Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cost Effective Water Heating Solutions  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

2

Low Cost Solar Water Heating R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

3

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers (EERE)

Low Cost Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

4

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

5

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

6

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

7

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

8

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

9

Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost?  

Office of Energy Efficiency and Renewable Energy (EERE)

What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective?

10

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

11

#tipsEnergy: Ways to Save on Water Heating Costs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Costs Water Heating Costs #tipsEnergy: Ways to Save on Water Heating Costs February 20, 2013 - 5:09pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Ways to Save on Water Heating Costs Every month we ask the larger energy community to share their energy-saving tips, and we feature some of our favorite tips in a Storify. For this month's #tipsEnergy, we wanted to know how you save energy and money on water heating. Storified by Energy Department · Wed, Feb 20 2013 14:12:00 Hot water is essential to most of our lives: We use it to shower, run the dishwasher and wash clothes. Quite frequently, we use more hot water than we think -- the average rate hot water flows out of the kitchen faucet is 2 gallons per minute, and an eight-minute shower

12

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

13

Water Heating | Department of Energy  

Energy Savers (EERE)

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

14

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

15

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network (OSTI)

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

16

Solar Water Heating with Low-Cost Plastic Systems (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

buildings consumed over 392,000 billion Btu of site- buildings consumed over 392,000 billion Btu of site- delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. [1] Earlier data indicate that about 10% of this is used to heat water. [2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514. Federal facilities having financial difficulty meeting the EISA mandate and executive order (e.g., facilities with natural

17

Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution; Federal Energy Management Program (FEMP) Achieving Results with Renewable Energy in the Federal Government (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Water with Solar Energy Costs Less Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front

18

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

NLE Websites -- All DOE Office Websites (Extended Search)

Break-even Cost for Residential Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL/TP-6A20-48986 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Prepared under Task No. SS10.2110 Technical Report

19

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

20

In search for sustainable globally cost-effective energy efficient building solar system Heat recovery assisted building integrated PV powered heat pump for air-conditioning, water heating and water saving  

Science Journals Connector (OSTI)

Abstract Obtained as a research result of conducted project, this paper presents an innovative, energy efficient multipurpose system for a sustainable globally cost-effective building's solar energy use and developed methodology for its dynamic analysis and optimization. The initial research and development goal was to create a cost-effective technical solution for replacing fossil fuel and electricity with solar energy for water heating for different purposes (for pools, sanitary water, washing) in one SPA. After successful realization of the initial goal, the study was proceeded and as a result, the created advanced system has been enriched with AC performance. The study success was based on understanding and combined measurements and by BPS made predictions of AC loads and solar radiation dynamics as well as on the determination of the synergetic relations between all relevant quantities. Further, by the performed BPS dynamic simulations for geographically spread buildings locations, it has been shown that the final result of the conducted scientific engineering R&D work has been the created system of confirmed prestigious to the sustainability relevant performance globally cost-effective building integrated photovoltaic powered heat pump (HP), assisted by waste water heat recovery, for solar AC, water heating and saving.

Marija S. Todorovic; Jeong Tai Kim

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cold-Climate Solar Domestic Water Heating Systems: Life-Cycle Analyses and Opportunities for Cost Reduction  

SciTech Connect

Conference paper regarding research in potential cost-savings measures for cold-climate solar domestic water hearing systems.

Burch, J.; Salasovich, J.; Hillman, T.

2005-12-01T23:59:59.000Z

22

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

23

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

24

Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

25

Absorption Heat Pump Water Heater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

26

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

27

FEMP--Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

28

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

29

Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

30

Water and Space Heating Heat Pumps  

E-Print Network (OSTI)

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

31

Low-Cost Microchannel Heat Exchanger  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

psi pressure capability High effectiveness > 90% 80% lower estimated external heat loss 60% estimated lower cost Complete remaining tests and refine cost...

32

Biomass Derivatives Competitive with Heating Oil Costs.  

Energy.gov (U.S. Department of Energy (DOE))

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

33

Water-Heating Dehumidifier  

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

34

Industrial heat pumps - types and costs  

SciTech Connect

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

35

Solar Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

36

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

37

Central Multifamily Water Heating Systems | Department of Energy  

Energy Savers (EERE)

Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST The Building America Program is hosting a no-cost,...

38

Low-Cost Constant Temperature Heating Block  

Science Journals Connector (OSTI)

Low-Cost Constant Temperature Heating Block ... Secondary school and undergraduate laboratories can build many units for the cost of a commercially comparable one while simultaneously putting to practice several electronic principles taught in most instrumental analysis courses. ... Cost-Effective Teacher ...

Charles G. Shevlin; Ward Coppersmith; Christopher Fish; Stanley Vlock; William Vellema

1997-08-01T23:59:59.000Z

39

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

40

Industrial heat pumps: types and costs  

SciTech Connect

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP), is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Industrial heat pumps - types and costs  

SciTech Connect

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP) is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics. 6 refs., 7 figs.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-01-01T23:59:59.000Z

42

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

43

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

44

Energy-efficient water heating  

SciTech Connect

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

45

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers (EERE)

Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

46

Water Heating Standing Technical Committee Presentation | Department...  

Energy Savers (EERE)

Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

47

New and Underutilized Technology: Solar Water Heating | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

48

FS: heat pump water heaters | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

49

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

50

Low-Cost Packaged Combined Heat and Power System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

51

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

52

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers (EERE)

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

53

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

54

Building Technologies Office: Water Heating Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

55

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

56

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

57

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

58

BUSINESS PLAN NIRMAL: LOW COST WATER PURIFICATION  

E-Print Network (OSTI)

NIRMAL #12;BUSINESS PLAN 2 NIRMAL: LOW COST WATER PURIFICATION I. Executive summary Nearly one the water. Hence we intend to address the issue by providing a low cost water purification system using billion people all over the world do not have access to safe drinking water.It is estimated that around 37

Mlllet, Dylan B.

59

Water Heating Basics | Department of Energy  

Energy Savers (EERE)

Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional...

60

Central heat engine cost and availability study  

SciTech Connect

This report documents the performance and cost of commercially available heat engines for use at solar power plants. The scope of inquiry spans power ratings of 500 kW to 50 MW and peak cycle temperatures of 750 /sup 0/F to 1200 /sup 0/F. Data were collected by surveying manufacturers of steam turbines, organic Rankine (ORC) systems, and ancillary equipment (steam condensers, cooling towers, pumps, etc.). Methods were developed for estimating design-point and off-design efficiencies of steam Rankine cycle (SRC) and ORC systems. In the size-temperature range of interest, SRC systems were found to be the only heat engines requiring no additional development effort, and SRC capital and operating cost estimates were developed. Commercially available steam turbines limit peak cycle temperatures to about 1000 /sup 0/F in this size range, which in turn limits efficiency. Other systems were identified that could be prototyped using existing turbomachines. These systems include ORC, advanced SRC, and various configurations employing Brayton cycle equipment, i.e., gas turbines. The latter are limited to peak cycle temperatures of 1500 /sup 0/F in solar applications, based on existing heat-exchanger technology. The advanced systems were found to offer performance advantages over SRC in specific cases. 7 refs., 30 figs., 20 tabs.

Not Available

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

62

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

63

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

64

Water Heating Technologies Research and Development Roadmap ...  

Energy Savers (EERE)

Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

65

Emerging Water Heating Technologies Research & Development Roadmap...  

Energy Savers (EERE)

Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

66

Solar Water Heating Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

67

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

68

Energy Saver 101: Water Heating Infographic | Department of Energy  

Energy Savers (EERE)

Energy Saver 101: Water Heating Infographic Energy Saver 101: Water Heating Infographic Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic...

69

Simulation Models for Improved Water Heating Systems  

E-Print Network (OSTI)

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss FactorsPhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

70

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

71

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

72

Savings Project: Lower Water Heating Temperature | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

73

Savings Project: Lower Water Heating Temperature | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Water Heating Temperature Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

74

Tips: Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

75

Tips: Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

76

Dawdon Mine Water Heat Pump Trial  

E-Print Network (OSTI)

14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

Oak Ridge National Laboratory

77

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

78

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

79

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

campus, which includes 750 buildings. Photo courtesy of Texas A&M University Combined Heat and Power System Achieves Millions in Cost Savings at Large University Recovery Act...

80

Be Sun-sible? about Heating Water  

NLE Websites -- All DOE Office Websites (Extended Search)

heat and transmit it to the water, and study the relationship between insulation and heat loss. Teacher background, assessment questions, and extensions are provided. The...

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

82

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

83

Solar Water Heating and Design Processes  

Science Journals Connector (OSTI)

Solar energy has been used to heat water for many years, and the design requirements of solar water heating equipment have been studied for ... because that upto this time other sources of energy have been more economical

H. P. Garg

1987-01-01T23:59:59.000Z

84

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

85

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department...  

Energy Savers (EERE)

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the...

86

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

87

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

88

Solar Water Heating FTA, 024922m FTA solwat heat.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technology Alert A series of energy efficient technology guides prepared by the New Technology Demonstration Program Solar Water Heating Well-Proven Technology Pays Off in Several Situations Solar water heating is a well-proven and readily available technology that directly substitutes renewable energy for conventional water heating. This Federal Technology Alert (FTA) of the Federal Energy Management Program (FEMP), one of a series on new energy- efficient technologies and renewable energy technologies, describes the various types of solar water heating systems, the situations in which solar water heating is likely to be cost- effective, considerations in selecting and designing a system, and basic steps for installing a system. There are a variety of different types

89

Heat recovery from chillers cuts costs in sunbelt stores. [Rusty Pelican Restaurants, Irvine, CA  

SciTech Connect

Rusty Pelican Restaurants Incorporated, which owns and operates 18 seafood restaurants from its headquarters in Irvine California, will net a payback of three to four years on the installation of heat recovery systems in all nine of its California locations. The systems capture waste heat from the restaurants roof-top air conditioning units to heat domestic hot water, and are therefore being installed in Sunbelt locations where air conditioners are used most. On the average, the systems will cut electricity consumed by the air conditioning units by 15% and cut domestic hot water heating costs by 41 to 63%.

Poplett, J.

1985-04-22T23:59:59.000Z

90

Long Island Power Authority - Residential Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

91

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

92

Water recovery using waste heat from coal fired power plants.  

SciTech Connect

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

93

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protectionfollowed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

94

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

95

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

96

Water Heating Standing Technical Committee Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standing Technical Committee Standing Technical Committee Water Heating Residential Energy Efficiency Stakeholder's Meeting February 29, 2012 - Austin, Texas 2 STC Chairman Responsibilities * To maintain the Water Heating Strategic Plan (living document) * To work with stakeholders to identify research activities that resolve gaps & barriers towards achieving Water Heating Strategic Goals * To work with stakeholders to prioritize gaps leading to future BA research efforts * To serve as a collection point for BA research activities and outside research * To facilitate collaboration among BA researchers and the marketplace 3 Water Heating as a Significant End Use According to DOE RECS data, residential water heating represents 20% of the energy delivered to U.S. households. 4 Water Heating Strategic Goals

97

RTO heat recovery system decreases production costs and provides payback  

SciTech Connect

Application of a heat recovery system to an existing regenerative thermal oxidizer (RTO) was considered, tested, and selected for decreasing production costs at a pressure sensitive tape manufacturing facility. Heat recovery systems on RTO's are less common than those on other thermal oxidizers (e.g., recuperative) because RTO's, by the nature of the technology, usually provide high thermal efficiencies (without the application of external heat recovery systems). In this case, the production processes were integrated with the emission controls by applying an external heat recovery system and by optimizing the design and operation of the existing drying and cure ovens, RTO system, and ductwork collection system. Integration of these systems provides an estimated annual production cost savings of over $400,000 and a simplified capital investment payback of less than 2 years, excluding possible savings from improved dryer operations. These additional process benefits include more consistent and simplified control of seasonal dryer performance and possibly production throughput increases. The production costs savings are realized by substituting excess RTO heat for a portion of the infrared (IR) electrical heat input to the dryers/ovens. This will be accomplished by preheating the supply air to the oven zones with the excess RTO heat (i.e., heat at the RTO exceeding auto-thermal conditions). Several technologies, including direct air-to-air, indirect air-to-air, hot oil-to-air, waste heat boiler (steam-to-air) were evaluated for transferring the excess RTO heat (hot gas) to the ovens. A waste heat boiler was selected to transfer the excess RTO heat to the ovens because this technology provided the most economical, reliable, and feasible operation. Full-scale production test trials on the coating lines were performed and confirmed the IR electrical costs could be reduced up to 70%.

Lundquist, P.R.

1999-07-01T23:59:59.000Z

98

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

99

Solar Water Heating in Dragash Municipality, Kosovo.  

E-Print Network (OSTI)

?? Water has been heated with the sun has almost as long as there have been humans, but itis not until recently that more advanced (more)

Dahl Hkans, Mia

2010-01-01T23:59:59.000Z

100

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HVAC, Water Heating, and Appliances | Department of Energy  

Energy Savers (EERE)

HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances How a Small Business is Transforming the Cold Climate Heating Market How a Small Business is Transforming...

102

Residential Absorption Heat Pump Water Heater | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pump Water Heater Residential Absorption Heat Pump Water Heater Photo credit: Oak Ridge National Lab Photo credit: Oak Ridge National Lab Diagram of absorption heat...

103

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it surprises me to see that the most popular pages on the site are the ones about solar water heaters and demand (or tankless) water heaters. But considering that water heating can account for around 12% of a family's utility bill-the biggest chunk after space heating and cooling-it really shouldn't be that surprising that you want to know how to heat your water more efficiently. Obviously, not everyone is in a position to go out and buy a new water heater, but we can all do something to use less water and save on our bills. Whether you're looking for no-cost habit changes, low-cost purchases or

104

Solar Water Heating System Maintenance and Repair | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

105

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

106

Solar-assisted heat pump A sustainable system for low-temperature water heating applications  

Science Journals Connector (OSTI)

Abstract Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are lost.

S.K. Chaturvedi; V.D. Gagrani; T.M. Abdel-Salam

2014-01-01T23:59:59.000Z

107

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

108

City of Sunset Valley - Solar Water Heating Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $2,000 Program Info Funding Source General Funds State Texas Program Type Local Rebate Program Rebate Amount 30% of installed cost Provider City of Sunset Valley The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that are offered by Austin Energy to its electric customers. The Sunset Valley rebate is set at 30% of the installed system cost, up to a maximum rebate of $2,000 per homeowner, supplementing the

109

Heat Pump Water Heating Modeling in EnergyPlus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

110

Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State  

SciTech Connect

The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

Winiarski, David W.

2004-08-15T23:59:59.000Z

111

Building America Standing Technical Committee - Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Standing Technical Committee Strategic Plan, v2012a Revised: January 2012 Committee Chair: 2011, 2012 Marc Hoeschele mhoesch@davisenergy.com 530-753-1100 x23 ARBI Page 2 Background on Residential Water Heating According to the U.S. Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS), annual residential water heating totals 2.11 quads of energy annually, or 20% of the energy delivered to residential buildings 1 . Over the past 70 years, gas and electric storage water heaters have been the predominant water heater type in the United States 2 . Recently, gas tankless water heaters have made inroads in market share with current industry projected gas tankless sales estimated at 400,000+ annually, and an

112

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DIRECT USE FOR BUILDING HEAT & HOT WATER Presented by the National Renewable Energy Laboratory Course Outline 2 What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Solar Thermal and Solar Ventilation Air Pre-Heat - Resources, Technology, Examples & Cost, and References  Biomass Heat - Resources, Technology, Examples & Cost, and References  Geothermal Building Heat - Resources, Technology, Examples & Cost, and References  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian

113

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heater CO2 Heat Pump Water Heater CO2 Heat Pump Water Heater Prototype
Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab...

114

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: EnergyA Specification for Residential Heat Pump Water Heaters

Franco, Victor

2011-01-01T23:59:59.000Z

115

Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect

This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

Not Available

2014-05-01T23:59:59.000Z

116

Research & Development Roadmap: Emerging Water Heating Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTOs energy savings goals.

117

Report on Solar Water Heating Quantitative Survey  

SciTech Connect

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

Focus Marketing Services

1999-05-06T23:59:59.000Z

118

Emerging Water Heating Technologies Research & Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTOs energy savings goals.

119

Heat Pump Water Heaters Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

120

Absorption Heat Pump Water Heater - 2013 Peer Review | Department...  

Energy Savers (EERE)

Absorption Heat Pump Water Heater - 2013 Peer Review Absorption Heat Pump Water Heater - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's...

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and...

122

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

123

Return temperature influence of a district heating network on the CHP plant production costs.  

E-Print Network (OSTI)

?? The aim of this Project is to study the influence of high return temperatures in district heating on the costs for heat and power (more)

Sallent, Roger

2009-01-01T23:59:59.000Z

124

Evaluation of water source heat pumps for the Juneau, Alaska Area  

SciTech Connect

The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

1980-07-01T23:59:59.000Z

125

Technical and cost analyses of two different heat storage systems for residential micro-CHP plants  

Science Journals Connector (OSTI)

Abstract The heat storage system represents a key component for micro-cogeneration plants since it permits to store the unused thermal energy during electricity production for a later use. Nevertheless, it also represents a consistent additional cost that has to be taken into account in order to evaluate the profitability of the micro-CHP system with respect to the separate generation. In this paper the results of a technical and of a cost analysis of two different types of thermal energy storage systems for residential micro-CHP plants are presented. Indeed, in the present work hot water thermal energy storage systems and latent heat thermal energy storage systems have been dimensioned for different micro-CHP systems producing electrical and thermal energy for two different buildings situated in Italy. For each analysed micro-CHP system an adequate thermal energy storage capacity is estimated on the basis of the operational logic and of the electric and thermal loads, and the sizing of the cylindrical tank and of the coil heat exchanger relative to both types of thermal energy storage systems is performed. Comparisons in terms of components cost between hot water thermal energy storage systems and latent heat thermal energy storage systems are performed as well.

L. Mongibello; M. Capezzuto; G. Graditi

2014-01-01T23:59:59.000Z

126

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

127

Combined heat recovery and make-up water heating system  

SciTech Connect

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

128

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pumps (5.4 >< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >< 20 Tons) Vary equipment size, energy cost, hours of operation, and or efficiency level....

129

Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems May 16, 2013 - 3:02pm Addthis Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional change in length (or sometimes in volume, when specified) of a material for a unit change in temperature Viscosity - resistance of a liquid to sheer forces (and hence to flow) Thermal capacity - the ability of matter to store heat Freezing point - the temperature below which a liquid turns into a

130

Hot Water Heating System Operation and Energy Conservation  

E-Print Network (OSTI)

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

131

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

132

Building America Standing Technical Committee- Water Heating  

Energy.gov (U.S. Department of Energy (DOE))

The Building America program is focused on delivering market acceptable energy efficiency solutions to homeowners, builders, and contractors. Near term goals of 30-50% source energy savings are currently targeted. This document examines water heating gaps and barriers, and is updated as of Feb. 2012.

133

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

134

AWSWAH - the heat pipe solar water heater  

SciTech Connect

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

135

#AskEnergySaver: Home Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric systems, like solar electric and onsite wind power, have substantial energy loss when converting electricity to heat. With solar thermal water heating, there are a...

136

The rising cost of warming waters: effects of temperature on the cost of swimming in fishes  

Science Journals Connector (OSTI)

...Global change biology 1001 25 60 14 The rising cost of warming waters: effects of temperature on the cost of swimming in fishes Andrew M. Hein * Katrina...respond to global climate change. Metabolic cost of transport (COT)-a measure of the energy...

2012-01-01T23:59:59.000Z

137

Robust Energy Cost Optimization of Water Distribution System with ...  

E-Print Network (OSTI)

Energy cost optimization of a water-supply network is a very important ..... ci(t) is the cost of pumping in a unit of water from source # i in period t (in ... of the pump, ? is an appropriate constant factor, and ?(t) is the price of energy (H is measured.

2011-02-21T23:59:59.000Z

138

Desalting seawater and brackish waters: 1981 cost update  

SciTech Connect

This is the fourth in a series of desalting cost update reports. Cost data are reported for desalting seawater by various distillation systems and by reverse osmosis. Costs of desalting four brackish waters, representative of those found in the United States by both reverse osmosis and electrodialysis are also given. Cost data are presented parametrically as a function of energy cost and plant size. The cost of desalting seawater by distillation has increased by 40% during the past two years, while desalting by reverse osmosis has increased by about 36% during the same period. Brackish water desalting by reverse osmosis has only increased by about 12%, and brackish water desalting by electrodialysis is up by 40%. Again, the continued increase in energy costs has had a major impact on all desalination systems.

Reed, S.A.

1982-08-01T23:59:59.000Z

139

Refrigerant charge management in a heat pump water heater  

DOE Patents (OSTI)

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

140

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Knox County Detention Facility Goes Solar for Heating Water | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water August 16, 2010 - 12:30pm Addthis An array of solar collectors | Photo courtesy of Trane An array of solar collectors | Photo courtesy of Trane Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funds solar farm to heat 14,000 gallons of water a day Estimated to save $60,000 a year 174 tons of CO2 emissions avoided annually Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily-and don't forget the laundry. Naturally, county officials sought an alternative to costly water heating. Their solution: a $1.88 million solar thermal system, among

142

Technology data characterizing water heating in commercial buildings: Application to end-use forecasting  

SciTech Connect

Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

143

Federal Energy Management Program: New and Underutilized Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heating Technologies to someone by E-mail Water Heating Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Water Heating Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Water Heating Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Water Heating Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Water Heating Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting

144

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

145

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers (EERE)

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

146

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers (EERE)

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST This...

147

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers (EERE)

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 11:00AM to 12:30PM MST...

148

Everything You Wanted to Know About Solar Water Heating Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to...

149

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

150

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

SciTech Connect

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

151

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

152

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Increased Energy Efficiency for Residential Water Heaters Cost of Increased Energy Efficiency for Residential Water Heaters Speaker(s): Alex Lekov Date: March 22, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn This presentation describes the analysis of the costs of increased energy efficiency for residential water heaters. Here, we focus on the cost and efficiency data for electric and gas-fired water heaters. This data formed the basis of the Technical Support Document for the Department of Energy's (DOE) Final Rule on Water Heaters. The engineering analysis uses computer simulation models to investigate the efficiency improvements due to design options and combinations thereof. The analysis covers four polyurethane foam insulation types based on non-ozone-depleting substances as blowing

153

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network (OSTI)

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS By HUI JIN Bachelor of Science validation of the water-to-air heat pump model. It's hard to find any words to express the thanks to my BASED MODELS OF WATER SLOURCE HEAT PUMPS Thesis Approved: Thesis Adviser Dean of the Graduate College ii

154

City of Tallahassee Utilities - Solar Water Heating Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Solar Water Heating Rebate Tallahassee Utilities - Solar Water Heating Rebate City of Tallahassee Utilities - Solar Water Heating Rebate < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount 450 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the replacement of an older solar water-heating system. Homebuilders may also apply for the rebate when installing a solar water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit

155

Santa Clara Water and Sewer - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water and Sewer - Solar Water Heating Program Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program < Back Eligibility Commercial Local Government Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Commercial Heating & Cooling Program Info State California Program Type Leasing Program Provider City of Santa Clara Water and Sewer Utility In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. Solar equipment is available from the city for heating swimming pools,

156

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

157

Residential Solar Water Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

158

Remedial Costs for MTBE in Soil and Ground Water  

Science Journals Connector (OSTI)

The contamination of MTBE in ground water has introduced concerns about the increased cost of remediating MTBE/BTEX releases compared to remediating sites with BTEX only contamination. In an attempt to evaluat...

Barbara H. Wilson; John T. Wilson Ph.D.

2003-01-01T23:59:59.000Z

159

A capital cost comparison of commercial ground-source heat pump systems  

SciTech Connect

The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

Rafferty, K.

1994-06-01T23:59:59.000Z

160

Heat pump systems and their costs from the perspective of insurance companies, users and environment.  

E-Print Network (OSTI)

?? This report is based on a project which aims to evaluate the costs for the heat pump system from the perspective of Swedish insurance (more)

Trang, Leon

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Water Heating Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Incentive Program Solar Water Heating Incentive Program Solar Water Heating Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Varies by sector, location, technology, and electric or gas provider; see below for details Program Info Start Date October 2003 State Oregon Program Type State Rebate Program Rebate Amount Varies by sector, water heating fuel, and electric or gas provider; see below for details Provider Energy Trust of Oregon Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who install solar water or pool

162

Heat Pump Water Heater Performance in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

searc searc e er tra A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida searc e er tra Heat Pump Water Heater Performance in Laboratory House Building America Technical Update 2013 ACI National Home Performance Conference April 29- 30 , 2013 Carlos J. Colon carlos@fsec.ucf.edu A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Grounds, Florida (east coast) 2009 -Present (Currently fourth testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida

163

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

164

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

165

Assessment of a Solar Assisted Air Source and a Solar Assisted Water Source Heat Pump System in a Canadian Household  

Science Journals Connector (OSTI)

This paper presents an assessment of two solar assisted heat pump systems integrated into an air distribution system in three different 210 m2 single detached residential houses in Montreal, Canada. The housing types considered are a 1980's house, an energy efficient house and a net zero ready house. The advanced heat pump systems considered in the analysis focused on coupling solar energy on the evaporator side of an air source and water source heat pumps to improve performance compared to a standard air source heat pump and provide an alternative to a costly ground source heat pump system. The annual energy consumption and utility cost of the solar assisted heat pump systems were compared to a market available air source heat pump, a ground source heat pump system as well as the typical reference housing heating and cooling system. The results predicted that a solar assisted air source heat pump has a comparable capital cost to a ground source heat pump system in all housing types and the highest energy savings for a net zero ready house of 34% compared to the base case. The solar assisted water source heat pump did not yield interesting results, as the solar assisted air source heat pump demonstrated improved energy savings and lower capital costs in all housing types considered. Comparing the 20 year life cycle costs of the solar assisted heat pump systems to the base case, only in the 1980's housing archetype did the solar assisted air source heat pump system demonstrate a lower life cycle cost than the base case. A standard air source heat pump yielded the lowest life cycle cost in the 1980's and energy efficient house considered and the reference base case system had the lowest life cycle cost in the net zero ready house considered.

Martin Kegel; Justin Tamasauskas; Roberto Sunye; Antoine Langlois

2012-01-01T23:59:59.000Z

166

High Water Heating Bills on Lockdown at Idaho Jail | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine Lindsay Gsell What does this project do? The new solar thermal hot water system will provide nearly 70 percent of the BTUs required for heating 600,000 gallons of water for the jail annually, saving the county more than $4,000 a year in electricity costs at current rates. In Hailey, Idaho, one 330,000 square foot building - the Blaine County Public Safety Facility - accounts for the county's highest operational

167

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

168

Water Heating Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

169

Beaches Energy Services - Solar Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per customer Rebates will not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater: $500 Provider Beaches Energy Services Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and solar pool heating systems do not qualify for the rebate payment. Systems must be installed by a licensed Florida contractor and must be FSEC certified. Rebates will not

170

Water Heating Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

171

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network (OSTI)

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

172

Determining Benefits and Costs of Improved Water Heater Efficiencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Benefits and Costs of Improved Water Heater Efficiencies Determining Benefits and Costs of Improved Water Heater Efficiencies Title Determining Benefits and Costs of Improved Water Heater Efficiencies Publication Type Report LBNL Report Number LBNL-45618 Year of Publication 2000 Authors Lekov, Alexander B., James D. Lutz, Xiaomin Liu, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-45618 Date Published May 4 Abstract Economic impacts on individual consumers from possible revisions to U.S. residential water heater energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a water heater and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers are significant. At the efficiency level examined in this paper, 35% of households with electric water heaters experience LCC savings, with an average savings of $106, while 4% show LCC losses, with an average loss of $40 compared to a pre-standard LCC average of $2,565. The remainder of the population (61%) are largely unaffected.

173

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

174

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. Condensed flue gas water treatment needs and costs. Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

175

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network (OSTI)

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

176

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network (OSTI)

communications). Heat transfer fluid is 60% o-o1vco1 bycharacteristics, heat transfer fluids, flow resistances,of a non- freezing heat transfer fluid circulating in a loop

Mertol, Atila

2012-01-01T23:59:59.000Z

177

Field Monitoring Protocol: Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

SHR Sensible heat ratio T&RH Temperature and relative humidity TC Thermocouple UA Heat loss coefficient v Table of Contents List of Figures ......

178

Critical Question #8: When are Heat Pump Water Heaters the Best Solution? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: When are Heat Pump Water Heaters the Best 8: When are Heat Pump Water Heaters the Best Solution? Critical Question #8: When are Heat Pump Water Heaters the Best Solution? What do we know about actual performance compared to promised performance? What is the best way to manage the space conditioning impacts on a home? Is there an easy decision tree for deciding if this is the best solution for a particular home (Climate? Utility prices? Accessibility? Physical space constraints? Workforce?)? cq8_residential_hpwh_costs_maguire.pdf cq8_hpwh_performance_colon.pdf cq8_hpwhs_multifamily_weitzel.pdf More Documents & Publications Track A - Energy Systems Innovations Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Standing Technical Committee Working Sessions

179

Regional Variation in Residential Heat Pump Water Heater Performance in the United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Regional Variation in Residential Heat Pump Water Heater Performance in the US Jeff Maguire 4/30/13 Outline * Why HPWHs? * US Water Heating Market * Overview of HPWHs * Model Description * Results o HPWH Performance o Energy Savings Potential o Breakeven Cost 2 Heat Pump Water Heaters Save $300 a year over standard electric? Save $100 a year over standard gas? Heat Pump Electric Gas 3 Questions about HPWHs * Are HPWHs a good replacement for typical gas and electric storage water heaters? o In different locations across the country? o In conditioned/unconditioned space? o Source energy savings?

180

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Research and Development Roadmap for Emerging Water Heating Technologi...  

Energy Savers (EERE)

fuels are split approximately evenly between gas and electric, with other (e.g., fuel oil, propane) representing only 5% of residential water heating energy consumption. Figure...

182

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)  

SciTech Connect

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

Hudon, K.

2012-05-01T23:59:59.000Z

183

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

184

Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

'''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

185

Building America Webinar: Central Multifamily Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

186

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

as conventional electric resistance water heaters, with thetwo technologies: (1) an electric resistance storage watertransfers heat from the electric resistance element to the

Franco, Victor

2011-01-01T23:59:59.000Z

187

Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future, Vol.VIII-8-1 Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-conditioning System Chunlei Zhang Suilin Wang Hongbing Chen...

Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

2006-01-01T23:59:59.000Z

188

Water Consumption from Freeze Protection Valves for Solar Water Heating Systems  

SciTech Connect

Conference paper regarding research in the use of freeze protection valves for solar domestic water heating systems in cold climates.

Burch, J.; Salasovich, J.

2005-12-01T23:59:59.000Z

189

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

SciTech Connect

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

190

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

191

Solar Water Heating Requirement for New Residential Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

192

Duquesne Light Company - Residential Solar Water Heating Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

193

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

194

Valley Electric Association - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

195

Building America Webinar: Central Multifamily Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

196

Save on Home Water Heating | Department of Energy  

Office of Environmental Management (EM)

and money, or choose an on-demand hot water heater to save even more. Tips: Water Heating Solar energy systems are among the renewable and efficiency purchases that are...

197

Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method  

Science Journals Connector (OSTI)

Abstract This study presents the exergoeconomic analysis and evaluation in order to provide cost based information and suggests possible locations/components in a GDHS (geothermal district heating system) for improving the cost effectiveness. The analysis is based on the SPECO (specific exergy costing) method, and used to calculate exergy-related parameters and display cost flows for all streams and components. As a real case study, the Afyon GDHS in Turkey is considered based on actual operational data. The obtained results show that the unit exergy cost of heat produced by the Afyon GDHS is calculated as average 5624$/h. The HEX (heat exchanger)-III among all components should be improved quickly due to the high total operating cost rate and relative cost difference. The HEX-I and PM (pump)-V have the highest exergoeconomic factors among all other system components due to the high owning and operating costs of these components. The heat production costs per exergy unit for all the \\{HEXs\\} decrease due to the high exergy destruction cost rate of the system, while the well head temperature and ambient temperature increase. The SPECO method may be used to improve the cost effectiveness according to exergy rates in \\{GDHSs\\} as a thermal system.

Mehmet Ali Alkan; Ali Keeba?; Nurettin Yamankaradeniz

2013-01-01T23:59:59.000Z

198

#tipsEnergy: Saving on Home Heating Costs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving on Home Heating Costs Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the best tips in a Storify. Storified by Energy Department · Fri, Nov 23 2012 12:37:07 As we head into December, the cold weather season is officially upon us, and nowhere is that more evident than on your utility bills. Home heating and cooling uses more energy than any other

199

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho) Idaho) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Idaho) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State Idaho Program Type Non-Profit Rebate Program The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

200

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon) Oregon) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Oregon) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Oregon Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana) Montana) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Montana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Montana Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

202

Simulation and Validation of a Single Tank Heat Pump Assisted Solar Domestic Water Heating System.  

E-Print Network (OSTI)

??This thesis is a study of an indirect heat pump assisted solar domestic hot water (I-HPASDHW) system, where the investigated configuration is called the Dual (more)

Wagar, William Robert

2013-01-01T23:59:59.000Z

203

Ranking cost effective energy conservation measures for heating in Hellenic residential buildings  

Science Journals Connector (OSTI)

Abstract Residential buildings comprise the biggest segment of the European building stock and they are responsible for the majority of the building's sector energy consumption and CO2 emissions. This paper documents the potential benefits and sets the priorities of individual energy conservation measures (ECMs) to reduce heating energy consumption in Hellenic residential buildings, including space heating and domestic hot water production. The analysis is facilitated by using the available Hellenic typology for residential buildings that consists of 24 typical buildings, derived after a classification in three construction periods, two building sizes and four climate zones. The focus is mainly on the implementation of \\{ECMs\\} that have low first-cost investment and short payback period. In order to prioritize \\{ECMs\\} that would be most attractive to building owners, two ranking criteria are used, namely primary heating energy savings and payback period. Finally, the preliminary results are used to provide an insight on the potential abatement of CO2 emissions for the national residential building stock.

K.G. Droutsa; S. Kontoyiannidis; E.G. Dascalaki; C.A. Balaras

2014-01-01T23:59:59.000Z

204

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

205

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network (OSTI)

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

206

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

207

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

208

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

209

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

210

Our winters of discontent: Addressing the problem of rising home-heating costs1  

E-Print Network (OSTI)

by rising fuel prices in international energy markets and the absence of federal and provincial energy: · The cost of motive fuels (gasoline and diesel), electricity, and energy for home space heating will all

Hughes, Larry

211

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

212

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

213

Heat transfer research on supercritical water flow upward in tube  

SciTech Connect

The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

Li, H. B.; Yang, J. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China); Gu, H. Y.; Zhao, M. [Shanghai Jiao Tong Univ., Shanghai (China); Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China)

2012-07-01T23:59:59.000Z

214

The Influence of Availability Costs on Optimal Heat Exchanger Size  

E-Print Network (OSTI)

the ide.. proposed by London and Shah. EVALUATING IRREVERSIBILITY COSTS To illustr.te how to evaluate irrever sibility costs for a particular system, let us pick a condensing heater system that uses condening steam as the hot, "pur chased" stream....84/10 9 J(oules), and whose efficiency is 80~. It is further assumed that the condensate from the heater' is fed into a condensate system that even tually feeds a collection main at P3 = 0.1014 MPa (14.7 psia), as shown on Figure 1. Even though...

Witte, L. C.

215

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

216

The Cost of Heat Exchanger Fouling in the U. S. Industries  

E-Print Network (OSTI)

by using a fouling factor in the design which results in additional capital cost of the heat exchanger. As fouling deposits build up in a heat exchanger, its performance will start to deteriorate and less energy will be transferred through the unit. A plot...

Rebello, W. J.; Richlen, S. L.; Childs, F.

217

Impact of solar energy cost on water production cost of seawater desalination plants in Egypt  

Science Journals Connector (OSTI)

Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2US$/Wp (Wp is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06US$/kWh), solar-generated electricity starts to be competitive from 1US$/Wp. Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8US$/Wp), but advances in the technology will continue to drive the prices down, whilst penalties on usage of fossil fuel will increase electricity costs from conventional non-renewable sources. Solar thermal is cheaper (at a current price of 0.06US$/kWh) than PV; however, PV is more appropriate for Egypt (for the time being) as it is more applicable to the smaller RO plant sizes found in Egypt (up to 5MW; 10,00015,000m3/d product water capacity). We would expect that there will be a shift towards more centralized RO plants (larger size) in Egypt, to tackle the increasing water shortage, and this would then favor the adoption of solar thermal energy in the near future.

A. Lamei; P. van der Zaag; E. von Mnch

2008-01-01T23:59:59.000Z

218

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

219

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

220

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network (OSTI)

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

222

Apparatus and method for solar heating of water  

SciTech Connect

This patent describes an apparatus for heating a tank of water comprising at least three substantially planar plastic strips positioned substantially vertically in spaced relationship in the water, such that the strips are substantially immersed in the water to be heated, and means for positioning the strips in the water with the provisos that the strips are light absorbent on both major planar surfaces and that the positioning means is of such construction as to minimize absorption of solar radiation by the positioning means rather than by the strips. A method for solar heating of a tank of water comprising the steps of positioning at least three substantially vertical, substantially planar plastic strips in spaced relationship in the water, such that strips are substantially immersed in the water to be heated, with the proviso that the strips are light absorbent on both major planar surfaces, and exposing the strips to solar radiation. A recreational swimming pool equipped with a solar heating apparatus comprising at least three substantially planar plastic strips removably positioned substantially vertically in spaced relationship in the pool water, such that and means for removably positioning the strips in spaced relationship in the pool water with the proviso that the strips are light absorbent on both major planar surfaces.

Caines, R.S.

1988-12-13T23:59:59.000Z

223

Solar water heating potential in South Africa in dynamic energy market conditions  

Science Journals Connector (OSTI)

This paper is an attempt to determine the potential for solar water heating (SWH) in South Africa and the prospects for its implementation between 2010 and 2030. It outlines the energy market conditions, the energy requirements related to residential and commercial water heating in the country and the solar water heating market dynamics and challenges. It was estimated that 98% of the potential is in the residential sector and the rest in the commercial sector. The total thermal demand for 20 years for water heating was estimated to 2.2EJ. A Moderate SWH implementation will provide 0.83EJ of clean energy until 2030 and estimated cost savings of 231 billion rand. For an Accelerated SWH implementation these figures are 1.3EJ and 369 billion rand. The estimated accumulated reduction of CO2 emissions due to SWH can be as high as 297Mt. The increased affordability of residential hot water due to SWH is an important social factor and solar water heating has a strong social effect.

Georgi Donev; Wilfried G.J.H.M. van Sark; Kornelis Blok; Ognjan Dintchev

2012-01-01T23:59:59.000Z

224

KIUC- Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Kaua'i Island Utility Cooperative's Commercial Energy Wise Program began in 1998. Participants will receive an energy use analysis and screening for the installation of cost-effective energy saving...

225

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

226

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

227

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

228

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

229

Optimization and heat and water integration for biodiesel production  

E-Print Network (OSTI)

generation of biodiesel using waste cooking oil and algae oil. We consider 5 different technologies: Energy, Biofuels, Biodiesel, Cooking Oil, Mathematical optimization, Algae1 Optimization and heat and water integration for biodiesel production from cooking oil

Grossmann, Ignacio E.

230

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

231

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

232

Split system CO2 heat pump water heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Split-system-CO2-heat-pump-water-heaters- Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

233

GreyStone Power- Solar Water Heating Program  

Energy.gov (U.S. Department of Energy (DOE))

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

234

South River EMC- Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

235

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

236

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

237

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network (OSTI)

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

238

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network (OSTI)

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

239

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume II. Appendices  

SciTech Connect

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. Volume II contains all the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and a listing of the sample case output. Both volumes include the complete table of contents and lists of figures and tables. In addition, both volumes include the indices for the input parameters and subroutines defined in the user manual.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

240

Effect of Thermodynamic Restriction on Energy Cost Optimization of RO Membrane Water Desalination  

Science Journals Connector (OSTI)

Effect of Thermodynamic Restriction on Energy Cost Optimization of RO Membrane Water Desalination ... Reduction of the overall cost of water production represents a major challenge and, in the present work, various elements of water production cost are evaluated from the viewpoint of optimization, with respect to various costs (energy, membrane area and permeability, brine management, and pressure drop), as well as the important thermodynamic cross-flow constraint, utilization of energy recovery devices, and operational feed and permeate flow rate constraints. ... Overall, as process costs above energy costs are added, the operational point for achieving minimum water production cost shifts to higher recoveries. ...

Aihua Zhu; Panagiotis D. Christofides; Yoram Cohen

2008-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Study on Energy Efficiency Evaluation Method of Cooling Water System of Surface Water Source Heat Pump  

Science Journals Connector (OSTI)

Water source heat pump system is a green air-conditioning system which has high efficiency, energy saving, and environmental protection, but inappropriate design of the system type of water intake will impact on ...

Jibo Long; Siyi Huang

2014-01-01T23:59:59.000Z

242

Low-Cost Gas Heat Pump For Building Space Heating | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Space Heating Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: 903,000...

243

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production...

244

The effects of the implementation of grey water reuse systems on construction cost and project schedule  

E-Print Network (OSTI)

a positive or negative effect on the design teams decision to implement a grey water reuse system: capital cost, maintenance cost, LEED credits, local plumbing codes, project schedule, local water conservation issues, complexity of the system, etc...

Kaduvinal Varghese, Jeslin

2009-05-15T23:59:59.000Z

245

Cost comparative study for new water distillation techniques by solar energy using  

Science Journals Connector (OSTI)

The aim of this work is to compare the extra added cost of different new water distillation techniques to the cost of extra collected distilled water. The comparison is between; a traditional single slope sola...

Iyad M. Muslih; Salan M. Abdallah; Wafa Abu Husain

2010-03-01T23:59:59.000Z

246

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

247

Long Term Solar Heat Storage through Underground Water Tanks for the Heating of Housing  

Science Journals Connector (OSTI)

This project consists in the development of design methods of solar plants for heating of housing by means of the interseasonal storage of solar energy through water tanks located under or...

M. Cucumo; V. Marinelli; G. Oliveti; A. Sabato

1983-01-01T23:59:59.000Z

248

Design of Coil Heat Exchanger for Remote-Storage Solar Water Heating System  

Science Journals Connector (OSTI)

A coil heat exchanger for hot water thermal storage was presented including the choice of the ... calculation of flow resistance. In this design, solar collector contour aperture area is 4.26...2, the volume of w...

Lv Cuiping; He Duanlian; Dou Jianqing

2009-01-01T23:59:59.000Z

249

Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump  

E-Print Network (OSTI)

The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

Cong, X.; Liu, Y.; Yang, W.

2006-01-01T23:59:59.000Z

250

Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger  

Science Journals Connector (OSTI)

Abstract The purpose of the present study is to accumulate knowledge on how a drain water heat recovery system using a vertical inline heat exchanger and a heat pump performs under different drain water flow profile scenarios. Investigating how the intermittent behavior of the drain water influences the performance for this type of system is important because it gives insight on how the system will perform in a real life situation. The scenarios investigated are two 24h drain water flow rate schedules and one shorter schedule representing a three minute shower. The results from the present paper add to the knowledge on how this type of heat recovery system performs in a setting similar to a multi-family building and how sizing influences the performance. The investigation shows that a heat recovery system of this type has the possibility to recover a large portion of the available heat if it has been sized to match the drain water profile. Sizing of the heat pump is important for the system performance; sizing of the storage tank is also important but not as critical.

Jrgen Wallin; Joachim Claesson

2014-01-01T23:59:59.000Z

251

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text  

SciTech Connect

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

252

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review  

SciTech Connect

This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

Not Available

2009-09-01T23:59:59.000Z

253

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

254

Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report  

SciTech Connect

This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

Not Available

1980-06-01T23:59:59.000Z

255

Developing a cost effective environmental solution for produced water and creating a ''new'' water resource  

SciTech Connect

The project goal is to convert a currently usable by-product of oil production, produced water, into a valuable drinking water resource. The project was located at the Placate Oil Field in Santa Clarita, California, approximately 25 miles north of Los Angeles. The project included a literature review of treatment technologies; preliminary bench-scale studies to refine a planning level cost estimate; and a 10-100 gpm pilot study to develop the conceptual design and cost estimate for a 44,000 bpd treatment facility. A reverse osmosis system was constructed, pilot tested, and the data used to develop a conceptual design and operation of four operational scenarios, two industrial waters levels and two irrigation/potable water.

Doran, Glenn; Leong, Lawrence Y.C.

2000-05-01T23:59:59.000Z

256

Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript  

Energy.gov (U.S. Department of Energy (DOE))

Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

257

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network (OSTI)

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

258

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

259

Advances in the Research of Heat Pump Water Heaters  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-2 1 Advances in the Research of Heat Pump Water Heaters Shangli Shan Dandan Wang Ruixiang Wang Master Master Professor Beijing...) [21] Wang sui-lin . Affection on fin-and-tube Heat Exchanger's Properties by non azeotropic mixtures[J] . Fluid machinery , 1996 , 24 (5) [22] Ge run-ting . Foundation of Dynamic Parameter Model and Theoritical Calculation of Evaporator...

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

260

CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?  

E-Print Network (OSTI)

CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?· Julie how household consumption responds to changes in home energy outlays over the course of the year. We specify Euler equations describing nondurable and food consumption and then rely on changes in energy

Sadoulet, Elisabeth

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

262

Levelized costs of electricity and direct-use heat from Enhanced Geothermal Systems  

Science Journals Connector (OSTI)

GEOPHIRES (GEOthermal energy for the Production of Heat and Electricity (IR) Economically Simulated) is a software tool that combines reservoir wellbore and power plant models with capital and operating cost correlations and financial levelized cost models to assess the technical and economic performance of Enhanced Geothermal Systems (EGS). It is an upgrade and expansion of the MIT-EGS program used in the 2006 Future of Geothermal Energy study. GEOPHIRES includes updated cost correlations for well drilling and completion resource exploration and Organic Rankine Cycle (ORC) and flash power plants. It also has new power plant efficiency correlations based on AspenPlus and MATLAB simulations. The structure of GEOPHIRES enables feasibility studies of using geothermal resources not only for electricity generation but also for direct-use heating and combined heat and power (CHP) applications. Full documentation on GEOPHIRES is provided in the supplementary material. Using GEOPHIRES the levelized cost of electricity (LCOE) and the levelized cost of heat (LCOH) have been estimated for 3 cases of resource grade (low- medium- and high-grade resource corresponding to a geothermal gradient of 30 50 and 70?C/km) in combination with 3 levels of technological maturity (today's mid-term and commercially mature technology corresponding to a productivity of 30 50 and 70?kg/s per production well and thermal drawdown rate of 2% 1.5% and 1%). The results for the LCOE range from 4.6 to 57 /kWhe and for the LCOH from 3.5 to 14 $/MMBTU (1.2 to 4.8 /kWhth). The results for the base-case scenario (medium-grade resource and mid-term technology) are 11 /kWhe and 5 $/MMBTU (1.7 /kWhth) respectively. To account for parameter uncertainty a sensitivity analysis has been included. The results for the LCOE and LCOH have been compared with values found in literature for EGS as well as other energy technologies. The key findings suggest that given today's technology maturity electricity and direct-use heat from EGS are not economically competitive under current market conditions with other energy technologies. However with moderate technological improvements electricity from EGS is predicted to become cost-effective with respect to other renewable and non-renewable energy sources for medium- and high-grade geothermal resources. Direct-use heat from EGS is calculated to become cost-effective even for low-grade resources. This emphasizes that EGS for direct-use heat may not be neglected in future EGS development.

2014-01-01T23:59:59.000Z

263

Utilization of Heat Pump Water Heaters for Load Management  

SciTech Connect

The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

2014-01-01T23:59:59.000Z

264

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network (OSTI)

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

265

Covered Product Category: Residential Heat Pump Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

266

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network (OSTI)

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

267

Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing  

E-Print Network (OSTI)

Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

El-Magboub, Sadek Abdulhafid.

268

Low-Cost Solar Domestic Hot Water Systems for Mild Climates  

SciTech Connect

In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

2005-01-01T23:59:59.000Z

269

Scarce, costly and uncertain: water access in Kibera, Nairobi  

E-Print Network (OSTI)

for both rich and poor. Water and sanitation provision inPoor: Water Markets, Household Demand, and Service Preferences in Kenya, Water Supply and Sanitation

Crow, Ben; Odaba, Edmond

2009-01-01T23:59:59.000Z

270

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network (OSTI)

such as solar-assisted pre-heat and waste water heat recovery components. A total of 7,488 six- day simulations

Victoria, University of

271

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network (OSTI)

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat (more)

PRESTON, NATHANIEL

272

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

273

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network (OSTI)

#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

Oak Ridge National Laboratory

274

Heat Pump Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

275

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

277

Substations for Decentralized Solar District Heating: Design, Performance and Energy Cost  

Science Journals Connector (OSTI)

Abstract The development of solar district heating is gaining more and more interest, but, in some case the space available for the integration of solar collectors on the ground is limited and the use of decentralized systems is necessary. For decentralized solar district heating systems different hydraulic schemes at the substation level, with or without local use of solar energy, are possible. The present paper detailed an advanced study on decentralized solar district heating system using dynamic simulation software. Nine different hydraulic schemes for substations have been investigated with a return to return feed in. For each scheme many parameters that influence the performance of the solar installation have been studied such as the district heating network return temperature, the solar collector area and the type of solar collector (low temperature or high temperature solar collector). The comparison between the different hydraulic schemes is based on thermal efficiency but also on solar energy cost using the methodology of the Levelized Cost Of Energy (LCOE).

Cedric Paulus; Philippe Papillon

2014-01-01T23:59:59.000Z

278

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu

2014-01-01T23:59:59.000Z

279

Flow-induced vibration of component cooling water heat exchangers  

SciTech Connect

This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

Yeh, Y.S.; Chen, S.S. (Taiwan Power Co., Taipei (Taiwan). Nuclear Engineering Dept.; Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

280

Alternative water sources: Desalination model provides life-cycle costs of facility  

E-Print Network (OSTI)

Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

Supercinski, Danielle

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

282

Grid-Interactive Renewable Water Heating Economic and Environmental Value  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and charge level, factoring in renewable generation and other critical needs of the grid; thereby significantly reducing carbon emissions and bringing a new dimension of conservation and efficiency to the electric grid. The Steffes grid-interactive renewable water heater controller provides utilities with an affordable and effective way to integrate renewable generation into the grid while providing uninterrupted hot water to the consumer. In recent years, many states have set Renewable Portfolio Standards (RPS) to reduce the need for traditional fossil fuel-based power generation, thereby improving our environment and decreasing

283

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

284

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

285

Side by Side Testing of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida A Research Institute of the University of Central Florida Side by Side Testing of Water Heating Systems Residential Energy Efficiency Stakeholder Meeting Austin , Texas March 1st, 2012 Carlos J. Colon carlos@fsec.ucf.edu FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida 3 2009 -Present (Currently in third testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Underground Circulation Loop * Solar circulation Loop 140+ feet of ½" copper tubing * Encased in PVC tubing with R-2.4 insulation * ICS to 50 gallon storage tank path need to

286

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network (OSTI)

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

287

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network (OSTI)

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

288

Analysis of recoverable waste heat of circulating cooling water in hot-stamping power system  

Science Journals Connector (OSTI)

This article studies the possibility of using heat pump instead of cooling tower to decrease temperature and recover waste heat of circulating cooling water of power system. Making use of heat transfer theory ......

Panpan Qin; Hui Chen; Lili Chen; Chong Wang

2013-08-01T23:59:59.000Z

289

Cogen/chilled-water plant heats, cools, electrifies campus  

SciTech Connect

This article describes replacement of the University of California at Los Angeles' aging boiler and refrigeration equipment with a central chiller/combined-cycle cogeneration plant. The topics of the article include the work scope, the chilled water plant including absorption and steam turbine driven centrifugal chillers, and the cogeneration plant including two packaged combustion turbines, two heat-recovery steam generators and one steam turbogenerator.

Johnson, D.N. (Univ. of California, Los Angeles (United States)); Bakker, V.

1993-04-01T23:59:59.000Z

290

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao

2010-06-01T23:59:59.000Z

291

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes...  

Energy Savers (EERE)

Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump...

292

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network (OSTI)

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

293

Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana  

E-Print Network (OSTI)

An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

Braud, H. J.; Klimkowski, H.; Baker, F. E.

1985-01-01T23:59:59.000Z

294

Water and Associated Costs in the Production of Cotton and Grain Sorghum, Texas High Plains, 1955.  

E-Print Network (OSTI)

a very low price for his labor. Water constitutes one of the largest items of expense in preharvest costs, but substantial re- ductions in water cost seem unlikely. One pro- spect is to reduce fuel costs by a shift to natural gas. Natural gas... lines cost about $1,000 per well; consequently, the shift is advisable only if the annual fuel requirements are large. For large wells, a shift to natural gas would reduce annual costs of fuel substantially, and the savings would be sufficient...

Magee, A. C.; Hughes, William F.

1957-01-01T23:59:59.000Z

295

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

296

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

297

Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

298

Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report  

SciTech Connect

The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

1998-04-01T23:59:59.000Z

299

Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating  

Science Journals Connector (OSTI)

Solar energy application is a good alternative to replace primary energy source especially for large-scale installations. Heat pumps are also effective means to reduce primary energy consumption. This paper describes a case study with a new design of solar assisted heat pump (SAHP) for indoor swimming pool space- and water-heating purposes. The system design procedure was first presented. The entire system was then modeled via the TRNSYS simulation environment and the energy performance was evaluated based on the winter time operation schedule. Economic analysis with a range of collector areas was also performed. The simulation results show that the overall system COP can reach 4.5, and the fractional factor of energy saving is 79% as compared to the conventional energy system. The economical payback period is less than 5years.

T.T. Chow; Y. Bai; K.F. Fong; Z. Lin

2012-01-01T23:59:59.000Z

300

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer  

E-Print Network (OSTI)

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

Bennett, Albert F.

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural convection heat exchangers for solar water heating systems. Technical progress report, November 15, 1996--January 14, 1997  

SciTech Connect

The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

Davidson, J.H.

1998-06-01T23:59:59.000Z

302

Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application  

Science Journals Connector (OSTI)

Abstract In order to harvest solar energy, thermal energy storage (TES) system with Phase Change Material (PCM) has been receiving greater attention because of its large energy storage capacity and isothermal behavior during charging and discharging processes. In the present experimental study, shell and tube TES system using paraffin wax was used in a water heating system to analyze its performance for solar water heating application. Energy and exergy including their cost analyses for the TES system were performed. Accordingly, total life cycle cost was calculated for different flow rates of the Heat Transfer Fluid (HTF). With 0.033kg/min and 0.167kg/min flow rates of water as HTF, energy efficiencies experienced were 63.88% and 77.41%, respectively, but in exergy analysis, efficiencies were observed to be about 9.58% and 6.02%, respectively. Besides, the total life cycle cost was predicted to be $ 654.61 for 0.033kg/min flow rate, which could be reduced to $ 609.22 by increasing the flow rate to 0.167kg/min. Therefore it can be summarized that total life cycle cost decreases with the increase of flow rate.

M.H. Mahfuz; M.R. Anisur; M.A. Kibria; R. Saidur; I.H.S.C. Metselaar

2014-01-01T23:59:59.000Z

303

Heat pump water heater and storage tank assembly  

DOE Patents (OSTI)

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

304

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

SciTech Connect

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

305

Solar space- and water-heating system at Stanford University. Final report  

SciTech Connect

Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

Not Available

1980-05-01T23:59:59.000Z

306

Assessment of Unglazed Solar Domestic Water Heaters  

SciTech Connect

Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

Burch, J.; Salasovich, J.; Hillman, T.

2005-12-01T23:59:59.000Z

307

Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water  

Science Journals Connector (OSTI)

We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25kWh?1 electricity and $0.03kWh?1 thermal, for a system with a life cycle global warming potential of ~80gCO2eqkWh?1 of electricity and ~10gCO2eqkWh?1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40m?3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40$1.90m?3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

Zack Norwood; Daniel Kammen

2012-01-01T23:59:59.000Z

308

An approach to energy saving assessment of solar assisted heat pumps for swimming pool water heating  

Science Journals Connector (OSTI)

A steady state off-design model of a Water Solar Assisted Heat Pump (W-SAHP) and the results of monthly based averaged simulations are presented. The W-SAHP system is arranged with a commercial water-to-water heat pump, coupled with unglazed flat plate solar collectors. The study is purposely developed for swimming pools, however most of the analysis criteria and outcomes are valid for any building (user) having hot water needs. Calculations are made for given thermal load and user operating temperatures with reference to the climatic data of all Italian Municipalities, that is degree days (DD) in the range from 700 to 3000, altitude from 0 to 1500m (above sea level), and latitude from 36.5N to 46.3N. The primary energy saving capability of the W-SAHP solution, compared to a traditional gas-boiler plant, is analyzed as a function of the DD index of each site. Despite the large spread of climatic and altitude data, the results show that the W-SAHP performance is usually well correlated to DD, which can therefore be assumed as the main independent variable for the energy saving assessment of these systems, and make the results easily extended to other possible geographical locations.

Luca A. Tagliafico; Federico Scarpa; Giulio Tagliafico; Federico Valsuani

2012-01-01T23:59:59.000Z

309

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

310

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents (OSTI)

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

311

Assessment of compliance costs resulting from implementation of the proposed Great Lakes water quality guidance  

SciTech Connect

The primary purpose of the study was to develop an estimate of the incremental cost to direct dischargers resulting from the implementation of the proposed Great Lakes Water Quality Guidance (GLWQG). This estimate reflects the incremental cost of complying with permit requirements developed using the Implementation Procedures and water quality criteria proposed in the GLWQG versus permit requirements based on existing State water quality standards. Two secondary analyses were also performed, one to develop a preliminary estimate of the costs that would be incurred by indirect dischargers to publicly owned treatment works (POTWs), and another to evaluate the cost-effectiveness of the GLWQG. Finally, several sensitivity analyses were performed to evaluate the impact of several major assumptions on the estimated compliance costs. To estimate compliance costs, permit limitations and conditions based on existing State water quality standards were compared to water quality-based limitations and conditions based on the proposed GLWQG criteria and Implementation Procedures for a sample of plants. The control measures needed to comply with the proposed GLWQG-based effluent limitations were evaluated. Individual plant compliance costs were estimated for these control measures based on information on treatment technology and cost analyses available in the literature. An overall compliance cost was projected from the sample based on statistical methods.

Fenner, K.; Podar, M.; Snyder, B.

1993-04-16T23:59:59.000Z

312

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

313

A first approach study on the desalination of sea water using heat transformers powered by solar ponds  

Science Journals Connector (OSTI)

Abstract In many emerging countries over the past few years some phenomena, such as a better welfare state, industrial growth and a development in agriculture, led to a significant increasing of the demand concerning fresh water. In order to face this ever-growing demand, one of the possible solutions to counterbalance the lack of water resources, is the desalination of sea water. For this specific goal solar energy, as a resource, is the process which has more reliance since it allows a low-cost production of desalted water (without using any valuable energy resources such as fossil fuels) and in a complete respect of the environment. This first study has the purpose to analyze from an energetic perspective whether it is possible or not to reach process temperatures over 100C, through the use of solar ponds and heat transformers, in order to produce desalinated water. The final aim of this work is to quantify the surface of solar ponds needed to a production (expressed in cubic meters) of desalinated water. An absorption heat transformer is a thermal machine that while extracting heat from a source (at an available temperature) is able to ennoble a portion of the heat collected/obtained, making it available at higher temperatures. This process occurs at the expenses of the remaining portion of heat whose temperature degrades by lowering its values. The portion of heat will be then transferred to a thermal well. Hence an absorption heat transformer can use the solar energy stored in solar ponds as an energy source at an average temperature. Process temperatures which are higher than 100C for a whole year can take place only under certain chained conditions such as: source temperature with steady values during the entire season obtainable through solar ponds; condensation process occurring at sufficiently low temperatures through the use of sea water; exertion of heat transformers. The heat which is usually available at these temperatures could be used for common thermal processes during the desalination of seawater. In this work we want to demonstrate that it is possible, energetically speaking, to produce desalinated water by exploiting the solar energy stored in solar ponds and the technology of absorption heat transformers. We can notice how for every m3 of desalinated water produced in one day we need ponds with an area ranging between 1000 and 4000m2, this depends on the amount of heat flux drawn. The analysis we carried out represents a first attempt to face this kind of problem. In future studies we will examine both technical and economic feasibility.

F. Salata; M. Coppi

2014-01-01T23:59:59.000Z

314

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

315

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

316

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

317

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

318

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

319

PV vs. Solar Water Heating- Simple Solar Payback  

Energy.gov (U.S. Department of Energy (DOE))

Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of paybacklike environmental externalitiesare not usually calculated in dollars. Theres no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as youd like, but all systems will significantly offset their cost over their lifetimes. Here well try to answer: Which system will give the quickest return on investment (ROI)?

320

Identifying the relative importance of energy and water costs in hydraulic transport systems through a combined physics- and cost-based indicator  

Science Journals Connector (OSTI)

Abstract Modern long distance ore pipeline systems are subject to strong costs, both from the economic and environmental standpoints. The task of assessing the relative importance of energy and water consumption without a detailed engineering analysis is often not obvious. In the present paper, the relative importance of water and energy unit costs is assessed by a novel dimensionless formulation accounting for the essential hydraulic and cost elements that conform the slurry transport. It is found that, for conditions resembling those of copper and iron concentrate pipelines, the ratio between energy and water costs has a wide range, depending on the particular transport conditions and unit cost scenarios. Although operating at similar volume fractions, results indicate that energy/water cost relations may differ between copper and iron concentrate pipelines and local conditions, thus suggesting the need to explicitly include energy and water cost in the design strategy.

Christian F. Ihle; Aldo Tamburrino; Santiago Montserrat

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bounding the marginal cost of producing potable water including the use of seawater desalinization as a backstop potable water production technology  

SciTech Connect

The analysis presented in this technical report should allow for the creation of high, medium, and low cost potable water prices for GCAM. Seawater reverse osmosis (SWRO) based desalinization should act as a backstop for the cost of producing potable water (i.e., the literature seems clear that SWRO should establish an upper bound for the plant gate cost of producing potable water). Transporting water over significant distances and having to lift water to higher elevations to reach end-users can also have a significant impact on the cost of producing water. The three potable fresh water scenarios describe in this technical report are: low cost water scenario ($0.10/m3); medium water cost scenario ($1.00/m3); and high water cost scenario ($2.50/m3).

Dooley, James J.

2014-04-01T23:59:59.000Z

322

Modeling and Experimental Investigation of a Variable Speed Drive Water Source Heat Pump  

Science Journals Connector (OSTI)

Accurate variable speed characteristics are needed for water source heat pumps (WSHP) to design variable speed controls to adjust refrigerant flow rates in heat pumps and air conditioners. The system capacity can then be regulated to match the compressor loads to the heating or cooling needs to improve the energy efficiency and lower energy costs. The motor and compression characteristics of WSHP were modeled to include the coupling between the motor speed and the torque characteristics and compression characteristics. An analytical model is given for a variable speed hermetic scroll compressor that describes various factors, such as the drive frequency, suction pressure, and discharge pressure as a function of the compressor speed. The model was validated experimentally using R22 and \\{R134a\\} in an experimental WSHP with variable speed control using frequency conversion. The results show that the analytical model properly describes the variable speed characteristics and provides a control strategy for adjusting the capacity of scroll compressors to match the heat pump or air conditioner operating conditions.

Zhifang Xue; Lin Shi

2010-01-01T23:59:59.000Z

323

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1  

E-Print Network (OSTI)

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

Treur, Jan

324

An experimental study on heat transfer from a horizontal heated circular cylinder enhanced by water spray.  

E-Print Network (OSTI)

??A series of experiments were conducted to investigate the heat transfer which occurs with a heated, constant heat flux, horizontal, single circular cylinder is exposed (more)

Chau, Man Hei

2009-01-01T23:59:59.000Z

325

Heat transfer through a water spray curtain under the effect of a strong radiative source  

E-Print Network (OSTI)

Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

Paris-Sud XI, Université de

326

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network (OSTI)

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

327

A refrigerator-heat-pump desalination scheme for fresh-water and salt recovery  

Science Journals Connector (OSTI)

This study concerns a refrigerator-heat-pump desalination scheme (RHPDS), which allows energy-efficient recovery of fresh water and salt from the sea. In this scheme, a salt-water chamber is continuously refilled with sea water via atmospheric pressure. Sea water is evaporated into a vacuum chamber and the water vapor is condensed on top of a fresh-water chamber. A refrigerator-heat-pump circuit maintains the two water chambers at suitably different operating temperatures and allows efficient recovery of the latent heat of condensation. The scheme is analyzed with special consideration to potential exploitation of renewable energy sources such as solar and wind energy.

M. Reali

1984-01-01T23:59:59.000Z

328

Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings  

SciTech Connect

Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

Not Available

1980-02-01T23:59:59.000Z

329

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

330

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

331

Mapping water availability, projected use and cost in the western United States  

SciTech Connect

New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

Vincent C. Tidwell; Barbara D. Moreland; Katie M. Zemlick; Barry L. Roberts; Howard D. Passell; Daniel Jensen; Christopher Forsgren; Gerald Sehlke; Margaret A. Cook; Carey W. King

2014-06-01T23:59:59.000Z

332

Development and Application of Engineering-Scale Solar Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

An engineering-scale solar water heater system assisted by heat pump was developed based on ... . The subunits of modularized system include vacuum solar energy collectors, air source heat pump, ... Energy source...

Xiufeng Gao; Shiyu Feng; Wei Hu

2009-01-01T23:59:59.000Z

333

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results  

E-Print Network (OSTI)

Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

Kandlikar, Satish

334

Arnold Schwarzenegger COST AND VALUE OF WATER USE AT  

E-Print Network (OSTI)

the electricity and natural gas ratepayers in California. The Energy Commission awards up to $62 million annually · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Environmentally in electricity-related RD&D, and up to $12 million annually for natural gas RD&D. The PIER program strives

335

Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures  

E-Print Network (OSTI)

Local surface ooeffioients of heat t-ansfer, overall pressure drop data and mean friction factor are presented for heat flamms up to 3.52106 BtuAr ft2 for water flowing in a nickel tabe isder the following conditions: mass ...

Rohsenow, Warren M.

1951-01-01T23:59:59.000Z

336

DOE Hydrogen and Fuel Cells Program Record 5040: 2005 Hydrogen Cost from Water Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

40 Date: December 12, 2008 40 Date: December 12, 2008 Title: 2005 Hydrogen Cost from Water Electrolysis Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 19, 2008 Item: The 2005 cost status for hydrogen produced from distributed water electrolysis is $5.90 / gge. Assumptions and References: The H2A analysis used to determine the projected cost of $5.88/gge (rounded up to $5.90/gge) was performed by Directed Technologies, Inc. and can be found in Record 5040a. The increase in cost compared to the 2004 analysis ($5.45/gge) is due to two assumptions changed in the model: (a) an increase in the industrial electricity price from 5¢/kWh to 5.5¢/kWh from the EIA Annual Energy Outlook, and (b) an increase in the capital cost estimate of the electrolyzer. The other assumptions in the analysis used standard values

337

Reverse osmosis for removing synthetic organics from drinking water: a cost and performance evaluation  

SciTech Connect

Reverse osmosis for removing organic compounds from drinking water has considerable promise. Bench and pilot plant studies on actual waters have shown that several organics proposed for regulation can be removed by reverse osmosis. As membrane technology improves, rejection of more difficult to remove compounds is expected to improve. Also, smaller volumes of concentrate are expected to be produced that can be handled more cost-effectively. One major concern with the use of reverse osmosis is concentrate disposal, which may increase the overall cost of treatment and disposal. The cost of reverse osmosis is very sensitive to such factors as recovery, economies of scale, systems configuration, membrane type, and electric power cost. In certain situations, reverse osmosis is a viable treatment option that is not cost-prohibitive.

Lykins, B.W.; Clark, R.M.; Fronk, C.A.

1988-06-01T23:59:59.000Z

338

Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort  

SciTech Connect

Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

2014-07-21T23:59:59.000Z

339

Comparative cost evaluation of heating oil and small-scale wood chips produced from Euro-Mediterranean forests  

Science Journals Connector (OSTI)

Abstract This work performs a cost evaluation of small-scale produced wood chips from forests in the Euro-Mediterranean region to be used for heating purposes. The study is focused on forests located in the Argenola municipality (Catalonia, northeastern Spain). The use of such easy-to-produce biofuel is appealing since it may be used as a valid substitute of heating oil to produce thermal energy in the same area where it is produced, thus minimizing transportation requirements and reducing dependence on the rising prices of heating oil. Additionally, it allows facing environmental and social concerns related to the current lack of management in the forests under analysis, which has led to an important increase in the biomass stock and wildfires risk. As wildfires in the Euro-Mediterranean region generate important impacts, an average economic cost of wildfires has been evaluated in this paper. The economic assessment of small-scale production and consumption of wood chips as proposed in this study has shown interesting economic benefits when compared with current heating oil prices. Results indicate that it is a realistic option since production costs range from 12.2/GJ to 18.5/GJ depending on the applied forestry practices, whereas current cost of heating oil is about 23.9/GJ. A sensitivity analysis has also been conducted to assess the impact of the data with higher uncertainty on the final results. It has been shown that the key factors that determine the viability of the proposed model are heating oil price, biomass stock growth rate, transportation requirements and applied forest management practices. Results presented prove that wood chips cost is quite independent of fossil fuel prices, thus higher fossil fuel prices greatly favors the use of wood chips when produced and consumed in the same area, thus minimizing transportation requirements. In addition, higher biomass growth rates than those considered in this work may reduce the final cost of small-scale produced wood chips.

Bernat Esteban; Jordi-Roger Riba; Grau Baquero; Antoni Rius

2015-01-01T23:59:59.000Z

340

Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

342

Annual Operating Characteristics of Solar Central Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

The solar central water heater (SCWH) could supply ... massive users effectively and reliably. A SCWH assisted by heat pump (SCWHP) was proposed...

Wei Hu; Zhaolin Gu; Shiyu Feng; Xiufeng Gao

2009-01-01T23:59:59.000Z

343

Feasibility Analysis of Two Indirect Heat Pump Assisted Solar Domestic Hot Water Systems.  

E-Print Network (OSTI)

??This thesis is an analysis of the simulated performance of two indirect heat pump assisted solar domestic hot water (i-HPASDHW) systems compared to two base (more)

Sterling, Scott Joseph

2011-01-01T23:59:59.000Z

344

Evaluation of Irrigation Efficiency Strategies for Far West Texas: Feasibility, Water Savings And Cost Considerations  

E-Print Network (OSTI)

COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-360 2009 Evaluation of Irrigation Efficiency Strategies for Far West Texas: Feasibility, Water Savings And Cost Considerations Prepared for: Far West Texas Water... and Agricultural Engineering, TAMU Zhuping Sheng, Texas AgriLife Research Texas Water Resources Institute Technical Report No. 360 Texas A&M University System College Station, Texas 77843-2118 June 2009 EVALUATION OF IRRIGATION EFFICIENCY STRATEGIES...

Michelsen, Ari; Chavez, Marissa; Lacewell, Ron; Gilley, James; Sheng, Zhuping

345

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

346

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Energy Savers (EERE)

traps. Learn more about heat traps. Insulate your hot-water storage tank. For electric tanks, be careful not to cover the thermostat, and for natural gas or oil hot water storage...

347

CONDENSATION As noted previously, heat energy imparted to water as it  

E-Print Network (OSTI)

CONDENSATION As noted previously, heat energy imparted to water as it evaporates is returned to liquid water as vapor condenses. During low tide, the rate of evaporation typically exceeds the rate

Brody, James P.

348

Burning of Hydrocarbon Fuels Directly in a Water-Based Heat Carrier  

Science Journals Connector (OSTI)

A principal possibility of burning hydrocarbon fuels directly in a water-based heat carrier is demonstrated. The first experimental results are presented by an example of burning acetylene in water with initia...

V. S. Teslenko; V. I. Manzhalei; R. N. Medvedev

2010-07-01T23:59:59.000Z

349

Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation.

350

Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

351

Water-saving Measures: Energy and Cost Savings Calculator | Open Energy  

Open Energy Info (EERE)

Water-saving Measures: Energy and Cost Savings Calculator Water-saving Measures: Energy and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator Agency/Company /Organization: California Public Utilities Commission (CPUC) Sector: Water Focus Area: Energy Efficiency, Water Conservation Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.doe2.com/download/Water-Energy/ Country: United States Locality: California Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News  

E-Print Network (OSTI)

families reducing their costly household oil or gas dependence by turning to a traditional fuel is typically delivered to homes in tanks, and is almost as expensive as heating oil. Berry manages the EIA Hampshire. Just last week, Erik said, he had a discussion with his fuel-oil supplier about how little oil

South Bohemia, University of

353

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer  

E-Print Network (OSTI)

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

Martin, Timothy

354

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

355

Application Prospect Analysis of the Surface Water Source Heat-Pump in China  

E-Print Network (OSTI)

Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval...

Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

2006-01-01T23:59:59.000Z

356

Comparison of Advanced Residential Water Heating Technologies in the United States  

SciTech Connect

Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

Maguire, J.; Fang, X.; Wilson, E.

2013-05-01T23:59:59.000Z

357

Solar water heating technical support. Technical report for November 1997--April 1998 and final report  

SciTech Connect

This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

Huggins, J.

1998-10-01T23:59:59.000Z

358

Design study of a coal-fired thermionic (THX) topped power plant. Volume IV. Thermionic heat exchanger design and costing  

SciTech Connect

This volume deals with the details of how thermionic conversion works, and how it is used in a coal-fired furnace to achieve power plant efficiencies of 45%, and overall costs of 36.3 mills/kWh. A review of the fundamental technical aspects of thermionic conversion is given. The overall Thermionic Heat Exchanger (THX) design, the heat pipe design, and the interaction of the heat pipes with the furnace are presented. Also, the operational characteristics of thermionic converters are described. Details on the computer program used to perform the parametric study are given. The overall program flow is reviewed along with the specifics of how the THX subroutine designed the converter to match the conditions imposed. Also, input costs and variables effecting the THX's performance are detailed. The efficiencies of the various power plants studied are given as a function of the air preheat temperature, size of the power plant, and thermionic level of performance.

Dick, R.S.; Britt, E.J.

1980-10-15T23:59:59.000Z

359

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

360

U.S. Virgin Islands - Solar Water Heating Requirement for New Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » U.S. Virgin Islands - Solar Water Heating Requirement for New Construction U.S. Virgin Islands - Solar Water Heating Requirement for New Construction < Back Eligibility Commercial Construction Institutional Local Government Low-Income Residential Multi-Family Residential Residential State Government Savings Category Heating & Cooling Solar Water Heating Program Info Program Type Building Energy Code In July 2009, U.S. Virgin Islands enacted legislation Act 7075. This legislation requires all new developments, and substantial building modifications, must be installed with energy efficient solar water heaters to provide at least 70% of the building's water heating needs. This is for all building types: residential, commercial, and governmental.

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Study on the LWT control schemes of a heat pump for hot water supply  

Science Journals Connector (OSTI)

Heat pump systems have been widely used in buildings and industries due to their high performance. In this study, a leaving water temperature control scheme has been proposed for a water-to-water heat pump for hot water supply. The study was focused on the following four schemes: (1) using an auxiliary electric heater, (2) varying compressor speed, (3) adjusting water flow rate, and (4) adding heat to the secondary fluid flow of the heat source. With schemes (2) and (3), the system showed higher performance than other schemes. However, scheme (2) could not attain the appropriate LWT at low EWT heat source conditions. For all EWT conditions, using schemes (3) and (4) enabled the system to reach an appropriate LWT. Scheme (4) can be adopted as the best technology to control LWT, because it is not easy to vary flow rate of the secondary fluid as in scheme (3).

Jong Min Choi

2013-01-01T23:59:59.000Z

362

Mexico-GTZ Support for the Programme to Promote Solar Water Heating | Open  

Open Energy Info (EERE)

for the Programme to Promote Solar Water Heating for the Programme to Promote Solar Water Heating Jump to: navigation, search Logo: Mexico-GTZ Support for the Programme to Promote Solar Water Heating Name Mexico-GTZ Support for the Programme to Promote Solar Water Heating Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Partner German Federal Ministry for Economic Cooperation and Development (BMZ), Centro Mexicano de Promoción del Cobre A.C. (PROCOBRE) Sector Energy Focus Area Solar Topics Background analysis Website http://www.gtz.de/en/themen/27 Program Start 2007 Program End 2009 Country Mexico Central America References Support for the Programme to Promote Solar Water Heating in Mexico (PPP)[1] GTZ is working with Mexico on this project with the following objective:

363

Cost and environmental impact of nanofiltration in treating chemically pre-treated surface water  

Science Journals Connector (OSTI)

Nanofiltration is an effective technique in improving the organic matter removal from coagulated surface water, but the process should also be economically feasible and environmentally sustainable when applied. Cost and environmental impact of nanofiltration installed after conventional surface water treatment were calculated and evaluated at different operating parameters in this study. The installation of nanofiltration after conventional surface water treatment would increase the cost of treated water in a minimum by 0.11 /m3 in the studied case. The least cost was gained at the higher studied recovery (83%) at the driving pressure of 6 bar, where also the total environmental impact was well balanced. However, the installation of nanofiltration would increase the environmental impact of water treatment remarkably and improvements should be done to minimise these effects. The main ways to minimise the cost of nanofiltration were related to recovery of the process, energy consumption, membrane lifetime and membrane cleaning, whereas the environmental impact minimisation was mostly related to recovery of the process and energy consumption.

Riina Liikanen; Jukka Yli-Kuivila; Jyrki Tenhunen; Risto Laukkanen

2006-01-01T23:59:59.000Z

364

Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use  

SciTech Connect

The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.

Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

2011-03-31T23:59:59.000Z

365

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

366

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

367

Development of Environmentally Benign Heat Pump Water Heaters for the US Market  

SciTech Connect

Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

Abdelaziz, Omar [ORNL] [ORNL; Wang, Kai [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL; Roetker, Jack [General Electric - Appliance Park] [General Electric - Appliance Park

2012-01-01T23:59:59.000Z

368

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

369

Economic analysis of residential combined solar-heating and hot-water systems  

SciTech Connect

A brief description of a typical residential solar heating and hot water system and typical cost and performance information are presented. The monthly costs and savings of the typical system are discussed. The economic evaluation of solar residential systems is presented in increasing levels of complexity. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described so that it can be determined whether the typical system economics are compatible with the particular situation. Methods for calculating the payback period for any non-typical solar system are described. This calculated payback period is then shown to be related to the effective interest rate that the purchaser of the system would receive for a typical economic condition. A nomagraph is presented that performs this calculation. Finally, a method is presented to calculate the effective interest rate that the solar system would provide. It is shown how to develop the relationship between payback period and the effective interest rate for any economic scenario.

None

1980-09-23T23:59:59.000Z

370

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

371

An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2  

E-Print Network (OSTI)

An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2 Martin HENDEL1,2,3* , Morgane COLOMBERT2 , Youssef DIAB2,4 , Laurent ROYON3 3 1 Paris City Hall, Water.hendel@paris.fr)8 9 Preprint version. Uploaded on May 12th , 2014.10 Abstract: Pavement-watering as a technique

Paris-Sud XI, Université de

372

Water, Light and Heat Stress Effects on Fremont Cottonwood Photosynthesis.  

E-Print Network (OSTI)

?? Seedlings of Fremont cottonwood (Populus fremontii), a California native riparian foundation species, are vulnerable to water stress from rapid water-table declines and the interactions (more)

Tozzi, Emily Sharp

2011-01-01T23:59:59.000Z

373

Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.  

E-Print Network (OSTI)

3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

Franz, Nico M.

374

Technical background document for the Great Lakes water quality guidance implementation procedures compliance cost study  

SciTech Connect

The document presents the detailed results of the evaluations performed to estimate the compliance costs related to the proposed Great Lakes Water Quality Guidance. Specifically, the document provides the results of the individual evaluations performed on the 59 sample facilities selected to represent the direct discharges to the Great Lakes System.

Parikh, P.; Fenner, K.; Podar, M.; Snyder, B.

1993-04-16T23:59:59.000Z

375

Impacts of motor vehicle operation on water quality in the US Cleanup costs and policies  

Science Journals Connector (OSTI)

This paper investigates the costs of controlling some of the environmental impacts of motor vehicle transportation on groundwater and on surface waters. We estimate that annualized costs of cleaning-up leaking underground storage tanks range from $0.8 billion to $2.1 billion per year over 10years. Annualized costs of controlling highway runoff from principal arterials in the US are much larger: they range from $2.9 billion to $15.6 billion per year over 20years (1.68.3% of annualized highway transportation expenditures). Some causes of non-point source pollution were unintentionally created by regulations or could be addressed by simple design changes of motor vehicles. A review of applicable measures suggests that effective policies should combine economic incentives, information campaigns, and enforcement, coupled with preventive environmental measures. In general, preventing water pollution from motor vehicles would be much cheaper than cleaning it up.

Hilary Nixon; Jean-Daniel Saphores

2007-01-01T23:59:59.000Z

376

Consumer's Guide: Heat Your Water with the Sun (Brochure)  

SciTech Connect

This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

Not Available

2003-12-01T23:59:59.000Z

377

A Consumer's Guide: Heat Your Water with the Sun (Brochure)  

Energy.gov (U.S. Department of Energy (DOE))

This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

378

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

379

City of Palo Alto Utilities - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Program Solar Water Heating Program City of Palo Alto Utilities - Solar Water Heating Program < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family residential gas-displacing systems: $2,719 Single-family residential electricity or propane-displacing systems: $1,834 Commercial/Industrial/Multi-family: $100,000 One contractor can have no more than $150,000 in incentive reservations at any given time. Program Info State California Program Type Utility Rebate Program Rebate Amount Single-family residential gas-displacing systems: $18.59 per therm displaced Single-family residential electricity or propane-displacing systems: $$0.54 per kWh displaced Multi-family and commercial gas-displacing systems: $14.53 per therm

380

Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011  

Energy.gov (U.S. Department of Energy (DOE))

White paper demonstrating cost-effective and flexible approach in increasing power-sector efficiency and reducing GHG emissions

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

"Table HC12.8 Water Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Midwest Census Region, 2005" 8 Water Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Water Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Number of Water Heaters" "1.",106.3,24.5,17.1,7.4 "2 or More",3.7,0.9,0.5,0.4 "Do Not Use Hot Water",1.1,"Q","Q","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,23.5,16.2,7.3 "Two or More Housing Units",10.3,1.9,1.4,0.5 "Do Not Use Hot Water",1.1,"Q","Q","Q"

382

"Table HC14.8 Water Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by West Census Region, 2005" 8 Water Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Water Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Number of Water Heaters" "1.",106.3,23.2,7.1,16.1 "2 or More",3.7,1,0.4,0.6 "Do Not Use Hot Water",1.1,"Q","Q","N" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,21.9,7.1,14.8 "Two or More Housing Units",10.3,2.3,0.4,1.9 "Do Not Use Hot Water",1.1,"Q","Q","N"

383

Coupled Model for Heat and Water Transport in a High Level Waste Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Model for Heat and Water Transport in a High Level Waste Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that drive water and water vapor flow around hot waste packages. Characterizing salt backfill processes is an important objective of the exercise. An evidence-based algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal,

384

Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer  

E-Print Network (OSTI)

PEFCs , owing to their high en- ergy efficiency, low emission, and low noise, are widely considered. In addition, the latent heat effects due to condensation/evaporation of water on the temperature and water ohmic losses. Along with water man- agement, thermal management is also a key to high performance

385

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......such a cavity, water phases do not need...place, and vertical water flow can be small...Aburatsubo, with a recovery time larger than...heat transfer by water exchange. This...evaporation and condensation process. If the...Monitoring the atmospheric temperature in a......

Frdric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Moul

2004-07-01T23:59:59.000Z

386

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Direct Use for Building Heat and Hot Water Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Direct Use for Building Heat and Hot Water." Slide 1 Amy Hollander: Hello, I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Building Heat and Hot Water sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's new state-of-the-art net zero

387

Characteristics of a semicircular heat exchanger used in a water heated condenser pump .  

E-Print Network (OSTI)

??According to literature 6% of South Africas primary energy consumption could be saved if heat pumps were used to their full technical potential. Although there (more)

Da Veiga, Willem Richter

2009-01-01T23:59:59.000Z

388

"Table HC13.8 Water Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by South Census Region, 2005" 8 Water Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Water Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Number of Water Heaters" "1.",106.3,39,21.1,6.6,11.3 "2 or More",3.7,1.5,0.5,0.3,0.7 "Do Not Use Hot Water",1.1,"Q","Q","N","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,38.2,20.2,6.7,11.3 "Two or More Housing Units",10.3,2.4,1.5,0.2,0.7

389

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Discusses isostatic pressing for scalable TE elements, properties characterization of nanostructured ZnO materials, and heat exchanger designs to improve device efficiency

390

Low-Cost Packaged Combined Heat and Power System with Reduced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monoxide (CO), and volatile organic compounds (VOCs) * Yearly reduction of carbon dioxide emissions by 950 tons com- pared to separate generation of electricity and heat,...

391

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

used for many years for space heating and cooling. It can be found in small and large products alike, such as window air conditioners used in homes through large rooftop units...

392

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

393

A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system  

Science Journals Connector (OSTI)

...Dustin Garrick, Simon Dadson and Rob Hope A cost-effectiveness analysis of water security...the river basin and used to assess the cost-effectiveness of a range of mitigation...measures can improve the situation. A cost-effectiveness study has been undertaken...

2013-01-01T23:59:59.000Z

394

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network (OSTI)

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

395

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

396

Progress Energy Florida- SunSense Solar Water Heating with EnergyWise  

Energy.gov (U.S. Department of Energy (DOE))

Progress Energy Florida (PEF) launched the ''Solar Water Heating with EnergyWise Program'' in February 2007 to encourage its residential customers to participate in its load control program and...

397

Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on direct use for building heat and hot water by clicking on the .swf link below. You can also download the...

398

2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

399

Nuclear reactor with makeup water assist from residual heat removal system  

DOE Patents (OSTI)

A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

Corletti, Michael M. (New Kensington, PA); Schulz, Terry L. (Murrysville, PA)

1993-01-01T23:59:59.000Z

400

Financial analysis of the implementation of a Drain Water Heat Recovery unit in residential housing  

Science Journals Connector (OSTI)

Abstract One of the ways of diminishing energy consumption for hot water heating is the use of Drain Water Heat Recovery (DWHR) units. The aim of the use of these devices is thermal energy recovery from warm drain water and transferring it to incoming cold water. This paper presents the calculation model that allows the estimation of the financial efficiency of the project involving the construction of a shower Drain Water Heat Recovery system in a single-family dwelling house. The presented method of investment risk assessment can be used for decision making by individual users, designers and others. The study of the financial performance was carried out for the various parameters of the installation and the different heat recovery system configurations. From investors point of view the most beneficial option of heat recovery system installation is the system in which preheated water is fed to both the hot water heater and shower mixing valve. Additionally, it was proved that obtained financial results are affected by showering time and water consumption. DWHR units will be therefore particularly beneficial to apply in case of swimming pools, sports facilities or fitness clubs, where high rotation of users is observed.

Daniel S?y?; Sabina Kordana

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 28, 2014.

402

Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water  

E-Print Network (OSTI)

The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options...

Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

403

Heat as a tracer to determine streambed water exchanges Jim Constantz1  

E-Print Network (OSTI)

Heat as a tracer to determine streambed water exchanges Jim Constantz1 Received 13 March 2008 of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches relying on traditional observation wells, and remote sensing and other large-scale advanced temperature

404

The effects of water and heat stress on protein synthesis in loblolly pine (Pinus taeda L.)  

E-Print Network (OSTI)

THE EFFECTS OF WATER AND HEAT STRESS ON PROTEIN SYNTHESIS IN LOBLOLLY PINE (PINUS TAEDA L. ) A Thesis CHRYS HULBERT Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1987 Major Subjett: Plant Physiology THE EFFECTS OF WATER AND HEAT STRESS ON PROTEIN SYNTHESIS IN LOBLOLLY PINE (PINUS TAEDA L. ) A Thesis CHRYS HULBERT Approved as to style and content by: Ronald . Newton I (Co...

Hulbert, Chrys

1987-01-01T23:59:59.000Z

405

Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)  

SciTech Connect

This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

Not Available

2014-11-01T23:59:59.000Z

406

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooperative is uniquely positioned to provide marketing of ground source heat pump systems * 15' Static Water Level * Low Pumping Power * Reduced Installation Costs * Good...

407

A low emission technology -- low cost coal water mixture fired fluidized bed combustion  

SciTech Connect

In this paper, low cost coal water mixture (CWM) FBC technology is described. Low cost CWM may be coal washery sludge or the mixture of water and coal crashed easily. This technology is featured by agglomerate combustion of low cost MM. Experimental results in 0.5MW FBC test rig are reported. lie effects of bed temperate excess air, staged combustion on combustion and emission performance has been studied. The comparison combustion tests by using dry coal and CWM we made ha 0.5MW FBC test rig. Also coal washery sludge of different origins are also tested in the test rig. Based on the test rig comments a demonstration AFBC boiler with capacity of 35 T/H steam for utility application (6 MW) is designed. The design features will be presented in this paper Both the operation experience of test rig and demonstration unit show the developed low cost CWM FBC technology is of high combustion efficiency and low emission. This technology is being commercialized and applied in China in top priority by Chinese government.

Jianhua Yan; Xuguang Jiang; Yong Chi [Zhejiang Univ., Hangzhou (China)] [and others

1995-12-31T23:59:59.000Z

408

Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters  

Science Journals Connector (OSTI)

The effects of night heat losses on the performance of thermosyphon solar water heaters have been experimentally examined. Three typical thermosyphon solar water heating systems with different storage tank sizes were tested by utilising the method suggested by ISO 9459-2:95. The results were analysed to quantify the night heat losses and to investigate the effect that these may have on the system daily performance. Analysis of the results showed that a linear behavior of the heat losses with the night mean ambient temperature exists. The correlation coefficients of the linearity for the three systems under consideration range from 0.93 to 0.97 with the losses reaching almost 8000 kJ at a mean ambient air temperature of 10 C. This value represents a significant percentage of the daily collected energy making the night losses one of the most important sources of energy loss in thermosyphonic systems.

Ioannis Michaelides; Polyvios Eleftheriou; George A. Siamas; George Roditis; Paraskevas Kyriacou

2011-01-01T23:59:59.000Z

409

The impacts of solar water heating in low-income households on the distribution utilitys active, reactive and apparent power demands  

Science Journals Connector (OSTI)

In Brazilian low-income households, water-heating requirements are typically met by electrical showerheads. On average, 73.1% of all residential units in the country are equipped with these resistance-heating devices, with nominal powers ranging from 3 to 8kW. This situation imposes a considerable burden on the electricity utility companies, since electrical showerheads typically represent the highest load but the lowest utilization (load factor) in a residential consumer unit. Furthermore, typical utilization times coincide with, and contribute to, the electrical power demand peaks in Brazil, rendering these low-cost, high-power electrical devices a high-cost consumer for the electrical system to cater for. For low-income residential consumers, electricity tariffs are subsidized, and utilities must therefore make a considerable investment in infrastructure for a limited return. In this paper we analyze the impacts of solar water heating in low-income households on the distribution utility active, reactive and apparent power demands. We have monitored a statistically representative group of low-income residences equipped with a compact domestic solar water heater in Florianopolis Brazil for 1year. We show that in comparison with identical residential units using electrical showerheads, with the adoption of solar water heating the reductions in the active, reactive and apparent power demands on the distribution utility were 49%, 29% and 49% respectively.

Helena F. Naspolini; Ricardo Rther

2011-01-01T23:59:59.000Z

410

Solar Water Heating: What's Hot and What's Not  

E-Print Network (OSTI)

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

Stein, J.

411

A DISCUSSION OF HEAT MIRROR FILM: PERFORMANCE, PRODUCTION PROCESS, AND COST ESTIMATES  

E-Print Network (OSTI)

transfer thnough a window by using Intrex film as a heatwindow construction will be PROCESS DESCRIPTION Intrex filmWindows and Lighting Program Building 90, Room 2056 Lawrence Berkeley Laboratory Berkeley, California -ii- A DISCUSSION OF HEAT MIRROR FILM:

Levin, B. P.

2011-01-01T23:59:59.000Z

412

Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs  

E-Print Network (OSTI)

Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

Rohrer, J. W.; Bronicki, L. Y.

1980-01-01T23:59:59.000Z

413

Economic analysis of residential and commercial solar heating and hot water systems  

SciTech Connect

The economic evaluation of residential and commercial solar heating and hot water systems is presented. Commercial systems are further categorized as taxable and non-taxable applications in recognition of the effect of Federal and state tax incentives and disincentives for solar energy systems. The economic evaluation of each system type is performed utilizing two distinct methods of analysis. The economic analyses follow a brief description of each method. The Cash Flow Analyses provide insight into the short and long term effects of a solar investment on the budget of the solar energy system purchaser while the Return-On-Investment Analyses provide an appropriate method of measuring the attractiveness of a solar investment in comparison to alternative long term investments. Utilizing a typical system for each system type and application the Cash Flow and Return-On-Investment Analyses are presented. The sensitivity of the results on the numerous variables in the economic analyses is shown. Maps provide a graphic display of the results of the economic analysis of typical systems using Federal and state tax credits and average state conventional fuel costs for each system type. Conclusions based on the economic analyses performed and a thorough discussion of the present status of the data required for the complete economic evaluation of solar energy systems are summarized. The current availability and limitations of data and requirements for further work in this area are discussed.

None

1980-09-23T23:59:59.000Z

414

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

415

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

416

California Solar Initiative - Low-Income Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » California Solar Initiative - Low-Income Solar Water Heating Rebate Program California Solar Initiative - Low-Income Solar Water Heating Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-Family Low-Income: $3,750 Multi-Family Low-Income: $500,000 Program Info Funding Source Ratepayer Funds Start Date 3/29/2012 State California Program Type State Rebate Program Rebate Amount Step 1 Incentive Rates (contact utility to determine current incentive levels): Single-Family Low-Income: $25.64 per therm displaced Multi-Family Low-Income: $19.23 per therm displaced The California Public Utilities Commission (CPUC) voted in October 2011 to

417

MEASUREMENT OF HEAT TRANSFER DURING DROP-WISE CONDENSATION OF WATER ON POLYETHYLENE  

E-Print Network (OSTI)

MEASUREMENT OF HEAT TRANSFER DURING DROP-WISE CONDENSATION OF WATER ON POLYETHYLENE Gagan Deep distribution of temperature during drop-wise condensation over a polyethylene substrate was measured using on the substrate was simultaneously visualized. Static contact angles of water on polyethylene are measured

Khandekar, Sameer

418

Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

419

Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation  

Science Journals Connector (OSTI)

Abstract The ground-coupled heat pump (GCHP) system is a type of renewable energy technology providing space heating and cooling as well as domestic hot water. However, experimental studies on GCHP systems are still insufficient. This paper first presents an energy-operational optimisation device for a GCHP system involving insertion of a buffer tank between the heat pump unit and fan coil units and consumer supply using quantitative adjustment with a variable speed circulating pump. Then, the experimental measurements are used to test the performance of the GCHP system in different operating modes. The main performance parameters (energy efficiency and CO2 emissions) are obtained for one month of operation using both classical and optimised adjustment of the GCHP system, and a comparative analysis of these performances is performed. In addition, using TRNSYS (Transient Systems Simulation) software, two simulation models of thermal energy consumption in heating, cooling and domestic hot-water operation are developed. Finally, the simulations obtained using TRNSYS are analysed and compared to experimental data, resulting in good agreement and thus the simulation models are validated.

Calin Sebarchievici; Ioan Sarbu

2015-01-01T23:59:59.000Z

420

Creating a Comprehensive Solar Water Heating Deployment Strategy  

SciTech Connect

This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

Focus Marketing Services

1999-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lumbee River EMC- Solar Water Heating Rebate Program (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings and...

422

Lumbee River EMC- Solar Water Heating Loan Program (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Lumbee River EMC is offering 1.50% loans to residential customers for the installation of solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings...

423

Measuring the Costs and Economic, Social, and Environmental Benefits of Nationwide Geothermal Heat Pump Deployment and The Potential Employment, Energy, and Environmental Impacts of Direct Use Applications  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: To measure the costs and economic; social; and environmental benefits of nationwide geothermal heat pump (GHP) deployment; and To survey selected states as to their potential employment; energy use and savings; and environmental impact for direct use applications.

424

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parabolic-trough solar water heating is Parabolic-trough solar water heating is a well-proven technology that directly sub- stitutes renewable energy for conventional energy in water heating. Parabolic-trough collectors can also drive absorption cooling systems or other equipment that runs off a thermal load. There is considerable potential for using these technologies at Federal facil- ities in the Southwestern United States or other areas with high direct-beam solar radi- ation. Facilities such as jails, hospitals, and barracks that consistently use large volumes of hot water are particularly good candi- dates. Use of parabolic-trough systems helps Federal facilities comply with Executive Order 12902's directive to reduce energy use by 30% by 2005 and advance other efforts to get the Federal government to set a good

425

Solar heating and hot water system installed at St. Louis, Missouri. Final report  

SciTech Connect

Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

Not Available

1980-04-01T23:59:59.000Z

426

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

427

Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers  

SciTech Connect

Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

Evans, Neal D [ORNL; Maziasz, Philip J [ORNL; Shingledecker, John P [ORNL; Pint, Bruce A [ORNL; Yamamoto, Yukinori [ORNL

2007-01-01T23:59:59.000Z

428

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

429

Impact of extensive residential solar water heating on power system losses  

Science Journals Connector (OSTI)

South Africa is in the grips of an electricity crisis. Currently, the bulk of power is produced at coal fired power stations which are located far from the large load centres. Solar energy is widely available in South Africa, and could be used to complement this coal based generation, and supply energy at the point of use. This paper aims to investigate the impact of residential solar water heating on power system transmission losses. Initially simulations were carried out in order to determine the impact of solar water heating on a household's electricity demand. These were done for households located in Cape Town, Johannesburg and Durban. A number of solar water heating installations in Cape Town were also monitored, in order to validate the simulation results. Lastly, a power system model was developed in order to investigate the possible impact of large-scale implementation of solar water heating, at varied penetration levels, on a transmission system. Using the model and the results obtained from the simulations, a utility impact analysis was carried out in order to determine the effect on transmission losses. It was concluded that large-scale implementation of solar water heating can be used as a means to alleviate loading and losses on power systems' transmission lines particularly during peak demand.

K.P. Ijumba; A.B. Sebitosi; P. Pillay; K. Folly

2009-01-01T23:59:59.000Z

430

Effect of heat treatment on stress corrosion of Alloy 718 in pressurized-water-reactor primary water  

SciTech Connect

Stress corrosion cracking (SCC) tests were conducted in 360{degrees}C pressurized-water-reactor (PWR) primary water using alloy 718 in various heat treatment conditions. Alloy X-750 in the HTH condition and an experimental heat of an alloy 718 variation, Hicoroy, were also tested for comparison. Fatigue-precracked, 12.5-mm-thick compact fracture specimens were subjected to a constant extension rate of 1.3 x 10{sup {minus}9} m/s. Crack growth rate was measured during testing using a reversing DC potential drop technique. Results in the form of SCC crack growth rate versus applied stress intensity demonstrate that the SCC resistance of alloy 718 in the PWR primary-side environment can be improved by changes in heat treatment.

Miglin, M.T.; Monter, J.V.; Wade, C.S. [Babcock & Wilcox Co., Alliance, OH (United States); Nelson, J.L. [Electric Power Research Institute, Palo Alto, CA (United States)

1992-12-31T23:59:59.000Z

431

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hour-by-Hour Cost Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy (EERE). http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html * NREL would like to thank our DOE Technology Development Managers for this project, Sara Dillich, Eric Miller, Erika Sutherland, and David Peterson. * NREL would also like to acknowledge the indirect

432

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

433

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley  

E-Print Network (OSTI)

SR- 2007-06 Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley A Case Study Using Actual Construction Costs for the Main Pipeline, Brownsville Irrigation... Grande Valley A Case Study Using Actual Construction Costs for the Main Pipeline, Brownsville Irrigation District by: Allen W. Sturdivant; Extension Associate 1, 2 M. Edward Rister; Professor and Associate Head 1, 3 Ronald D. Lacewell; Professor...

Sturdivant, A.; Rister, M.; Lacewell, R.

434

Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water  

E-Print Network (OSTI)

September 16, 2014 NIKKEN SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International... of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 District heating and cooling system in Nakanoshima 4 Characteristics of heat supply plant in Nakanoshima district -River water is utilized as heat...

Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

2014-01-01T23:59:59.000Z

435

ASHRAE Standard 90.1-2007 -- Mechanical and Service Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical and Service Water Heating Mechanical and Service Water Heating Requirements This course provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 32 minutes Presenters: Mark Hydeman, Taylor Engineering Original Webcast Date: Thursday, February 28, 2008 - 13:00 CEUs Offered: 1.5 AIA/CES LU (HSW); .15 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2007 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy

436

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

437

Experimental study on heat transfer to supercritical water flowing through tubes  

SciTech Connect

A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2}) and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)

Zhao, M.; Gu, H.; Cheng, X. [School of Nuclear Science and Engineering, Shanghai Jiao Tong Univ. SJTU, 800 Dongchuan Road, Shanghai (China)

2012-07-01T23:59:59.000Z

438

Energy savings and cost-effectiveness of heat exchanger use as an indoor air quality mitigation measure in the BPA weatherization program  

Science Journals Connector (OSTI)

The Bonneville Power Administration (BPA) has proposed a ten year program to encourage the weatherization of electrically heated homes in the Pacific Northwest. The purpose of this program is to reduce residential electrical energy demand for space heating. If air infiltration rates are reduced by employing house tightening measures, indoor air quality mitigation measures may be required in residences with significant sources of indoor air contaminants. The use of residential air-to-air heat exchangers has been proposed as a possible strategy to assure that indoor air quality is not substantially degraded by house tightening. We examine the energy impact and cost effectiveness of heat exchanger utilization in tightened homes in the BPA region. Significant energy savings are predicted if homes are tightened and heat exchangers are utilized. From the homeowner's perspective, the results of our economic analysis indicate that, at the relatively low residential electric rates in the BPA region, the use of heat exchangers in existing homes that are tightened is not economically viable. On the other hand, from the utility perspective, it may be cost effective to use heat exchangers in the weatherization program if the marginal cost to the utility is compared with the cost of conserved energy.

Isaac Turiel; William J. Fisk; Mark Seedall

1983-01-01T23:59:59.000Z

439

A Comparison of Domestic Water Heating Options in the Austin Electric Service Area  

E-Print Network (OSTI)

controlled and actual opera tinp, situations. The larye DOE/ORNL/EUS field test of HPVHs was probably the most co~nprehensive (3). The Florida Public Service Colmi~ission sporlsored saveral field tests of all four water heating systems to evaluate.... Thesis, The University of Texas at ----- Austin, Dec.. 1982. 2. Askey, Jay L., The Effect of Residential 3. R. P. Blevins, B. D. Sloan, and G. E. Malli. "Demonstration of a Heat Pump Water Heater, Volume 2: Final Report." ORNL/Sub-7321-4, Oak Ridge...

Vliet, G. C.; Hood, D. B.

1985-01-01T23:59:59.000Z

440

Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review)  

Science Journals Connector (OSTI)

The non-isothermal membrane distillation (MD) separation process is known for about 50years and very few studies are reported on its economics, energy analysis and costs evaluations. Dispersed and confusing water production costs (WPC) and specific energy consumption (EC) analysis were reported. Most of them are simulated and others are based on various costs assumptions. At present, the common asked questions about the published papers in MD including EC and WPC are: how these reported calculations on WPC and EC were made?, what is the current WPC of MD?, and how WPC of MD can be improved?. An overview of most studies carried out on these issues is presented and some useful equations and information in this context are reported. Comparison to other separation processes used in desalination is made. At present, the main challenge for large-scale MD is EC and WPC. New directions on MD should be raised. More rigorous investigations and focused directions on economical analysis of MD systems should be conducted. A unified standard method for analysis and calculations should be followed to determine WPC. For the benefit of MD process, one should be cautious when reporting simulated, non-realistic and non-contrasted WPC.

M. Khayet

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

442

Heating-induced glass-glass and glass-liquid transformations in computer simulations of water  

SciTech Connect

Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T phase diagram for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA)

Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)] [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)] [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

2014-03-21T23:59:59.000Z

443

Solvation thermodynamics and heat capacity of polar and charged solutes in water  

SciTech Connect

The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F{sup -} and a Na{sup +} ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na{sup +} and F{sup -} ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity {Delta}C{sub p} stays positive and even increases slightly upon charging the Na{sup +} ion, it decreases upon charging the F{sup -} ion and becomes negative beyond an ion charge of q=-0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

Sedlmeier, Felix; Netz, Roland R. [Fachbereich Physik, Freie Universitaet Berlin, 14195 Berlin (Germany)

2013-03-21T23:59:59.000Z

444

Selecting a new water heater  

SciTech Connect

This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

NONE

1995-03-01T23:59:59.000Z

445

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

DOE Data Explorer (OSTI)

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

446

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

SciTech Connect

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Jenna N. Schroeder

2014-12-16T23:59:59.000Z

447

High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System  

SciTech Connect

A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

448

Keywordscondensation tube, surface modification, waste heat and condensation water recovery system  

E-Print Network (OSTI)

merge to form water thin film on tube condenser surface. The condensing mechanism will change from high efficiency dropwise condensation to low efficiency filmwise condensation. In this proposal, surface system is one of the most important facilities in power plants. High efficiency waste heat

Leu, Tzong-Shyng "Jeremy"

449

Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units  

E-Print Network (OSTI)

The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

Guan, W.; Liu, M.; Wang, J.

1998-01-01T23:59:59.000Z

450

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost  

SciTech Connect

A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC ({approx}49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC.

Choi, Hangbok; Ko, Won Il; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

451

Optimization of water use and cost of electricity for an MEA carbon capture process, January 26, 2012  

SciTech Connect

DOE goals are: 90% CO{sub 2} capture, Less than 30% increase in COE, and to reduce water use by 70% at 50% cost of dry cooling. Objectives are: (1) Develop detailed models of supercritical power plant, MEA carbon capture process, CO{sub 2} compression; and (2) Optimize process for conflicting goals of minimizing water use and COE CO{sub 2} capture greatly increases COE and water use, power gen. 1/3 of fresh water use, and water scarcity is increasing.

Eslick, J.; Miller, D.

2012-01-01T23:59:59.000Z

452

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

453

Susceptibility of members of the family Legionellaceae to thermal stress: implications for heat eradication methods in water distribution systems.  

Science Journals Connector (OSTI)

...all Legionellaceae to heat inactivation (an eradication...foundation for the utility of heat inactiva- tion as a...rapid and precipitous loss of viability when temperatures...conditions more repre; water distribution system, i.e., when...evaluating sediment on the heat resistance of Legionella...

J E Stout; M G Best; V L Yu

1986-08-01T23:59:59.000Z

454

USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer.  

SciTech Connect

The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects.

Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; and Lian, K.

2006-07-01T23:59:59.000Z

455

Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii  

Science Journals Connector (OSTI)

...thermal energy from warm ocean waters. A small fraction...converted to electrical power and waste heat is rejected...water pumped from the ocean depth. Solar energy absorbed by the ocean surface provides the heat...Thermal losses, the power requirements to pump large...

Leslie Ralph Berger; Joyce A. Berger

1986-06-01T23:59:59.000Z

456

Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation  

E-Print Network (OSTI)

for protecting public drinking water (CALFED 2000), are alsobest management options for drinking water sourced from theDelta Authority. 2004. Drinking water quality program multi-

Chen, Wei-Hsiang; Haunschild, Kristine; Lund, Jay R.; Fleenor, William E.

2010-01-01T23:59:59.000Z

457

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

458

Pilot study of commercial water-loop heat pump compressor life  

SciTech Connect

This study of the service life of water-loop heat pump compressors in commercial office buildings, using data gathered from the service records of one heat pump service contractor, focused on the replacement of compressors in small console ( perimeter'') water-loop heat pumps and in larger vertical and horizontal ( core'') units. A statistical methodology for dealing with censored data was developed for this study which is an extension of the methodologies used in other EPRI studies of heat pump and heat pump compressor life. By extrapolating a Weibull distribution curve fitted to the data, the median service life of the sample of perimeter unit compressors (the age at which 50% of the original population of compressors would be expected to have been replaced) was estimated to be 47 years. The median service life of a sample that excluded compressors with a known manufacturing defect was estimated to be 69 years. Core unit compressor replacements were analyzed in the same manner. Extrapolation of a Weibull distribution yielded an estimated median service life of core unit compressors of 12 years. As with the perimeter unit compressors, there was an identified manufacturing defect. When the compressors with the identified fault were excluded from the sample and the data reanalyzed, the median service life for the compressors in the remainder of the buildings was estimated to be 18 years.

Ross, D.P. (Policy Research Associates, Inc., Reston, VA (USA))

1990-03-01T23:59:59.000Z

459

Buoyancy driven flow in a hot water tank due to standby heat loss  

Science Journals Connector (OSTI)

Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different parts of the tank is measured by experiments and used as input to the CFD model. Water temperatures at different levels of the tank are measured and compared to CFD calculated temperatures. The investigations focus on validation of the CFD model and on understanding of the CFD calculations. The results show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is influenced by water temperatures in the tank. When the temperature gradient in the tank is smaller than 2K/m, there is a downward fluid velocity of 0.0030.015m/s. With the presence of thermal stratification the buoyancy driven flow is significantly reduced. The dependence of the velocity magnitude of the downward flow on temperature gradient is not influenced by the tank volume and is only slightly influenced by the tank height to tank diameter ratio. Based on results of the CFD calculations, an equation is determined to calculate the magnitude of the buoyancy driven flow along the tank wall for a given temperature gradient in the tank.

Jianhua Fan; Simon Furbo

2012-01-01T23:59:59.000Z

460

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat and water transport in a polymer electrolyte fuel cell electrode  

SciTech Connect

In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

2010-01-01T23:59:59.000Z

462

Carbon, water, and heat flux responses to experimental burning and drought  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon, water, and heat flux responses to experimental burning and drought Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie Title Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie Publication Type Journal Article Year of Publication 2012 Authors Fischer, Marc L., Margaret S. Torn, David P. Billesbach, Geoffrey Doyle, Brian Northup, and Sebastien C. Biraud Journal Agricultural and Forest Meteorology Volume 166-167 Pagination 169-174 Keywords Carbon exchange, eddy covariance, Fire, Grassland, Prairie, Water stress Abstract Drought and fire are common disturbances to grassland ecosystems. We report two years of eddy covariance ecosystem-atmosphere fluxes and biometric variables measured in nearby burned and unburned pastures in the US Southern Great Plains. Over the course of the experiment, annual precipitation (∼600 mm yr-1) was lower than the long term mean (∼860 mm yr-1). Soil moisture decreased from productive conditions in March 2005 dry, unproductive conditions during the growing season starting in March 2006. Just prior to the burn in early March 2005, burned and unburned pastures contained 520 ± 60 and 360 ± 40 g C m-2 of total above ground biomass (AGB) and litter, respectively. The fire removed approximately 200 g C m-2 of litter and biomass. In the 2005 growing season following the burn, maximum green AGB was 450 ± 60 and 270 ± 40 g C m-2, with corresponding cumulative annual net ecosystem carbon exchange (NEE) of -330 and -150 g C m-2 for the burned and unburned pastures, respectively. In contrast to NEE, cumulative mean sensible heat and water fluxes were approximately equal in both pastures during the growing season, suggesting either an increase in water use efficiency or a decrease in evaporation in the burned relative to the unburned pasture. In the 2006 growing season, dry conditions decreased carbon uptake and latent heat, and increased sensible heat fluxes. Peak AGB was reduced to 210 ± 30 g C m-2 and 140 ± 30 g C m-2 in the burned and unburned pastures, respectively, while NEE was near zero. These results suggest that the lack of precipitation was responsible for most of the interannual variation in carbon exchange for these un-irrigated prairie pastures.

463

Worth It? Weighing the costs of implementing the state water plan and the consequences of doing nothing  

E-Print Network (OSTI)

and strategies that each region has identi#30;ed as needed to meet future water demands. #31;e strategies vary widely in terms of cost. ?Aquifer storage and recovery and desalination are more so long-term strategies because of cost,? Bri#20;in said... center-pivot irrigation system near Pilot Grove, Texas. Photo by Robert Burns, Texas A&M AgriLife Communications. ?Due to the cost of seawater desalination and some of the permi#20;ing issues that exist around it, we?re seeing that recommended...

Lee, Leslie

2013-01-01T23:59:59.000Z

464

Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region  

SciTech Connect

During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

Goldman, Charles

2007-03-01T23:59:59.000Z

465

Validating the Estimated Cost of Saving Water Through Infrastructure Rehabilitation in the Texas Lower Rio Grande Valley  

E-Print Network (OSTI)

). The request by USBR for a follow-up analysis and a brief report on revised ?final? key results, using the actual construction expense, was the impetus to this special report. page 2 of 12 Component #1: Interconnect between Canals 39 and 13-A1 Review of Project.../were based on reduced Rio Grande diversions and reduced relifting for this project component. Updated (Abridged) Results: Cost-of-Saving-Water and Three Legislative Values As depicted in Table 2, the revised comprehensive cost of saving water ($/ac...

Sturdivant, A. W.; Rister, M.; Lacewell, R. D.; Rogers, C. S.

466

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

SciTech Connect

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

467

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

468

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network (OSTI)

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

469

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchNon-point Source Water Pollution from Motor Vehicles Motorof controlling water pollution from motor vehicles. For

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

470

Prediction of heat transfer for a supercritical water test with a four pin fuel bundle  

SciTech Connect

As a next step to validate prediction methods for core design of a Supercritical Water Cooled Reactor, a small, electrically heated fuel bundle with 4 pins is planned to be tested. This paper summarizes first heat transfer predictions for such a test, which were performed based on supercritical and subcritical sub-channel analyses. For heat transfer under supercritical pressure conditions, the sub-channel code STAFAS has been applied, which had been tested successfully already for a supercritical water reactor design. Design studies with different assembly box sizes at a given pin diameter and pitch have been performed to optimize the coolant temperature distribution. With a fuel pin outer diameter of 10 mm and a pitch to diameter ratio of 1.15, an optimum inner width of the assembly box was determined to be 24 mm. Coolant and cladding surface temperatures to be expected at subcritical pressure conditions have been predicted with the sub-channel code MATRA. As, different from typical PWR or BWR conditions, a dryout has been foreseen for the tests, this code had to be extended to include suitable dryout criteria as well as post dryout heat transfer correlations at higher enthalpies and pressures. Different from PWR or BWR design, the cladding surface temperature of fuel pins in supercritical water reactors can vary significantly around the circumference of each pin, causing bending towards its hotter side which, in turn, can cause additional sub-channel heat-up and thus additional thermal bending of the pin. To avoid a thermal instability by this effect, a sensitivity study with respect to thermal bending of fuel pins has been performed, which determines the minimum number of grid spacers needed for this test. (authors)

Behnke, L. [RWE Power AG, Essen (Germany); Himmel, S.; Waata, C.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, PO Box 3640, D-76021 Karlsruhe (Germany); Laurien, E. [University of Stuttgart (Germany)

2006-07-01T23:59:59.000Z

471

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

472

Performance of Heat Pump Water Heaters: Initial Findings of Draw Profile Effect on HPWH Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance of Heat Pump Water Heaters Performance of Heat Pump Water Heaters © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Evaluation Overview  2000-2002 Evaluated 20 installations with CL&P  Product had problems; not ready for prime time (average COPs of 1.67 was not the problem)  New batch of heaters available, including:  GE's GeoSpring Hybrid (50 gal)  A.O.Smith's Voltex Hybrid (60 & 80 gal)  Stiebel-Eltron's Accelera 300 (80 gal)  Evaluating 14 installations for National Grid, NSTAR, & Cape Light Compact. © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved.

473

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

474

Clean Boiler Waterside Heat Transfer Surfaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

475

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

476

"Table HC10.8 Water Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by U.S. Census Region, 2005" 8 Water Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Water Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Number of Water Heaters" "1.",106.3,19.6,24.5,39,23.2 "2 or More",3.7,0.3,0.9,1.5,1 "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,16.1,23.5,38.2,21.9 "Two or More Housing Units",10.3,3.7,1.9,2.4,2.3 "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q"

477

A verification study on saving energy cost and reducing CO2 emission with large-scale geothermal heat pump systems in Korea  

Science Journals Connector (OSTI)

This paper presents economic and environmental effects by using monitoring data collected over a 2-yr period in geothermal heating and cooling facilities in Jungwon University Korea. The facility has heating capacity of 7045?kW and cooling capacity of 5947?kW. Such monitoring data are rarely reported in the literature; thus the evaluation based on long-term operational data will contribute greatly to the objective assessment of the geothermal heat pump system (GHPS) as a renewable energy resource. The effects of relative energy cost saving and reductions in CO2 emission were predicted for comparison with conventional heating and cooling systems. The GHPS was estimated to reduce energy costs by 76.4%85.3% and yield a reduction of CO2 emission of 398595 tons annually. We also conducted an economic analysis using the benefit/cost ratio (BCR) method according to scenarios in which the lifespan and discount rate for the GHPS were varied. Since the BCR for the GHPS was in the range of 1.993.58 (case 1) and 1.673.01 (case 2) GHPS is considered to be more economic than other types of heating and cooling systems. These results provide evidentiary data to help overcome skepticism over the applicability of large-scale GHPSs.

Byeong-Hak Park; Hyoung-Soo Kim; Kang-Kun Lee

2013-01-01T23:59:59.000Z

478

Advances in induction heating  

SciTech Connect

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

479

Long-Baseline Neutrino Experiment (LBNE) Water Cherenkov Detector Schedule and Cost Books LBNE Far Site Internal Review(December 6-9,2011)  

SciTech Connect

Schedule and Cost Books developed for the Water Cherenkov Detector (WCD) option for the far detector of the Long Baseline Neutrino Experiment (LBNE)

Stewart J.; Diwan, M.; Dolph, J.; Novakova, P.; Sharma, R.; Stewart, J.; Viren, B.; Russo, T.; Kaducak, M.; Mantsch, P.; Paulos, B.; Feyzi, F.; Sullivan, G.; Bionta, R.; Fowler, J.; Warner, D.; Bahowick, S.; Van Berg, R.; Kearns, E.; Hazen, E.; Sinnis, G.; Sanchez, M.

2011-12-09T23:59:59.000Z

480

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

SciTech Connect

As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

Brown, Moya Melody, Camilla Dunham Whitehead, Rich; Dunham Whitehead, Camilla; Brown, Rich

2010-09-30T23:59:59.000Z