Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Technologies Office: Water Heating Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

2

Building America Standing Technical Committee - Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Standing Technical Committee Strategic Plan, v2012a Revised: January 2012 Committee Chair: 2011, 2012 Marc Hoeschele mhoesch@davisenergy.com 530-753-1100 x23 ARBI Page 2 Background on Residential Water Heating According to the U.S. Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS), annual residential water heating totals 2.11 quads of energy annually, or 20% of the energy delivered to residential buildings 1 . Over the past 70 years, gas and electric storage water heaters have been the predominant water heater type in the United States 2 . Recently, gas tankless water heaters have made inroads in market share with current industry projected gas tankless sales estimated at 400,000+ annually, and an

3

Building America Standing Technical Committee- Water Heating  

Broader source: Energy.gov [DOE]

The Building America program is focused on delivering market acceptable energy efficiency solutions to homeowners, builders, and contractors. Near term goals of 30-50% source energy savings are currently targeted. This document examines water heating gaps and barriers, and is updated as of Feb. 2012.

4

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers [EERE]

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST This...

5

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers [EERE]

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 11:00AM to 12:30PM MST...

6

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

7

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

8

Building Codes and Regulations for Solar Water Heating Systems | Department  

Broader source: Energy.gov (indexed) [DOE]

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

9

Building Codes and Regulations for Solar Water Heating Systems | Department  

Broader source: Energy.gov (indexed) [DOE]

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

10

FS: heat pump water heaters | The Better Buildings Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

11

Building America Webinar: Central Multifamily Water Heating Systems  

Broader source: Energy.gov [DOE]

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

12

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

13

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

14

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

15

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

16

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

17

Building America Webinar: Central Multifamily Water Heating Systems- Multifamily Central Heat Pump Water Heating  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America webinar on January 21, 2015.

18

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov (indexed) [DOE]

Direct Use for Building Direct Use for Building Heat and Hot Water Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Direct Use for Building Heat and Hot Water." Slide 1 Amy Hollander: Hello, I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Building Heat and Hot Water sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's new state-of-the-art net zero

19

Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov [DOE]

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on direct use for building heat and hot water by clicking on the .swf link below. You can also download the...

20

Technology data characterizing water heating in commercial buildings: Application to end-use forecasting  

SciTech Connect (OSTI)

Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov (indexed) [DOE]

DIRECT USE FOR BUILDING HEAT & HOT WATER Presented by the National Renewable Energy Laboratory Course Outline 2 What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Solar Thermal and Solar Ventilation Air Pre-Heat - Resources, Technology, Examples & Cost, and References  Biomass Heat - Resources, Technology, Examples & Cost, and References  Geothermal Building Heat - Resources, Technology, Examples & Cost, and References  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian

22

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

23

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov [DOE]

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

24

In search for sustainable globally cost-effective energy efficient building solar system Heat recovery assisted building integrated PV powered heat pump for air-conditioning, water heating and water saving  

Science Journals Connector (OSTI)

Abstract Obtained as a research result of conducted project, this paper presents an innovative, energy efficient multipurpose system for a sustainable globally cost-effective building's solar energy use and developed methodology for its dynamic analysis and optimization. The initial research and development goal was to create a cost-effective technical solution for replacing fossil fuel and electricity with solar energy for water heating for different purposes (for pools, sanitary water, washing) in one SPA. After successful realization of the initial goal, the study was proceeded and as a result, the created advanced system has been enriched with AC performance. The study success was based on understanding and combined measurements and by BPS made predictions of AC loads and solar radiation dynamics as well as on the determination of the synergetic relations between all relevant quantities. Further, by the performed BPS dynamic simulations for geographically spread buildings locations, it has been shown that the final result of the conducted scientific engineering R&D work has been the created system of confirmed prestigious to the sustainability relevant performance globally cost-effective building integrated photovoltaic powered heat pump (HP), assisted by waste water heat recovery, for solar AC, water heating and saving.

Marija S. Todorovic; Jeong Tai Kim

2014-01-01T23:59:59.000Z

25

Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report  

SciTech Connect (OSTI)

This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

Not Available

1980-06-01T23:59:59.000Z

26

Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)  

Broader source: Energy.gov [DOE]

To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

27

Modelling the impacts of building regulations and a property bubble on residential space and water heating  

Science Journals Connector (OSTI)

This paper develops a bottom-up model of space and water heating energy demand for new build dwellings in the Irish residential sector. This is used to assess the impacts of measures proposed in Ireland's National Energy Efficiency Action Plan (NEEAP). The impact of the housing construction boom, which resulted in 23% of occupied dwellings in 2008 having been built since 2002, and the subsequent bust, are also assessed. The model structure treats separately new dwellings added to the stock after 2007 and pre-existing occupied dwellings. The former is modelled as a set of archetype dwellings with energy end use affected by the relevant set of building regulations that apply during construction. Energy demand of existing dwellings is predicted by a simpler top down method based on historical energy use trends. The baseline scenario suggests residential energy demand will grow by 19% from 3206ktoe in 2007 to 3810ktoe in 2020. The results indicate that 2008 and 2010 building regulations will lead to energy savings of 305ktoe (8.0%) in 2020. Had the 2008 building regulations been introduced in 2002, at the start of the boom, there would be additional savings of 238ktoe (6.7%) in 2020.

D. Dineen; B.P. Gallachir

2011-01-01T23:59:59.000Z

28

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

29

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect (OSTI)

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

30

Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Broader source: Energy.gov [DOE]

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

31

Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

Broader source: Energy.gov [DOE]

For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a heat pump water heater in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

32

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

33

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

SciTech Connect (OSTI)

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

34

Water Heating Basics | Department of Energy  

Energy Savers [EERE]

Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional...

35

Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

36

Absorption Heat Pump Water Heater  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

37

Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

38

Solar Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

39

Research at the Building Research Establishment into the Applications of Solar Collectors for Space and Water Heating in Buildings [and Discussion  

Science Journals Connector (OSTI)

...experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings...

1980-01-01T23:59:59.000Z

40

Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings  

E-Print Network [OSTI]

simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat...

Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Research at the Building Research Establishment into the Applications of Solar Collectors for Space and Water Heating in Buildings [and Discussion  

Science Journals Connector (OSTI)

...and the E.E.C. Solar space heating is...experimental low energy house laboratories...using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies...means of conserving energy in buildings. The...

1980-01-01T23:59:59.000Z

42

Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings  

SciTech Connect (OSTI)

These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

None

1980-06-01T23:59:59.000Z

43

Cost Effective Water Heating Solutions  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

44

FEMP--Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

45

Building America Webinar: Central Multifamily Water Heating Systems- Energy-Efficient Controls for Multifamily Domestic Hot Water  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America webinar on January 21, 2015.

46

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

47

Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet)  

Broader source: Energy.gov [DOE]

Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation.

48

Absorption Heat Pump Water Heater - 2013 Peer Review | Department...  

Energy Savers [EERE]

Absorption Heat Pump Water Heater - 2013 Peer Review Absorption Heat Pump Water Heater - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's...

49

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

50

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

51

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

52

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

53

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

54

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

2. Heating Equipment, Number of Buildings, 1999" 2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,240,783,397,"Q",146,589,98 "5,001 to 10,000 ..............",1110,946,100,387,183,"Q",144,302,"Q" "10,001 to 25,000 .............",708,629,81,206,191,19,128,253,22

55

Human Health Science Building Geothermal Heat Pumps | Department...  

Broader source: Energy.gov (indexed) [DOE]

Human Health Science Building Geothermal Heat Pumps Human Health Science Building Geothermal Heat Pumps Project objectives: Construct a ground sourced heat pump, heating,...

56

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

57

Modeling of Residential Buildings and Heating Systems  

E-Print Network [OSTI]

-zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

Masy, G.; Lebrun, J.

2004-01-01T23:59:59.000Z

58

Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)  

SciTech Connect (OSTI)

This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

Not Available

2014-11-01T23:59:59.000Z

59

Research & Development Roadmap: Emerging Water Heating Technologies  

Broader source: Energy.gov [DOE]

The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTOs energy savings goals.

60

Emerging Water Heating Technologies Research & Development Roadmap  

Broader source: Energy.gov [DOE]

The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTOs energy savings goals.

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Burbank Water and Power - Green Building Incentive Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program < Back Eligibility Commercial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Green Building Incentive Provider Rebates The U.S. Green Building Council is a non-profit organization that promotes the design and construction of buildings that are environmentally responsible, profitable, and healthy places to live and work. The Green Building Council developed the Leadership in Energy and Environmental

62

Water-Heating Dehumidifier  

Energy Innovation Portal (Marketing Summaries) [EERE]

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

63

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

64

Central Multifamily Water Heating Systems | Department of Energy  

Energy Savers [EERE]

Central Multifamily Water Heating Systems Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST The Building America Program is hosting a no-cost,...

65

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

3. Heating Equipment, Floorspace, 1999" 3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,679,2271,1183,"Q",463,1779,250 "5,001 to 10,000 ..............",8238,7090,745,2848,1350,"Q",1040,2301,"Q" "10,001 to 25,000 .............",11153,9865,1288,3047,3021,307,2047,3994,401

66

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov (indexed) [DOE]

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

67

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers [EERE]

Low Cost Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

68

New and Underutilized Technology: Solar Water Heating | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

69

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

70

Building Blocks of Tropical Diabatic Heating  

SciTech Connect (OSTI)

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400hpa and a cooling peak near 700hPa and convective heating with a heating maximum near 700hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top (bottom) heavy large scale heating profiles associated with excess of stratiform (convective) heating evolve towards a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

Hagos, Samson M.

2010-07-01T23:59:59.000Z

71

Heat Pump Water Heating Modeling in EnergyPlus  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

72

Heat Pump Water Heaters Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

73

Passive Solar Building Design and Solar Thermal Space Heating...  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable...

74

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network [OSTI]

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

75

Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation  

E-Print Network [OSTI]

/cm2 240 260 280 300 320 340 360 0.4 0.6 0.8 1 1.2 1.4 1.6 TFC [ K ] C O P COPEn at tmem = 0.016 cm COPEx at tmem = 0.016 cm COPEn at tmem = 0.017 cm COPEx at tmem = 0.017 cm COPEn at tmem = 0.018 cm COPEx at tmem = 0.018 cm PFC = 3... + QFC s 7,ammonia = s ( 'Ammonia' , P = P7 , h =h7 ) s 7,water = s ( 'Water' , P = P7 , h =h7 ) s 7 = x7 ? s 7,ammonia + ( 1 ? x7 ) ? s 7,water h 19,ammonia = h ( 'Ammonia' , T =T19 , P = P19 ) h 19,water = h ( 'Water' , T =T19...

Gadalla, M.; Ratlamwala, T.; Dincer, I.

2010-01-01T23:59:59.000Z

76

Identifying apartment buildings with potential heating issues.  

E-Print Network [OSTI]

??The residential sector in Sweden uses a large amount of energy for heating and hot water. Sweden as well as all other European countries need (more)

Rooij, Joris van

2011-01-01T23:59:59.000Z

77

Building Technologies Office: HVAC Optimized Heat Exchangers Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimized Heat Optimized Heat Exchangers Research Project to someone by E-mail Share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Facebook Tweet about Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Twitter Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Google Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Delicious Rank Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Digg Find More places to share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

78

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

79

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers [EERE]

Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

80

Water Heating Standing Technical Committee Presentation | Department...  

Energy Savers [EERE]

Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Performance of a Performance of a Heat Pump Water Heater in the Hot-Humid Climate Windermere, Florida Over recent years, heat pump water heaters (HPWHs) have become more read- ily available and more widely adopted in the marketplace. A key feature of an HPWH unit is that it is a hybrid system. When conditions are favorable, the unit will operate in heat pump mode (using a vapor compression system that extracts heat from the surrounding air) to efficiently provide domestic hot water (DHW). Homeowners need not adjust their behavior to conform to the heat pump's capabilities. If a heat pump cannot meet a higher water draw demand, the heater will switch to electric resistance to provide a higher heating rate. This flexibility

82

Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Not Available

2014-11-01T23:59:59.000Z

83

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

84

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

85

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

86

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

87

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings  

E-Print Network [OSTI]

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

Hayden, Nancy J.

88

A FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER  

E-Print Network [OSTI]

air flow measurement. A water source heat pump provided chilled water to a fan-coil unit which in turn on volumetric air flow measurement and an overall room heat balance. Analysis was directed at results fromA FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER: DESIGN

89

Potentials of Demand Side Management Using Heat Pumps with Building Mass as a Thermal Storage  

Science Journals Connector (OSTI)

Abstract Within this work, load-shifting possibilities of heat pumps in residential buildings as well as its influencing and limiting factors are displayed. The intermediate storage is achieved by using the thermal mass of the building so the heat supply can be postponed from the heat demand for a certain period, depending on the characteristics of the building. No additional water storage is considered.

Charlotte Ellerbrok

2014-01-01T23:59:59.000Z

90

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

91

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

92

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

93

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

94

Building Technologies Office: Cold Climate Heat Pump Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cold Climate Heat Pump Cold Climate Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Cold Climate Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Cold Climate Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Cold Climate Heat Pump Research Project on Google Bookmark Building Technologies Office: Cold Climate Heat Pump Research Project on Delicious Rank Building Technologies Office: Cold Climate Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Cold Climate Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

95

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

96

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

97

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

98

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

99

Building Technologies Office: Air-Source Integrated Heat Pump Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

100

Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" 1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc" ,,"Total Floorspacea","Heated Floorspaceb","Total Floorspacea","Cooled Floorspaceb","Total Floorspacea","Lit Floorspaceb" "All Buildings ................",67338,61602,53812,58474,42420,64085,54696 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,5055,4879,3958,5859,4877 "5,001 to 10,000 ..............",8238,7090,5744,6212,4333,7421,5583 "10,001 to 25,000 .............",11153,9865,8196,9530,6195,10358,8251

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water Heating Technologies Research and Development Roadmap ...  

Energy Savers [EERE]

Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

102

Emerging Water Heating Technologies Research & Development Roadmap...  

Energy Savers [EERE]

Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

103

Solar Water Heating Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

104

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao

2010-06-01T23:59:59.000Z

105

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

106

Energy Saver 101: Water Heating Infographic | Department of Energy  

Energy Savers [EERE]

Energy Saver 101: Water Heating Infographic Energy Saver 101: Water Heating Infographic Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic...

107

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

108

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

The DLM accounts for the distribution heat loss within eachHot-Water Distribution System Piping Heat Loss FactorsPhaseHot Water Distribution System Piping Heat Loss Factors-

Lutz, Jim

2014-01-01T23:59:59.000Z

109

Impacts of Some Building Design Parameters on Heat Pump Applications  

E-Print Network [OSTI]

. In this study; in order to provide energy conservation and climatic comfort in buildings, an approach which aims to control the energy consumption of heat pumps by controlling decisions related to building design parameters have been developed. For this purpose...

Erdim, B.; Manioglu, G.

2011-01-01T23:59:59.000Z

110

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

of Commercial-Building Micro-grids, IEEE Transactions onEffects of Carbon Tax on Micro-grid Combined Heat and Powerin this work, picks optimal micro-grid 3 /building equipment

Stadler, Michael

2014-01-01T23:59:59.000Z

111

Water Management Guide - Building America Top Innovation | Department...  

Energy Savers [EERE]

Water Management Guide - Building America Top Innovation Water Management Guide - Building America Top Innovation Cover of the EEBA Water Management Guide. As energy codes and...

112

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

113

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

114

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network [OSTI]

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

115

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

116

Solar Water Heating Requirement for New Residential Construction |  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

117

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

118

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

119

Dawdon Mine Water Heat Pump Trial  

E-Print Network [OSTI]

14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

Oak Ridge National Laboratory

120

Be Sun-sible? about Heating Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat and transmit it to the water, and study the relationship between insulation and heat loss. Teacher background, assessment questions, and extensions are provided. The...

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modern Heating Options for Commercial/Institutional Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modern Heating Options for Commercial/Institutional Buildings Modern Heating Options for Commercial/Institutional Buildings Speaker(s): Thomas Durkin Date: February 23, 2009 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Moira Howard-Jeweler This seminar presentation will be video-conferenced from our Washington, DC Projects office.) According to USGBC, LBNL, and CBECS data, commercial/institutional buildings use one quarter of all the energy consumed in the US. Depending on the geographic area of the country, heating can be as little as 30% (Houston), or as much as 68% (Minneapolis) of the building total. Mr. Durkin will share his experience in dramatically reducing the heating energy in buildings using a combination of low temperature boilers, heat recovery strategies and a new approach to geo-thermal systems. His data from completed projects shows 50 to 60%

122

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings  

E-Print Network [OSTI]

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

Paris-Sud XI, Université de

123

Human Health Science Building Geothermal Heat Pumps  

Broader source: Energy.gov (indexed) [DOE]

HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

124

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers [EERE]

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

125

Solar Water Heating and Design Processes  

Science Journals Connector (OSTI)

Solar energy has been used to heat water for many years, and the design requirements of solar water heating equipment have been studied for ... because that upto this time other sources of energy have been more economical

H. P. Garg

1987-01-01T23:59:59.000Z

126

Lessons learned How to Build Successful Heat Pump Markets  

E-Print Network [OSTI]

#12;2 Lessons learned ­ How to Build Successful Heat Pump Markets Lukas Bergmann, Delta Energy & Environment European Heat Pump Summit 2013 Nürnberg, 15th October 2013 Contact: lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy

Oak Ridge National Laboratory

127

Heat Pump Water Heater Performance in  

Broader source: Energy.gov (indexed) [DOE]

searc searc e er tra A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida searc e er tra Heat Pump Water Heater Performance in Laboratory House Building America Technical Update 2013 ACI National Home Performance Conference April 29- 30 , 2013 Carlos J. Colon carlos@fsec.ucf.edu A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Grounds, Florida (east coast) 2009 -Present (Currently fourth testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida

128

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

129

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect (OSTI)

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

130

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department...  

Energy Savers [EERE]

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the...

131

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

132

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

133

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

134

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

135

Energy Star Building Upgrade Manual Heating and Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

136

OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS  

E-Print Network [OSTI]

OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS C. Byron Winn Gearold R fundamental optimization problems involved in the design of a solar building. The first is a parameter for the given system configu- ration and the opt the latter problem The CSU Solar parameters such as mal set

Moore, John Barratt

137

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Buildings.............................. Buildings.............................. 1,644 1,429 131 Q 72 0.10 0.09 0.01 Q (*) Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 228 Q (*) Q 0.41 0.38 Q (*) Q 5,001 to 10,000 .......................... 262 237 Q 1 Q 0.36 0.32 Q (*) Q 10,001 to 25,000 ........................ 201 179 11 (*) Q 0.19 0.17 0.01 (*) Q 25,001 to 50,000 ........................ 124 115 Q (*) 4 0.14 0.13 Q (*) (*) 50,001 to 100,000 ...................... 209 188 10 Q 7 0.11 0.10 0.01 Q (*) 100,001 to 200,000 .................... 270 250 Q Q 10 0.09 0.08 Q Q (*) 200,001 to 500,000 .................... 258 183 Q Q 11 0.08 0.05 0.02 Q (*) Over 500,000 ............................. 72 Q Q Q 15 0.02 Q Q Q (*) Principal Building Activity Education .................................. 342 322 11 Q Q 0.18 0.17 0.01 Q (*) Food Sales ................................

138

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network [OSTI]

The Future of Building System Modeling and Simulation ofequation-based modeling languages in the building simulationModeling of Heat Transfer in Rooms in the Modelica Buildings

Wetter, Michael

2013-01-01T23:59:59.000Z

139

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network [OSTI]

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

140

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protectionfollowed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ranking cost effective energy conservation measures for heating in Hellenic residential buildings  

Science Journals Connector (OSTI)

Abstract Residential buildings comprise the biggest segment of the European building stock and they are responsible for the majority of the building's sector energy consumption and CO2 emissions. This paper documents the potential benefits and sets the priorities of individual energy conservation measures (ECMs) to reduce heating energy consumption in Hellenic residential buildings, including space heating and domestic hot water production. The analysis is facilitated by using the available Hellenic typology for residential buildings that consists of 24 typical buildings, derived after a classification in three construction periods, two building sizes and four climate zones. The focus is mainly on the implementation of \\{ECMs\\} that have low first-cost investment and short payback period. In order to prioritize \\{ECMs\\} that would be most attractive to building owners, two ranking criteria are used, namely primary heating energy savings and payback period. Finally, the preliminary results are used to provide an insight on the potential abatement of CO2 emissions for the national residential building stock.

K.G. Droutsa; S. Kontoyiannidis; E.G. Dascalaki; C.A. Balaras

2014-01-01T23:59:59.000Z

142

U.S. Virgin Islands - Solar Water Heating Requirement for New Construction  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » U.S. Virgin Islands - Solar Water Heating Requirement for New Construction U.S. Virgin Islands - Solar Water Heating Requirement for New Construction < Back Eligibility Commercial Construction Institutional Local Government Low-Income Residential Multi-Family Residential Residential State Government Savings Category Heating & Cooling Solar Water Heating Program Info Program Type Building Energy Code In July 2009, U.S. Virgin Islands enacted legislation Act 7075. This legislation requires all new developments, and substantial building modifications, must be installed with energy efficient solar water heaters to provide at least 70% of the building's water heating needs. This is for all building types: residential, commercial, and governmental.

143

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

144

THERM: Two-Dimensional Building Heat-Transfer Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 THERM: Two-Dimensional Building Heat-Transfer Modeling For more information and to download THERM, please visit our website: http://windows.lbl.gov/software/therm The Windows and Daylighting Group's two-year-old computer program THERM 1.0 is a state-of-the-art tool for modeling two-dimensional heat-transfer effects in building components. The thermal property information THERM provides is important for the design and application of building components such as windows, walls, foundations, roofs and doors. This Microsoft Windows-based program has great potential to users such as building component manufacturers, educators, students, architects, engineers and others who are interested in assessing the heat-transfer properties of single products, product interactions, or integrated systems. THERM

145

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Dentz, J.; Henderson, H.; Varshney, K.

2014-09-01T23:59:59.000Z

146

AEDG Implementation Recommendations: Cooling and Heating Loads | Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling and Heating Loads Cooling and Heating Loads The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on heating and cooling system design loads for the purpose of sizing systems and equipment should be calculated in accordance with generally accepted engineering standards and handbooks such as ASHRAE Handbook--Fundamentals. Publication Date: Wednesday, May 13, 2009 air_cooling_and_heating_loads.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999

147

Water Heating Standing Technical Committee Presentation  

Broader source: Energy.gov (indexed) [DOE]

Standing Technical Committee Standing Technical Committee Water Heating Residential Energy Efficiency Stakeholder's Meeting February 29, 2012 - Austin, Texas 2 STC Chairman Responsibilities * To maintain the Water Heating Strategic Plan (living document) * To work with stakeholders to identify research activities that resolve gaps & barriers towards achieving Water Heating Strategic Goals * To work with stakeholders to prioritize gaps leading to future BA research efforts * To serve as a collection point for BA research activities and outside research * To facilitate collaboration among BA researchers and the marketplace 3 Water Heating as a Significant End Use According to DOE RECS data, residential water heating represents 20% of the energy delivered to U.S. households. 4 Water Heating Strategic Goals

148

Low Cost Solar Water Heating R&D  

Broader source: Energy.gov (indexed) [DOE]

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

149

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

28 28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 34 32 Q (*) Q 56.9 52.2 Q (*) Q 5,001 to 10,000 .......................... 36 33 Q (*) Q 49.4 44.7 Q 0.1 Q 10,001 to 25,000 ........................ 28 25 1 (*) Q 26.7 23.8 1.4 0.1 Q 25,001 to 50,000 ........................ 17 16 Q (*) 1 19.1 17.8 Q (*) 0.6 50,001 to 100,000 ...................... 29 26 1 Q 1 15.6 14.1 0.7 Q 0.5 100,001 to 200,000 .................... 37 35 Q Q 1 12.5 11.5 Q Q 0.5 200,001 to 500,000 .................... 36 25 Q Q 2 10.5 7.4 2.4 Q 0.5 Over 500,000 ............................. 10 Q Q Q 2 2.1 Q Q Q 0.4 Principal Building Activity Education .................................. 47 45 2 Q Q 25.4 23.9 0.8 Q 0.3 Food Sales ................................ Q Q Q Q Q Q Q Q Q Q Food Service ............................. Q Q Q Q Q Q Q Q Q Q

150

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

634 634 578 46 1 Q 116.4 106.3 8.4 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ........................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 .......................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ........................ Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ........................ Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ...................... Q Q Q Q Q Q Q Q Q Q 100,001 to 200,000 .................... 165 154 10 Q Q 118.1 109.9 Q Q Q 200,001 to 500,000 .................... 123 112 11 Q Q 121.2 110.2 10.5 Q Q Over 500,000 ............................. 169 146 16 Q Q 99.9 86.2 9.5 Q Q Principal Building Activity Education .................................. 134 122 8 Q Q 116.6 106.6 6.9 Q Q Food Service ............................. N N N N N N N N N N Health Care ............................... Q Q Q Q Q Q Q Q Q Q Inpatient ..................................

151

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

636 636 580 46 1 Q 114.0 103.9 8.3 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ........................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 .......................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ........................ Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ........................ Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ...................... Q Q Q Q Q Q Q Q Q Q 100,001 to 200,000 .................... 165 154 10 Q Q 118.1 109.9 Q Q Q 200,001 to 500,000 .................... 123 112 11 Q Q 121.2 110.2 10.5 Q Q Over 500,000 ............................. 171 147 16 Q Q 93.6 80.6 8.9 Q Q Principal Building Activity Education .................................. 134 122 8 Q Q 116.6 106.6 6.9 Q Q Food Service ............................. N N N N N N N N N N Health Care ............................... Q Q Q Q Q Q Q Q Q Q Inpatient ..................................

152

Solar Water Heating in Dragash Municipality, Kosovo.  

E-Print Network [OSTI]

?? Water has been heated with the sun has almost as long as there have been humans, but itis not until recently that more advanced (more)

Dahl Hkans, Mia

2010-01-01T23:59:59.000Z

153

HVAC, Water Heating, and Appliances | Department of Energy  

Energy Savers [EERE]

HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances How a Small Business is Transforming the Cold Climate Heating Market How a Small Business is Transforming...

154

Residential Absorption Heat Pump Water Heater | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pump Water Heater Residential Absorption Heat Pump Water Heater Photo credit: Oak Ridge National Lab Photo credit: Oak Ridge National Lab Diagram of absorption heat...

155

Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits  

Broader source: Energy.gov [DOE]

This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort.

156

Cooling, Heating, and Power for Commercial Buildings- Benefits Analysis, April 2002  

Broader source: Energy.gov [DOE]

An analysis of the benefits of cooling, heating, and power (CHP) technologies in commercial buildings

157

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

158

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

159

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

160

Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger  

Science Journals Connector (OSTI)

Abstract The purpose of the present study is to accumulate knowledge on how a drain water heat recovery system using a vertical inline heat exchanger and a heat pump performs under different drain water flow profile scenarios. Investigating how the intermittent behavior of the drain water influences the performance for this type of system is important because it gives insight on how the system will perform in a real life situation. The scenarios investigated are two 24h drain water flow rate schedules and one shorter schedule representing a three minute shower. The results from the present paper add to the knowledge on how this type of heat recovery system performs in a setting similar to a multi-family building and how sizing influences the performance. The investigation shows that a heat recovery system of this type has the possibility to recover a large portion of the available heat if it has been sized to match the drain water profile. Sizing of the heat pump is important for the system performance; sizing of the storage tank is also important but not as critical.

Jrgen Wallin; Joachim Claesson

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Buildings to Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

162

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

163

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov [DOE]

Presentation covers the new and existing buildings heating and cooling opportunities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

164

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

165

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

166

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network [OSTI]

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

167

Feasibility Analysis For Heating Tribal Buildings with Biomass  

SciTech Connect (OSTI)

This report provides a feasibility study for the heating of Tribal buildings using woody biomass. The study was conducted for the Confederated Salish and Kootenai Tribes of the Flathead Reservation in western Montana. S&K Holding Company and TP Roche Company completed the study and worked together to provide the final report. This project was funded by the DOE's Tribal Energy Program.

Steve Clairmont; Micky Bourdon; Tom Roche; Colene Frye

2009-03-03T23:59:59.000Z

168

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Building Energy Efficiency Standards .. 4 Multi-Family Water Heating.. 4 Pipe HeatBuilding Energy Efficiency Standards The scope of this task included the following subtasks; Multi-Family Water Heating, Pipe Heat

Lutz, Jim

2012-01-01T23:59:59.000Z

169

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

170

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heater CO2 Heat Pump Water Heater CO2 Heat Pump Water Heater Prototype
Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab...

171

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: EnergyA Specification for Residential Heat Pump Water Heaters

Franco, Victor

2011-01-01T23:59:59.000Z

172

Report on Solar Water Heating Quantitative Survey  

SciTech Connect (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

Focus Marketing Services

1999-05-06T23:59:59.000Z

173

Building Technologies Office: HVAC and Water Heater Field Tests Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

174

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

175

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and...

176

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

177

Building Technologies Office: Open-Standard Wireless Controllers for Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open-Standard Wireless Open-Standard Wireless Controllers for Water Heaters Research Project to someone by E-mail Share Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Facebook Tweet about Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Twitter Bookmark Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Google Bookmark Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Delicious Rank Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on Digg Find More places to share Building Technologies Office: Open-Standard Wireless Controllers for Water Heaters Research Project on

178

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

180

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Broader source: Energy.gov (indexed) [DOE]

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Unit Fuel Consumption Analysis and Energy Saving of the Building Heating  

Science Journals Connector (OSTI)

Now, when analyzing the ways of heating, we always aims at only energy supply or using, but the building heating ... , internet distribution and terminal using of the energy. Therefore, in view of the heating ......

Yuanyuan Jiang; Shaoxiang Zhou

2007-01-01T23:59:59.000Z

182

A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs  

E-Print Network [OSTI]

Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

Do, S. L.; Haberl, J. S.

183

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

184

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 111.56331078 + Sweden Building 05K0002 + 72.7932960894 + Sweden Building 05K0003 + 111.899416255 + Sweden Building 05K0004 + 72.865497076 + Sweden Building 05K0005 + 285.840707965 + Sweden Building 05K0006 + 128.449958182 + Sweden Building 05K0007 + 63.8377147588 + Sweden Building 05K0008 + 115.128205128 + Sweden Building 05K0009 + 66.5515753129 + Sweden Building 05K0010 + 148.741418764 +

185

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

186

Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Heating technologies fo r energy efficiency Vol.III-3-4 Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building Guohui Feng Guangyu Cao Li Gang Ph.D. Ph... achieve above 95%. Since not heating up indoor air, it is specially suited for heating of factory buildings where the conditions of heat preservation and sealing are poor and their gates are opened frequently. The off-on of radiation heating system...

Feng, G.; Cao, G.; Gang, L.

2006-01-01T23:59:59.000Z

187

Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems May 16, 2013 - 3:02pm Addthis Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional change in length (or sometimes in volume, when specified) of a material for a unit change in temperature Viscosity - resistance of a liquid to sheer forces (and hence to flow) Thermal capacity - the ability of matter to store heat Freezing point - the temperature below which a liquid turns into a

188

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

189

New York City - Green Building Requirements for Municipal Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

190

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

191

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

192

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

193

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

194

Knox County Detention Facility Goes Solar for Heating Water | Department of  

Broader source: Energy.gov (indexed) [DOE]

Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water August 16, 2010 - 12:30pm Addthis An array of solar collectors | Photo courtesy of Trane An array of solar collectors | Photo courtesy of Trane Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funds solar farm to heat 14,000 gallons of water a day Estimated to save $60,000 a year 174 tons of CO2 emissions avoided annually Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily-and don't forget the laundry. Naturally, county officials sought an alternative to costly water heating. Their solution: a $1.88 million solar thermal system, among

195

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

196

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

197

Property:Building/SPElectrtyUsePercHeatPumps | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercHeatPumps SPElectrtyUsePercHeatPumps Jump to: navigation, search This is a property of type String. Heat pumps Pages using the property "Building/SPElectrtyUsePercHeatPumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

198

Development of Environmentally Benign Heat Pump Water Heaters for the US Market  

SciTech Connect (OSTI)

Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

Abdelaziz, Omar [ORNL] [ORNL; Wang, Kai [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL; Roetker, Jack [General Electric - Appliance Park] [General Electric - Appliance Park

2012-01-01T23:59:59.000Z

199

Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Function Multi-Function Fuel-Fired Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Google Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Delicious Rank Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities

200

Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2  

E-Print Network [OSTI]

Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a.Lecorre@mines-nantes.fr9 Abstract10 This paper presents the building heating demand prediction model with occupancy profile Institution15 building and compared its results with static and other pseudo dynamic neural network models

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat insulation solar glass and application on energy efficiency buildings  

Science Journals Connector (OSTI)

Abstract Building integrated photovoltaics are among the best methods for generating power using solar energy. To promote and respond to the concept of BIPVs, this study developed a type of multi-functional heat insulation solar glass (HISG) that differs from traditional transparent PV modules, providing functions such as heat insulation and self-cleaning in addition to power generation. This study also made thorough preparations for the safety of future HISG installation on curtain walls in large-scale buildings. Furthermore, this study provides a comprehensive discussion regarding the energy-saving performance of HISG and relevant practical applications. Two experimental houses were constructed, which independently employed HISG and single-layer tempered glass. Taiwan's climate was adopted as the environmental condition for the experiment, and the effects of HISG and single-layer tempered glass on indoor temperature variation and the energy consumed by air conditioners and heaters were explored. Related software was also employed to simulate, compare, and verify HISG efficacy.

Chin-Huai Young; Yi-Lin Chen; Po-Chun Chen

2014-01-01T23:59:59.000Z

202

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

203

FIVE-YEAR PROGRESS REPORT ON A SUCCESSFUL SOLAR/GEOTHERMAL HEATING AND COOLING SYSTEM FOR A COMMERCIAL OFFICE BUILDING IN BURLINGTON, MASSACHUSETTS  

Science Journals Connector (OSTI)

ABSTRACT The purpose of this paper is to present: 1) a description of a solar/geothermal heating and cooling system that has been in successful operation in a commercial office building for over five years; and 2) to present technical and cost operational results that indicate a total annual energy consumption of approximately 25,000 Btu/sq ft/ year. The paper includes a general description of the three-story multi-tenant office building located in Burlington, Massachusetts, its energy efficient design features, its active solar space heating and hot water system, its solar/geothermal heat pump back-up heating system and its geothermal cooling system. A description of the solar/geothermal system is presented including the liquid flat plate collectors, storage tanks, heat exchangers, heat pump, heat transfer fluid, control system, operational modes and the energy monitoring system. KEYWORDS Solar space heating; geothermal heating; geothermal cooling; solar domestic hot water; energy monitoring and control.

John Zvara; P.E.; Ronald J. Adams

1986-01-01T23:59:59.000Z

204

#AskEnergySaver: Home Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric systems, like solar electric and onsite wind power, have substantial energy loss when converting electricity to heat. With solar thermal water heating, there are a...

205

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings  

E-Print Network [OSTI]

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings at Whidbey Island Naval Air and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump source heat pumps provide both heating and cooling, there would essentially be no cost increase

Oak Ridge National Laboratory

206

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2HeatPumps SPBreakdownOfElctrcityUseKwhM2HeatPumps Jump to: navigation, search This is a property of type String. Heat pumps Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

207

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

208

Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water  

E-Print Network [OSTI]

September 16, 2014 NIKKEN SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International... of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 District heating and cooling system in Nakanoshima 4 Characteristics of heat supply plant in Nakanoshima district -River water is utilized as heat...

Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

2014-01-01T23:59:59.000Z

209

Study on the LWT control schemes of a heat pump for hot water supply  

Science Journals Connector (OSTI)

Heat pump systems have been widely used in buildings and industries due to their high performance. In this study, a leaving water temperature control scheme has been proposed for a water-to-water heat pump for hot water supply. The study was focused on the following four schemes: (1) using an auxiliary electric heater, (2) varying compressor speed, (3) adjusting water flow rate, and (4) adding heat to the secondary fluid flow of the heat source. With schemes (2) and (3), the system showed higher performance than other schemes. However, scheme (2) could not attain the appropriate LWT at low EWT heat source conditions. For all EWT conditions, using schemes (3) and (4) enabled the system to reach an appropriate LWT. Scheme (4) can be adopted as the best technology to control LWT, because it is not easy to vary flow rate of the secondary fluid as in scheme (3).

Jong Min Choi

2013-01-01T23:59:59.000Z

210

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

211

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtHeating SPPurchasedEngyNrmlYrMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2193.0 + Sweden Building 05K0002 + 521.2 + Sweden Building 05K0003 + 498.4 + Sweden Building 05K0004 + 1869.0 + Sweden Building 05K0005 + 646.0 + Sweden Building 05K0006 + 1843.0 + Sweden Building 05K0007 + 1542.0 + Sweden Building 05K0008 + 898.0 + Sweden Building 05K0009 + 2313.0 + Sweden Building 05K0010 + 65.0 + Sweden Building 05K0011 + 1032.0 + Sweden Building 05K0012 + 1256.0 + Sweden Building 05K0013 + 1817.6002445 + Sweden Building 05K0014 + 162.0 + Sweden Building 05K0015 + 158.0 +

212

Property:Building/SPElectrtyUsePercElctrcHeating | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercElctrcHeating SPElectrtyUsePercElctrcHeating Jump to: navigation, search This is a property of type String. Electric heating Pages using the property "Building/SPElectrtyUsePercElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.28146332495 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 1.35810846872 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 36.3055086974 +

213

Property:Building/SPElectrtyUsePercHeatPumpsUsedForColg | Open Energy  

Open Energy Info (EERE)

SPElectrtyUsePercHeatPumpsUsedForColg SPElectrtyUsePercHeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used for cooling Pages using the property "Building/SPElectrtyUsePercHeatPumpsUsedForColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.384283126305 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

214

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

215

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

distribution (in multi-family buildings); efficiency (eithercentral systems in multi- family buildings are assigned a54 C (130 F) for multi-family buildings that have central

Lutz, Jim

2014-01-01T23:59:59.000Z

216

NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)  

SciTech Connect (OSTI)

NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center.

Not Available

2014-09-01T23:59:59.000Z

217

Federal Energy Management Program: New and Underutilized Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heating Technologies to someone by E-mail Water Heating Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Water Heating Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Water Heating Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Water Heating Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Water Heating Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting

218

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

219

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers [EERE]

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

220

Everything You Wanted to Know About Solar Water Heating Systems...  

Broader source: Energy.gov (indexed) [DOE]

Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to...

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State  

SciTech Connect (OSTI)

The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

Winiarski, David W.

2004-08-15T23:59:59.000Z

222

Energy efficient building with the use of passive solar heating technology  

Science Journals Connector (OSTI)

The configuration of a building after redesign for passive solar heating is described. The results of experimental studies of the temperature regimes for various weather conditions are presented.

M. M. Zakhidov

2007-06-01T23:59:59.000Z

223

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2ElctrcHeating" SPPurchasedEngyPerAreaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

224

Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2ElctrcHeating" SPBreakdownOfElctrcityUseKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

225

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

226

Investigation of Latent-Heat Storage Systems for Green Building Applications  

Science Journals Connector (OSTI)

In green building applications, highest energy demands are needed for air conditioning to ... heat storage systems during the usage of solar energy and ground-sourced heat pump systems for ... period, analyses sh...

Devrim Aydin; Zafer Utlu; Olcay Kincay

2014-01-01T23:59:59.000Z

227

Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall  

E-Print Network [OSTI]

resistance of air interlayer, conduction, natural convection, and radiation, are analyzed. To calculate the heat resistance of the air interlayer, an equivalent method is used in this paper. The heat resistance of the hollow building blocks in the energy...

Zhang, Y.; He, J.; Gao, S.

2006-01-01T23:59:59.000Z

228

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

229

California Building Industry Association et al. v. State Water...  

Open Energy Info (EERE)

et al. v. State Water Resources Control Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: California Building Industry Association et al....

230

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

Memorandum Encouraging Combined Heat and Power in California2012 ICF, 2012, Combined Heat and Power: Policy AnalysisA New Generation of Combined Heat and Power: Policy Planning

Stadler, Michael

2014-01-01T23:59:59.000Z

231

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network [OSTI]

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS By HUI JIN Bachelor of Science validation of the water-to-air heat pump model. It's hard to find any words to express the thanks to my BASED MODELS OF WATER SLOURCE HEAT PUMPS Thesis Approved: Thesis Adviser Dean of the Graduate College ii

232

Trade-off between collector area, storage volume, and building conservation in annual-storage solar-heating systems  

SciTech Connect (OSTI)

Annual storage is used with active solar heating systems to permit storage of summertime solar heat for winter use. The results of a comprehensive computer simulation study of the performance of active solar heating systems with long-term hot water storage are presented. A unique feature of this study is the investigation of systems used to supply backup heat to passive solar and energy-conserving buildings, as well as to meet standard heating and hot water loads. Findings show that system output increases linearly as storage volume increases, up to the point where the storage tank is large enough to store all heat collected in summer. This point, the point of unconstrained operation, is the likely economic optimum. Unlike diurnal storage systems, annual storage systems show only slightly diminished efficiency as system size increases. Annual storage systems providing nearly 100% solar space heat may cost the same or less per unit heat delivered as a 50% diurnal solar system. Also in contrast to diurnal systems, annual storage systems perform efficiently in meeting the load of a passive or energy-efficient building.

Sillman, S.

1981-04-01T23:59:59.000Z

233

City of Tallahassee Utilities - Solar Water Heating Rebate | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tallahassee Utilities - Solar Water Heating Rebate Tallahassee Utilities - Solar Water Heating Rebate City of Tallahassee Utilities - Solar Water Heating Rebate < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount 450 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the replacement of an older solar water-heating system. Homebuilders may also apply for the rebate when installing a solar water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit

234

Santa Clara Water and Sewer - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water and Sewer - Solar Water Heating Program Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program < Back Eligibility Commercial Local Government Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Commercial Heating & Cooling Program Info State California Program Type Leasing Program Provider City of Santa Clara Water and Sewer Utility In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. Solar equipment is available from the city for heating swimming pools,

235

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

236

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

237

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

solar thermal utilization photovoltaic solar thermal electric storage heatDER technologies as PV, solar thermal, electric and heat

Stadler, Michael

2014-01-01T23:59:59.000Z

238

Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates  

Science Journals Connector (OSTI)

Identifying the building parameters that significantly impact energy performance is an important step for enabling the reduction of the heating and cooling energy loads of apartment buildings in the design stage. Implementing passive design techniques for these buildings is not a simple task in most dense cities; their energy performance usually depends on uncertainties in the local climate and many building parameters, such as window size, zone height, and features of materials. For this paper, a sensitivity analysis was performed to determine the most significant parameters for buildings in hot-humid climates by considering the design of an existing apartment building in Izmir, Turkey. The Monte Carlo method is selected for sensitivity and uncertainty analyses with the Latin hypercube sampling (LHC) technique. The results show that the sensitivity of parameters in apartment buildings varies based on the purpose of the energy loads and locations in the building, such as the ground, intermediate, and top floors. In addition, the total window area, the heat transfer coefficient (U) and the solar heat gain coefficient (SHGC) of the glazing based on the orientation have the most considerable influence on the energy performance of apartment buildings in hot-humid climates.

Yusuf Y?ld?z; Zeynep Durmu? Arsan

2011-01-01T23:59:59.000Z

239

High Water Heating Bills on Lockdown at Idaho Jail | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine Lindsay Gsell What does this project do? The new solar thermal hot water system will provide nearly 70 percent of the BTUs required for heating 600,000 gallons of water for the jail annually, saving the county more than $4,000 a year in electricity costs at current rates. In Hailey, Idaho, one 330,000 square foot building - the Blaine County Public Safety Facility - accounts for the county's highest operational

240

An approach to energy saving assessment of solar assisted heat pumps for swimming pool water heating  

Science Journals Connector (OSTI)

A steady state off-design model of a Water Solar Assisted Heat Pump (W-SAHP) and the results of monthly based averaged simulations are presented. The W-SAHP system is arranged with a commercial water-to-water heat pump, coupled with unglazed flat plate solar collectors. The study is purposely developed for swimming pools, however most of the analysis criteria and outcomes are valid for any building (user) having hot water needs. Calculations are made for given thermal load and user operating temperatures with reference to the climatic data of all Italian Municipalities, that is degree days (DD) in the range from 700 to 3000, altitude from 0 to 1500m (above sea level), and latitude from 36.5N to 46.3N. The primary energy saving capability of the W-SAHP solution, compared to a traditional gas-boiler plant, is analyzed as a function of the DD index of each site. Despite the large spread of climatic and altitude data, the results show that the W-SAHP performance is usually well correlated to DD, which can therefore be assumed as the main independent variable for the energy saving assessment of these systems, and make the results easily extended to other possible geographical locations.

Luca A. Tagliafico; Federico Scarpa; Giulio Tagliafico; Federico Valsuani

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Residential Solar Water Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

242

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

SciTech Connect (OSTI)

Quick guide to increasing Federal office building water efficiency, water management planning, performing a water audit, calculating a water balance, and best management practices.

Not Available

2010-04-01T23:59:59.000Z

243

Water Management Guide- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Top Innovation highlights the DOE-sponsored Water Management Guide, which has proven to be a highly effective tool for disseminating much needed best practices.

244

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

2020. Furthermore, aggressive building and appliance efficiency standards, including targets for zero net

Stadler, Michael

2014-01-01T23:59:59.000Z

245

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field...

246

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

247

Solar Water Heating Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heating Incentive Program Solar Water Heating Incentive Program Solar Water Heating Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Varies by sector, location, technology, and electric or gas provider; see below for details Program Info Start Date October 2003 State Oregon Program Type State Rebate Program Rebate Amount Varies by sector, water heating fuel, and electric or gas provider; see below for details Provider Energy Trust of Oregon Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who install solar water or pool

248

Solar Water Heating with Low-Cost Plastic Systems (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

buildings consumed over 392,000 billion Btu of site- buildings consumed over 392,000 billion Btu of site- delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. [1] Earlier data indicate that about 10% of this is used to heat water. [2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514. Federal facilities having financial difficulty meeting the EISA mandate and executive order (e.g., facilities with natural

249

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

incentive ($/W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cycle/waste heat capture, pressure reduction turbines, advanced energy storage, and combined heat and power

Stadler, Michael

2014-01-01T23:59:59.000Z

250

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network [OSTI]

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

251

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

252

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

253

Beaches Energy Services - Solar Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per customer Rebates will not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater: $500 Provider Beaches Energy Services Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and solar pool heating systems do not qualify for the rebate payment. Systems must be installed by a licensed Florida contractor and must be FSEC certified. Rebates will not

254

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

255

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network [OSTI]

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

256

Building Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

257

Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings  

Science Journals Connector (OSTI)

Abstract In Stockholm, 472 multi-family buildings with 7554 dwellings has been selected by stratified random sampling. Information about building characteristics and property management was gathered from each property owners. Energy use for space heating was collected from the utility company. Perceived thermal comfort, household and personal factors were assessed by a standardized self-administered questionnaire, answered by one adult person in each dwelling, and a proportion of each factor was calculated for each building. Statistical analysis was performed by multiple linear regression models with control for relevant factors all at the same time in the model. Energy use for heating was significantly related to the building age, type of building and ventilation, length of time since the last heating adjustment, ownership form, proportion of females, and proportion of occupants expressing thermal discomfort. How beneficial energy efficiency measures will be may depend on the relationship between energy use and factors related to the building and the property maintenance together with household and personal factors, as all these factors interact with each other. The results show that greater focus should be on real estate management and maintenance and also a need for research with a gender perspective on energy use for space heating.

Karin Engvall; Erik Lampa; Per Levin; Per Wickman; Egil fverholm

2014-01-01T23:59:59.000Z

258

Denver Watts to Water | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Denver Watts to Water Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

259

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

260

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network [OSTI]

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network [OSTI]

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

262

Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design  

E-Print Network [OSTI]

11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows with same thermal behaviour). For heat conduction in walls, it results from electrical analogy

Paris-Sud XI, Université de

263

North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement  

SciTech Connect (OSTI)

A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigure, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

2011-01-01T23:59:59.000Z

264

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network [OSTI]

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

265

Energy Efficiency and Green Building Standards for State Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

266

High-Performance Building Requirements for State Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

267

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

communications). Heat transfer fluid is 60% o-o1vco1 bycharacteristics, heat transfer fluids, flow resistances,of a non- freezing heat transfer fluid circulating in a loop

Mertol, Atila

2012-01-01T23:59:59.000Z

268

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network [OSTI]

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

269

Field Monitoring Protocol: Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SHR Sensible heat ratio T&RH Temperature and relative humidity TC Thermocouple UA Heat loss coefficient v Table of Contents List of Figures ......

270

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

271

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lower Water Heating Temperature Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

272

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

273

Research and Development Roadmap for Emerging Water Heating Technologi...  

Energy Savers [EERE]

fuels are split approximately evenly between gas and electric, with other (e.g., fuel oil, propane) representing only 5% of residential water heating energy consumption. Figure...

274

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)  

SciTech Connect (OSTI)

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

Hudon, K.

2012-05-01T23:59:59.000Z

275

Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)  

Broader source: Energy.gov [DOE]

'''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

276

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

as conventional electric resistance water heaters, with thetwo technologies: (1) an electric resistance storage watertransfers heat from the electric resistance element to the

Franco, Victor

2011-01-01T23:59:59.000Z

277

Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future, Vol.VIII-8-1 Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-conditioning System Chunlei Zhang Suilin Wang Hongbing Chen...

Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

2006-01-01T23:59:59.000Z

278

Water Consumption from Freeze Protection Valves for Solar Water Heating Systems  

SciTech Connect (OSTI)

Conference paper regarding research in the use of freeze protection valves for solar domestic water heating systems in cold climates.

Burch, J.; Salasovich, J.

2005-12-01T23:59:59.000Z

279

Cooling, Heating, and Power for Commercial Buildings - Benefits...  

Broader source: Energy.gov (indexed) [DOE]

recuperators to maximize generation efficiency, even if waste heat is utilized. chpbenefitscommercialbuildings.pdf More Documents & Publications Opportunities for...

280

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

282

Duquesne Light Company - Residential Solar Water Heating Program |  

Broader source: Energy.gov (indexed) [DOE]

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

283

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

284

Valley Electric Association - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

285

Save on Home Water Heating | Department of Energy  

Office of Environmental Management (EM)

and money, or choose an on-demand hot water heater to save even more. Tips: Water Heating Solar energy systems are among the renewable and efficiency purchases that are...

286

Nuclear reactor with makeup water assist from residual heat removal system  

DOE Patents [OSTI]

A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

Corletti, Michael M. (New Kensington, PA); Schulz, Terry L. (Murrysville, PA)

1993-01-01T23:59:59.000Z

287

The Ventilation, Heating, and Management of Churches and Public Buildings  

Science Journals Connector (OSTI)

... THIS book is addressed chiefly to the architects, managers and caretakers of buildings, and its opening chapter deals with the physical principles bearing on ventilation. An interesting ... the writer makes the cryptic statement that "the friction caused by the wind passing over buildings is so great that it is scarcely possible to demonstrate it accurately,"and later ...

J. H. V.

1903-04-02T23:59:59.000Z

288

Solar heating and hot water system installed at St. Louis, Missouri. Final report  

SciTech Connect (OSTI)

Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

Not Available

1980-04-01T23:59:59.000Z

289

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Idaho) Idaho) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Idaho) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State Idaho Program Type Non-Profit Rebate Program The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

290

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Oregon) Oregon) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Oregon) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Oregon Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

291

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Montana) Montana) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Montana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Montana Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

292

Optimum Control of Heat Supply of a Building. 2. Analysis and Results  

Science Journals Connector (OSTI)

The temperature regime inside a building has been calculated. It has been established that the presence of a lateral pipeline at the heat point ensures such a value of the mixing coefficient at which a constan...

K. O. Sabdenov; T. M. Baitasov; M. Erzada

2014-07-01T23:59:59.000Z

293

Exergoeconomic analysis of the Gonen geothermal district heating system for buildings  

Science Journals Connector (OSTI)

This paper presents an application of an exergoeconomic model, through exergy and cost accounting analyses, to the Gonen geothermal district heating system (GDHS) in Balikesir, Turkey for the entire system and its components. This exergoeconomic model is used to reveal the cost formation process and the productive interaction between components. The exergy destructions in the overall Gonen GDHS are quantified and illustrated for a reference temperature of 4C. The results indicate that the exergy destructions in the system occur primarily as a result of losses in the cooled geothermal water injected back into the reservoir, pumps, heat exchangers, and pipelines. Total exergy destruction and reinjection exergy of the cooled geothermal water result in 1010kW (accounting for 32.49%), 320.3kW (accounting for 10%) of the total exergy input to the Gonen GDHS, respectively. Both energy and exergy efficiencies of the overall Gonen GDHS are also investigated to analyze the system performance, as these efficiencies are determined to be 42% and 50%, respectively. It is found that an increase of the load condition leads to a decrease in the overall thermal costs, which will result in more cost-effective energy systems for buildings.

Z. Oktay; I. Dincer

2009-01-01T23:59:59.000Z

294

Simulation and Validation of a Single Tank Heat Pump Assisted Solar Domestic Water Heating System.  

E-Print Network [OSTI]

??This thesis is a study of an indirect heat pump assisted solar domestic hot water (I-HPASDHW) system, where the investigated configuration is called the Dual (more)

Wagar, William Robert

2013-01-01T23:59:59.000Z

295

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

Dentz, J.; Henderson, H.; Varshney, K.

2013-10-01T23:59:59.000Z

296

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

297

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

photovoltaic solar thermal electric storage heat storageamount of PV, solar thermal, and electric storage needs toamount of PV, solar thermal, and electric storage needs to

Stadler, Michael

2014-01-01T23:59:59.000Z

298

Building America Case Study: Ground Source Heat Pump Research...  

Energy Savers [EERE]

a home during design and carefully sizing expensive systems such as ground source heat pumps (GSHPs) will result in a closer correlation between modeled and actual energy...

299

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

for energy storage, chiller, PV and solar thermal equipmentsolar thermal electric storage heat storage absorption chillers zero net energyenergy resources (DER) technologies such as PV, solar thermal,

Stadler, Michael

2014-01-01T23:59:59.000Z

300

Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States  

E-Print Network [OSTI]

of the change in outdoor conditions [3, 4]. In 2010, building energy consumption accounted for 41% of the total activities in buildings. One area directly affected by climate change is the energy consumption for heating on future energy uses. There would be a net increase in source energy consumption by the 2080s for climate

Chen, Qingyan "Yan"

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

302

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network [OSTI]

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

303

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network [OSTI]

the amount of commercial building energy usage, particularlycommercial building sector. To compare the aggregated energy usagecommercial buildings. For the residential sector, the total heating and cooling energy usages

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

304

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

and Parameter Estimation. Modelica. Ed. Gerhard Schmitz.Recent Development of the Modelica Buildings Library forof the 8th International Modelica Conference. Technical

Lutz, Jim

2014-01-01T23:59:59.000Z

305

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

Provided to the Energy Commission. September. http://California Energy Commission. http://www.energy.ca.gov/pdf. California Energy Commission. 2012. 2013 Building

Lutz, Jim

2014-01-01T23:59:59.000Z

306

Heat Pump Water Heater Performance in  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

307

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents [OSTI]

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

308

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

309

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

310

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

311

Building Energy Software Tools Directory: Heat Pump Design Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Pump Design Model Heat Pump Design Model Heat Pump Design Model logo. Research tool for use in the steady-state simulation and design analysis of air-to-air heat pumps and air conditioners. The program can be used with most of the newer HFC refrigerants as well as with HCFCs and CFCs. The standard vapor-compression cycle is modeled with empirical representations for compressor performance and first-principle region-by-region modeling of the heat exchangers. An online Web version is available that can be used with default configurations or with user-specified component and operating parameters for analyzing the performance of single-speed, air-to-air equipment. User configurations can be saved for later use. Parametric analyses can be made and performance trends plotted online.

312

Building Energy Software Tools Directory: Window Heat Gain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

313

Model Simulating Real Domestic Hot Water Use- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

314

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

315

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect (OSTI)

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

316

ASHRAE Standard 90.1-2007 -- Mechanical and Service Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical and Service Water Heating Mechanical and Service Water Heating Requirements This course provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 32 minutes Presenters: Mark Hydeman, Taylor Engineering Original Webcast Date: Thursday, February 28, 2008 - 13:00 CEUs Offered: 1.5 AIA/CES LU (HSW); .15 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2007 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy

317

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

lifetime for energy storage, chiller, PV and solar thermalEnergy Storage can be stand-alone or paired with solar PV orsolar thermal electric storage heat storage absorption chillers zero net energy

Stadler, Michael

2014-01-01T23:59:59.000Z

318

Innovative Control of Electric Heat in Multifamily Buildings  

E-Print Network [OSTI]

This paper describes the application of web-based wireless technology for control of electric heating in a large multifamily housing complex. The control system architecture and components are described. A web-based application enables remote...

Lempereur, D.; Bobker, M.

2004-01-01T23:59:59.000Z

319

Solar Water Heating FTA, 024922m FTA solwat heat.pdf  

Broader source: Energy.gov (indexed) [DOE]

Federal Technology Alert A series of energy efficient technology guides prepared by the New Technology Demonstration Program Solar Water Heating Well-Proven Technology Pays Off in Several Situations Solar water heating is a well-proven and readily available technology that directly substitutes renewable energy for conventional water heating. This Federal Technology Alert (FTA) of the Federal Energy Management Program (FEMP), one of a series on new energy- efficient technologies and renewable energy technologies, describes the various types of solar water heating systems, the situations in which solar water heating is likely to be cost- effective, considerations in selecting and designing a system, and basic steps for installing a system. There are a variety of different types

320

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect (OSTI)

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Save water to save energy | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Save water to save energy Save water to save energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

322

Heat transfer research on supercritical water flow upward in tube  

SciTech Connect (OSTI)

The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

Li, H. B.; Yang, J. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China); Gu, H. Y.; Zhao, M. [Shanghai Jiao Tong Univ., Shanghai (China); Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China)

2012-07-01T23:59:59.000Z

323

Long Island Power Authority - Residential Solar Water Heating Rebate  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

324

Continuous Commissioning of a Central Chilled Water & Hot Water System  

E-Print Network [OSTI]

A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

2000-01-01T23:59:59.000Z

325

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

326

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

327

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

328

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

329

Water sorption and solubility of core build-up materials  

Science Journals Connector (OSTI)

AbstractObjectives To investigate the variation in water sorption and solubility across a range of different core build-up materials. Methods Five materials were tested, four of which are resin-based materials (Grandio Core, Core.X Flow, Bright Flow Core, Speedee) and one resin-modified glass ionomer (Fuji II LC). All specimens (n=10) were immersed in 10ml distilled water in individual glass containers and weighed at one week, 14 and 28 days. After a total immersion time of 28 days, 7 specimens were dried to a constant mass, in a desiccator for 28 days. Three samples of each material were not dried, but were left in distilled water for 1 year, to determine the long-term water sorption properties. Specimens were weighed at monthly intervals until 6 months and then at the 9th and 12th months. Each specimen was measured using a digital electronic caliper (Mitutoyo Corporation, Japan). Results After 28 days immersion, the change in water sorption and solubility of the materials ranged from 12.9 to 67.1?g/mm3 (Psorption and solubility for the other materials after 1-year total immersion in water compared to 1 month (Psorption and solubility among the tested materials. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, apart from the water sorption behavior of Fuji II LC.

M.A. Zankuli; H. Devlin; N. Silikas

2014-01-01T23:59:59.000Z

330

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

331

Apparatus and method for solar heating of water  

SciTech Connect (OSTI)

This patent describes an apparatus for heating a tank of water comprising at least three substantially planar plastic strips positioned substantially vertically in spaced relationship in the water, such that the strips are substantially immersed in the water to be heated, and means for positioning the strips in the water with the provisos that the strips are light absorbent on both major planar surfaces and that the positioning means is of such construction as to minimize absorption of solar radiation by the positioning means rather than by the strips. A method for solar heating of a tank of water comprising the steps of positioning at least three substantially vertical, substantially planar plastic strips in spaced relationship in the water, such that strips are substantially immersed in the water to be heated, with the proviso that the strips are light absorbent on both major planar surfaces, and exposing the strips to solar radiation. A recreational swimming pool equipped with a solar heating apparatus comprising at least three substantially planar plastic strips removably positioned substantially vertically in spaced relationship in the pool water, such that and means for removably positioning the strips in spaced relationship in the pool water with the proviso that the strips are light absorbent on both major planar surfaces.

Caines, R.S.

1988-12-13T23:59:59.000Z

332

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

333

Advanced Technologies and Practices - Building America Top Innovations...  

Energy Savers [EERE]

and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air quality and safety...

334

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open  

Open Energy Info (EERE)

HeatPumpsUsedForColg HeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used for cooling Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.250906049624 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

335

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

336

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

337

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

338

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

339

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

340

Optimization and heat and water integration for biodiesel production  

E-Print Network [OSTI]

generation of biodiesel using waste cooking oil and algae oil. We consider 5 different technologies: Energy, Biofuels, Biodiesel, Cooking Oil, Mathematical optimization, Algae1 Optimization and heat and water integration for biodiesel production from cooking oil

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

342

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

343

Split system CO2 heat pump water heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Split-system-CO2-heat-pump-water-heaters- Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

344

GreyStone Power- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

345

South River EMC- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

346

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

347

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network [OSTI]

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

348

Pilot study of commercial water-loop heat pump compressor life  

SciTech Connect (OSTI)

This study of the service life of water-loop heat pump compressors in commercial office buildings, using data gathered from the service records of one heat pump service contractor, focused on the replacement of compressors in small console ( perimeter'') water-loop heat pumps and in larger vertical and horizontal ( core'') units. A statistical methodology for dealing with censored data was developed for this study which is an extension of the methodologies used in other EPRI studies of heat pump and heat pump compressor life. By extrapolating a Weibull distribution curve fitted to the data, the median service life of the sample of perimeter unit compressors (the age at which 50% of the original population of compressors would be expected to have been replaced) was estimated to be 47 years. The median service life of a sample that excluded compressors with a known manufacturing defect was estimated to be 69 years. Core unit compressor replacements were analyzed in the same manner. Extrapolation of a Weibull distribution yielded an estimated median service life of core unit compressors of 12 years. As with the perimeter unit compressors, there was an identified manufacturing defect. When the compressors with the identified fault were excluded from the sample and the data reanalyzed, the median service life for the compressors in the remainder of the buildings was estimated to be 18 years.

Ross, D.P. (Policy Research Associates, Inc., Reston, VA (USA))

1990-03-01T23:59:59.000Z

349

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

350

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

1 1 Total Use of Water by Buildings (Million Gallons per Day) (1) Year 1985 1990 1995 2000 (2) 2005 (3) Note(s): Source(s): 1) Includes water from the public supply and self-supplied sources (e.g., wells) for residential and commercial sectors. 2) USGS did not estimate water use in the commercial and residential sectors for 2000. Estimates are based on available data and 1995 splits between domestic and commercial use. 3) USGS did not estimate commercial sector use for 2005. Estimated based on available data and commercial percentage in 1995. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of Water in the U.S. in 1990, U.S. Geological Survey Circular 1081, 1993; U.S. Geological Survey, Estimated Use of Water in the U.S. in 1995, U.S. Geological

351

Building Technologies Office: Appliances Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

352

Solar Water Heating System Maintenance and Repair | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

353

Study on Energy Efficiency Evaluation Method of Cooling Water System of Surface Water Source Heat Pump  

Science Journals Connector (OSTI)

Water source heat pump system is a green air-conditioning system which has high efficiency, energy saving, and environmental protection, but inappropriate design of the system type of water intake will impact on ...

Jibo Long; Siyi Huang

2014-01-01T23:59:59.000Z

354

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

1 Buildings Sector Water Consumption 1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class D (4) - - Wisconsin Total (4) - - Note(s): Source(s): 836 3,263 Sourcing Treatment (1) Distribution Wastewater Total 2,230 2,295 2,117 5,411 2,117 3,500 - not included 1,850 9,727 13,021 9,727 11,110 2390 4,340 1,500 3,250 - not included 1,510 1) Treatment before delivery to customer. 2) Source: Electric Policy Research Institute (EPRI) 2009. Wastewater estimated based on EPRI

355

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

356

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents [OSTI]

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

357

Long Term Solar Heat Storage through Underground Water Tanks for the Heating of Housing  

Science Journals Connector (OSTI)

This project consists in the development of design methods of solar plants for heating of housing by means of the interseasonal storage of solar energy through water tanks located under or...

M. Cucumo; V. Marinelli; G. Oliveti; A. Sabato

1983-01-01T23:59:59.000Z

358

Design of Coil Heat Exchanger for Remote-Storage Solar Water Heating System  

Science Journals Connector (OSTI)

A coil heat exchanger for hot water thermal storage was presented including the choice of the ... calculation of flow resistance. In this design, solar collector contour aperture area is 4.26...2, the volume of w...

Lv Cuiping; He Duanlian; Dou Jianqing

2009-01-01T23:59:59.000Z

359

Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump  

E-Print Network [OSTI]

The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

Cong, X.; Liu, Y.; Yang, W.

2006-01-01T23:59:59.000Z

360

Performance investigation of two geothermal district heating systems for building applications: Energy analysis  

Science Journals Connector (OSTI)

The energetic performance of Balcova geothermal district heating system (BGDHS) and Salihli geothermal district heating system (SGDHS) installed in Turkey is investigated for building applications in this study. The essential components (e.g., pumps, heat exchangers) of these geothermal district heating systems are also included in the modeling. The present model is employed for system analysis and energetic performance evaluation of the geothermal district heating systems. Energy flow diagrams are drawn to exhibit the input and output energies and losses to the surroundings by using the 2003 and 2004 heating season actual data. In addition, energy efficiencies are studied for comparison purposes, and are found to be 39.36% for BGDHS and 59.31% for SGDHS, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network [OSTI]

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

362

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

363

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

364

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network [OSTI]

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

365

Low-Cost Gas Heat Pump For Building Space Heating | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Space Heating Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: 903,000...

366

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

367

Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings  

Broader source: Energy.gov [DOE]

Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- ClimateMaster - Oklahoma City, OK -- Oklahoma State University - Stillwater, OK -- Oklahoma Gas & Electric - Oklahoma City, OK -- International Ground Source Heat Pump Association - Stillwater, OK -- Chinese Academy of Building Research - Beijing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqin University - Chongqing, China

368

Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements  

Science Journals Connector (OSTI)

This paper presents and optimizes the annual heating, cooling and lighting energy consumption associated with applying different types and properties of window systems in a building envelope. Through using building simulation modeling, various window properties such as U-value, solar heat gain coefficient (SHGC), and visible transmittance (Tvis) are evaluated with different window wall ratios (WWRs) and orientations in five typical Asian climates: Manila, Taipei, Shanghai, Seoul and Sapporo. By means of a regression analysis, simple charts for the relationship between window properties and building energy performance are presented as a function of U-value, SHGC, Tvis, WWR, solar aperture, effective aperture, and orientation. As a design guideline in selecting energy saving windows, an optimized window system for each climate is plotted in detailed charts and tables.

J.W. Lee; H.J. Jung; J.Y. Park; J.B. Lee; Y. Yoon

2013-01-01T23:59:59.000Z

369

REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles  

E-Print Network [OSTI]

with wind and solar energy options will help address the problem of climate change and compensate and expected technological improvements, it is thought that geothermal energy will be able to "contribute harnessing of low temperature, renewable geothermal energy for hot water heating and heating and cooling

Coles, Cynthia

370

Implementation of Simple Measures for Savings Water and Energy Consumption in Kuwait Government Buildings  

E-Print Network [OSTI]

This paper gives in details the efforts made by the Public Services Department (PSD) to reduce water and energy consumptions in the Ministry of Social Affairs and Labour's (MOSAL) buildings in Kuwait. PSD manages around 125 buildings distributed...

Albaharani, H.; Al-Mulla, A.

2012-01-01T23:59:59.000Z

371

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

372

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Number of Water Heaters" "1.",106.3,74.5,60.9,4,1.8,2.2,5.5 "2 or More",3.7,3.3,3,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,0.3,"Q","Q","N","Q","Q"

373

"Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Number of Water Heaters" "1.",106.3,31.9,7.9,3.4,5.8,13.7,1.1 "2 or More",3.7,0.4,"Q","Q","Q","Q","N" "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q",0.6,"Q"

374

Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript  

Broader source: Energy.gov [DOE]

Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

375

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network [OSTI]

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

376

Advances in the Research of Heat Pump Water Heaters  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-2 1 Advances in the Research of Heat Pump Water Heaters Shangli Shan Dandan Wang Ruixiang Wang Master Master Professor Beijing...) [21] Wang sui-lin . Affection on fin-and-tube Heat Exchanger's Properties by non azeotropic mixtures[J] . Fluid machinery , 1996 , 24 (5) [22] Ge run-ting . Foundation of Dynamic Parameter Model and Theoritical Calculation of Evaporator...

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

377

Low-Cost Solar Water Heating Research and Development Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

378

Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

Raustad, Richard

2013-06-01T23:59:59.000Z

379

Application analysis of ground source heat pumps in building space conditioning  

SciTech Connect (OSTI)

The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

Qian, Hua; Wang, Yungang

2013-07-01T23:59:59.000Z

380

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect (OSTI)

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Exergy analysis of two geothermal district heating systems for building applications  

Science Journals Connector (OSTI)

This study evaluates the exergetic performance of two local Turkish geothermal district heating systems through exergy analysis. The exergy destructions in these geothermal district heating systems are quantified and illustrated using exergy flow diagrams for a reference temperature of 1C using the 2003 and 2004 actual seasonal heating data. The results indicate that the exergy destructions in these systems particularly occur due to losses in pump, heat exchangers, pipelines, and the reinjection of thermal water. Exergy efficiencies of the two systems are investigated for the system performance analysis and improvement and are determined to be 42.89% and 59.58%, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2007-01-01T23:59:59.000Z

382

Development and validation of regression models to predict monthly heating demand for residential buildings  

Science Journals Connector (OSTI)

The present research work concerns development of regression models to predict the monthly heating demand for single-family residential sector in temperate climates, with the aim to be used by architects or design engineers as support tools in the very first stage of their projects in finding efficiently energetic solutions. Another interest to use such simplified models is to make it possible a very quick parametric study in order to optimize the building structure versus environmental or economic criteria. All the energy prediction models were based on an extended database obtained by dynamic simulations for 16 major cities of France. The inputs for the regression models are the building shape factor, the building envelope U-value, the window to floor area ratio, the building time constant and the climate which is defined as function of the sol-air temperature and heating set-point. If the neural network (NN) methods could give precise representations in predicting energy use, with the advantage that they are capable of adjusting themselves to unexpected pattern changes in the incoming data, the multiple regression analysis was also found to be an efficient method, nevertheless with the requirement that an extended database should be used for the regression. The validation is probably the most important level when trying to find prediction models, so 270 different scenarios are analysed in this research work for different inputs of the models. It has been established that the energy equations obtained can do predictions quite well, a maximum deviation between the predicted and the simulated is noticed to be 5.1% for Nice climate, with an average error of 2%. In this paper, we also show that is possible to predict the building heating demand even for more complex scenarios, when the construction is adjacent to non-heated spaces, basements or roof attics.

Tiberiu Catalina; Joseph Virgone; Eric Blanco

2008-01-01T23:59:59.000Z

383

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building  

E-Print Network [OSTI]

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

Zhu, N.

2014-01-01T23:59:59.000Z

384

Utilization of Heat Pump Water Heaters for Load Management  

SciTech Connect (OSTI)

The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

2014-01-01T23:59:59.000Z

385

Green Building Requirement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirement Green Building Requirement Green Building Requirement < Back Eligibility Commercial Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider District Department of the Environment The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings and privately-owned commercial buildings of 50,000 square feet or

386

Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)  

SciTech Connect (OSTI)

As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

Not Available

2014-09-01T23:59:59.000Z

387

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network [OSTI]

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

388

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

389

Covered Product Category: Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

390

High Performance Building Standards in State Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

391

Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows  

Science Journals Connector (OSTI)

Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows ... This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). ... This was an issue that LCA had not tackled before. ...

Montserrat Nez; Stephan Pfister; Philippe Roux; Assumpci Antn

2013-10-04T23:59:59.000Z

392

Analysis of cross-flow mixed convection with applications to building heat transfer  

SciTech Connect (OSTI)

A numerical simulation model has been developed for partial enclosure with restricted inlet and outlet simulating the building fluid flow and heat transfer scenario. Computed results are presented for a number of geometric configurations over a wide range of Reynolds and Rayleigh numbers and validated with available experimental data. The physical processes were modeled by solving equations for the conservation of mass, momentum, and energy with appropriate boundary conditions. The properties of the fluid were assumed to remain approximately constant over the range of operation and the buoyancy was incorporated using the Boussinesq approximation. The k-{var_epsilon} model was used for the simulation of turbulence. The computed results included the local velocity and temperature and the variation of local heat transfer coefficient along the heated side wall. Computed results showed excellent agreement with experimental data. The flow pattern within the enclosure was found to be quite complex in nature and consisted of a core flow due to forced convection near the central region of the enclosure and strong buoyancy induced flow near the heated side walls. It was found that as the flow rate through the enclosure increased, the enhancement of heat transfer above that for natural convection alone, also increased. The variation of the local heat transfer coefficient over the heated surface was found to be strongly affected by the recirculation of portions of the forced flow within the enclosure as well as the impingement to or separation of flow from the side walls in some regions.

Gao, S.; Rahman, M.M.

1999-07-01T23:59:59.000Z

393

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network [OSTI]

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

394

Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6  

SciTech Connect (OSTI)

The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

MOSS, TIMOTHY A.

2002-03-01T23:59:59.000Z

395

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

396

City of Denver - Green Building Requirement for City-Owned Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Denver - Green Building Requirement for City-Owned Denver - Green Building Requirement for City-Owned Buildings City of Denver - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider Greenprint Denver Executive Order 123, signed in October 2007, established the Greenprint Denver Office and the Sustainability Policy for the city. The Sustainability Policy includes several goals and requirements meant to increase the sustainability of Denver by having the city government lead by

397

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network [OSTI]

such as solar-assisted pre-heat and waste water heat recovery components. A total of 7,488 six- day simulations

Victoria, University of

398

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network [OSTI]

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat (more)

PRESTON, NATHANIEL

399

Thermostatically controlled solar heating and cooling system  

SciTech Connect (OSTI)

This patent describes a solar heating and cooling system for simultaneously heating or cooling an ambient air system within a building, heating a hot water supply for domestic use within the building and heating or cooling a swimming pool adjacent the building comprising a building. This comprises a swimming pool as a primary water source, a solar connector connected to the swimming pool, a heat pump for controlling ambient air temperature within the building, an energy conservation unit connected to the heat pump and to the hot water supply for utilizing hot gases from the heat pump to heat water in the hot water supply and an air heat exchanger connected to the air system and to the heat pump for selectively heating or cooling air in the building. Also a water heat exchanger is connected to a water source for selectively transferring heat between the heat pump and the water source, a well as a secondary water source connected to the water heat exchanger.

Yovanofski, T.

1986-12-16T23:59:59.000Z

400

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network [OSTI]

#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

City of San Diego - Sustainable Building Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

San Diego - Sustainable Building Policy San Diego - Sustainable Building Policy City of San Diego - Sustainable Building Policy < Back Eligibility Commercial Construction Local Government Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State California Program Type Energy Standards for Public Buildings Provider San Diego Environmental Services Department The City of San Diego's Sustainable Building Policy is directed by Council Policy 900-14. The policy contains regulations regarding building

402

Local Option - Green Building Incentives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Green Building Incentives Local Option - Green Building Incentives Local Option - Green Building Incentives < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info Start Date 6/11/2009 State North Carolina Program Type Green Building Incentive To encourage sustainable building practices, North Carolina law allows all counties and cities to provide reductions or partial rebates for building permit fees. To qualify for a fee reduction, buildings must meet guidelines established by the Leadership in Energy and Environmental Design (LEED)

403

City of Santa Monica - Expedited Permitting for Green Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Expedited Permitting for Green Buildings Expedited Permitting for Green Buildings City of Santa Monica - Expedited Permitting for Green Buildings < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Green Building Incentive Provider City of Santa Monica The City of Santa Monica allows for priority plan check processing for building projects that are registered with the United States Green Building Council for certification under the Leadership in Energy and Environmental Design (LEED) Green Building Rating System. The priority status applies to

404

Chandler - Expedited Plan Review for Green Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chandler - Expedited Plan Review for Green Buildings Chandler - Expedited Plan Review for Green Buildings Chandler - Expedited Plan Review for Green Buildings < Back Eligibility Commercial Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Arizona Program Type Green Building Incentive Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing incentives for green building in the private sector. Permit applications for buildings registered with the US Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) for

405

Solar-assisted heat pump A sustainable system for low-temperature water heating applications  

Science Journals Connector (OSTI)

Abstract Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are lost.

S.K. Chaturvedi; V.D. Gagrani; T.M. Abdel-Salam

2014-01-01T23:59:59.000Z

406

Heat Pump Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

407

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

408

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network [OSTI]

load reduction for a net zero energy building, ACEEE Summergreen building or net zero energy building goals, which

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

409

Flow-induced vibration of component cooling water heat exchangers  

SciTech Connect (OSTI)

This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

Yeh, Y.S.; Chen, S.S. (Taiwan Power Co., Taipei (Taiwan). Nuclear Engineering Dept.; Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

410

Grid-Interactive Renewable Water Heating Economic and Environmental Value  

Broader source: Energy.gov (indexed) [DOE]

1 1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and charge level, factoring in renewable generation and other critical needs of the grid; thereby significantly reducing carbon emissions and bringing a new dimension of conservation and efficiency to the electric grid. The Steffes grid-interactive renewable water heater controller provides utilities with an affordable and effective way to integrate renewable generation into the grid while providing uninterrupted hot water to the consumer. In recent years, many states have set Renewable Portfolio Standards (RPS) to reduce the need for traditional fossil fuel-based power generation, thereby improving our environment and decreasing

411

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

412

Side by Side Testing of Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Florida Florida A Research Institute of the University of Central Florida Side by Side Testing of Water Heating Systems Residential Energy Efficiency Stakeholder Meeting Austin , Texas March 1st, 2012 Carlos J. Colon carlos@fsec.ucf.edu FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida 3 2009 -Present (Currently in third testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Underground Circulation Loop * Solar circulation Loop 140+ feet of ½" copper tubing * Encased in PVC tubing with R-2.4 insulation * ICS to 50 gallon storage tank path need to

413

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

414

City of Boulder - Green Points Building Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program < Back Eligibility Commercial Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider City of Boulder The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a variety of sustainable building components based on the size of the proposed structure. Similar to the US Green Building Council's LEED program, the

415

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network [OSTI]

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

416

Analysis of recoverable waste heat of circulating cooling water in hot-stamping power system  

Science Journals Connector (OSTI)

This article studies the possibility of using heat pump instead of cooling tower to decrease temperature and recover waste heat of circulating cooling water of power system. Making use of heat transfer theory ......

Panpan Qin; Hui Chen; Lili Chen; Chong Wang

2013-08-01T23:59:59.000Z

417

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book [EERE]

5 5 Water Heater Efficiencies 2005 2010 Efficiency Stock Minimum Best-Available Residential Type Parameter (1) Efficiency New Efficiency New Efficiency Electric Storage EF 0.90 0.90 (2) 0.95 (2) Electric Instantaneous EF 0.82 0.82 0.98 Electric Heat Pump EF 2.00 2.00 2.35 Gas-Fired Storage EF 0.60 0.59 (3) 0.85 (3) Gas-Fired Instantaneous EF 0.82 0.82 0.98 Oil-Fired Storage EF 0.50 0.53 (4) 0.68 (4) Solar SEF 2.50 N.A. 2.50 2007 2010 Efficiency Stock Minimum Best-Available Commercial Type Parameter (1) Efficiency New Efficiency New Efficiency Electric Storage Thermal Efficiency 0.98 0.98 (5) 0.98 (5) Electric Instantaneous Thermal Efficiency 0.98 0.98 0.98 Gas-Fired Storage Thermal Efficiency 0.78 0.80 (6) 0.96 (6) Gas-Fired Instantaneous Thermal Efficiency 0.77 0.80 0.85 Oil-Fired Storage Thermal Efficiency 0.79 0.78 (7) 0.85 (7) Note(s):

418

Cogen/chilled-water plant heats, cools, electrifies campus  

SciTech Connect (OSTI)

This article describes replacement of the University of California at Los Angeles' aging boiler and refrigeration equipment with a central chiller/combined-cycle cogeneration plant. The topics of the article include the work scope, the chilled water plant including absorption and steam turbine driven centrifugal chillers, and the cogeneration plant including two packaged combustion turbines, two heat-recovery steam generators and one steam turbogenerator.

Johnson, D.N. (Univ. of California, Los Angeles (United States)); Bakker, V.

1993-04-01T23:59:59.000Z

419

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant...

420

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes...  

Energy Savers [EERE]

Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump...

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana  

E-Print Network [OSTI]

An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

Braud, H. J.; Klimkowski, H.; Baker, F. E.

1985-01-01T23:59:59.000Z

422

Energy 101: Geothermal Heat Pumps  

SciTech Connect (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

423

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

424

Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost?  

Office of Energy Efficiency and Renewable Energy (EERE)

What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective?

425

Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

426

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

427

Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report  

SciTech Connect (OSTI)

The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

1998-04-01T23:59:59.000Z

428

Building Technologies Office: About Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

429

Research & Development Needs for Building-Integrated Solar Technologies  

Broader source: Energy.gov [DOE]

Building Integrated Solar Technologies (BIST) can help achieve the Building Technologies Office goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

430

Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating  

Science Journals Connector (OSTI)

Solar energy application is a good alternative to replace primary energy source especially for large-scale installations. Heat pumps are also effective means to reduce primary energy consumption. This paper describes a case study with a new design of solar assisted heat pump (SAHP) for indoor swimming pool space- and water-heating purposes. The system design procedure was first presented. The entire system was then modeled via the TRNSYS simulation environment and the energy performance was evaluated based on the winter time operation schedule. Economic analysis with a range of collector areas was also performed. The simulation results show that the overall system COP can reach 4.5, and the fractional factor of energy saving is 79% as compared to the conventional energy system. The economical payback period is less than 5years.

T.T. Chow; Y. Bai; K.F. Fong; Z. Lin

2012-01-01T23:59:59.000Z

431

City of Chandler - Green Building Requirement for City Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Chandler - Green Building Requirement for City Buildings Chandler - Green Building Requirement for City Buildings City of Chandler - Green Building Requirement for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Energy Standards for Public Buildings Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing a requirement for all new occupied city buildings larger than 5,000 square feet to be designed and built to achieve the Silver level

432

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer  

E-Print Network [OSTI]

A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

Bennett, Albert F.

433

Differential rates for district heating and the influence on the optimal retrofit strategy for multi-family buildings  

Science Journals Connector (OSTI)

When renovating existing multi-family buildings it is very important to implement the best retrofit strategy possible in order to minimize the remaining life-cycle cost for the building. If the building is heated with district heating this strategy of course changes due to the energy rate used by the utility. It is also very important for the utility that the consumer is encouraged to save energy when there is a need for it, i.e. during peak load conditions. Our paper shows that an accurate cost differential rate provides all these facilities.

Stig-Inge Gustafsson; Bjrn G. Karlsson; Bertil H. Sjholm

1987-01-01T23:59:59.000Z

434

Building America Expert Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits  

Broader source: Energy.gov (indexed) [DOE]

Hydronic Hydronic Heating in Multifamily Buildings Jordan Dentz The ARIES Collaborative October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

435

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect (OSTI)

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

436

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

437

Natural convection heat exchangers for solar water heating systems. Technical progress report, November 15, 1996--January 14, 1997  

SciTech Connect (OSTI)

The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

Davidson, J.H.

1998-06-01T23:59:59.000Z

438

Heat pump water heater and storage tank assembly  

DOE Patents [OSTI]

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

439

Santa Clara County - Green Building Policy for County Government Buildings  

Broader source: Energy.gov (indexed) [DOE]

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

440

Filter Press Building  

E-Print Network [OSTI]

"FILTER PRESS BUILDING" AVON LAKE WATER POLLUTION CONTROL CENTER HEAT PUMP HEATING AND COOLING SYSTEM William M. Bush, P.E. The Cleveland Electric Illuminating Company Cleveland, Ohio ABSTRACT The high heat value of the plant's treated wa..." of the thousands of homes in the com munity, we were able to recommend a system of heat recovery refrigeration cycles that would provide space conditioning at a fraction of the cost of natural gas. The all-electric recommendation was accepted because...

Bush, W. M.

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exergy efficiency analysis in buildings climatized with LiClH2O solar cooling systems that use swimming pools as heat sinks  

Science Journals Connector (OSTI)

Solar cooling is emerging as one of the most interesting applications in the harnessing of solar energy for alternative uses. Current devices can effectively control the climates of small buildings while addressing the issues associated with the excessive thermal energy captured during the summer months. This article presents an exergy analysis of buildings with solar thermal systems used for Domestic Hot Water (DHW) production and heating and cooling support. The cooling system analyzed is a LiClH2O thermally driven heat pump with integral energy storage that uses outdoor swimming pools as heat sink. All subsystems were integrated into the model and considered as a single energy system, and data from installations in three different locations were used. The influences of the heating and cooling demand ratios and the dead state and house temperatures were analyzed. Further, the use of dissipated energy was analyzed, demonstrating that the proposed method facilitates the realistic study of these systems and provides useful analytical tools for improving the overall exergy performance. The energy delivered for heating, cooling and DHW production strongly influences global performance, suggesting that the appropriate sizing of each system is a priority.

D. Borge; A. Colmenar; M. Castro; S. Martn; E. Sancristobal

2011-01-01T23:59:59.000Z

442

Energy Efficient State Building Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficient State Building Initiative Efficient State Building Initiative Energy Efficient State Building Initiative < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Indiana Program Type Energy Standards for Public Buildings Provider Department of Administration In June 2008, Governor Mitch Daniels issued an executive order establishing an energy efficient state buildings initiative. The order requires the Indiana Department of Administration (DOA) to develop design standards for all new state buildings which require a cost-effectiveness analysis of the

443

Energy-Efficient Building Standards for State Facilities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Building Standards for State Facilities Energy-Efficient Building Standards for State Facilities Energy-Efficient Building Standards for State Facilities < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Maine Program Type Energy Standards for Public Buildings Provider State Energy Program Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and environmental sustainability,

444

Durham County - High-Performance Building Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

445

Arlington County - Green Building Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program < Back Eligibility Commercial Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Virginia Program Type Green Building Incentive Provider Arlington County In October 1999, the County Board of Arlington adopted a Pilot Green Building Incentive Program using the standards established by the U. S. Green Building Council's Leadership in Energy and Environmental Design

446

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

447

City of Los Angeles - Green Building Retrofit Requirement | Department of  

Broader source: Energy.gov (indexed) [DOE]

Green Building Retrofit Requirement Green Building Retrofit Requirement City of Los Angeles - Green Building Retrofit Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Manufacturing Buying & Making Electricity Solar Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles Department of Water and Power In April 2009, Los Angeles enacted [clkrep.lacity.org/onlinedocs/2006/06-1963_ord_180633.pdf Ordinance 180636], known as the Green Building Retrofit Ordinance. This ordinance was later amended by Ordinance 182259. The law requires all city-owned

448

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it surprises me to see that the most popular pages on the site are the ones about solar water heaters and demand (or tankless) water heaters. But considering that water heating can account for around 12% of a family's utility bill-the biggest chunk after space heating and cooling-it really shouldn't be that surprising that you want to know how to heat your water more efficiently. Obviously, not everyone is in a position to go out and buy a new water heater, but we can all do something to use less water and save on our bills. Whether you're looking for no-cost habit changes, low-cost purchases or

449

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

450

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: Energy.gov (indexed) [DOE]

requires a two percent annual reduction in water use (compared to requires a two percent annual reduction in water use (compared to a FY 2007 baseline), significantly reducing total Federal water consumption by FY 2020. View Federal water requirements at www.femp.energy.gov/program/waterefficiency_ requirements.html. Increasing Federal Office Building Water Efficiency With less than one percent of Earth's water available for human use, the Federal Government is leading by example with water efficiency and conservation efforts. Federal laws and regulations require agencies to implement water efficiency efforts and reduce water consumption, making water an integral part of every comprehensive resource management program. Water Management Planning A comprehensive water management plan includes clear information on how a Federal facility uses water from

451

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network [OSTI]

simulation results with the building databases forthe large office building in Chicago. Figure 9.simulation results with the building databases for the small

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

452

City of Greensburg - Green Building Requirement for New Municipal Buildings  

Broader source: Energy.gov (indexed) [DOE]

Greensburg - Green Building Requirement for New Municipal Greensburg - Green Building Requirement for New Municipal Buildings City of Greensburg - Green Building Requirement for New Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Kansas Program Type Energy Standards for Public Buildings Provider Greensburg City Hall In the aftermath of a May 2007 tornado that destroyed 95% of the city, the Greensburg City Council passed an ordinance requiring that all newly constructed or renovated municipally owned facilities larger than 4,000

453

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

454

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

455

Buildings Energy Data Book: 8.4 WaterSense  

Buildings Energy Data Book [EERE]

4 WaterSense 4 WaterSense March 2012 8.4.1 WaterSense List of Covered Products and Efficiency Specifications Covered Product Lavatory Faucets (1) Toilets (2) Urinals Shower Heads Irrigation Control Equipment (3) Pre-Rinse Spray Valves (4) Water Softeners - (4) - WaterSense Landscape Irrigation Partners as of February 2012: 2001 (5) Note(s): Source(s): In Progress 1) GPM = gallons per minute. 2) GPF = gallons per flush. 3) Mulitiple criteria for irrigation includes requirements for percentage reduction in irrigation adequacy and irrigation excess, as well as conformance to supplemental capability requirements 4) Final criteria for these categories have not been set. These are criteria levels that WaterSense is considering. 5) WaterSense qualifies individuals as partners via private programs certified by WaterSense.

456

Magnetic treatment of water prevents mineral build-up  

SciTech Connect (OSTI)

Increased demand for water and especially for water reuse combined with tighter restrictions on environmental pollution has dictated the need for improvement in water treatment. The effective treatment of a water supply to prevent or minimize the formation of scale or corrosion, for example, is complex and any process requiring little or no chemical additions represents an attractive alternative. Untreated water results in equipment failures, process interruptions and circulating water systems clogged by minerals. These problems are, in many instances, related to scale deposition and corrosion caused by dissolved and suspended solids in the water supply. Magnetic treatment of water is an effective method of overcoming these problems. The theory, application and case studies involving the use of magnetic treatment are discussed.

Quinn, C.J. [Purdue Univ., Fort Wayne, IN (United States); Molden, T.C. [Molden Associates, Inc., Michigan City, IN (United States); Sanderson, C.H. [Magnatech Corp., Fort Wayne, IN (United States). Superior Mfg. Div.

1997-07-01T23:59:59.000Z

457

Solar Design Standards for State Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Design Standards for State Buildings Solar Design Standards for State Buildings Solar Design Standards for State Buildings < Back Eligibility Construction Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Program Info State Arizona Program Type Energy Standards for Public Buildings Provider Arizona Department of Commerce Arizona law requires that new state building projects over six thousand square feet follow prescribed solar design standards. Solar improvements should be evaluated on the basis of life cycle costs. Affected buildings include buildings designed and constructed by the department of

458

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

459

Building StrongBuilding Strong Clean Water Act Section 404 Permitting Program  

E-Print Network [OSTI]

issues: ­ how far upstream does the CWA reach? ­ how "connected" does a wetland need to be in order · What was the issue? ­ Rapanos, represented by the Pacific Legal Foundation, says: "Does extension navigable waters are part of "the waters of the United States" within the meaning of the Clean Water Act

Minnesota, University of

460

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Broader source: Energy.gov [DOE]

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Order 13514 requires a two percent annual reduction in water use (compared to Order 13514 requires a two percent annual reduction in water use (compared to a FY 2007 baseline), significantly reducing total Federal water consumption by FY 2020. View Federal water requirements at www.femp.energy.gov/program/waterefficiency_ requirements.html. Increasing Federal Office Building Water Efficiency With less than one percent of Earth's water available for human use, the Federal Government is leading by example with water efficiency and conservation efforts. Federal laws and regulations require agencies to implement water efficiency efforts and reduce water consumption, making water an integral part of every comprehensive resource management program. Water Management Planning A comprehensive water management plan includes clear information on

462

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Broader source: Energy.gov [DOE]

This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems.

463

Building America Expert Meeting: Exploring the Disconnect Between...  

Energy Savers [EERE]

Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance...

464

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Performance of...

465

DataTrends: Water Use Tracking | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DataTrends: Water Use Tracking DataTrends: Water Use Tracking Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

466

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

467

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1  

E-Print Network [OSTI]

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

Treur, Jan

468

Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report  

SciTech Connect (OSTI)

The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

None

1980-11-01T23:59:59.000Z

469

City of Sunset Valley - Solar Water Heating Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $2,000 Program Info Funding Source General Funds State Texas Program Type Local Rebate Program Rebate Amount 30% of installed cost Provider City of Sunset Valley The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that are offered by Austin Energy to its electric customers. The Sunset Valley rebate is set at 30% of the installed system cost, up to a maximum rebate of $2,000 per homeowner, supplementing the

470

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect (OSTI)

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

471

Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts  

Broader source: Energy.gov [DOE]

The ARIES Collaborative partnered with Homeowners' Rehab Inc., a nonprofit affordable housing owner, to upgrade the central hydronic heating system in a 42-unit housing development, reducing heating energy use by an average of 19%.

472

An experimental study on heat transfer from a horizontal heated circular cylinder enhanced by water spray.  

E-Print Network [OSTI]

??A series of experiments were conducted to investigate the heat transfer which occurs with a heated, constant heat flux, horizontal, single circular cylinder is exposed (more)

Chau, Man Hei

2009-01-01T23:59:59.000Z

473

Heat transfer through a water spray curtain under the effect of a strong radiative source  

E-Print Network [OSTI]

Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

Paris-Sud XI, Université de

474

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network [OSTI]

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

475

Building America Top Innovations Hall of Fame Profile … EEBA Water Management Guide  

Broader source: Energy.gov (indexed) [DOE]

energy codes and voluntary programs such as ENERGY STAR for Homes and energy codes and voluntary programs such as ENERGY STAR for Homes and the DOE Challenge Home continue transforming the housing industry to high performance, better insulated and air-sealed assemblies now have substantially reduced tolerance for drying. As a result, managing bulk water flow has become critical to durable construction. The DOE-sponsored Water Mangement Guide has proven to be a highly effective tool for disseminating much needed best practices. The U.S. Department of Energy's Building America program sponsored development of the Water Management Guide, written by Joe Lstiburek, a building scientist and principal with Building America research partner, Building Science Corporation. The guide gives builders practical guidance for minimizing

476

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

3 3 Energy Use of Wastewater Treatment Plants by Capacity and Treatment Level (kWh per Million Gallons) 1 - 5 - 10 - 20 - 50 - 100 - Note(s): Source(s): 673 1,028 1,188 1,558 The level of treatment indicates the amount of processing involved before water is released from the treatment facility. Primary treatment removes solids and oils from wastewater. Secondary treatment uses biological processes to remove organic material from the water. Tertiary treatment includes additional processes to further refine the water. Nitrification is a process to remove nitrogen from water. Electric Power Research Institute, Water & Sustainability (Volume 4): U.S. Electricity Consumption for Water Supply & Treatment - The Next Half Century,

477

Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Control strategies to improve hydronic space heating performance  

Broader source: Energy.gov [DOE]

This webinar was presented on July 16, 2014, and provided information about improving the performance of central space conditioning systems in multifamily buildings.

478

City of Fort Collins - Green Building Requirement for City-Owned Buildings  

Broader source: Energy.gov (indexed) [DOE]

Fort Collins - Green Building Requirement for City-Owned Fort Collins - Green Building Requirement for City-Owned Buildings City of Fort Collins - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider The City of Fort Collins The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed and constructed to

479

A refrigerator-heat-pump desalination scheme for fresh-water and salt recovery  

Science Journals Connector (OSTI)

This study concerns a refrigerator-heat-pump desalination scheme (RHPDS), which allows energy-efficient recovery of fresh water and salt from the sea. In this scheme, a salt-water chamber is continuously refilled with sea water via atmospheric pressure. Sea water is evaporated into a vacuum chamber and the water vapor is condensed on top of a fresh-water chamber. A refrigerator-heat-pump circuit maintains the two water chambers at suitably different operating temperatures and allows efficient recovery of the latent heat of condensation. The scheme is analyzed with special consideration to potential exploitation of renewable energy sources such as solar and wind energy.

M. Reali

1984-01-01T23:59:59.000Z

480

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

Note: This page contains sample records for the topic "water heating building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Performance investigation of the Afyon geothermal district heating system for building applications: Exergy analysis  

Science Journals Connector (OSTI)

This paper deals with an energy and exergy evaluation and modeling of geothermal district heating systems for their system analysis, performance evaluation and optimization. As a comprehensive case study, the Afyon geothermal district heating system (AFJET) in Afyon, Turkey is considered and actual thermal data are collected and employed for analysis. Using actual system data, an evaluation of the district heating system performance, energy and exergy efficiencies, and exergy destructions in the system are conducted in this regard. This study is also conducted to show how energy and exergy efficiencies of the \\{GDHSs\\} will change with the reference temperature and how exergy losses will affect by the temperature difference between the geothermal resource and the supply temperature of the district heating distribution network. In addition, the negative effects of discharge waters of the AFJET are presented. The energy and exergy efficiencies of the entire AFJET are found to be 37.59% and 47.54%, respectively. The results are expected to be helpful to researchers and engineers in the area.

Ali Keeba?; Muhammet Kayfeci; Engin Gedik

2011-01-01T23:59:59.000Z

482

Solar space- and water-heating system at Stanford University. Final report  

SciTech Connect (OSTI)

Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

Not Available

1980-05-01T23:59:59.000Z