulae for calculating changes in net heat of combustion of wood fuel due to MC changes are given both on a per unit weight of fuel basis and on an actual gain basis. Examples which illustrate the difference in the two reporting approaches, as well as the importance of both approaches, are presented. (Refs. 7).

Harris, R.A.; McMinn, J.W.; Payne, F.A.

1986-06-01T23:59:59.000Z

234

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National  

Broader source: Energy.gov (indexed) [DOE]

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the 573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the Renewable Fuel Heat Plant (RFHP) at the National Renewable Energy Laboratory's South Table Mountain site. The SEA analyzes the potential environmental impacts associated with the proposed improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale.

235

Solar Water Heating FTA, 024922m FTA solwat heat.pdf  

Broader source: Energy.gov (indexed) [DOE]

Federal Technology Alert A series of energy efficient technology guides prepared by the New Technology Demonstration Program Solar Water Heating Well-Proven Technology Pays Off in Several Situations Solar water heating is a well-proven and readily available technology that directly substitutes renewable energy for conventional water heating. This Federal Technology Alert (FTA) of the Federal Energy Management Program (FEMP), one of a series on new energy- efficient technologies and renewable energy technologies, describes the various types of solar water heating systems, the situations in which solar water heating is likely to be cost- effective, considerations in selecting and designing a system, and basic steps for installing a system. There are a variety of different types

236

Heat transfer research on supercritical water flow upward in tube  

SciTech Connect (OSTI)

The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

Li, H. B.; Yang, J. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China); Gu, H. Y.; Zhao, M. [Shanghai Jiao Tong Univ., Shanghai (China); Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China)

2012-07-01T23:59:59.000Z

237

Long Island Power Authority - Residential Solar Water Heating Rebate  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

238

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

239

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel May 5, 2011 - 1:27pm Addthis Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D.

240

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel May 5, 2011 - 1:27pm Addthis Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D.

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

242

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

243

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

244

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

245

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

246

Apparatus and method for solar heating of water  

SciTech Connect (OSTI)

This patent describes an apparatus for heating a tank of water comprising at least three substantially planar plastic strips positioned substantially vertically in spaced relationship in the water, such that the strips are substantially immersed in the water to be heated, and means for positioning the strips in the water with the provisos that the strips are light absorbent on both major planar surfaces and that the positioning means is of such construction as to minimize absorption of solar radiation by the positioning means rather than by the strips. A method for solar heating of a tank of water comprising the steps of positioning at least three substantially vertical, substantially planar plastic strips in spaced relationship in the water, such that strips are substantially immersed in the water to be heated, with the proviso that the strips are light absorbent on both major planar surfaces, and exposing the strips to solar radiation. A recreational swimming pool equipped with a solar heating apparatus comprising at least three substantially planar plastic strips removably positioned substantially vertically in spaced relationship in the pool water, such that and means for removably positioning the strips in spaced relationship in the pool water with the proviso that the strips are light absorbent on both major planar surfaces.

Caines, R.S.

1988-12-13T23:59:59.000Z

247

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

248

Supersonic coal water slurry fuel atomizer  

DOE Patents [OSTI]

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

249

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

250

Building Codes and Regulations for Solar Water Heating Systems | Department  

Broader source: Energy.gov (indexed) [DOE]

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

251

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

252

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

253

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

254

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

255

Optimization and heat and water integration for biodiesel production  

E-Print Network [OSTI]

generation of biodiesel using waste cooking oil and algae oil. We consider 5 different technologies: Energy, Biofuels, Biodiesel, Cooking Oil, Mathematical optimization, Algae1 Optimization and heat and water integration for biodiesel production from cooking oil

Grossmann, Ignacio E.

256

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

257

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

258

Split system CO2 heat pump water heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Split-system-CO2-heat-pump-water-heaters- Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

259

GreyStone Power- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

260

South River EMC- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

262

Building Codes and Regulations for Solar Water Heating Systems | Department  

Broader source: Energy.gov (indexed) [DOE]

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

263

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Broader source: Energy.gov (indexed) [DOE]

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

264

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network [OSTI]

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

265

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network [OSTI]

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

266

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

267

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

268

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Fuel Cell Research Center, 2012 1/22 National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO © National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction © National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy density of H 2 is much greater than batteries * Rapid fueling, long range ZEV * H 2 must be produced * energy intensive, may have emissions, fossil fuels, economies of scale * Low volumetric energy density of H 2 compared to current infrastructure fuels (@ STP)

269

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers [EERE]

Low Cost Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

270

Solar Water Heating System Maintenance and Repair | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

271

Study on Energy Efficiency Evaluation Method of Cooling Water System of Surface Water Source Heat Pump  

Science Journals Connector (OSTI)

Water source heat pump system is a green air-conditioning system which has high efficiency, energy saving, and environmental protection, but inappropriate design of the system type of water intake will impact on ...

Jibo Long; Siyi Huang

2014-01-01T23:59:59.000Z

272

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Livestock Fuel for Water Pumping Motor Efficiency GW EnergyRequired for Water Pumps Using Electric Motors (AdaptedGasoline motors typically used for water pumps are

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

273

The Northeast heating fuel market: Assessment and options  

SciTech Connect (OSTI)

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

274

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents [OSTI]

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

275

Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil  

DOE Patents [OSTI]

In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

2000-01-01T23:59:59.000Z

276

Long Term Solar Heat Storage through Underground Water Tanks for the Heating of Housing  

Science Journals Connector (OSTI)

This project consists in the development of design methods of solar plants for heating of housing by means of the interseasonal storage of solar energy through water tanks located under or...

M. Cucumo; V. Marinelli; G. Oliveti; A. Sabato

1983-01-01T23:59:59.000Z

277

Design of Coil Heat Exchanger for Remote-Storage Solar Water Heating System  

Science Journals Connector (OSTI)

A coil heat exchanger for hot water thermal storage was presented including the choice of the ... calculation of flow resistance. In this design, solar collector contour aperture area is 4.26...2, the volume of w...

Lv Cuiping; He Duanlian; Dou Jianqing

2009-01-01T23:59:59.000Z

278

Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump  

E-Print Network [OSTI]

The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

Cong, X.; Liu, Y.; Yang, W.

2006-01-01T23:59:59.000Z

279

Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger  

Science Journals Connector (OSTI)

Abstract The purpose of the present study is to accumulate knowledge on how a drain water heat recovery system using a vertical inline heat exchanger and a heat pump performs under different drain water flow profile scenarios. Investigating how the intermittent behavior of the drain water influences the performance for this type of system is important because it gives insight on how the system will perform in a real life situation. The scenarios investigated are two 24 h drain water flow rate schedules and one shorter schedule representing a three minute shower. The results from the present paper add to the knowledge on how this type of heat recovery system performs in a setting similar to a multi-family building and how sizing influences the performance. The investigation shows that a heat recovery system of this type has the possibility to recover a large portion of the available heat if it has been sized to match the drain water profile. Sizing of the heat pump is important for the system performance; sizing of the storage tank is also important but not as critical.

Jörgen Wallin; Joachim Claesson

2014-01-01T23:59:59.000Z

280

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network [OSTI]

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

282

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network [OSTI]

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

283

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

284

Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions  

Broader source: Energy.gov [DOE]

This presentation, which focuses on fuel cell water transport, was given by Satish Kandlikar at a DOE fuel cell meeting in February 2007.

285

EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable  

Broader source: Energy.gov (indexed) [DOE]

Renewable Fuel Heat Plant Improvements at the National Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) Summary This EA evaluates the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources. DOE/EA-1887 supplements a prior EA (DOE/EA-1573, July 2007) and is also referred to as DOE/EA-1573-S1. Public Comment Opportunities None available at this time. Documents Available for Download April 9, 2012 EA-1887: Finding of No Significant Impact

286

Thermochemical conversion of fuels into hydrogen-containing gas using recuperative heat of internal combustion engines  

Science Journals Connector (OSTI)

The problem of the thermochemical recuperation of heat from the exhaust gases of internal combustion engines (ICEs) as a method of ... the steam conversion of oxygen-containing fuels into syngas were developed, a...

V. A. Kirillov; A. B. Shigarov; N. A. Kuzin…

2013-09-01T23:59:59.000Z

287

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

288

Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating  

SciTech Connect (OSTI)

A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear ash ions should be carried out in two monochromatic RF fields of different frequencies, provided that the fraction of {xi} multicharged ions is small, {xi} {<=} 0.1, a condition that substantially restricts the productivity of systems for processing spent nuclear fuel. Ways of overcoming this difficulty are discussed.

Timofeev, A. V. [Russian Research Centre Kurchatov Institute, Nuclear Fusion Institute (Russian Federation)

2009-11-15T23:59:59.000Z

289

Fuel Cells - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics Fuel Cells - Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as...

290

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy is utilizing its current commercialization channels to market the new hybrid fuel cell technologies. Distribution partners LOGAN Energy, Pfister Energy, and PPL Energy Plus...

291

Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript  

Broader source: Energy.gov [DOE]

Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

292

In search for sustainable globally cost-effective energy efficient building solar system – Heat recovery assisted building integrated PV powered heat pump for air-conditioning, water heating and water saving  

Science Journals Connector (OSTI)

Abstract Obtained as a research result of conducted project, this paper presents an innovative, energy efficient multipurpose system for a sustainable globally cost-effective building's solar energy use and developed methodology for its dynamic analysis and optimization. The initial research and development goal was to create a cost-effective technical solution for replacing fossil fuel and electricity with solar energy for water heating for different purposes (for pools, sanitary water, washing) in one SPA. After successful realization of the initial goal, the study was proceeded and as a result, the created advanced system has been enriched with AC performance. The study success was based on understanding and combined measurements and by BPS made predictions of AC loads and solar radiation dynamics as well as on the determination of the synergetic relations between all relevant quantities. Further, by the performed BPS dynamic simulations for geographically spread buildings locations, it has been shown that the final result of the conducted scientific engineering R&D work has been the created system of confirmed prestigious to the sustainability relevant performance – globally cost-effective building integrated photovoltaic powered heat pump (HP), assisted by waste water heat recovery, for solar AC, water heating and saving.

Marija S. Todorovic; Jeong Tai Kim

2014-01-01T23:59:59.000Z

293

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network [OSTI]

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

294

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

295

Coupled Thermal and Water Management in Polymer-Electrolyte Fuel Cells  

E-Print Network [OSTI]

for porosity and tortuosity fuel-cell inlet conditionson the cathode side of the fuel cell. Water is evaporated indiagram corresponds to the fuel-cell inlet, the bottom to

Weber, Adam Z.; Newman, John

2006-01-01T23:59:59.000Z

296

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

E-Print Network [OSTI]

Uptake and Removal in PEM Fuel-Cell Components Prodip K. DasWater management in PEM fuel cells is critical for optimumof droplet dynamics in PEM fuel-cell gas flow channels has

Das, Prodip K.

2013-01-01T23:59:59.000Z

297

Advances in the Research of Heat Pump Water Heaters  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-2 1 Advances in the Research of Heat Pump Water Heaters Shangli Shan Dandan Wang Ruixiang Wang Master Master Professor Beijing...) [21] Wang sui-lin . Affection on fin-and-tube Heat Exchanger's Properties by non azeotropic mixtures[J] . Fluid machinery , 1996 , 24 (5) [22] Ge run-ting . Foundation of Dynamic Parameter Model and Theoritical Calculation of Evaporator...

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

298

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

299

Low-Cost Solar Water Heating Research and Development Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

300

A Study on Heat Transfer Model in Sparse Zone of Oxy-Fuel Fired CFB  

Science Journals Connector (OSTI)

A model has been developed to calculate the coefficient heat transfer in sparse zone of oxy-fuel fired circulating fluidized bed boiler (CFBB). The model shows that the convective heat transfer coefficient is enhanced with increase in CO2 density, bed ...

Chunbo Wang; Weijun Hou; Wei Zhang; Guang Lu; Zhihong Huo; Jiao Zhang

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods  

SciTech Connect (OSTI)

A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

Donald Olander

2005-08-24T23:59:59.000Z

302

Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells  

E-Print Network [OSTI]

70-108B One Cyclotron Road Berkeley, California 94720 December 2, 1997 Key Words: Proton Exchange Membrane fuel cells, humidification, gas distribution, direct liquid water injection, interdigitated flow fields. * Corresponding... of the catalyst layers were made of waterproof, carbon fiber cloths. Liquid water was injected by two metering pumps into two heated stainless steel coils, where it was preheated to the cell operating temperatures, and then directly into the gas streams...

Wood, D. L.; Yi, Y. S.; Nguyen, Trung Van

1998-01-01T23:59:59.000Z

303

Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap„Precision Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Water-Neutral Diesel Fuel Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap-Precision Combustion Background Solid-Oxide Fuel Cell (SOFC) technology for auxiliary power units (APUs) offers the potential for major contributions toward Department of Energy (DOE) objectives such as clean energy deployment and improved efficiency. Reforming of conventional liquid fuels to produce synthesis gas (syngas) fuel for SOFC stacks is a practical approach for operating fuel cell APUs

304

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect (OSTI)

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

305

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

306

A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy  

SciTech Connect (OSTI)

For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

Rozon, Daniel; Shen Wei [Institut de Genie Nucleaire (Canada)

2001-05-15T23:59:59.000Z

307

Coal-water slurry fuel internal combustion engine and method for operating same  

DOE Patents [OSTI]

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

308

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect (OSTI)

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

309

Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain  

SciTech Connect (OSTI)

As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States); Piet, Steven [Idaho National Laboratory (United States)

2007-07-01T23:59:59.000Z

310

Utilization of Heat Pump Water Heaters for Load Management  

SciTech Connect (OSTI)

The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

2014-01-01T23:59:59.000Z

311

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network [OSTI]

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

312

Low Cost Solar Water Heating R&D  

Broader source: Energy.gov (indexed) [DOE]

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

313

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

314

Covered Product Category: Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

315

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

316

Heating with energy saving alternatives to prevent biodeterioration of marine fuel oil  

Science Journals Connector (OSTI)

This study examined how alternative handling practices, including heat shock, can facilitate the prevention of biodeterioration of fuel oil onboard ships. At temperatures exceeding 50 °C, no microbes were observed after incubation for 2 days. Under 30 °C incubation, the total number of viable aerobic bacteria, Escherichia coli and Pseudomonas maltophilia, decreased gradually during the incubation period. Conversely, most fungi were destroyed after incubation for 5 days. Fungi generally had a better tolerance in marine fuel than E. coli after heat shock treatment. After incubation starting at ?45 °C, followed by different heat shock patterns, the total number of viable fungi and E. coli increased steadily during the 10-h incubation period. In contrast to fungi, heat shock effectively controlled E. coli growth. Heat shock treatment can control the growth of certain types of microbes at temperatures of up to 10 °C lower than commonly used.

J. Hua

2012-01-01T23:59:59.000Z

317

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

318

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect (OSTI)

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

319

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

320

Industrial Heat Pumps for Steam and Fuel Savings  

Broader source: Energy.gov [DOE]

This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided.

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network [OSTI]

such as solar-assisted pre-heat and waste water heat recovery components. A total of 7,488 six- day simulations

Victoria, University of

322

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network [OSTI]

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat… (more)

PRESTON, NATHANIEL

323

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

Broader source: Energy.gov [DOE]

Success story about using waste water treatment gas for hydrogen production at UC Irvine. Presented by Jack Brouwer, UC Irvine, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

324

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

325

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

326

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network [OSTI]

#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

Oak Ridge National Laboratory

327

Solar-assisted heat pump – A sustainable system for low-temperature water heating applications  

Science Journals Connector (OSTI)

Abstract Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are lost.

S.K. Chaturvedi; V.D. Gagrani; T.M. Abdel-Salam

2014-01-01T23:59:59.000Z

328

Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems  

Broader source: Energy.gov [DOE]

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

329

Heat Pump Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

330

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

332

Flow-induced vibration of component cooling water heat exchangers  

SciTech Connect (OSTI)

This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

Yeh, Y.S.; Chen, S.S. (Taiwan Power Co., Taipei (Taiwan). Nuclear Engineering Dept.; Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

333

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

334

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

335

Sustainability Considerations in Spent Light-water Nuclear Fuel Retrievability  

SciTech Connect (OSTI)

This paper examines long-term cost differences between two competing Light Water Reactor (LWR) fuels: Uranium Oxide (UOX) and Mixed Uranium Oxide-Plutonium Oxide (MOX). Since these costs are calculated on a life-cycle basis, expected savings from lower future MOX fuel prices can be used to value the option of substituting MOX for UOX, including the value of maintaining access to the used UOX fuel that could be reprocessed to make MOX. The two most influential cost drivers are the price of natural uranium and the cost of reprocessing. Significant and sustained reductions in reprocessing costs and/or sustained increases in uranium prices are required to give positive value to the retrievability of Spent Nuclear Fuel. While this option has positive economic value, it might not be exercised for 50 to 200 years. Therefore, there are many years for a program during which reprocessing technology can be researched, developed, demonstrated, and deployed. Further research is required to determine whether the cost of such a program would yield positive net present value and/or increases the sustainability of LWR energy systems.

Wood, Thomas W.; Rothwell, Geoffrey

2012-01-10T23:59:59.000Z

336

Side by Side Testing of Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Florida Florida A Research Institute of the University of Central Florida Side by Side Testing of Water Heating Systems Residential Energy Efficiency Stakeholder Meeting Austin , Texas March 1st, 2012 Carlos J. Colon carlos@fsec.ucf.edu FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida 3 2009 -Present (Currently in third testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Underground Circulation Loop * Solar circulation Loop 140+ feet of ½" copper tubing * Encased in PVC tubing with R-2.4 insulation * ICS to 50 gallon storage tank path need to

337

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

338

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect (OSTI)

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

NONE

1997-05-01T23:59:59.000Z

339

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network [OSTI]

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

340

Analysis of recoverable waste heat of circulating cooling water in hot-stamping power system  

Science Journals Connector (OSTI)

This article studies the possibility of using heat pump instead of cooling tower to decrease temperature and recover waste heat of circulating cooling water of power system. Making use of heat transfer theory ......

Panpan Qin; Hui Chen; Lili Chen; Chong Wang…

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

342

Cogen/chilled-water plant heats, cools, electrifies campus  

SciTech Connect (OSTI)

This article describes replacement of the University of California at Los Angeles' aging boiler and refrigeration equipment with a central chiller/combined-cycle cogeneration plant. The topics of the article include the work scope, the chilled water plant including absorption and steam turbine driven centrifugal chillers, and the cogeneration plant including two packaged combustion turbines, two heat-recovery steam generators and one steam turbogenerator.

Johnson, D.N. (Univ. of California, Los Angeles (United States)); Bakker, V.

1993-04-01T23:59:59.000Z

343

Spring 2014 Heat Transfer -1  

E-Print Network [OSTI]

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

344

Dosimetry Modeling for Predicting Radiolytic Production at the Spent Fuel - Water Interface  

SciTech Connect (OSTI)

Modeling of the alpha, beta, and gamma dose from spent fuel as a function of particle size and fuel to water ratio was examined. These doses will be combined with modeling of G values and interactions to determine the concentration of various species formed at the fuel water interface and their affect on dissolution rates.

Miller, William H.; Kline, Amanda J.; Hanson, Brady D.

2006-04-30T23:59:59.000Z

345

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel  

E-Print Network [OSTI]

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

Victoria, University of

346

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao…

2010-06-01T23:59:59.000Z

347

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes...  

Energy Savers [EERE]

Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump...

348

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

349

Fuel cell gas management system  

DOE Patents [OSTI]

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

350

Fuel Cell Animation (Text Version) | Department of Energy  

Energy Savers [EERE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with...

351

Pressurized water reactor fuel assembly subchannel void fraction measurement  

SciTech Connect (OSTI)

The void fraction measurement experiment of pressurized water reactor (PWR) fuel assemblies has been conducted since 1987 under the sponsorship of the Ministry of International Trade and Industry as a Japanese national project. Two types of test sections are used in this experiment. One is a 5 x 5 array rod bundle geometry, and the other is a single-channel geometry simulating one of the subchannels in the rod bundle. Wide gamma-ray beam scanners and narrow gamma-ray beam computed tomography scanners are used to measure the subchannel void fractions under various steady-state and transient conditions. The experimental data are expected to be used to develop a void fraction prediction model relevant to PWR fuel assemblies and also to verify or improve the subchannel analysis method. The first series of experiments was conducted in 1992, and a preliminary evaluation of the data has been performed. The preliminary results of these experiments are described.

Akiyama, Yoshiei [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan). Nuclear Fuel and Core Engineering Dept.; Hori, Keiichi [Mitsubishi Heavy Industries, Ltd., Hyougo (Japan); Miyazaki, Keiji [Osaka Univ. (Japan). Faculty of Engineering; Mishima, Kaichiro [Kyoto Univ., Osaka (Japan). Research Reactor Inst.; Sugiyama, Shigekazu [Nuclear Power Engineering Corp., Tokyo (Japan). Nuclear Fuel Dept.

1995-12-01T23:59:59.000Z

352

Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana  

E-Print Network [OSTI]

An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

Braud, H. J.; Klimkowski, H.; Baker, F. E.

1985-01-01T23:59:59.000Z

353

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics  

SciTech Connect (OSTI)

The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

354

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

355

Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost?  

Office of Energy Efficiency and Renewable Energy (EERE)

What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective?

356

Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

357

Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report  

SciTech Connect (OSTI)

The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

1998-04-01T23:59:59.000Z

358

Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating  

Science Journals Connector (OSTI)

Solar energy application is a good alternative to replace primary energy source especially for large-scale installations. Heat pumps are also effective means to reduce primary energy consumption. This paper describes a case study with a new design of solar assisted heat pump (SAHP) for indoor swimming pool space- and water-heating purposes. The system design procedure was first presented. The entire system was then modeled via the TRNSYS simulation environment and the energy performance was evaluated based on the winter time operation schedule. Economic analysis with a range of collector areas was also performed. The simulation results show that the overall system COP can reach 4.5, and the fractional factor of energy saving is 79% as compared to the conventional energy system. The economical payback period is less than 5 years.

T.T. Chow; Y. Bai; K.F. Fong; Z. Lin

2012-01-01T23:59:59.000Z

359

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer  

E-Print Network [OSTI]

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

Bennett, Albert F.

360

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary  

SciTech Connect (OSTI)

Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

362

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

363

Benefits of Water-Fuel Emulsion on Automotive Diesel Exhaust Emissions  

Science Journals Connector (OSTI)

Water fuel emulsion is widely used to control pollutant emissions in large and medium diesel engines. The application of this fuel to small automotive engines has been limited by the emulsion stability and eco...

K. Lombaert; L. Le Moyne; P. Guibert…

2004-01-01T23:59:59.000Z

364

Conceptual design of an annular-fueled superheat boiling water reactor  

E-Print Network [OSTI]

The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

365

Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State  

SciTech Connect (OSTI)

The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

Winiarski, David W.

2004-08-15T23:59:59.000Z

366

A first approach study on the desalination of sea water using heat transformers powered by solar ponds  

Science Journals Connector (OSTI)

Abstract In many emerging countries over the past few years some phenomena, such as a better welfare state, industrial growth and a development in agriculture, led to a significant increasing of the demand concerning fresh water. In order to face this ever-growing demand, one of the possible solutions to counterbalance the lack of water resources, is the desalination of sea water. For this specific goal solar energy, as a resource, is the process which has more reliance since it allows a low-cost production of desalted water (without using any valuable energy resources such as fossil fuels) and in a complete respect of the environment. This first study has the purpose to analyze from an energetic perspective whether it is possible or not to reach process temperatures over 100 °C, through the use of solar ponds and heat transformers, in order to produce desalinated water. The final aim of this work is to quantify the surface of solar ponds needed to a production (expressed in cubic meters) of desalinated water. An absorption heat transformer is a thermal machine that while extracting heat from a source (at an available temperature) is able to ennoble a portion of the heat collected/obtained, making it available at higher temperatures. This process occurs at the expenses of the remaining portion of heat whose temperature degrades by lowering its values. The portion of heat will be then transferred to a thermal well. Hence an absorption heat transformer can use the solar energy stored in solar ponds as an energy source at an average temperature. Process temperatures which are higher than 100 °C for a whole year can take place only under certain chained conditions such as: source temperature with steady values during the entire season obtainable through solar ponds; condensation process occurring at sufficiently low temperatures through the use of sea water; exertion of heat transformers. The heat which is usually available at these temperatures could be used for common thermal processes during the desalination of seawater. In this work we want to demonstrate that it is possible, energetically speaking, to produce desalinated water by exploiting the solar energy stored in solar ponds and the technology of absorption heat transformers. We can notice how for every m3 of desalinated water produced in one day we need ponds with an area ranging between 1000 and 4000 m2, this depends on the amount of heat flux drawn. The analysis we carried out represents a first attempt to face this kind of problem. In future studies we will examine both technical and economic feasibility.

F. Salata; M. Coppi

2014-01-01T23:59:59.000Z

367

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

368

Natural convection heat exchangers for solar water heating systems. Technical progress report, November 15, 1996--January 14, 1997  

SciTech Connect (OSTI)

The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

Davidson, J.H.

1998-06-01T23:59:59.000Z

369

Heat pump water heater and storage tank assembly  

DOE Patents [OSTI]

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

370

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents [OSTI]

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

371

Cycle simulation of coal-fueled engines utilizing low heat rejection concepts  

E-Print Network [OSTI]

achieved using the coal water slurry both with and without a diesel pilot. Fuel consumption was also comparable to that of diesel fuel. Ignition delays as long as 6 ms were observed, which was acceptable for the engines speed range. In general, exhaust.... Hsu [15, 16] reports on the successful operation of a General Electric locomotive engine on CWS with and without a diesel pilot. When no pilot was used, inlet air temperature had to be raised by about 40'C. Specific fuel consumption was comparable...

Roth, John M.

2012-06-07T23:59:59.000Z

372

An approach to energy saving assessment of solar assisted heat pumps for swimming pool water heating  

Science Journals Connector (OSTI)

A steady state off-design model of a Water Solar Assisted Heat Pump (W-SAHP) and the results of monthly based averaged simulations are presented. The W-SAHP system is arranged with a commercial water-to-water heat pump, coupled with unglazed flat plate solar collectors. The study is purposely developed for swimming pools, however most of the analysis criteria and outcomes are valid for any building (user) having hot water needs. Calculations are made for given thermal load and user operating temperatures with reference to the climatic data of all Italian Municipalities, that is degree days (DD) in the range from 700 to 3000, altitude from 0 to 1500 m (above sea level), and latitude from 36.5°N to 46.3°N. The primary energy saving capability of the W-SAHP solution, compared to a traditional gas-boiler plant, is analyzed as a function of the DD index of each site. Despite the large spread of climatic and altitude data, the results show that the W-SAHP performance is usually well correlated to DD, which can therefore be assumed as the main independent variable for the energy saving assessment of these systems, and make the results easily extended to other possible geographical locations.

Luca A. Tagliafico; Federico Scarpa; Giulio Tagliafico; Federico Valsuani

2012-01-01T23:59:59.000Z

373

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it surprises me to see that the most popular pages on the site are the ones about solar water heaters and demand (or tankless) water heaters. But considering that water heating can account for around 12% of a family's utility bill-the biggest chunk after space heating and cooling-it really shouldn't be that surprising that you want to know how to heat your water more efficiently. Obviously, not everyone is in a position to go out and buy a new water heater, but we can all do something to use less water and save on our bills. Whether you're looking for no-cost habit changes, low-cost purchases or

374

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

375

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

376

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect (OSTI)

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

377

Colloidal Petcoke-in-Water Suspensions as Fuels for Power Generation  

Science Journals Connector (OSTI)

Colloidal Petcoke-in-Water Suspensions as Fuels for Power Generation ... In this work, it is shown that, despite the low reactivity of petroleum coke (petcoke) and the presence of 40% water, a petcoke suspension having a large colloidal population burned with unprecedented high efficiencies (>99%) without a support fuel. ... Combustion tests of a typical heavy fuel oil (HFO) were carried out to produce baseline data for comparison to the colloidal petcoke in water suspension (CPW) performance. ...

Gustavo A. Núñez; María I. Briceño; Cebers Gómez; Takeshi Asa; Hamid Farzan; Shengteng Hu; Daniel D. Joseph

2012-10-24T23:59:59.000Z

378

A numerical investigation of natural convection heat transfer within horizontal spent-fuel assemblies  

SciTech Connect (OSTI)

A numerical investigation of natural convection heat transfer is carried out for a single, horizontal, spent-fuel assembly in an environment typical of spent-fuel transportation systems as well as some dry storage/disposal scenarios. The objective is to predict computationally the convective heat transfer trends for horizontal spent fuel and to compare the results to data taken in a supporting experimental effort. The predicted data consist of thermal and flow fields throughout the assembly for a wide range of Rayleigh number, as well as numerically obtained Nusselt-number data that are correlated as a function of Rayleigh number. Both laminar and turbulent approaches are examined for a Boussinesq fluid with Pr = 0.7. The data predict the existence of a conduction-dominated regime, a transition regime, and a convection regime. Compared with the laminar approach, a significant improvement in the predicted Nusselt number is obtained for large Rayleigh numbers when a turbulence model is employed. This lends additional support to the experimental evidence that a transition to turbulent flow occurs for Rayleigh numbers greater than 10{sup 7}. Overall, the numerically predicted heat transfer trends compare well with previously obtained experimental data, and the computed assembly Nusselt numbers generally reside within the range of experimental uncertainty. The predicted thermal and flow fields further provide a numerical flow visualization capability that enhances the understanding of natural convection in horizontal spent fuel and allows improved physical interpretation of the experimental data.

Canaan, R.E. [Lawrence Livermore National Lab., CA (United States); Klein, D.E. [Univ. of Texas System, Austin, TX (United States)

1998-08-01T23:59:59.000Z

379

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector.  

E-Print Network [OSTI]

??Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected… (more)

Payne, Stephen Ellis

2012-01-01T23:59:59.000Z

380

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network [OSTI]

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz...

Payne, Stephen Ellis

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

382

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

383

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

384

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

385

Fuel Performance Code Benchmark for Uncertainty Analysis in Light Water Reactor Modeling.  

E-Print Network [OSTI]

??Fuel performance codes are used in the design and safety analysis of light water reactors. The differences in the physical models and the numerics of… (more)

Blyth, Taylor

2012-01-01T23:59:59.000Z

386

COBRA-SFS predictions of single assembly spent fuel heat transfer data  

SciTech Connect (OSTI)

The study reported here is one of several efforts to evaluate and qualify the COBRA-SFS computer code for use in spent fuel storage system thermal analysis. The ability of COBRA-SFS to predict the thermal response of two single assembly spent fuel heat transfer tests was investigated through comparisons of predictions with experimental test data. From these comparisons, conclusions regarding the computational treatment of the physical phenomena occurring within a storage system can be made. This objective was successfully accomplished as reasonable agreement between predictions and data were obtained for the 21 individual test cases of the two experiments.

Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.; Rector, D.R.

1986-04-01T23:59:59.000Z

387

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Broader source: Energy.gov [DOE]

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

388

Modeling Water Management in Polymer-Electrolyte Fuel Cells  

E-Print Network [OSTI]

Newman, in Advances in Fuel Cells, Vol. 1, T. S. Zhao, K. -A. Uribe and B. S. Pivovar, Fuel Cells, 7, 153 (2007). R. C.and S. Srinivasan, Fuel Cells: Their Electrochemistry,

Weber, Adam; Department of Chemical Engineering, University of California, Berkeley

2008-01-01T23:59:59.000Z

389

Effect of Fuel Type on the Attainable Power of the Encapsulated Nuclear Heat Source Reactor  

SciTech Connect (OSTI)

The Encapsulated Nuclear Heat Source (ENHS) is a small liquid metal cooled fast reactor that features uniform composition core, at least 20 effective full power years of operation without refueling, nearly zero burnup reactivity swing and heat removal by natural circulation. A number of cores have been designed over the last few years to provide the first three of the above features. The objective of this work is to find to what extent use of nitride fuel, with either natural or enriched nitrogen, affects the attainable power as compared to the reference metallic fueled core. All the compared cores use the same fuel rod diameter, D, and length but differ in the lattice pitch, P, and Pu weight percent. Whereas when using Pb-Bi eutectic for both primary and intermediate coolants the P/D of the metallic fueled core is 1.36, P/D for the nitride cores are, respectively, 1.21 for natural nitrogen and 1.45 for enriched nitrogen. A simple one-dimensional thermal hydraulic model has been developed for the ENHS reactor. Applying this model to the different designs it was found that when the IHX length is at its reference value of 10.4 m, the power that can be removed by natural circulation using nitride fuel with natural nitrogen is 65% of the reference power of 125 MWth that is attainable using metallic fuel. However, using enriched nitrogen the attainable power is 110% of the reference. To get 125 MWth the effective IHX length need be 8.7 m and 30.5 m for, respectively, enriched and natural nitrogen nitride fuel designs. (authors)

Okawa, Tsuyoshi; Greenspan, Ehud [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2006-07-01T23:59:59.000Z

390

On-Board Fuel Processing for a Fuel Cell?Heat Engine Hybrid System  

Science Journals Connector (OSTI)

(9) Because they have used the same fuel, gasoline having an established infrastructure, to constrain the same well to tank (WTT) efficiency for the compared systems, the TTW efficiency of the hybrid FCHEV is unexpectedly low, because the gasoline processing to hydrogen with subsequent use of the latter in the FC had an efficiency of only 35% in their calculation. ... to increase by up to 15% by hybridizing it with an energy storage system. ...

Osman Sinan Süslü; ?pek Becerik

2009-03-24T23:59:59.000Z

391

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

392

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1  

E-Print Network [OSTI]

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

Treur, Jan

393

City of Sunset Valley - Solar Water Heating Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $2,000 Program Info Funding Source General Funds State Texas Program Type Local Rebate Program Rebate Amount 30% of installed cost Provider City of Sunset Valley The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that are offered by Austin Energy to its electric customers. The Sunset Valley rebate is set at 30% of the installed system cost, up to a maximum rebate of $2,000 per homeowner, supplementing the

394

An experimental study on heat transfer from a horizontal heated circular cylinder enhanced by water spray.  

E-Print Network [OSTI]

??A series of experiments were conducted to investigate the heat transfer which occurs with a heated, constant heat flux, horizontal, single circular cylinder is exposed… (more)

Chau, Man Hei

2009-01-01T23:59:59.000Z

395

Heat transfer through a water spray curtain under the effect of a strong radiative source  

E-Print Network [OSTI]

Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

Paris-Sud XI, Université de

396

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network [OSTI]

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

397

* Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard  

E-Print Network [OSTI]

it to Average Fuel Carbon Intensity (AFCI) (c) Charge a tax on water use for biofuel production (d) Establish Carbon Fuel Standard Kevin Fingerman1* , Daniel Kammen1,2 , and Michael O'Hare2 1 Energy & Resources (Chapagain and Hoekstra, 2004). As the State of California implements the Low Carbon Fuel Standard (LCFS

Kammen, Daniel M.

398

A non-isothermal PEM fuel cell model including two water transport mechanisms in the  

E-Print Network [OSTI]

A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

Münster, Westfälische Wilhelms-Universität

399

Standard test method for heat of combustion of hydrocarbon fuels by bomb calorimeter (high-precision method)  

SciTech Connect (OSTI)

This method covers the determination of the heat of combustion of hydrocarbon fuels. It is designed specifically for use with aviation turbine fuels when the permissible difference between duplicate determinations is of the order of 0.1%. It can be used for a wide range of volatile and nonvolatile materials where slightly greater differences in precision can be tolerated. The heat of combustion is determined by burning a weighed sample in an oxygen-bomb calorimeter under controlled conditions. The temperature is measured by means of a platinum resistance thermometer. The heat of combustion is calculated from temperature observations before, during, and after combustion, with proper allowance for thermochemical and heat-transfer corrections. Either isothermal or adiabatic calorimeters may be used. The heat of combustion is a measure of the energy available from a fuel. A knowledge of this value is essential when considering the thermal efficiency of equipment for producing either power or heat.

Not Available

1980-01-01T23:59:59.000Z

400

A refrigerator-heat-pump desalination scheme for fresh-water and salt recovery  

Science Journals Connector (OSTI)

This study concerns a refrigerator-heat-pump desalination scheme (RHPDS), which allows energy-efficient recovery of fresh water and salt from the sea. In this scheme, a salt-water chamber is continuously refilled with sea water via atmospheric pressure. Sea water is evaporated into a vacuum chamber and the water vapor is condensed on top of a fresh-water chamber. A refrigerator-heat-pump circuit maintains the two water chambers at suitably different operating temperatures and allows efficient recovery of the latent heat of condensation. The scheme is analyzed with special consideration to potential exploitation of renewable energy sources such as solar and wind energy.

M. Reali

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

402

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

403

Design of a core-length thermionic fuel element for electrical heating  

SciTech Connect (OSTI)

This paper describes the design of an electrically heated version of a core-length Thermionic Fuel Element (TFE) with advanced features, as is suggested by the designation Advanced Thermionic Inititative (ATI). The advanced features include a high-strength emitter structure to be fabricated by Space Power, Incorporated. This structure consists of a cylindrical emitter, 15 mm diameter and 254 mm long of Chemically Vapor Deposited (CVD) tungsten, reinforced with tungsten-hafnium carbide wire wound over a CVD tungsten core with additional CVD tungsten incorporating and bonding the wire into the emitter. The emitter surface is CVD tungsten, deposited from tungsten chloride resulting in the desirable crystal orientation of [l angle]110[r angle]. It is possible to design a reactor with core-length TFEs so that it can be electrically tested prior to fueling. The program is focussed on the design and fabrication of a single core-length TFE with current collection at both ends which will be tested in a reactor. In parallel with this effort is the design, fabrication, and testing of an unfueled, electrically heated prototype. The intent is to make the electrically heated converter as similar as possible to the fueled one, while providing for accurate emitter and collector temperature measurement.

Miskolczy, G. (ThermoTrex Coporation, 85 First Avenue, P.O. Box 8995, Waltham, MA 02254-8995 (United States)); Horner, H. (General Atomics, 3550 General Atomics Court, P.O. Box 85608, San Diego, CA 92186-9784 (United States)); Lamp, T. (Wright Laboratories, WL/POOC-2, Wright Patternson Air Force Base, Ohio 45433-6563 (United States))

1993-01-20T23:59:59.000Z

404

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

405

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

406

Fuel Cell 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

407

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

408

#tipsEnergy: Ways to Save on Water Heating Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Costs Water Heating Costs #tipsEnergy: Ways to Save on Water Heating Costs February 20, 2013 - 5:09pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Ways to Save on Water Heating Costs Every month we ask the larger energy community to share their energy-saving tips, and we feature some of our favorite tips in a Storify. For this month's #tipsEnergy, we wanted to know how you save energy and money on water heating. Storified by Energy Department · Wed, Feb 20 2013 14:12:00 Hot water is essential to most of our lives: We use it to shower, run the dishwasher and wash clothes. Quite frequently, we use more hot water than we think -- the average rate hot water flows out of the kitchen faucet is 2 gallons per minute, and an eight-minute shower

409

Development and Application of Engineering-Scale Solar Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

An engineering-scale solar water heater system assisted by heat pump was developed based on ... . The subunits of modularized system include vacuum solar energy collectors, air source heat pump, ... Energy source...

Xiufeng Gao; Shiyu Feng; Wei Hu…

2009-01-01T23:59:59.000Z

410

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results  

E-Print Network [OSTI]

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

Kandlikar, Satish

411

Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures  

E-Print Network [OSTI]

Local surface ooeffioients of heat t-ansfer, overall pressure drop data and mean friction factor are presented for heat flamms up to 3.52106 BtuAr ft2 for water flowing in a nickel tabe isder the following conditions: mass ...

Rohsenow, Warren M.

1951-01-01T23:59:59.000Z

412

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

413

Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect (OSTI)

This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

Not Available

2014-05-01T23:59:59.000Z

414

Corrosion optimized Zircaloy for boiling water reactor (BWR) fuel elements  

SciTech Connect (OSTI)

A corrosion optimized Zircaloy has to be based primarily on in-boiling water reactor (in-BWR) results. Therefore, the material parameters affecting corrosion were deduced from results of experimental fuel rod irradiation with systematic variations and from a large variety of material coupons exposed in water rods up to four cycles. The major material effects is the size and distribution of precipitates. For optimizing both early and late corrosion, the size has to stay in a small range. In the case of material quenched in the final stage, the quenching rate appears to be an important parameter. As far as materials chemistry is concerned, the in-BWR results indicate that corrosion in BWRs is influenced by the alloying elements tin, chromium, and the impurity silicon. In addition to corrosion optimization, hydriding is also considered. A large variation from lot to lot under identically coolant condition has been found. The available data indicate that the chromium content is the most important material parameter for hydrogen pickup.

Garzarolli, F.; Schumann, R.; Steinberg, E. [Siemens AG, Erlangen (Germany). Power Generation Group

1994-12-31T23:59:59.000Z

415

Preparation and gasification of a Thailand coal-water fuel  

SciTech Connect (OSTI)

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.

Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.; Richter, J.J.; Dewall, R.A.; Young, B.C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Nakanart, A. [Ministry of Industry, Bangkok (Thailand)

1996-12-31T23:59:59.000Z

416

High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News  

E-Print Network [OSTI]

families reducing their costly household oil or gas dependence by turning to a traditional fuel is typically delivered to homes in tanks, and is almost as expensive as heating oil. Berry manages the EIA Hampshire. Just last week, Erik said, he had a discussion with his fuel-oil supplier about how little oil

South Bohemia, University of

417

A comparative evaluation of Al 2 O 3 coated low heat rejection diesel engine performance and emission characteristics using fuel as rice bran and pongamia methyl ester  

Science Journals Connector (OSTI)

In this study for the first time a nanoceramic Al 2 O 3 was used as a coatingmaterial in the low heat rejection engine concept. Experiments were conducted on single cylinder four stroke water cooled and direct injection diesel engine. First the engine was tested at different load conditions without coating. Then combustion chamber surfaces (cylinder head cylinder liner valves and piston crown face) were coated with nanoceramic material of Al 2 O 3 using plasma spray method. Comparative evaluation on performance and emission characteristics using fuel as rice bran methyl ester pongamia methyl ester and biodiesel/diesel fuel mixtures was studied in the ceramiccoated and uncoated engines under the same running conditions. An increase in engine power and a decrease in specific fuel consumption as well as significant improvements in exhaust gas emissions (except NOx) and smoke density were observed in the ceramiccoated engines compared with those of the uncoated engine.

M. Mohamed Musthafa; S. P. Sivapirakasam; M. Udayakumar

2010-01-01T23:59:59.000Z

418

Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Broader source: Energy.gov [DOE]

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

419

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

420

Annual Operating Characteristics of Solar Central Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

The solar central water heater (SCWH) could supply ... massive users effectively and reliably. A SCWH assisted by heat pump (SCWHP) was proposed...

Wei Hu; Zhaolin Gu; Shiyu Feng; Xiufeng Gao…

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Feasibility Analysis of Two Indirect Heat Pump Assisted Solar Domestic Hot Water Systems.  

E-Print Network [OSTI]

??This thesis is an analysis of the simulated performance of two indirect heat pump assisted solar domestic hot water (i-HPASDHW) systems compared to two base… (more)

Sterling, Scott Joseph

2011-01-01T23:59:59.000Z

422

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost  

SciTech Connect (OSTI)

A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC ({approx}49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC.

Choi, Hangbok; Ko, Won Il; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

423

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

424

Heating of a testing room by use of a hydrogen-fueled catalytic heater  

Science Journals Connector (OSTI)

Space heating experiments were carried out using flameless (catalytic) combustion of hydrogen with atmospheric oxygen on Pt and oxide catalyst pads. The heating rate required for warming of a testing room was calculated and material balance equations for oxygen depletion and steam production were derived. The following parameters have been investigated: 1. (a) change of the oxygen and water vapour contents in the testing room in comparison with the calculated values, 2. (b) the established thermal regime in the testing room is discussed in comparison with conventional heating. The following conclusions are drawn: 1. (1) The hydrogen combustion can be adjusted to produce the desired temperature level, 2. li(2) in order to maintain the oxygen concentration at the comfort level, the free ventilation in the room should be supplemented by short, periodic, forced ventilation, 3. (3) the comfort limits of humidity require the condensation of the surplus water vapour by using a suitable device.

J. Mercea; E. Grecu; T. Fodor

1981-01-01T23:59:59.000Z

425

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Energy Savers [EERE]

traps. Learn more about heat traps. Insulate your hot-water storage tank. For electric tanks, be careful not to cover the thermostat, and for natural gas or oil hot water storage...

426

CONDENSATION As noted previously, heat energy imparted to water as it  

E-Print Network [OSTI]

CONDENSATION As noted previously, heat energy imparted to water as it evaporates is returned to liquid water as vapor condenses. During low tide, the rate of evaporation typically exceeds the rate

Brody, James P.

427

Knox County Detention Facility Goes Solar for Heating Water | Department of  

Broader source: Energy.gov (indexed) [DOE]

Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water August 16, 2010 - 12:30pm Addthis An array of solar collectors | Photo courtesy of Trane An array of solar collectors | Photo courtesy of Trane Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funds solar farm to heat 14,000 gallons of water a day Estimated to save $60,000 a year 174 tons of CO2 emissions avoided annually Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily-and don't forget the laundry. Naturally, county officials sought an alternative to costly water heating. Their solution: a $1.88 million solar thermal system, among

428

FCT Fuel Cells: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

429

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

430

Oxygen reduction in PEM fuel cell conditions: Heat-treated macrocycles and beyond  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reduction in PEM fuel cell conditions: reduction in PEM fuel cell conditions: Heat-treated macrocycles and beyond J. P. Dodelet INRS-Énergie et Matériaux C. P. 1020, Varennes, Québec, Canada, J3X 1S2 dodelet@inrs-ener.uquebec.ca Collaborators Michel Lefèvre (INRS) Sébastien Marcotte (INRS) Frédéric Jaouen (Royal Inst. of Technology, Sweden) Prof. Patrick Bertrand (Université Catholique de Louvain, Belgium) Prof. Göran Lindbergh (Royal Inst. Of Technology, Sweden) New Orleans workshop March 21 03. DODELET, J. P. ; New Orleans, March 21, 03 1 PEM Fuel Cells Anode : 2 H 2 → 4 H + + 4 e - Electrolyte : Perfluorinated polymer - SO 3 H Cathode : O 2 + 4 H + + 4 e - → 2 H 2 O Acidic Medium ( pH ~ 1 ) Low Temperature Fuel Cell (80°C) ↓ Pt- based Anode and Cathode Catalysts Pt is not abundant and expensive

431

Carbonaceous material for production of hydrogen from low heating value fuel gases  

DOE Patents [OSTI]

A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

Koutsoukos, Elias P. (Los Angeles, CA)

1989-01-01T23:59:59.000Z

432

Behavior of Spent Nuclear Fuel in Water Pool Storage  

Office of Scientific and Technical Information (OSTI)

Behavior of Spent Nuclear Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared Cor the Energy Research and Development Administration under Contract EY-76-C-06-1830 ---- Pat t i ~ < N ~ ~ r ~ t b w t ~ - ! I , ~ I ~ ~ ~ I . I I ~ ) ~ I I ~ ~ N O T I C E T€& - was prepad pnpn4. m w n t of w k spon-d by the Unitd S t . & ) C a u n m ~ (*WU ij*. M t e d $tam w the Wqy R e s e w & a d Ohrsropmcnt ~dmhirmlion, nor m y d thair ewhew,,nq Pny @fw a n t r ~ ~ t 0 ~ 1 , s ~ k m r i t r i l t t q r , ~ , m r tWf ernpfQw, r(tLltm any wartany, s x p r e s or kWld,= w w aAql -9 . o r r w p a m l ~ ~ t y for e~ o r uodruincvr of any infomutim, 9 F p d + d - , or repratants that -would nat 1 d - e privately owned rfghas. ,i PAQFIC NORTHWEST UBORATORY operated b ;"' SArnLLE ' fw the E M R m RESEARCH AND DEVELOPMENT ADMINISTRAT1QN Wk.Cwfraa rv-76c-ts-is38

433

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

434

The effect of drying on the heating value of biomass fuels  

E-Print Network [OSTI]

DF HEAT TRANsFER. with coal and coke as the fuels in mind. The guidelines for drying given by the EPA (Test Methods 160. 2 and 160. 3) are mainly for the liquid portion of the wastewater and explicitly excludes "non-representative particulates... most engineering applications are based. The documents of interest are: D3173-87, "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke"; D2015- 93, "Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic...

Rodriguez, Pablo Gregorio

2012-06-07T23:59:59.000Z

435

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer  

E-Print Network [OSTI]

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

Martin, Timothy

436

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network [OSTI]

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

437

Application Prospect Analysis of the Surface Water Source Heat-Pump in China  

E-Print Network [OSTI]

Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval...

Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

2006-01-01T23:59:59.000Z

438

Comparison of Advanced Residential Water Heating Technologies in the United States  

SciTech Connect (OSTI)

Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

Maguire, J.; Fang, X.; Wilson, E.

2013-05-01T23:59:59.000Z

439

Solar water heating technical support. Technical report for November 1997--April 1998 and final report  

SciTech Connect (OSTI)

This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

Huggins, J.

1998-10-01T23:59:59.000Z

440

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

442

High temperature chemistry of advanced heavy water reactor fuel  

Science Journals Connector (OSTI)

The Department of Atomic Energy envisages the use of thoria based fuel in the third phase of nuclear power generation. The fuel will consist of solid solution of thorium-uranium and thorium-plutonium in the form of their oxides. The former will contain 2.5 mole % UO2 while the latter about 4 mole % PuO2. Since no other country in the world has used such fuel, no data is available on its behavior under long-term irradiation. The high temperature chemistry of fuel can however provide some insight into the behavior of such fuel during irradiation and could be of considerable help in the assessment of its long-term integrity. The high temperature chemistry of the fuel essentially involves the measurement of thermodynamic properties of the compounds formed in the multi-component systems comprising the fuel matrix, the fission products and the clad. The physical integrity of the fuel under long-term irradiation can be predicted with the help of basic thermodynamic data such as the Gibbs energy of formation of various compounds and their thermophysical properties such as thermal conductivity and coefficient of thermal expansion derived from experimental measurements. The paper highlights the measurements made on some typical systems relevant to the prediction of thoria based fuel behaviour during long-term irradiation. The experimental problems faced in such measurements are also discussed.

S.R. Dharwadkar

2002-01-01T23:59:59.000Z

443

Radio-toxicity of spent fuel of the advanced heavy water reactor  

Science Journals Connector (OSTI)

......Radio-toxicity of spent fuel of the advanced heavy water reactor S. Anand * K. D. S...Mumbai 400085, India The Advanced Heavy Water Reactor (AHWR) is a new power...PHWR. INTRODUCTION The Advanced Heavy Water Reactor (AHWR)(1, 2), currently......

S. Anand; K. D. S. Singh; V. K. Sharma

2010-01-01T23:59:59.000Z

444

U.S. Virgin Islands - Solar Water Heating Requirement for New Construction  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » U.S. Virgin Islands - Solar Water Heating Requirement for New Construction U.S. Virgin Islands - Solar Water Heating Requirement for New Construction < Back Eligibility Commercial Construction Institutional Local Government Low-Income Residential Multi-Family Residential Residential State Government Savings Category Heating & Cooling Solar Water Heating Program Info Program Type Building Energy Code In July 2009, U.S. Virgin Islands enacted legislation Act 7075. This legislation requires all new developments, and substantial building modifications, must be installed with energy efficient solar water heaters to provide at least 70% of the building's water heating needs. This is for all building types: residential, commercial, and governmental.

445

Study on the LWT control schemes of a heat pump for hot water supply  

Science Journals Connector (OSTI)

Heat pump systems have been widely used in buildings and industries due to their high performance. In this study, a leaving water temperature control scheme has been proposed for a water-to-water heat pump for hot water supply. The study was focused on the following four schemes: (1) using an auxiliary electric heater, (2) varying compressor speed, (3) adjusting water flow rate, and (4) adding heat to the secondary fluid flow of the heat source. With schemes (2) and (3), the system showed higher performance than other schemes. However, scheme (2) could not attain the appropriate LWT at low EWT heat source conditions. For all EWT conditions, using schemes (3) and (4) enabled the system to reach an appropriate LWT. Scheme (4) can be adopted as the best technology to control LWT, because it is not easy to vary flow rate of the secondary fluid as in scheme (3).

Jong Min Choi

2013-01-01T23:59:59.000Z

446

Mexico-GTZ Support for the Programme to Promote Solar Water Heating | Open  

Open Energy Info (EERE)

for the Programme to Promote Solar Water Heating for the Programme to Promote Solar Water Heating Jump to: navigation, search Logo: Mexico-GTZ Support for the Programme to Promote Solar Water Heating Name Mexico-GTZ Support for the Programme to Promote Solar Water Heating Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Partner German Federal Ministry for Economic Cooperation and Development (BMZ), Centro Mexicano de Promoción del Cobre A.C. (PROCOBRE) Sector Energy Focus Area Solar Topics Background analysis Website http://www.gtz.de/en/themen/27 Program Start 2007 Program End 2009 Country Mexico Central America References Support for the Programme to Promote Solar Water Heating in Mexico (PPP)[1] GTZ is working with Mexico on this project with the following objective:

447

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

SciTech Connect (OSTI)

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01T23:59:59.000Z

448

Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage  

SciTech Connect (OSTI)

The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

Bailey, W.J.

1987-11-01T23:59:59.000Z

449

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

450

Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels  

Science Journals Connector (OSTI)

Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels ... Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. ... Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. ...

Mauro F. Chavez-Rodriguez; Silvia A. Nebra

2010-11-24T23:59:59.000Z

451

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

452

Development of Environmentally Benign Heat Pump Water Heaters for the US Market  

SciTech Connect (OSTI)

Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

Abdelaziz, Omar [ORNL] [ORNL; Wang, Kai [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL; Roetker, Jack [General Electric - Appliance Park] [General Electric - Appliance Park

2012-01-01T23:59:59.000Z

453

Under Pressure and in Hot Water: Algae Conversion to Fuels and Chemicals  

E-Print Network [OSTI]

March 3rd Under Pressure and in Hot Water: Algae Conversion to Fuels and Chemicals Dr. Phil:50 April 10th (Joint Seminar with EES) Fecal Sludge-Fed Biodiesel Plants: The Next-Generation Urban

Minsker, Barbara S.

454

New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells  

Broader source: Energy.gov [DOE]

Presentation on New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

455

Antiwear properties of water-fuel emulsions for marine diesel engines  

SciTech Connect (OSTI)

Water-fuel emulsions (WFEs) were prepared by hydrodynamic mixing of fuel, water and additive. The physicochemical characteristics of the WFE with 20% water were analyzed and the tests were performed in an MI-1 friction tester and in a 1 Ch 10.5/13 test-stand diesel; rubbing parts made of ShKh15 steel were in the tester. Engine test results show that introduction of water into fuel gives an increase in the rate of wear. With the introduction of 0.03% synthetic fatty acid still residues, the fuel consumption in the 2 Ch 8.5/11 engine is reduced by approximately 2% over a certain period of time.

Danilov, A.M.; Selyagina, A.A.; Karyakin, K.B.; Gorbachev, Yu.A.

1988-03-01T23:59:59.000Z

456

RTP Green Fuel: A Proven Path to Renewable Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels * Pourable, storable and transportable liquid fuel * Contains approximately 50-55% energy content of fossil fuel * Meets applicable ASTM Standard for industrial use (ASTM...

457

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect (OSTI)

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

458

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

SciTech Connect (OSTI)

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

459

An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2  

E-Print Network [OSTI]

An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2 Martin HENDEL1,2,3* , Morgane COLOMBERT2 , Youssef DIAB2,4 , Laurent ROYON3 3 1 Paris City Hall, Water.hendel@paris.fr)8 9 Preprint version. Uploaded on May 12th , 2014.10 Abstract: Pavement-watering as a technique

Paris-Sud XI, Université de

460

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

462

Water, Light and Heat Stress Effects on Fremont Cottonwood Photosynthesis.  

E-Print Network [OSTI]

?? Seedlings of Fremont cottonwood (Populus fremontii), a California native riparian foundation species, are vulnerable to water stress from rapid water-table declines and the interactions… (more)

Tozzi, Emily Sharp

2011-01-01T23:59:59.000Z

463

Consumer's Guide: Heat Your Water with the Sun (Brochure)  

SciTech Connect (OSTI)

This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

Not Available

2003-12-01T23:59:59.000Z

464

A Consumer's Guide: Heat Your Water with the Sun (Brochure)  

Broader source: Energy.gov [DOE]

This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

465

Fuel consumption rate in a heat-powered unit analyzed as a function of the temperature and consumption ratio of the air  

Science Journals Connector (OSTI)

An analysis of fuel consumption for a heat-powered unit in the ... of ceramic materials is given. The heat consumption rate is analyzed as a function of ... generating the working medium, and of the consumption r...

N. A. Tyutin

2006-01-01T23:59:59.000Z

466

City of Palo Alto Utilities - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heating Program Solar Water Heating Program City of Palo Alto Utilities - Solar Water Heating Program < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family residential gas-displacing systems: $2,719 Single-family residential electricity or propane-displacing systems: $1,834 Commercial/Industrial/Multi-family: $100,000 One contractor can have no more than $150,000 in incentive reservations at any given time. Program Info State California Program Type Utility Rebate Program Rebate Amount Single-family residential gas-displacing systems: $18.59 per therm displaced Single-family residential electricity or propane-displacing systems: $$0.54 per kWh displaced Multi-family and commercial gas-displacing systems: $14.53 per therm

467

"Table HC12.8 Water Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Midwest Census Region, 2005" 8 Water Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Water Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Number of Water Heaters" "1.",106.3,24.5,17.1,7.4 "2 or More",3.7,0.9,0.5,0.4 "Do Not Use Hot Water",1.1,"Q","Q","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,23.5,16.2,7.3 "Two or More Housing Units",10.3,1.9,1.4,0.5 "Do Not Use Hot Water",1.1,"Q","Q","Q"

468

"Table HC14.8 Water Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by West Census Region, 2005" 8 Water Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Water Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Number of Water Heaters" "1.",106.3,23.2,7.1,16.1 "2 or More",3.7,1,0.4,0.6 "Do Not Use Hot Water",1.1,"Q","Q","N" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,21.9,7.1,14.8 "Two or More Housing Units",10.3,2.3,0.4,1.9 "Do Not Use Hot Water",1.1,"Q","Q","N"

469

End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)  

SciTech Connect (OSTI)

Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580/sup 0/F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs.

Richardson, K.D.

1987-10-01T23:59:59.000Z

470

Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack  

E-Print Network [OSTI]

) Included in this reaction is the decomposition of methanol, which produces CO: CH3OH CO + 2H2 (90.5 kJ mol a picture of the methanol reformer which has been designed to produce hydrogen for a 1 kWe HTPEM fuel cellExperimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

Berning, Torsten

471

Nuclear tanker producing liquid fuels from air and water  

E-Print Network [OSTI]

Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

Galle-Bishop, John Michael

2011-01-01T23:59:59.000Z

472

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network [OSTI]

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

473

In-Situ Safeguards Verification of Low Burn-up Pressurized Water Reactor Spent Fuel Assemblies  

SciTech Connect (OSTI)

A novel in-situ gross defect verification method for light water reactor spent fuel assemblies was developed and investigated by a Monte Carlo study. This particular method is particularly effective for old pressurized water reactor spent fuel assemblies that have natural uranium in their upper fuel zones. Currently there is no method or instrument that does verification of this type of spent fuel assemblies without moving the spent fuel assemblies from their storage positions. The proposed method uses a tiny neutron detector and a detector guiding system to collect neutron signals inside PWR spent fuel assemblies through guide tubes present in PWR assemblies. The data obtained in such a manner are used for gross defect verification of spent fuel assemblies. The method uses 'calibration curves' which show the expected neutron counts inside one of the guide tubes of spent fuel assemblies as a function of fuel burn-up. By examining the measured data in the 'calibration curves', the consistency of the operator's declaration is verified.

Ham, Y S; Sitaraman, S; Park, I; Kim, J; Ahn, G

2008-04-16T23:59:59.000Z

474

High Water Heating Bills on Lockdown at Idaho Jail | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine Lindsay Gsell What does this project do? The new solar thermal hot water system will provide nearly 70 percent of the BTUs required for heating 600,000 gallons of water for the jail annually, saving the county more than $4,000 a year in electricity costs at current rates. In Hailey, Idaho, one 330,000 square foot building - the Blaine County Public Safety Facility - accounts for the county's highest operational

475

Coupled Model for Heat and Water Transport in a High Level Waste Repository  

Broader source: Energy.gov (indexed) [DOE]

Coupled Model for Heat and Water Transport in a High Level Waste Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that drive water and water vapor flow around hot waste packages. Characterizing salt backfill processes is an important objective of the exercise. An evidence-based algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal,

476

Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer  

E-Print Network [OSTI]

PEFCs , owing to their high en- ergy efficiency, low emission, and low noise, are widely considered. In addition, the latent heat effects due to condensation/evaporation of water on the temperature and water ohmic losses. Along with water man- agement, thermal management is also a key to high performance

477

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......such a cavity, water phases do not need...place, and vertical water flow can be small...Aburatsubo, with a recovery time larger than...heat transfer by water exchange. This...evaporation and condensation process. If the...Monitoring the atmospheric temperature in a......

Frédéric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Mouël

2004-07-01T23:59:59.000Z

478

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov (indexed) [DOE]

Direct Use for Building Direct Use for Building Heat and Hot Water Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Direct Use for Building Heat and Hot Water." Slide 1 Amy Hollander: Hello, I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Building Heat and Hot Water sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's new state-of-the-art net zero

479

The burnup dependence of light water reactor spent fuel oxidation  

SciTech Connect (OSTI)

Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5).

Hanson, B.D.

1998-07-01T23:59:59.000Z

480

Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors  

SciTech Connect (OSTI)

Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the amount of discharged spent fuel, for a given energy production, compared with standard VVER/PWR. The total Pu production rate of RTF cycles is only 30 % of standard reactor. In addition, the isotopic compositions of the RTF's and standard reactor grade Pu are markedly different due to the very high burnup accumulated by the RTF spent fuel.

Todosow M.; Todosow M.; Raitses, G. (BNL) Galperin, A. (Ben Gurion University)

2009-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "water heating fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - III: Spent DUPIC Fuel Disposal Cost  

SciTech Connect (OSTI)

The disposal costs of spent pressurized water reactor (PWR), Canada deuterium uranium (CANDU) reactor, and DUPIC fuels have been estimated based on available literature data and the engineering design of a spent CANDU fuel disposal facility by the Atomic Energy of Canada Limited. The cost estimation was carried out by the normalization concept of total electricity generation. Therefore, the future electricity generation scale was analyzed to evaluate the appropriate capacity of the high-level waste disposal facility in Korea, which is a key parameter of the disposal cost estimation. Based on the total electricity generation scale, it is concluded that the disposal unit costs for spent CANDU natural uranium, CANDU-DUPIC, and PWR fuels are 192.3, 388.5, and 696.5 $/kg heavy element, respectively.

Ko, Won Il; Choi, Hangbok; Roh, Gyuhong; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

482

Characteristics of a semicircular heat exchanger used in a water heated condenser pump .  

E-Print Network [OSTI]

??According to literature 6% of South Africa’s primary energy consumption could be saved if heat pumps were used to their full technical potential. Although there… (more)

Da Veiga, Willem Richter

2009-01-01T23:59:59.000Z

483

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

1997-01-01T23:59:59.000Z

484

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

1997-01-10T23:59:59.000Z