National Library of Energy BETA

Sample records for water heating equipment

  1. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  2. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  3. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  4. Commercial HVAC and Water-Heating Equipment Minimum Efficiency Standards in the United States

    SciTech Connect (OSTI)

    Nasseri, Cyrus H.; Somasundaram, Sriram

    2001-08-01

    ABSTRACT In 1992, Federal legislation mandated that the U.S. Department of Energy (DOE) set the efficiency levels in the then-current ASHRAE Standard 90.1 as mandatory minimums for heating, ventilating, and air-conditioning (HVAC) and service water-heating (SWH) equipment sold in the U.S. market, as well as a process for revising the minimum equipment efficiency standards to comply with requirements in an updated Standard 90.1. Because Standard 90.1 was updated in October 1999 (Standard 90.1-1999), DOE is now undertaking a rulemaking process for these equipment categories. In January 2001, DOE published a final rule adopting Standard 90.1-1999 levels as uniform national standards for 18 product categories of commercial HVAC and SWH equipment. For 11 other categories of commercial products, DOE has signaled its intention to consider more stringent standards than those adopted by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE). DOE has now initiated a formal rulemaking process to further analyze these equipment categories.

  5. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment ofHeating and Water

  6. 2014-10-10 Issuance: Energy Conservation Standards for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding energy conservation standards for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  7. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    SciTech Connect (OSTI)

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  8. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    SciTech Connect (OSTI)

    Somasundaram, Sriram; Armstrong, Peter R; Belzer, David B; Gaines, Suzanne C; Hadley, Donald L; Smith, David L; Winiarski, David W

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equipment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. 011Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  9. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  10. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  11. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  17. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  18. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  19. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  20. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  1. Water Heating Technologies Research and Development Roadmap ...

    Broader source: Energy.gov (indexed) [DOE]

    roadmap establishes a set of high-priority RD&D activities for water heating systems. The proposed activities address the major unfulfilled needs regarding the latest equipment and...

  2. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  3. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  4. 2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  5. Recovering the Heat Dissipated by the Digital Switching Equipment 

    E-Print Network [OSTI]

    Karasseferian, V. V.; Desjardins, R.

    1983-01-01

    With the advent of the Digital Switching Equipment, came the need for year round cooling due to its high heat density. This meant the need for independent systems of heating and cooling within the same building, one consuming energy for heating...

  6. Heat exchanger for power generation equipment

    DOE Patents [OSTI]

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  7. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  8. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  9. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  10. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

  11. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for...

  12. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  13. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  14. Integrated heat pump water heater

    SciTech Connect (OSTI)

    Robinson, G.P.; Blackshaw, A.L.

    1986-07-08

    An integrated heat pump water heater system is described for providing either heating or cooling of an interior space, and heating water in conjunction with either the heating or cooling cycle or independently, by means of a refrigerant flowing through the system. The system consists of: a compressor; a first heat exchanger means for providing heat to the interior space in the heating cycle and for removing heat during the cooling cycle by heat transfer with a refrigerant therein; a second heat exchanger means for transferring heat to or from a refrigerant therein by heat exchanger with an exterior medium; a third heat exchanger means for transferring heat from a refrigerant therein to water circulated therethrough; a first expansion device; a second expansion device; a third expansion device; refrigerant flow connection means connected between the compressor, the heat exchanger means, and the expansion devices which may be controllably connected in alternate configurations whereby. In a first configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the second heat exchanger means, through the first expansion device, through the first heat exchanger means, and back to the compressor. In a second configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the first heat exchanger means, through the second expansion device, through the second heat exchanger means, and back to the compressor. In a third configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the third expansion device, through the second heat exchanger means, and back to the compressor.

  15. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William; Gagne, Claire; Baxter, Van D; Lutz, James; Merrigan, Tim; Katipamula, Srinivas

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  16. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  17. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  18. Heat Pump Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient...

  19. Energy Saver 101: Water Heating Infographic

    Broader source: Energy.gov [DOE]

    Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic lays out evergything you need to know about water heating and shares ways to save energy and money.

  20. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  1. Savings Project: Lower Water Heating Temperature | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 12-30 annually for each 10F...

  2. Solar water heating: FEMP fact sheet

    SciTech Connect (OSTI)

    Clyne, R.

    1999-09-30

    Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

  3. Promising Technology: Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    A heat pump water heater uses electricity to transfer heat from the ambient air to stored water, as opposed to an electric resistance water heater, which uses electricity to generate the heat directly. This enables the heat pump water heater to be 2 to 3 times as efficient as an electric resistance water heater.

  4. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    E-Print Network [OSTI]

    2004-01-01

    of Commercial and Residential Air Conditioning and HeatingOF COMMERCIAL AND RESIDENTIAL AIR-CONDITIONING AND HEATINGand residential air-conditioning and heating equipment.

  5. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Tips: Water Heating July 17, 2014 - 4:53pm Addthis Keep your energy bills out of hot water. Insulate your water heater to save energy and money, or choose an...

  6. Tips: Water Heating | Department of Energy

    Office of Environmental Management (EM)

    Tips: Water Heating Tips: Water Heating July 17, 2014 - 4:53pm Addthis Keep your energy bills out of hot water. Insulate your water heater to save energy and money, or choose an...

  7. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  8. Heat Exchangers for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because...

  9. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    E. Inc. 1990. “Residential Water Heating Study: TechnicalScott. 2007. “HWSIM Hot Water Distribution Model Validationand Simulation of a Smart Water Heater. ” In Workshop in

  10. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating Water

  11. Dawdon Mine Water Heat Pump Trial

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

  12. Savings Project: Lower Water Heating Temperature | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats Savings Project: Lower Water Heating Temperature Tips: Passive Solar Heating and Cooling Where to insulate. Adding insulation in the areas shown here may be...

  13. Field monitoring of a variable-speed integrated heat pump/water-heating appliance

    SciTech Connect (OSTI)

    Fanney, A.H. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building and Fire Research Lab.

    1995-12-31

    A variable-speed integrated heat pump/water-heating appliance was monitored for two years while meeting the space-conditioning and water-heating needs of an occupied residence. Experimental results are presented that show the total energy consumed by the residence was significantly reduced compared to previous years in which electric base-board heat, a wood stove, and window air conditioners were used. During the two space-heating seasons, the variable-speed integrated heat pump/water-heating appliance used 60% less energy than would have been consumed by an electric furnace with the same air distribution system and a storage-type electric water heater. The monthly space-cooling-only coefficients of performance (COP) ranged from 2.50 to 4.03, whereas the monthly space-heating-only coefficients of performance ranged from a low of 0.91 to a high of 3.33. A proposed index to quantify the overall system performance of integrated water-heating/space-conditioning appliances, referred to as the combined performance factor, ranged from 1.55 to 3.50. The majority of larger values occurred during months in which space cooling dominated. The combined performance factor for the entire two-year study was 2.45. A conventional watt-hour meter supplied by the local electrical utility and an electronic digital power analyzer were used to measure the energy consumption of the variable-speed heat pump to discern if variable-speed equipment introduces errors in conventional utility metering equipment. Measurements made using the two instruments were in excellent agreement. The monthly energy consumption and peak electrical demands of the residence, integrated heat pump/water-heating appliance, supplemental space heater, and water heater are discussed. The influence of outdoor temperature on electrical power demand is presented.

  14. Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements

    E-Print Network [OSTI]

    Water Heating Requirements ­ Overview Page 5-1 5 Water Heating Requirements 5.1 Overview 5.1.1 Water Heating Energy Water heating energy use is an important end use in low-rise residential buildings. Roughly 90 percent of California households use natural gas fueled water heaters, typically storage gas

  15. DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for direct heating equipment and pool heaters.

  16. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01

    2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

  17. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01

    M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

  18. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

  19. THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS

    E-Print Network [OSTI]

    Mertol, Atila

    2012-01-01

    The Performance of Solar Water Heater With Natural Ci rculperformance of solar thermos i phon water heaters with heatSolar Jubilee, Phoenix, AZ, June 2-6, 1980 THERMOSIPHON WATER HEATERS

  20. Workshop on Condensing Heating and Water Heating Equipment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy WindWorkplace Charging Success:DepartmentWorkshop

  1. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drain-Water Heat Recovery Drain-Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How...

  2. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  3. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  4. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  5. Research & Development Roadmap: Emerging Water Heating Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue...

  6. Water Heating Standing Technical Committee Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standing Technical Committee Water Heating Residential Energy Efficiency Stakeholder's Meeting February 29, 2012 - Austin, Texas 2 STC Chairman Responsibilities * To maintain the...

  7. CO2 Heat Pump Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  8. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar...

  9. EWEB- Residential Solar Water Heating Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  10. Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

  11. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular...

  12. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01

    2001. Residential Heat Pump Water Heater (HPWH) DevelopmentKelso, J. 2003. Incorporating Water Heater Replacement into2005. Residential Heat Pump Water Heaters: Energy Efficiency

  13. Energy Conservation Program for Certain Industrial Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  14. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  15. Reduce Radiation Losses from Heating Equipment; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in which opening size cannot be reduced, you can use flexible materials such as ceramic strips, chains, or ceramic textiles as "curtains." These generally reduce heat loss...

  16. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  17. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  18. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  19. Heating and Cooling System Support Equipment Basics | Department...

    Office of Environmental Management (EM)

    thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy...

  20. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System December 14, 2014 - 2:46pm Addthis Before you buy and install a solar water heating system, you need...

  1. Lakeland Electric- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  2. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  3. Cost Effective Water Heating Solutions | Department of Energy

    Energy Savers [EERE]

    Cost Effective Water Heating Solutions Cost Effective Water Heating Solutions This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and...

  4. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Warm Springs Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature...

  5. Covered Product Category: Residential Heat Pump Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal...

  6. Regional Variation in Residential Heat Pump Water Heater Performance...

    Energy Savers [EERE]

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States...

  7. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  8. Hybrid Heat Pumps Using Selective Water Sorbents (SWS)

    SciTech Connect (OSTI)

    Ally, M. R.

    2006-11-30

    The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, cost and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  11. Heat pump system with hot water defrost

    SciTech Connect (OSTI)

    Dudley, K.F.

    1988-08-30

    This patent describes an integrated heat pump and hot water system that includes, a heat pump having an indoor heat exchanger unit and an outdoor heat exchanger unit that are selectively connected to a compressor inlet and a compressor outlet by a flow reversing means and to each other by a flow reversing means and to each other by a refrigerant liquid line containing a bi-flow expansion valve for metering refrigerant moving in either direction through the liquid line, and bi-flow expansion valve having a positive shut off means to prevent refrigerant from flowing therethrough, a refrigerant to water heat exchanger having a water flow circuit that is in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit. The refrigerant condensing circuit is connected into a discharge line connecting the outlet of the compressor to the reversing means whereby all the refrigerant discharged by the compressor passes through the condensing circuit. The refrigerant evaporating circuit is connected at one end to the inlet of the compressor and at the other end to an evaporator line that is operatively joined to the liquid line at a point between the bi-flow expansion valve and the outdoor heat exchanger, a metering valve in the evaporator line that is selectively movable between a first closed position whereby refrigerant is prevented from moving through the evaporator line and an open position whereby refrigerant is throttled from the liquid line into the evaporator circuit.

  12. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  13. Water Heating Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. |...

  14. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  15. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash...

  16. Save on Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Save on Home Water Heating August 19, 2014 - 10:46am Addthis Purchasing a water heater with the ENERGY STAR label ensures you are buying an energy efficient...

  17. Hot Water Heating System Operation and Energy Conservation 

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  18. Building America Standing Technical Committee- Water Heating

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America program is focused on delivering market acceptable energy efficiency solutions to homeowners, builders, and contractors. Near term goals of 30-50% source energy savings are currently targeted. This document examines water heating gaps and barriers, and is updated as of Feb. 2012.

  19. Occupational exposure assessment of magnetic fields generated by induction heating equipment--the role of spatial averaging

    E-Print Network [OSTI]

    Ljubljana, University of

    heating equipment is a source of strong and nonhomogeneous magnetic fields, which can exceed occupationalOccupational exposure assessment of magnetic fields generated by induction heating equipment for more Home Search Collections Journals About Contact us My IOPscience #12;IOP PUBLISHING PHYSICS

  20. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer...

    Office of Environmental Management (EM)

    Heating, and Appliances Overview - 2015 BTO Peer Review HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View...

  1. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  2. Analysis of Electricity Usage for Domestic Heating Based on an Air-To-Water Heat Pump

    E-Print Network [OSTI]

    Treur, Jan

    Analysis of Electricity Usage for Domestic Heating Based on an Air-To-Water Heat Pump in a Real of an air to water heat pump in relation to outdoor temperatures is proposed and evaluated. This model into account. Real empirical data for usage of a heat pump over a whole heating season have been used to obtain

  3. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  4. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, Jeff; Fang, Xia; Wilson, Eric

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  5. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect (OSTI)

    "B. Sparn, L. Earle, D. Christensen, J. Maguire, and E. Wilson, C.E. Hancock

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  6. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  7. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  8. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CO2 Heat Pump Water Heater Prototype
    Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National...

  9. Advances in the Research of Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Shan, S.; Wang, D.; Wang, R.

    2006-01-01

    This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

  10. Grid-Interactive Renewable Water Heating Economic and Environmental...

    Energy Savers [EERE]

    1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and...

  11. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

  12. Solar Domestic Water Heating: a Roof-Integrated Evaluation

    SciTech Connect (OSTI)

    2009-09-03

    This fact sheet describes an evaluation of the performance of a roof-integrated solar water heating system.

  13. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commonly used as the heat transfer fluid in refrigerators, air conditioners, and heat pumps. They generally have a low boiling point and a high heat capacity. This enables a...

  14. ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

  15. Tips: Water Heating | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About Us Shirley AnnResources Technical ofTheLaundry Tips: LaundryWater Heating

  16. Water Heating Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating Products andHVAC,

  17. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  18. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water 

    E-Print Network [OSTI]

    Cawley, R.

    1992-01-01

    % and that this amounts to the full daily need of 14.4 KW-HR. Table 5 (right column) shows the hour by hour demand' for a standard non-integrated heat pump used in conjunction with a water heater having efficiency of 87%, The draw schedule in Table 5 is the same...

  19. Control of outdoor air source water heating using variable-speed heat pump

    SciTech Connect (OSTI)

    Dudley, K.F.; Paige, L.E.; Dunshee, K.B.; Voorhis, R.J.

    1991-10-01

    This patent describes a process of controlling an integrated heat pump system of the type. It comprises a variable speed compressor having a discharge port and a suction port; a water heater exchanger coupled to the discharge port of the compressor for heating water by transfer of heat from a compressed heat exchange fluid; an outdoor evaporator heat exchanger having an outdoor fan and a coil receiving the heat exchange fluid from the water heat exchanger and coupled also to the suction port of the compressor, for drawing heat from the outdoor air which heat is transferred to the water in the water heat exchanger; a controller having output channels to control an outdoor fan and the speed of the variable speed compressor and inputs respectively coupled to a water heater setpoint adjustment means, an outdoor air temperature sensor for sensing the outdoor temperature of the outdoor air; and a water temperature sensor for sensing the temperature of the water heated by the water heat exchanger; the process comprising the steps of sensing the outdoor temperature T{sub o}.

  20. 16/05/12 3:54 PMFloating, smartphone-equipped robots track water flow | SmartPlanet Page 1 of 4http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331

    E-Print Network [OSTI]

    ://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331-equipped robots track water flow | SmartPlanet Page 3 of 4http://www.smartplanet.com/blog

  1. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  2. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  3. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) on their newly-constructed homes. Rebates of...

  4. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  5. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps

    SciTech Connect (OSTI)

    Dudley, K.F.

    1992-03-17

    This patent describes a method of operating an integrated heat pump and hot water system that is capable of providing heating or cooling to an environmental comfort zone. The heat pump and hot water system including a variable speed compressor whose operating speed is substantially linearly related to the difference between outdoor air temperature and indoor air temperature in the comfort zone, and also including means to receive a utility peak demand limit signal to initiate automatic power limiting to reduce the power demand imposed by the heat pump and hot water system, the method comprising sensing the outdoor temperature T{sub OD}; sensing the indoor temperature T{sub ID} in the comfort zone; sensing the speed S{sub 1} of the variable speed compressor; and in response to receiving the utility peak demand limit signal DLS calculating a reference speed S{sub R} for the compressor as a function of the speed S{sub 1}, the outdoor temperature T{sub OD}, the indoor temperature T{sub ID}, and predetermined values that correspond to a reference indoor temperature T{sub ID} and a zero-load temperature difference {Delta}T{sub Z} that corresponds to the difference between the outdoor and indoor temperatures that result in a zero load requirement on the compressor; and during occurrence of the signal DLS operating the compressor at a reduced operating speed limited to a predetermined fraction, less than unity, times the reference speed S{sub R}.

  6. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  7. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place: Beijing, Beijing Municipality, China...

  8. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)

    SciTech Connect (OSTI)

    Hudon, K.

    2012-05-01

    A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

  9. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special...

  10. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant...

  11. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  12. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL Active Solar...

  13. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  14. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  15. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect (OSTI)

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  16. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect (OSTI)

    None

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  17. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    with studies of solar water heaters. Another area withto model hybrid water heaters or solar thermal systems. Theof a Gas Tankless Water Heater. ” In SOLAR 2008 San Diego,

  18. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a high boiling point. Viscosity and thermal capacity determine the amount of pumping energy required. A fluid with low viscosity and high specific heat is easier to pump, because...

  19. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

  20. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  1. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  2. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect (OSTI)

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

  3. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System 

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  4. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

    Broader source: Energy.gov [DOE]

    Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  6. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    System Piping Time, Water, and Energy Waste- Phase I: TestSystem Piping Time, Water, and Energy Waste - Phase II TestSystem Piping Time, Water, and Energy Waste— Phase III: Test

  7. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking 2014-02-07 Issuance: Certification...

  8. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  9. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  10. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  11. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  12. A study of aggregation bias in estimating the market for home heating and cooling equipment

    SciTech Connect (OSTI)

    Wood, D.J.; Ruderman, H.; McMahon, J.E.

    1989-05-01

    Econometricians frequently propose parametric models which are contingent on an underlying assumption of rational economic agents maximizing their utility. Accurate estimation of the parameters of these models depends on using data disaggregated to the level of the actual agents, usually individual consumers or firms. Using data at some other level of aggregation introduces bias into the inferences made from the data. Unfortunately, properly disaggregated data is often unavailable, or at least, much more costly to obtain than aggregate data. Research on consumer choice of home heating equipment has long depended on state-level cross-sectional data. Only recently have investigators been able to build up and successfully use data on consumer attributes and choices at the household level. A study estimated for the Electric Power Research Institute REEPS model is currently one of the best of these. This paper examines the degree of bias that would be introduced in that study if only average data across SMSAs or states were used at several points in the investigation. We examine the market shares and elasticities estimated from that model using only the mean values of the exogenous variables, and find severe errors to be possible. However, if the models were calibrated on only aggregate data originally, we find that proper treatment allows market shares and elasticities to be found with little error relative to the disaggregate models. 22 refs., 4 figs., 10 tabs.

  13. BOT Greenhouse Guidelines: Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering

    E-Print Network [OSTI]

    BOT Greenhouse Guidelines: Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering concerns to both the greenhouse manager, Shane Merrell and the horticulturist, Mick using the Greenhouse Request Form found on the BioSci website. Users are responsible for the health

  14. Welch Greenhouse Guidelines Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering

    E-Print Network [OSTI]

    Welch Greenhouse Guidelines Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering concerns to both the greenhouse manager Shane Merrell time you are at the greenhouse. 3. All plants that are growing in the chambers need to be labeled

  15. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector....

  16. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  17. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Photovoltaic Modules. North Carolina Solar Center Heat Your Water with the Sun (PDF). U.S. Department of Energy Addthis Related Articles An example of a solar pool...

  18. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  19. South River EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

  20. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  1. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  2. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    water heating bills. Visit Energy Saver for more ways to save energy at home. To help you save money by saving energy, we launched AskEnergySaver -- an online series that gives...

  3. Optimization and heat and water integration for biodiesel production

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization and heat and water integration for biodiesel production from cooking oil is to simultaneously optimize and heat integrate the production of biodiesel from each of the different oil sources in the design. When using algae oil, the optimal process employs alkali as catalyst with a production cost of 0

  4. Applications Tests of Commercial Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  5. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  6. Water-to-Air Heat Pump Performance with Lakewater 

    E-Print Network [OSTI]

    Kavanaugh, S.; Pezent, M. C.

    1989-01-01

    The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

  7. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policy HQDepartmentHeat PumpHeat

  8. Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump 

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Yang, W.

    2006-01-01

    The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

  9. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  10. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  11. Heat pump water heater and method of making the same

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Tomlinson, John J. (Knoxville, TN); Chen, Fang C. (Knoxville, TN)

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  12. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  13. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  14. High Water Heating Bills on Lockdown at Idaho Jail

    Broader source: Energy.gov [DOE]

    Using funds from the American Recovery and Reinvestment Act, the county is installing a solar thermal hot water system that will provide nearly 70 percent of the power required for heating 600,000 gallons of water for the jail annually.

  15. Field monitoring of a variable-speed integrated heat pump/water heating appliance

    SciTech Connect (OSTI)

    Fanney, A.H.

    1993-06-01

    The report describes the residence, heat pump system, and monitoring equipment. Results are presented which include comparison of the total electrical energy consumption of the residence prior to and after installation of the heat pump system, the portion of energy used by each end use within the residence, a comparison of the heat pump's energy consumption using a conventional watthour meter and an electronic digital power analyzer, and the hourly electrical demands imposed on the utility. The thermal performance of the heat pump system is reported on a monthly, seasonal, and annual basis using conventional performance indicators in addition to using an index, proposed by NIST, which quantifies the overall system performance of integrated appliances.

  16. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated. It has been applied to measure heat transfer coefficients of water flowing in a round tube and in a multiport-flat tube. Models were developed to deduce heat transfer coefficient from wall temperature

  17. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect (OSTI)

    Li Wei [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Peng Jinhui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)], E-mail: jhpeng_ok@yeah.net; Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  18. Piedmont EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

  19. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  20. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  1. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  2. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    SciTech Connect (OSTI)

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  3. Heat Pump Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformation Resources » Geothermal MapsGuidance» HeadquartersHealthHeat &

  4. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space Heating &

  5. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

  6. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  7. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System 

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but ...

  8. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect (OSTI)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

  9. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  10. Heat Recovery From Arc Furnaces Using Water Cooled Panels 

    E-Print Network [OSTI]

    Darby, D. F.

    1987-01-01

    located on the intake air side of the gas burners. From the heat/vent units, the glycol is re turned via the glycol return piping (GWHR) to the secondary side of the water to glycol heat exchanger HE-I, and then back to the surge tank. The system... stream_source_info ESL-IE-87-09-17.pdf.txt stream_content_type text/plain stream_size 21344 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-17.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HEAT RECOVERY FROM...

  11. Water-Heating Dehumidifier - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)ManagementWatchingWaterIrrigating

  12. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline of Events:Smart Meters and a SmarterWater

  13. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China 

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  14. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    rates of each fluid (water and air) to be known for eachcontained two separate air-to-water heat exchangers, rathercontained two, larger air-to-water heat exchangers, compared

  15. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect (OSTI)

    Boudreaux, Philip R; Jackson, Roderick K; Munk, Jeffrey D; Gehl, Anthony C; Lyne, Christopher T

    2014-01-01

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  16. Two Stage Vapor Compression Heat Pump with Solution Circuits: Catering to Simultaneous Chilling and Water Heating Needs 

    E-Print Network [OSTI]

    Rane, M. V.; Radermacher, R.

    1992-01-01

    The benefits of using a two stage vapor compression heat pump with ammonia water solution circuits (VCHSC) to simultaneously provide chilled water for air conditioning and hot water for various uses are reviewed. The performance results for a two...

  17. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  18. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SOURCE HEAT PUMP WATER HEATER Farouk Fardoun, Associate Professor, Department of Industrial Engineering- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic

  19. Covered Product Category: Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  1. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Dakin, Davis Energy Group Michael Koenig, American Honda Motor Company ABSTRACT The evolution of heat-pump design uses multiple systems and fuels to provide thermal services, the emerging generation of heat-pump

  2. BFL Research Greenhouse Guidelines (BFLRG) Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    BFL Research Greenhouse Guidelines (BFLRG) Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell sanitized in the appropriate location. Supplies: Requests for supplies ordered by greenhouse staff must

  3. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  4. Enforcement Policy Statement Consumer Water Heaters and Certain Commercial Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution JPG20,1LLC | Department Consumer

  5. THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

  6. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  7. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  8. Reduced heat flow in light water (H2O) due to heavy water (D2O)

    E-Print Network [OSTI]

    William R. Gorman; James D. Brownridge

    2008-09-04

    The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

  9. Cooling rate, heating rate and aging effects in glassy water

    E-Print Network [OSTI]

    Nicolas Giovambattista; H. Eugene Stanley; Francesco Sciortino

    2004-03-03

    We report a molecular dynamics simulation study of the properties of the potential energy landscape sampled by a system of water molecules during the process of generating a glass by cooling, and during the process of regenerating the equilibrium liquid by heating the glass. We study the dependence of these processes on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare the properties of the potential energy landscape sampled during these processes with the corresponding properties sampled in the liquid equilibrium state to elucidate under which conditions glass configurations can be associated with equilibrium liquid configurations.

  10. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  11. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment

  12. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6 2008

  13. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment68

  15. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment689

  16. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  17. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in an2 instead of water as heat transmission fluid (D.W. Brown,

  18. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect (OSTI)

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  19. SRP - Solar Water Heating Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Robertseere.energy.govFreedomSolar Water Heating Program

  20. Water Heating Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department ofIntroductionDepartmentWasteWater Heating

  1. 15 Ways to Save on Your Water Heating Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it...

  2. Coupled Model for Heat and Water Transport in a High Level Waste...

    Energy Savers [EERE]

    Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report...

  3. SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP

    E-Print Network [OSTI]

    SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS By JASON EARL AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS Thesis Approved: Dr. Jeffrey D. Spitler

  4. Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates 

    E-Print Network [OSTI]

    Johnson, K. F.; Shedd, A. C.

    1992-01-01

    Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

  5. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  6. Direct Use for Building Heat and Hot Water Presentation Slides and Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

  7. Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

  8. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect (OSTI)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  9. EXPERIMENTAL INVESTIGATIONS AND DESIGN TOOL DEVELOPMENT FOR SURFACE WATER HEAT PUMP

    E-Print Network [OSTI]

    EXPERIMENTAL INVESTIGATIONS AND DESIGN TOOL DEVELOPMENT FOR SURFACE WATER HEAT PUMP SYSTEMS By MATT AND DESIGN TOOL DEVELOPMENT FOR SURFACE WATER HEAT PUMP SYSTEMS Thesis Approved: Jeffrey D. Spitler Thesis Title of Study: EXPERIMENTAL INVESTIGATION AND DESIGN TOOL DE- VELOPMENT FOR SURFACE WATER HEAT PUMP

  10. A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS William P a heat pump water heater (HPWH). After developing the HPWH, a field-test plan was implemented whereby 20 estimates were that a heat pump water heater (HPWH) could save from 50 to 70% of the energy used

  11. A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer

    E-Print Network [OSTI]

    Bennett, Albert F.

    A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

  12. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect (OSTI)

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  13. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  14. Water Efficiency Improvements at Various Environmental Protection Agency Sites: Best Management Practice Case Study #12 - Laboratory/Medical Equipment (Brochure)

    SciTech Connect (OSTI)

    Blakley, H.

    2011-03-01

    The U.S. Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. The projects highlighted in this case study demonstrate EPA's ability to reduce water use in laboratory and medical equipment by implementing vacuum pump and steam sterilizer replacements and retrofits. Due to the success of the initial vacuum pump and steam sterilizer projects described here, EPA is implementing similar projects at several laboratories throughout the nation.

  15. Heat pump water heater and storage tank assembly

    DOE Patents [OSTI]

    Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  16. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  17. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W. (Sag Harbor, NY)

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  18. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  19. A Comparison of Domestic Water Heating Options in the Austin Electric Service Area 

    E-Print Network [OSTI]

    Vliet, G. C.; Hood, D. B.

    1985-01-01

    the operation of (1) a conventional electric resistance water heater (ERWH), (2) a heat pump water heater (HPWH), and (3) a heat recovery water heater (HRWH). Data from a previously conducted field test of solar water heaters (SWH) in the Austin area was used...

  20. Water Heating Products and Services | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating Products and

  1. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|ofElizabeth Sherwood-Randall AboutWater Heating

  2. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456 U.S.

  3. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456 U.S.0

  4. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456

  5. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562 Main

  6. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562

  7. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.332345624

  8. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456245

  9. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562456

  10. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.332345624562

  11. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456245623

  12. Performance of an integrated heat pump gas-fired water heater system

    SciTech Connect (OSTI)

    Torab, H.; Sonntag, R.E.

    1984-08-01

    The unsatisfactory performance of the heat pump water heaters (air-to-water) in colder ambient temperatures is the main obstacle to the expansion of the residential market for this device. On the other hand, the price increase of natural gas in the 1980's encourages retrofitting or replacing the existing gas-fired water heaters. The present study examines the possibility of retrofitting the gas-fired water heater with a heat pump water heater. The result of the investigation on the thermodynamic and economic performance of a water heater system comprised of a heat pump water heater and a gas-fired water heater is presented in this paper.

  13. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  14. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Analysis and Concept Design for grey water heat

    E-Print Network [OSTI]

    Design for grey water heat recovery to preheat domestic water supply for multi-unit residential high rise of a project/report". #12;2 Analysis and Concept Design for grey water heat recovery to preheat domestic water

  15. ISSUANCE 2015-04-29: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters Notice of petition to extend test procedure compliance date and request for comment

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters; Notice of petition to extend test procedure compliance date and request for comment.

  16. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  17. Heat Pump Water Heater Durabliltiy Testing - Phase II

    SciTech Connect (OSTI)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed significantly higher efficiencies than conventional electric water heaters (EWH). DOE Simulated Use Tests conducted prior to starting the durability testing resulted in energy factors (EF) of about 2.3 for the integral design and 1.4 for the add-on design compared to the minimum value of 0.86 prescribed for EWHs. Based on the experience from this and the previous durability testing, there is no evidence that strongly suggests that any of the HPWHs suffered significant performance degradation after undergoing over 7000 water heat cycles.

  18. A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1

    E-Print Network [OSTI]

    Treur, Jan

    A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

  19. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  20. DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

  1. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  2. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  3. Impact of a retrofitted heat-recovery unit on an existing residential heat pump and water heater. Final report

    SciTech Connect (OSTI)

    Tu, K.M.; Fischler, S.

    1980-01-01

    Two heat-recovery units were retrofitted, one at a time, with one heat pump and one storage-type water heater to produce two integrated heat pump - heat recovery unit - water heater systems. Each system was operated with appropriate measuring devices to determine the effect(s) of using the retrofit heat recovery unit on the performance of the heat pump and water heater. The system was operated with the outdoor unit of the heat pump in an environmental chamber with outdoor temperatures of 75, 85, 95, and 20F. The indoor unit of the heat pump was in an environmental chamber whose indoor temperature was set at 80F when the outdoor temperature was 75, 85, 95F, and 70F when the outdoor temperature was set at 20F. The indoor relative humidity was maintained at approximately 50%. The heat recovery unit and water heater were in an environmental chamber set at the basement temperature of 65F with 50% relative humidity.

  4. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results

    E-Print Network [OSTI]

    Kandlikar, Satish

    Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

  5. Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer

    E-Print Network [OSTI]

    Victoria, University of

    around BC: Kamloops, Victoria and Williams Lake. Electric and gas-fired tank water heaters of various such as solar-assisted pre-heat and waste water heat recovery components. A total of 7,488 six- day simulations The resulting data is presented from a variety of angles, including the relative impacts of water heater rating

  6. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  7. Design of Heat Exchanger for Heat Recovery in CHP Systems 

    E-Print Network [OSTI]

    Kozman, T. A.; Kaur, B.; Lee, J.

    2009-01-01

    . Before the design process can begin, product specifications, such as steam or water pressures and temperatures, and equipment, such as absorption chillers and heat exchangers, need to be identified and defined. The Energy Engineering Laboratory...

  8. Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures

    E-Print Network [OSTI]

    Rohsenow, Warren M.

    1951-01-01

    Local surface ooeffioients of heat t-ansfer, overall pressure drop data and mean friction factor are presented for heat flamms up to 3.52106 BtuAr ft2 for water flowing in a nickel tabe isder the following conditions: mass ...

  9. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  10. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  11. Water and heat transport in boreal soils: Implications for soil response to climate change

    E-Print Network [OSTI]

    2011-01-01

    G. An integrated model of soil, hydrology, and vegetatione n v Water and heat transport in boreal soils: Implicationsfor soil response to climate change Zhaosheng Fan a, ? ,

  12. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Interactions at the Supercritical CO2–liquid InterfaceEnergy Concept Utilizing Supercritical CO2 Instead of Water,Feasibility of Using Supercritical CO2 as Heat Transmission

  13. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  14. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil

    E-Print Network [OSTI]

    2009-01-01

    of Mato Grosso, Brasil, Water Resour. Res. , 38(6), 1094,2009 Patterns of water and heat flux across a biome gradientFigueira (2004), Seasonality of water and heat fluxes over a

  15. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  16. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    Calculation of heat capacities of light and heavy water by path-integral molecular dynamics 30 September 2005 As an application of atomistic simulation methods to heat capacities, path-integral has estimated the heat capacities too high, the quantum simulation based on path-integral molecular

  17. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System 

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  18. Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer

    E-Print Network [OSTI]

    Martin, Timothy

    Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

  19. 5 Questions for an Expert: Bob Gemmer on Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    work experience in batteries, heating and cooling applications, boilers, water treatment, furnace equipment, and more. Looking back on where I'm at now, although the...

  20. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  1. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  2. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare

  3. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  4. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    SciTech Connect (OSTI)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  5. Application Prospect Analysis of the Surface Water Source Heat-Pump in China 

    E-Print Network [OSTI]

    Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

    2006-01-01

    Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval...

  6. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones 

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  7. Short communication Control of brown rot of stone fruits by brief heated water immersion treatments

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Short communication Control of brown rot of stone fruits by brief heated water immersion treatments, this treatment reduced decay incidence from 100 to less than 5% on fruit stored at 20 C and from 73 to 28% on cold-stored fruit. Therefore, brief immersion in heated water can be an effective approach to manage

  8. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  9. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect (OSTI)

    Ammerman, C.N.; You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering

    1995-12-31

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  10. City of Sunset Valley- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    In order to participate in the program, local residents must first be approved for a rebate through the Austin Energy program and meet the corresponding equipment, warranty, and installation requ...

  11. Table B37. Water Heating Equipment, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption6.9.8..6.7.

  12. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOE Patents [OSTI]

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  13. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    SciTech Connect (OSTI)

    Morrison, L.; Swisher, J.

    1980-12-01

    A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

  14. A Consumer's Guide: Heat Your Water with the Sun (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  15. A Consumer's Guide: Heat Your Water with the Sun

    SciTech Connect (OSTI)

    2003-12-01

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  16. Consumer's Guide: Heat Your Water with the Sun (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2003-12-01

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  17. Solar Water Heating System Maintenance and Repair | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at...

  18. Water Heating Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy....

  19. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  20. Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district

    E-Print Network [OSTI]

    Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

  1. (Use of rainwater and greywater and hybrid passive/wood fire water heating). Final report

    SciTech Connect (OSTI)

    Pritchard, D.C.

    1985-01-01

    The work reported involves three phases. The first addresses water heating using a woodstove and a passive solar hot water system. The second deals with recycling greywater. The purpose of the third phase is to use rainwater to fulfill all hot water needs. (LEW)

  2. Turbulent heat exchange between water and ice at an evolving ice-water interface

    E-Print Network [OSTI]

    Ramudu, Eshwan; Olson, Peter; Gnanadesikan, Anand

    2015-01-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameter...

  3. NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

    E-Print Network [OSTI]

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use is a function of surrounding air temperature, humidity, hot water usage, and the logic controlling the heat pump

  4. Simulation of water transport in heated rock salt

    SciTech Connect (OSTI)

    Schlich, M.; Jockwer, N.

    1986-01-01

    This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

  5. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  6. Improving Heating System Operations Using Water Re-Circulation 

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01

    indicates that consumer- regulated indoor temperature is the primary factor that affects the flow rate and temperature of return water....

  7. Duke Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Duke Energy Florida (DEF) launched the Solar Water Heating with EnergyWise Program in February 2007 to encourage its residential customers to participate in its load control program and install a...

  8. Clean Boiler Water-side Heat Transfer Surfaces - Steam Tip Sheet #7

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  9. Water distillation using waste engine heat from an internal combustion engine

    E-Print Network [OSTI]

    Mears, Kevin S

    2006-01-01

    To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

  10. Consumption of electricity, heat and water by campus 20122014 Campus Total Otaniemi Tl Arabia Others

    E-Print Network [OSTI]

    Kaski, Samuel

    Consumption of electricity, heat and water by campus 2012­2014 Campus Total Otaniemi Töölö Arabia Others 2014 2013 2012 2014 2013 2012 2014 2013 2012 2014 2013 2012 2014 2013 2012 Electricity consumption (MWh) 37497 38738 39357 31736 34100 33831 2836 2000 2201 2350 2365 3102 576 273 223 Heat consumption

  11. Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water 

    E-Print Network [OSTI]

    Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

    1992-01-01

    The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options...

  12. A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

    E-Print Network [OSTI]

    A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes. Heat pump water heaters (HPWHs) remove heat from the air and use it to heat water.; Sparn, B.; Christensen, D.; Maguire, J. (2012). Heat Pump Water Heater Technology Assessment Based

  13. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Schulz, Terry L. (Murrysville, PA)

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  14. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  15. Water heat pipe frozen startup and shutdown transients with internal temperature, pressure and visual observations 

    E-Print Network [OSTI]

    Reinarts, Thomas Raymond

    1989-01-01

    WATER HEAT PIPE FROZEN STARTUP AND SHUTDOWN TRANSIENTS WITH INTERNAL TEMPERATURE, PRESSURE AND VISUAL OBSERVATIONS A Thesis by THOMAS RAYMOND REINARTS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1989 Major Subject: Nuclear Engineering WATER HEAT PIPE FROZEN STARTUP AND SHUTDOWN TRANSIENTS WITH INTERNAL TEMPERATURE, PRESSURE AND VISUAL OBSERVATIONS A Thesis THOMAS RAYMOND REINARTS...

  16. The effect of chilled drinking water on heat-stressed lactating Holstein cows 

    E-Print Network [OSTI]

    Baker, Christopher Charles

    1987-01-01

    THE EFFECT OF CHILLED DRINKING WATER ON HEAT-STRESSED LACTATING HOLSTEIN COWS A Thesis by CHRISTOPHER CHARLES BAKER Submitted to the Graduate College of Texas A 5 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1987 Major Subject: Nutrition THE EFFECT OF CHILLED DRINKING WATER ON HEAT-STRESSED LACTATING HOLSTEIN COWS A Thesis by CHRISTOPHER CHARLES BAKER Approved as to style and content: Carl E. Coppock (Chair of Committee...

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  18. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  19. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  20. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01

    pump water heater might be more exposed to the outdoor environment, such as garages and crawlspaces, a 5- year preventative maintenance cost

  1. Solar Water Heating: What's Hot and What's Not 

    E-Print Network [OSTI]

    Stein, J.

    1992-01-01

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  2. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipmentSolar PV inSolar Viewed

  3. Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  4. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect (OSTI)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82�ºC (180�ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  5. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-Print Network [OSTI]

    Wu, Mingshen

    The development of a solar thermal water purification, heating, and power generation system: A case parabolic solar troughs. A flow control valve adjustable for temperature and pressure, allowed the pressure within the troughs to build, thus increasing the boiling point of the water. At a temperature greater

  6. MEASUREMENT OF HEAT TRANSFER DURING DROP-WISE CONDENSATION OF WATER ON POLYETHYLENE

    E-Print Network [OSTI]

    Khandekar, Sameer

    MEASUREMENT OF HEAT TRANSFER DURING DROP-WISE CONDENSATION OF WATER ON POLYETHYLENE Gagan Deep distribution of temperature during drop-wise condensation over a polyethylene substrate was measured using on the substrate was simultaneously visualized. Static contact angles of water on polyethylene are measured

  7. Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation

    Broader source: Energy.gov [DOE]

    The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

  8. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  9. City of Tallahassee Utilities- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    The homeowner must allow the City of Tallahassee to conduct an energy audit on the home in order to make a preliminary assessment of sun exposure and to provide program guidance. All solar water...

  10. Lumbee River EMC- Solar Water Heating Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lumbee River EMC is offering 1.50% loans to residential customers for the installation of solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings...

  11. Lumbee River EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  12. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  13. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  14. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore »FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  15. Drain-Water Heat Recovery | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallengesOhio andTechnologiesLand Rights-of-Way Study | Department ofHeat

  16. Heat Pump Water Heater Using Solid-State Energy Converters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space Heating & Cooling

  17. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policy HQDepartmentHeat

  18. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  19. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    SciTech Connect (OSTI)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  20. Microwave Heating of Water, Ice and Saline Solution: Molecular Dynamics Study

    E-Print Network [OSTI]

    Motohiko Tanaka; Motoyasu Sato

    2006-09-24

    In order to study the heating process of water by the microwaves of 2.5-20GHz frequencies, we have performed molecular dynamics simulations by adopting a non-polarized water model that have fixed point charges on rigid-body molecules. All runs are started from the equilibrated states derived from the I$_{c}$ ice with given density and temperature. In the presence of microwaves, the molecules of liquid water exhibit rotational motion whose average phase is delayed from the microwave electric field. Microwave energy is transferred to the kinetic and inter-molecular energies of water, where one third of the absorbed microwave energy is stored as the latter energy. The water in ice phase is scarcely heated by microwaves because of the tight hydrogen-bonded network of water molecules. Addition of small amount of salt to pure water substantially increases the heating rate because of the weakening by defects in the water network due to sloshing large-size negative ions.

  1. Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings 

    E-Print Network [OSTI]

    Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

    2012-01-01

    utilization of the additional heat for servicing buildings. These approaches, known as PV/Thermal (PV/T) technology, have been proven effectively in increasing solar conversion ratio and making economic use of the solar energy in buildings. In recent... years, numerous researchers has made efforts to develop various PV/T technologies including those by air, water, refrigerant and heat pipe [X Zhang et al., 2012], whose research results indicated the excellent effectiveness of the PV/T devices...

  2. Solar Water Heating System Maintenance and Repair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015:Solar6 SolarSwimmingWater

  3. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    SciTech Connect (OSTI)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  4. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

  5. PV vs. Solar Water Heating- Simple Solar Payback

    Broader source: Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

  6. Research and Development Roadmap for Emerging Water Heating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015Verizon andSection 12227-2008of&Emerging Water

  7. List of Solar Water Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of RefuelingRoomList ofSolar Water

  8. Water Heating Standing Technical Committee Presentation | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste IsolationofWatch theEnergy Water

  9. Heat Pump Water Heater Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcomingcanGrid Integrationheat pump water heater,

  10. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  11. Development of a Low Cost Heat Pump Water Heater - Second Prototype

    SciTech Connect (OSTI)

    Mei, V. C. [Oak Ridge National Laboratory (Retired); Craddick, William G [ORNL

    2007-09-01

    Since the 1980s various attempts have been made to apply the efficiency of heat pumps to water heating. The products generated in the 80s and 90s were not successful, due in part to a lack of reliability and difficulties with installation and servicing. At the turn of the century, EnvironMaster International (EMI) produced a heat pump water heater (HPWH) based on a design developed by Arthur D. Little (ADL), with subsequent developmental assistance from Oak Ridge National Laboratory (ORNL) and ADL. This design was a drop-in replacement for conventional electric water heaters. In field and durability testing conducted by ORNL, it proved to be reliable and saved on average more than 50% of the energy used by the best conventional electric water heater. However, the retail price set by EMI was very high, and it failed in the market. ORNL was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. Several cost saving opportunities were found. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water tank through a sleeve affixed to one of the standard penetrations at the top of the tank. After some experimentation, a prototype unit was built with a double-wall coil inserted into the tank. When tested it achieved an energy factor (EF) of 2.12 to 2.2 using DOE-specified test procedures. A.O. Smith contacted ORNL in May 2006 expressing their interest in the ORNL design. The prototype unit was shipped to A.O. Smith to be tested in their laboratory. After they completed their test, ORNL analyzed the raw test data provided by A.O. Smith and calculated the EF to be approximately 1.92. The electric resistance heating elements of a conventional electric water heater are typically retained in a heat pump water heater to provide auxiliary heating capacity in periods of high demand. A.O. Smith informed us that when they applied electric resistance backup heating, using the criterion that resistance heat would be applied whenever the upper thermostat saw water temperatures below the heater s nominal setpoint of 135oF, they found that the EF dropped to approximately 1.5. This is an extremely conservative criterion for backup resistance heating. In a field test of the previously mentioned EMI heat pump water heater, residential consumers found satisfactory performance when the criterion for use of electric resistance backup heating was the upper temperature dropping below the set point minus 27 degrees. Applying this less conservative criterion to the raw data from the original A.O. Smith EF tests indicates that electric resistance heating would never have come on during the test, and thus the EF would have remained in the vicinity of 1.9. A.O. Smith expressed concern about having an EF below 2, as that value triggers certain tax advantages and would assist in their marketing of the product. We believe that insertion of additional length of tubing plus a less conservative set point for electric resistance backup heating would remedy this concern. However, as of this writing, A.O. Smith has not decided to proceed with a commercial product.

  12. Experimental study of alumina-water and zirconia-water nanofluids convective heat transfer and viscous pressure loss in Laminar regime

    E-Print Network [OSTI]

    Rea, Ulzie L

    2008-01-01

    The objective of this study is to evaluate experimentally the convective heat transfer and viscous pressure loss characteristics of alumina-water and zirconia-water nanofluids. Nanofluids are colloidal dispersions of ...

  13. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect (OSTI)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)] [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)] [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA)

  14. DEPOSITION OF SILICA FROM GEOTHERIAL WATERS ON

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    DEPOSITION OF SILICA FROM GEOTHERIAL WATERS ON HEAT T RAN5FER SU R FACES by J.S, GUDMtJNDSSQN & T in specia1l designed equipment have been carried out on deposition from hot geothermal water from two, it was stated that low temperature waters (8O--ll0°C) have traditionally been used for district heating purposes

  15. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  16. Simulation of Heat Exchange Phenomena and Water Regime in Green Roof Substrates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    187 Simulation of Heat Exchange Phenomena and Water Regime in Green Roof Substrates S. Charpentier UR EPHor Agrocampus-Ouest Centre d'Angers 2, rue Le Nôtre, F49045 Angers France Keywords: green roof roofs increases in Western European and North American cities. It is estimated that 12% of all flat

  17. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  18. Thermal Economic Analysis of an Underground Water Source Heat Pump System 

    E-Print Network [OSTI]

    Zhang, W.; Lin, B.

    2006-01-01

    The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

  19. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, Carl; Puttagunta, Srikanth; Owens, Douglas

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  20. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect (OSTI)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

  1. Heat transfer to air-water two-phase flow in slug/churn region

    SciTech Connect (OSTI)

    Wadekar, V.V. [AEA Technology, Harwell (United Kingdom). Heat Transfer and Fluid Flow Service; Tuzla, K.; Chen, J.C. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Chemical Engineering

    1996-12-31

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data.

  2. Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    colleagues suggests that without this heat transport the globe would freeze over, [Winton, 2003Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse of subgridscale mixing on ocean heat transport in coarse- resolution ocean models of the type used in coupled

  3. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer.

    SciTech Connect (OSTI)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; and Lian, K.

    2006-07-01

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects.

  4. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

  5. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01

    SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International Conference for Enhanced Building... Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat island effect. The system...

  6. Study of an integrated appliance, the air conditioner/heat pump-heat recovery unit-water heater. Final report, November 1980

    SciTech Connect (OSTI)

    Tu, K.M.; Davies, A.; Fischler, S.

    1981-02-01

    Three integrated heat-pump - heat-recovery-unit - water-heater appliances were tested under various environmental conditions to measure the functional parameters and study the operating characteristics of these systems. It was found that the heat recovery, heat-recovery rate, and heat-recovery efficiency were dependent on the heat-recovery-unit's characteristics. The use of the heat-recovery unit in the system resulted in a reduced work load for the heat pump's compressor and slightly improved the heat-pump's performance. A computer simulation model of the integrated system was developed to study the interactions between several of the pertinent system variables on an hourly basis for selected situations and to estimate energy savings. Two alternative estimation methods that utilize five-degree temperature bin data were also developed. The estimate savings determined by using the alternative methods were about the same as those estimated using the hourly data. Conclusions were also reached concerning the use of water heaters with different tank capacities and on methods of increasing potential energy savings.

  7. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  8. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect (OSTI)

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

  9. Performance analysis of dedicated heat-pump water heaters in an office building

    SciTech Connect (OSTI)

    Morrison, L.

    1981-05-01

    An evaluation is made of the performance of two generic dedicated heat pump water heaters (HPWHs) in supplying the domestic hot water (DHW) needs of a medium-sized office building in Colorado. Results are based on preliminary data measurements, and assumptions are made to compensate for a faulty flow meter. A stand-alone heat pump plumbed to a conventional tank obtains a coefficient of performance (COP) of 2.4 but only delivers load water temperatures of about 41/sup 0/C (105/sup 0/F) because of the 15,142 L/day (4000 gal/day) recirculating loop flow. An industrial-grade stand-alone HPWH will replace this unit. An integral heat pump/tank unit is being tested, but results are not available because of compressor starting problems. Recirculating loop losses account for 75% of the energy delivered by the HPWHs. These losses could be reduced by 75% if the recirculating loop were insulated, thus reducing the DHW fuel costs by 50%. The insulation expense could be paid in less than 3 years by savings in DHW fuel costs.

  10. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve

    2010-05-14

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

  11. 1999 Commercial Buildings Characteristics--Glossary--Space-Heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space-Heating Equipment Glossary-Space-Heating Equipment Boiler: A type of space-heating equipment consisting of a vessel or tank where heat produced from the combustion of such...

  12. Building Equipment Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water heating systems Multi-zone heating, ventilation, and air conditioning systems Wireless communications, sensors, controls, fault detection and diagnostics Combined Heating...

  13. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Energy Savers [EERE]

    degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat...

  14. Gypsum scale formation on a heated copper plate under natural convection conditions and produced water remediation technologies review

    E-Print Network [OSTI]

    Mirhi, Mohamad H. (Mohamad Hussein)

    2013-01-01

    Scaling or crystallization fouling of unwanted salts is one of the most challenging and expensive problems encountered in different applications such as heat exchangers and thermal water treatment technologies. Formation ...

  15. Frequency dependence of specific heat in supercooled liquid water and emergence of correlated dynamics

    E-Print Network [OSTI]

    Shinji Saito; Iwao Ohmine; Biman Bagchi

    2013-03-30

    Molecular origin of the well-known specific heat anomaly in supercooled liquid water is investigated here by using extensive computer simulations and theoretical analyses. A rather sharp increase in the values of isobaric specific heat with lowering temperature and the weak temperature dependence of isochoric specific heat in the same range are reproduced in simulations. We calculated the spatiotemporal correlation among temperature fluctuations and examined the frequency dependent specific heat. The latter shows a rapid growth in the low frequency regime as temperature is cooled below 270 K. In order to understand the microscopic basis of this increase, we have performed a shell wise decomposition of contributions of distant molecules to the temperature fluctuations in a central molecule. This decomposition reveals the emergence, at low temperatures, of temporally slow, spatially long ranged large temperature fluctuations. The temperature fluctuation time correlation function (TFCF) can be fitted to a William-Watts stretched exponential form with the stretching parameter close to 0.6 at low temperatures, indicating highly non-exponential relaxation. Temperature dependence of the relaxation time of the correlation function can be fitted to Vogel-Fulcher-Tamermann expression which provides a quantitative measure of the fragility of the liquid. Interestingly, we find that the rapid growth in the relaxation time of TFCF with lowering temperature undergoes a sharp crossover from a markedly fragile state to a weakly fragile state around 220 K.

  16. Technology Solutions Case Study: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida

    SciTech Connect (OSTI)

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  17. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Metzger, C.; Puttagunta, S.; Williamson, J.

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  18. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  19. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/S

  20. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect (OSTI)

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  1. "Table B26. Water-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.6. Water-Heating

  2. Analysis of Energy-Rescued Potential of a Hot Water Heating Network 

    E-Print Network [OSTI]

    Han, J.; Wang, D.; Tian, G.

    2006-01-01

    and electricity factory in Jinan, we analyze the energy waste caused by hydraulic power maladjustment and improper control of heating temperature in heating season. We conclude that proper adjustment of the heating network and controlling the heating supply...

  3. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect (OSTI)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  4. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  5. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect (OSTI)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  6. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  7. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    productivity and operating cost of the equipment. These materials are used in burners, electrical heating elements, material handling, load support, and heater tubes, etc....

  8. West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect (OSTI)

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  9. West Village Community. Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect (OSTI)

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. When complete, the project will provide housing for students, faculty, and staff with a vision to minimize the community’s impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  10. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

  11. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  12. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    SciTech Connect (OSTI)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

  13. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  14. Adaptive Optimization of Central Chiller Plant Equipment Sequencing 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1987-01-01

    the optimal sequence of central refrigeration equipment (chillers, cooling towers, pumps) to operate in an industrial plant. The control algorithm adapts the optimal equipaent sequence to reflect changes in the plant's cooling load and outside air... primary pumps totaling 625 horsepower and two chilled water booster pumps totaling 200 horsepower. Heat rejected by the chillers' vapor-compression cycles is rejected to the atmosphere by five cooling towers totaling 4,335 tons of refrigeration...

  15. Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel

    SciTech Connect (OSTI)

    Bhide, R.R.; Singh, S.G.; Sridharan, Arunkumar; Duttagupta, S.P.; Agrawal, Amit [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2009-09-15

    The current work focuses on the pressure drop, heat transfer and stability in two phase flow in microchannels with hydraulic diameter of less than one hundred microns. Experiments were conducted in smooth microchannels of hydraulic diameter of 45, 65 {mu}m, and a rough microchannel of hydraulic diameter of 70 {mu}m, with deionised water as the working fluid. The local saturation pressure and temperature vary substantially over the length of the channel. In order to correctly predict the local saturation temperature and subsequently the heat transfer characteristics, numerical techniques have been used in conjunction with the conventional two phase pressure drop models. The Lockhart-Martinelli (liquid-laminar, vapour-laminar) model is found to predict the two phase pressure drop data within 20%. The instability in two phase flow is quantified; it is found that microchannels of smaller hydraulic diameter have lesser instabilities as compared to their larger counterparts. The experiments also suggest that surface characteristics strongly affect flow stability in the two phase flow regime. The effect of hydraulic diameter and surface characteristics on the flow characteristics and stability in two phase flow is seldom reported, and is of considerable practical relevance. (author)

  16. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  17. Performance of a drain-back solar heating and hot water system with auxiliary heat pump. Final report

    SciTech Connect (OSTI)

    Karaki, S.

    1984-03-01

    The principal objective of the project was to test and evaluate the BNL collectors in a space heating system. When the BNL collectors delaminated under stagnation conditions, they were replaced with the Chamberlain collectors which were previously used on solar house III, and tests were continued to evaluate performance of a drain-back system. Results leading to the following conclusions are discussed. (1) The Chamberlain collectors have deteriorated in performance compared to previous seasons. Where daily efficiency of 41% were attained in 1978 to 1979 and 1979 to 1980, efficiency was 37%. System efficiency of 29% compares to 30% in prior years. (2) Solar contribution to DHW heating is low, and is probably the result of the artificially imposed load profile and the low recovery rate of the double-wall heat exchanger. (3) System efficiency can be improved by reducing thermal losses from storage.

  18. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect (OSTI)

    Belkus, P.; Tuluca, A.

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  19. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  1. Process Heating Assessment and Survey Tool | Department of Energy

    Energy Savers [EERE]

    methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity,...

  2. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  3. Best Management Practice #12: Laboratory and Medical Equipment

    Broader source: Energy.gov [DOE]

    Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment.

  4. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  5. Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid

    E-Print Network [OSTI]

    Daraio, Chiara

    expectation of laminar flow in electronic cooling, high flow rate and high fluid temperatures result in tur- bulent flow conditions in the inlet and outlet manifolds of the heat sink with predominantly laminar flow hot water as working fluid Chander Shekhar Sharma a , Manish K. Tiwari a , Bruno Michel b , Dimos

  6. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  7. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    SciTech Connect (OSTI)

    Farmer, J C

    2007-11-26

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  8. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,2.2,1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water...

  9. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.1,2,4.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water...

  10. "Table HC12.5 Space Heating Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.9,4.7,2.2 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water...

  11. The culture of Penaeid shrimp in ponds receiving heated discharge water from a steam electric generating station, and their use as indicators of water quality 

    E-Print Network [OSTI]

    Reitsema, Lawrence Alan

    1975-01-01

    University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1975 Major Sub9ect: Wildlife and Fisheries Sciences THE CULTURE OF PENAEID SHRIMP IN PONDS RECEIVING HEATED DISCHARGE WATER FROM A STEAM ELECTRIC... 70. 0 to 89. 9 mm in length. Shrimp were tagged, tagged and dyed, or left unmarked. Brown shrimp survival was lower. in these ponds than in ponds stocked with postlarvae at the same stocking rate in the brown shrimp experrment. The growth...

  12. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    to the unmixed fluid (water): 3 Cmax = Cmixed; the C valuethan the C value for the water. E = 1 – exp(-Tau * (C max /= Cunmixed; the C value for the water is higher than the C

  13. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    LBNL-XXXXX Data Center Economizer Cooling with Tower Water;included a water- side economizer. This model estimated theand without a water-side economizer and including or not

  14. Modeling water seepage into heated waste emplacement drifts at Yucca Mountain

    E-Print Network [OSTI]

    Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

    2003-01-01

    into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

  15. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word Cloud More Like This Full Text preview image File...

  17. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  18. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect (OSTI)

    NONE

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  19. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  20. Calibrating Pesticide Application Ground Equipment 

    E-Print Network [OSTI]

    Shaw, Bryan W.

    2000-07-05

    - pose of rinse water as hazardous waste. Clean and lubricate the pump. Equipment used to apply certain pesticides should not be used to apply others. Do not use equipment to apply 2,4-D, MCPA, 2,4-DP, MCPP, and 2,4- DB for any other purpose because... or a commercial decontaminate for- mulation. Most contain a combination of soda ash, detergent and alkaline chlorine. Rinse thoroughly with clean water. Remove nozzles to clean screens and tips. Apply rinse water to a field per label requirements or dis...

  1. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect (OSTI)

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  2. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  3. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    SciTech Connect (OSTI)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Abstract Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (? 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ?20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.

  4. The Influence of Residential Solar Water Heating on Electric Utility Demand 

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to ...

  5. Water Heating: Office of Building Technology, State and Community Programs (BTS) Technology Fact Sheet

    SciTech Connect (OSTI)

    2001-08-01

    Fact sheet for homeowners and contractors on how to supply hot water in the home while saving energy.

  6. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    water (solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen in

  7. EXPERIMENTAL STUDY OF CRITICAL HEAT FLUX WITH ALUMINA-WATER NANOFLUIDS IN DOWNWARD-FACING CHANNELS FOR IN-VESSEL RETENTION APPLICATIONS

    E-Print Network [OSTI]

    Park, R.J.

    The Critical Heat Flux (CHF) of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR) situation which can occur during core melting sequences ...

  8. Solar heating system installed at Jackson, Tennessee. Final report

    SciTech Connect (OSTI)

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  9. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  10. ORNL MAXLAB occupied, nearing fully equipped status | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wall assemblies and a low-bay area housing a heating, ventilation, and air-conditioning laboratory. Equipment installation began in early January. Both suites should be...

  11. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    SciTech Connect (OSTI)

    MJ Fayer

    2000-06-12

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements.

  12. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  14. Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning 

    E-Print Network [OSTI]

    Vliet, G. C.

    1994-01-01

    become significant. The general conclusion is that, while the benefit to an individual using this concept may be positive, the impact on water temperature is excessive....

  15. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr.

    1982-05-01

    Results are presented from a 5-year study to develop aquatic methods which beneficially use condenser cooling water from electric generating power plants. A method is proposed which uses a system for aquatic farming. Livestock waste is used to fertilize planktonic algae production and filter-feeding fish are used to biologically harvest the algae, condenser cooling water (simulated) is used to add waste heat to the system, and emergent aquatic plants are used in a flow through series as a bio-filter to improve the water quality and produce an acceptable discharge. Two modes of operation were tested; one uses untreated swine manure as the source of aquatic fertilizer and the other uses anaerobic digester waste as a means of pretreating the manure to produce an organic fertilizer. A set of operating conditions (temperature, retention time, fish stocking rate, fertilizer rates, land and water requirements, suggested fish and plant species, and facility design) were developed from these results. The integrated system allows continual use of power plant condenser cooling water from plants in the southeastern United States.

  16. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  17. JOURNAL OF ENVIRONMENTAL ENGINEERING / MARCH 2000 / 267 EQUILIBRIUM AND HEAT OF ADSORPTION FOR WATER

    E-Print Network [OSTI]

    Cal, Mark P.

    JOURNAL OF ENVIRONMENTAL ENGINEERING / MARCH 2000 / 267 EQUILIBRIUM AND HEAT OF ADSORPTION. To extend the closing date one month, a written request must be filed with the ASCE Manager of Journals is part of the Journal of Environmental Engineering, Vol. 126, No. 3, March, 2000. ASCE, ISSN 0733

  18. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05

    studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low...

  19. An experimental and analytical study of the transient behavior of vertical u-tube ground-coupled heat pumps in the cooling mode 

    E-Print Network [OSTI]

    Dobson, Monte Keith

    1991-01-01

    GROUND-COIL MODELING . . . . . . . . FIELD MONITORING OF GCHP COOLING PERFORMANCE . . . . TRANSIENT PERFORMANCE . . . . . . . . . . . . SUMMARY . 23 24 28 IV EXPERIMENTAL EQUIPMENT AND MONITORING EXPERIENCE 31 RESIDENCE AND HEAT PUMP DATA... Regression Equation Return Air Soil sup Supply Air Total wat Ground-Coil Water CHAPTER I INTRODUCTION Heat pumps have become a popular alternative for space-heating and cooling in new residences. Heat pumps represent a decreased first-cost to new...

  20. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms 

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01

    water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School...

  1. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  3. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    SciTech Connect (OSTI)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  4. Water and heat transport in boreal soils: Implications for soil response to climate change

    E-Print Network [OSTI]

    2011-01-01

    upward gradients of water potential energy (mainly due towater movement could be an important factor in seasonal soil energywater movement through boreal soil is a critical factor for accurate simulations of energy (

  5. Can carbon finance contribute to the promotion of solar water heating in Bolivia? 

    E-Print Network [OSTI]

    Hayek, Niklas

    2011-11-24

    Residential applications of renewable energy can contribute to reducing greenhouse gas emissions while improving the quality of life for households. Thermosiphon solar water heaters are passive systems using solar energy ...

  6. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study 

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  7. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  8. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system 

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01

    d design en enclosure ex exchanger f fuel h heater int internal n number of HES o outside r return s supply sp set point sols solar radiation from south side v verify w, w2i water, water in secondary system for each HES z zone ESL... temperatures, solar radiation and wind speed; the heat balance has been regulated based on the average water temperature in the secondary system by adjusting the water mass flow rate (u1) of each HES in the primary system; and the water mass flow rate...

  9. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  10. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  11. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Drain Water Heat Recovery

    E-Print Network [OSTI]

    to determine the energy saved while showering. Both the transient and steady state performance of the device as their energy costs are much higher. A household of 4 or more people with an electric hot water heater would, and energy costs, a recommendation is made for the conditions under which the installation of an Eco

  13. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  14. Waste Heat Utilization System Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Waste heat utilization systems are facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  15. The culture of some marine fishes in ponds receiving heated discharge water from a power plant 

    E-Print Network [OSTI]

    Luebke, Richard William

    1973-01-01

    / l 0 O I- ILI CIS CII CIS O Ill IL CL O C I- III O O Ict C3 U. IL O 1 its origin. A 75 hp pump (Worthington Corporation) supplied the pond water. This water entered the intake end of each pond through a inventories and final... Cd (~dd) N39AXO 03A10SSIO ( Ol & I&/ccl(cldI AIIAILDOONOO (Od 38lllIIN3dN3d. 27 ONI AlINI1VS JJI O ICI oJ IIJ ID IU CJ UI o I?: OI 9 OI ) CI IK IJJ III 0 I CJ 0 CL VJ IIJ O. III CJJ I 0 't5 ~ td 0 0 g 0 ld W e 40 oo 0 0 E...

  16. Performance Analysis of Air-Source Variable Speed Heat Pumps...

    Broader source: Energy.gov (indexed) [DOE]

    Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable...

  17. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01

    3. Actual heating and hot water energy consumption of theon-site energy consumption for heating and hot water. The

  18. "Table HC12.8 Water Heating Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing2428 Water

  19. "Table HC13.8 Water Heating Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing2428158 Water

  20. Heating System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources....

  1. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  2. Sizing a New Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems: Tankless or demand-type water heaters Solar water heating system Storage and heat pump (with tank) water heaters. For sizing combination water and space heating systems --...

  3. Analytical and experimental study of a liquid desiccant heat and mass exchanger operating near water freezing temperature

    E-Print Network [OSTI]

    Pineda Vargas, Sergio Manuel

    2009-01-01

    Xia. Desiccant cooling air conditioning: a review. Renewableof an energy efficient air conditioning system using liquidformulations for use in air conditioning equipment design.

  4. Energy Audit Equipment 

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  5. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  6. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-01-01

    Generation with Heat Recovery and Storage ‡ Afzal Sgeneration unit with heat recovery for space and watergeneration unit with heat recovery for space and water

  7. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  8. Analytical and experimental study of a liquid desiccant heat and mass exchanger operating near water freezing temperature

    E-Print Network [OSTI]

    Pineda Vargas, Sergio Manuel

    2009-01-01

    exchanger operating near water freezing temperature A Thesisoperating near water freezing temperature Copyright © 2009operating near water freezing temperature Sergio M. Pineda

  9. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  10. Operating Experience Level 3, Industrial Equipment Impacts Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    on a safety concern related to heavy industrial equipment that contacts and damages structures and electrical, gas, and water lines. Although these contacts did not cause...

  11. Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles

    E-Print Network [OSTI]

    O’Hanley, Harry

    Nanofluids are being considered for heat transfer applications. However, their thermo-physical properties are poorly known. Here we focus on nanofluid specific heat capacity. Currently, there exist two models to predict a ...

  12. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  13. Performance of Integrated Hydronic Heating Systems.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  14. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump 

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  15. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  16. Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain

    E-Print Network [OSTI]

    Hughes, Douglas E.

    2010-12-17

    Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

  17. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy...

  18. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Office of Environmental Management (EM)

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's...

  19. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  20. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for AccidentalHealth, Safety,FOIAHeat

  1. HUD (Housing and Urban Development) Intermediate Minimum Property Standards Supplement 4930. 2 (1989 edition). Solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Minimum Property Standards for Housing 4910.1 were developed to provide a sound technical basis for housing under numerous programs of the Department of Housing and Urban Development (HUD). These Intermediate Minimum Property Standards for Solar Heating and Domestic Hot Water Systems are intended to provide a companion technical basis for the planning and design of solar heating and domestic hot water systems. These standards have been prepared as a supplement to the Minimum Property Standards (MPS) and deal only with aspects of planning and design that are different from conventional housing by reason of the solar systems under consideration. The document contains requirements and standards applicable to one- and two-family dwellings, multifamily housing, and nursing homes and intermediate care facilities references made in the text to the MPS refer to the same section in the Minimum Property Standards for Housing 4910.1.

  2. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  3. Heat Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generates hot and cold water rather than air, allowing it to be used with radiant floor heating systems in heating mode. Geothermal (ground-source or water-source) heat...

  4. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  5. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  6. Informa(on and Resources Pes%cide Applica%on Equipment and Calibra%on

    E-Print Network [OSTI]

    Ishida, Yuko

    personal protective equipment (PPE) · Use clean water · Choose the correct type of equipment based may have pressure regulators, fans, filter screens, control valves, booms, agitators Pes4cide://npic.orst.edu/gen.htm) · Pesticides and Urban Water Quality (http://www.ipm.ucanr.edu/WATER/U/index.html) · WaterTOX water

  7. Waste Heat Utilization System Income Tax Deduction (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  8. Waste Heat Utilization System Income Tax Deduction (Corporate)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  9. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  10. Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable 

    E-Print Network [OSTI]

    Boffardi, B. P.

    1996-01-01

    controlled by adding sulfuric acid to convert the scale to calcium sulfate, which is more soluble. Because fluctuations in the acid feed rate can produce variability in pH levels, which can accelerate corrosion, close control of feed is essential. More... blowdown. Foulants Foulants are water-borne deposits that can settle on heat-transfer equipment and interfere with cooling water flow, as well as stimulate corrosion. They include such diverse substances as particulate matter scrubbed from air...

  11. Ocean Heat Transport and Water Vapor Greenhouse in a Warm Equable Climate: A New Look at the Low Gradient Paradox

    E-Print Network [OSTI]

    Rose, Brian E. J.

    The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global ...

  12. Investigation of downward facing critical heat flux with water-based nanofluids for In-Vessel Retention applications

    E-Print Network [OSTI]

    DeWitt, Gregory L

    2011-01-01

    In-Vessel Retention ("IVR") is a severe accident management strategy that is power limiting to the Westinghouse AP1000 due to critical heat flux ("CHF") at the outer surface of the reactor vessel. Increasing the CHF level ...

  13. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18

    Installed .................................................40 Exhibit 11: 400 Gallon Tank and K-Tron Feeder................................................42 Exhibit 12: Cardboard Box Layout of First Floor Equipment ..............................43... Exhibit 13: Continuous Mixer .............................................................................43 Exhibit 14: Gantry Palletizer...............................................................................44 Page 4 Acknowledgements I...

  14. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment List

  15. Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes

    SciTech Connect (OSTI)

    Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.

    2009-11-15

    Experimental investigation of heat transfer, friction factor and thermal performance of twisted tape solar water heater with various twist ratios has been conducted and the results are compared with plain tube collector for the same operating conditions with Reynolds number varied from 3000 to 23,000. Experimental data from plain tube collector is validated with the fundamental equations and found that the discrepancy is less than {+-}5.35% and {+-}8.80% for Nusselt number and friction factor, respectively. Correlations have been developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) and are compared with the experimental values. Results conclude that, heat transfer and pressure drop are higher in twisted tape collector compared to the plain one. Among the various twist ratios, the minimum twist ratio 3 is found to enhance the heat transfer and pressure drop due to swirl generation. As the twist ratio increases, the swirl generation decreases and minimizes the heat transfer and friction factor. (author)

  16. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water. Final report May 75-Sep 81

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr

    1982-05-01

    The report summarizes a 5-year study of the beneficial uses of waste heat from condenser cooling water from steam-electric generating plants. The major effort addressed the recovery of plant nutrients in swine manure by aquatic farming of selected fish and Chinese waterchestnuts. Another effort included biogas production from swine manure in an anaerobic digester and the use of the digester waste to fertilize the aquatic farming system. Optimum recovery of plant nutrients resulted from operation of an integrated fish and waterchestnut system. Flowing water systems were 30-50% more productive than static systems. Annual fish yields of 5000-7000 lb/acre are projected for a properly stocked system over a 150-180 day growing period. Similarly, waterchestnut yields of nearly 17.8 tons/acre and dry hay yields of 6.7 tons/acre from sand-bed filters would be expected when fed wastewater from the fish system. The quality of the water leaving the sand beds would meet tertiary wastewater treatment standards during the growing season. An estimated 2000-head swine facility with a $400,000 investment would annually produce a 20% rate of return, save 360,000 bbl of oil through waste heat utilization, and produce biogas equivalent to 3000 bbl of oil.

  17. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  18. SONIC EQUIPMENT FOR TRACKING INDIVIDUAL FISH

    E-Print Network [OSTI]

    . The equipment can be used in varied hydraulic conditions and in fresh or salt water to track the movements of individual adult salmon in relation to Columbia River dams. Each dam on the Columbia River presents a chance for delay in migration with injurious consequences if the delay is prolonged. Since new dams are under

  19. Housing standards: change to HUD 4930. 2 Intermediate Minimum Property Standard (IMPS) supplement for solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1982-08-17

    This rule is made to provide an updating, clarification, and improvement of requirements contained in HUD Handbook 4930.2, Intermediate Minimum Property Standards (IMPS) Supplement concerning solar heating and domestic hot water systems. Changes pertain to fire protection, penetration, roof covering, conditions of use, thermal stability, rain resistance, ultraviolet stability, and compatibility with transfer medium. Additional changes cover applicable standards, labeling, flash point, chemical and physical commpatibility, flame spread classification, lightening protection, and parts of a solar energy system. Altogether, there are over 50 changes, some of which apply to tables and worksheets. Footnotes are included.

  20. The growth and survival of brown shrimp (Penaeus aztecus) and blue crabs (Callinectes sapidus) in ponds receiving heated bay water from an electric power plant 

    E-Print Network [OSTI]

    Gould, Robert Andrew

    1973-01-01

    ) J IU CA IS UI SI CA CS I S ! 0 l2 IS 18 20 SURFACE BOTTOM P. M. R 2 4 0 I R 8 ~ 22 JULY A U G. SEI'T. TIME (NEEEG) FIGURE 5. ? Hydrological data for pond 8. Ao ED I 2 So Uf 2' SURFACE SDEEDII 20 PUIAP OFF Z J 10 UI 10... HEATED BAY WATER PROM AN ELECTRIC POWER PLAI JT A Thesis by ROBERT ANDREW GOULD Approved as to style and content by: (Chairman of Committee) (Head of Deoartment) (Member) (Member) IMay 19 73 436659 ABSTRACT Yh G* th dS ' l fB Sh' P(P t* ) d...