Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

2

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

Diagram 1: A Typical Tank Water Heater Source: http://to-unit comparisons of tank versus tankless water heaters.Energy Use MJ/(unit*year) Tank Tankless MJ/(unit*year) Tank

Lu, Alison

2011-01-01T23:59:59.000Z

3

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

than standard storage water heaters [2]. However, they aredown for both storage-type water heaters and tankless water1]. The typical water heater storage tank wastes energy to

Lu, Alison

2011-01-01T23:59:59.000Z

4

Evaluation of TANK water heater simulation model as embedded in HWSim  

E-Print Network [OSTI]

this scheme for operating TANK with HWSim is successful.LBNL # Evaluation of TANK water heater simulation model asCalifornia. Evaluation of TANK water heater simulation model

Lutz, Jim

2012-01-01T23:59:59.000Z

5

Evaluation of TANK water heater simulation model as embedded in HWSim  

E-Print Network [OSTI]

LBNL # Evaluation of TANK water heater simulation model asEvaluation of TANK water heater simulation model as embeddedwater to be drawn from a water heater to meet a schedule of

Lutz, Jim

2012-01-01T23:59:59.000Z

6

Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint  

SciTech Connect (OSTI)

Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

2009-04-01T23:59:59.000Z

7

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

SciTech Connect (OSTI)

Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

2008-08-13T23:59:59.000Z

8

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

history of promoting heat pump water heaters (HPWH) throughwater heaters, and heat pump water heaters are not typical.water heaters, heat pump water heater (HPWH) technology

Johnson, Alissa

2013-01-01T23:59:59.000Z

9

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

Study on Eco-Design of Water Heaters, Van Holstein en Kemnaon Eco-Design of Water Heaters”, Task 5 Report, DefinitionTesting of Tankless Gas Water Heater Performance. Davis

Lu, Alison

2011-01-01T23:59:59.000Z

10

Heat pump water heater and storage tank assembly  

DOE Patents [OSTI]

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

11

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tankthe house. Supply pipe – this is the water heater inlet pipewith refills the water heater with cold water Note: The TANK

Biermayer, Peter

2012-01-01T23:59:59.000Z

12

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

blankets to electric hot water heaters in South Africa,” J.for Residential Water Heaters, Direct Heating Equipment, andfor Residential Water Heaters, Direct Heating Equipment, and

Johnson, Alissa

2013-01-01T23:59:59.000Z

13

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Fixed Electric Storage Water Heaters, South African Nationalinternational electric storage water heater test proceduresefficiency of electric storage water heaters, and outlines

Johnson, Alissa

2013-01-01T23:59:59.000Z

14

Evaluation of TANK water heater simulation model as embedded in HWSim  

E-Print Network [OSTI]

flue natural gas storage water heaters. Battelle developedthe water in a storage water heater is cooling off and

Lutz, Jim

2012-01-01T23:59:59.000Z

15

A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings  

E-Print Network [OSTI]

energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

Yamaha, M.; Fujita, M.; Miyoshi, T.

2006-01-01T23:59:59.000Z

16

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect (OSTI)

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

17

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

unit*year) Heavy Metals to Water Heavy Metals to Water mg NiMatter Emissions (Water) Heavy Metals mg Hg/20 /unit*yearMatter Mg/year Emissions (Water) Heavy Metals Gg Hg/20 /year

Lu, Alison

2011-01-01T23:59:59.000Z

18

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

consumer/your_home/water_ heating/index.cfm/mytopic=12980heating is a large source of energy use in California homes.heating is the third largest source of energy use in homes [

Lu, Alison

2011-01-01T23:59:59.000Z

19

Selecting a new water heater  

SciTech Connect (OSTI)

This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

NONE

1995-03-01T23:59:59.000Z

20

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Gas-fired Storage Water Heater .. 418 Assess California’s Small Gas Storage Water Heaters Small Gas Storage Water Heater Market The objective of

Lutz, Jim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

residential gas-fired storage water heater was modeled underin a typical residential storage water heater that meets thereplace a gas-fired storage water heater with a conventional

Biermayer, Peter

2012-01-01T23:59:59.000Z

22

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

23

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

The Performance of Solar Water Heater With Natural Ci rcul2-6, 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERSJune 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS*

Mertol, Atila

2012-01-01T23:59:59.000Z

24

Measure Guideline: Transitioning to a Tankless Water Heater  

SciTech Connect (OSTI)

This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

Brozyna, K.; Rapport, A.

2012-09-01T23:59:59.000Z

25

Selecting a New Water Heater You have a lot to consider when selecting a  

E-Print Network [OSTI]

the water heater's annual operation costs but also its size and energy efficiency. Natural gas, oil or tank water heater operates by releasing hot water from the top of the tank when the hot water tap is turned on. The hot water is released into the hot water line. As the hot water leaves the tank, cold

26

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

the CFR as being storage water heaters, instantaneous watersupply boilers. Storage water heater means a water heaterAppliance Gas storage water heaters Definition a water

Lutz, Jim

2012-01-01T23:59:59.000Z

27

Water heater control module  

DOE Patents [OSTI]

An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

Hammerstrom, Donald J

2013-11-26T23:59:59.000Z

28

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

heat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculationsheat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculations

Lutz, Jim

2012-01-01T23:59:59.000Z

29

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

Lutz, Jim

2012-01-01T23:59:59.000Z

30

The LBNL Water Heater Retail Price Database  

E-Print Network [OSTI]

display the distribution of water heater models by fee typeelectric and gas-fired water heaters, respectively. DeliveryDistribution of Electric Water Heaters by Fee Type Figure B-

Lekov, Alex; Glover, Julie; Lutz, Jim

2000-01-01T23:59:59.000Z

31

Do You Have a Solar Water Heater?  

Broader source: Energy.gov [DOE]

Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

32

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

33

LOW COST HEAT PUMP WATER HEATER (HPWH)  

SciTech Connect (OSTI)

Water heating accounts for the second largest portion of residential building energy consumption, after space conditioning. Existing HPWH products are a technical success, with demonstrated energy savings of 50% or more compared with standard electric resistance water heaters. However, current HPWHs available on the market cost an average of $1000 or more, which is too expensive for significant market penetration. What is needed is a method to reduce the first cost of HPWHs, so that the payback period will be reduced from 8 years to a period short enough for the market to accept this technology. A second problem with most existing HPWH products is the reliability issue associated with the pump and water loop needed to circulate cool water from the storage tank to the HPWH condenser. Existing integral HPWHs have the condenser wrapped around the water tank and thus avoid the pump and circulation issues but require a relatively complex and expensive manufacturing process. A more straightforward potentially less costly approach to the integral, single package HPWH design is to insert the condenser directly into the storage tank, or immersed direct heat exchanger (IDX). Initial development of an IDX HPWH met technical performance goals, achieving measured efficiencies or energy factors (EF) in excess of 1.79. In comparison conventional electric water heaters (EWH) have EFs of about 0.9. However, the initial approach required a 2.5" hole on top of the tank for insertion of the condenser - much larger than the standard openings typically provided. Interactions with water heater manufacturers indicated that the non standard hole size would likely lead to increased manufacturing costs (at least initially) and largely eliminate any cost advantage of the IDX approach. Recently we have been evaluating an approach to allow use of a standard tank hole size for insertion of the IDX condenser. Laboratory tests of a prototype have yielded an EF of 2.02.

Mei, Vince C [ORNL; Baxter, Van D [ORNL

2006-01-01T23:59:59.000Z

34

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

35

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

36

Molded polymer solar water heater  

DOE Patents [OSTI]

A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

Bourne, Richard C.; Lee, Brian E.

2004-11-09T23:59:59.000Z

37

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

38

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

39

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

40

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

2001. Residential Heat Pump Water Heater (HPWH) DevelopmentJ. 2003. Incorporating Water Heater Replacement into The2005. Residential Heat Pump Water Heaters: Energy Efficiency

Franco, Victor

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

an electric resistance storage water heater (ESWH) with tankof total electric storage water heater shipments in the nextelectric resistance storage water heaters. The rated storage

Franco, Victor

2011-01-01T23:59:59.000Z

42

MEAN MONTHLY PERFORMANCE OF PASSIVE SOLAR HEATERS  

E-Print Network [OSTI]

storage water: Heat Flow Cold Water Solar Tank Warm Water Standard Water Heaterstorage tank can also be accom- plished by natural convection. In the compact water heater,

Place, W.

2011-01-01T23:59:59.000Z

43

Tankless or Demand-Type Water Heaters | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How...

44

MEAN MONTHLY PERFORMANCE OF PASSIVE SOLAR HEATERS  

E-Print Network [OSTI]

OF PASSIVE SOLAR WATER HEATERS W. Place, M. Daneshyar. andOF PASSIVE SOLAR WATER HEATERS* We Place, M. Daneshyar, tWarm Water Standard Water Heater Tank Hot Water The solar

Place, W.

2011-01-01T23:59:59.000Z

45

Dehumidifying water heater  

SciTech Connect (OSTI)

Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

Not Available

1992-08-18T23:59:59.000Z

46

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

water heaters, heat-pump water heaters, and instantaneous (Wasted water Solar Heat pump water heater Australia/New

Lutz, Jim

2012-01-01T23:59:59.000Z

47

Condensing Hybrid Water Heater Monitoring Field Evaluation  

SciTech Connect (OSTI)

This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

2011-10-01T23:59:59.000Z

48

Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing  

SciTech Connect (OSTI)

This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

Ries, R.; Walters, R.; Dwiantoro, D.

2013-01-01T23:59:59.000Z

49

Burbank Water and Power- Solar Water Heater Rebate Program (California)  

Broader source: Energy.gov [DOE]

Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one...

50

Economic Analysis of Solar Water Heaters in GuangZhou  

E-Print Network [OSTI]

,gas water heater and electrical water heater in Guangzhou was compared and the Annual Cost Calculation Method (ACCM)was introduced to explain the remarkable economic benefits. The social benefits of the solar water heater were introduced from a scientific...

Wang, Y.; Zhao, L.

2006-01-01T23:59:59.000Z

51

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

Lutz, Jim

2012-01-01T23:59:59.000Z

52

Efficient Residential Water Heaters Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Efficient Residential Water Heaters Webinar Efficient Residential Water Heaters Webinar On Feb. 22, 2011, Jerone Gagliano,...

53

Covered Product Category: Residential Gas Storage Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

54

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

resistance and heat pump water heaters are not covered.other than commercial heat pump water heaters). 10CFR431.110

Lutz, Jim

2012-01-01T23:59:59.000Z

55

The LBNL Water Heater Retail Price Database  

E-Print Network [OSTI]

Olson, and Stuart Chaitkin (LBNL). We also want to thank ourand Mithra Moezzi, also of LBNL. This work was supported byLBNL – 44749 The LBNL Water Heater Retail Price Database

Lekov, Alex; Glover, Julie; Lutz, Jim

2000-01-01T23:59:59.000Z

56

Grays Harbor PUD- Solar Water Heater Loan  

Broader source: Energy.gov [DOE]

Since October 2001, Grays Harbor PUD has offered a low-interest loan program (currently 4.0%) for the installation of solar water heaters. Loans are available for the installation of solar...

57

Grays Harbor PUD- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square...

58

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

and F. Southworh. 2004. Heat pump water heater technology:gas tankless water heaters, heat pump water heaters,heat pump space heaters, and solar water heaters, as well as

Lekov, Alex

2011-01-01T23:59:59.000Z

59

Development of a Market Optimized Condensing Gas Water Heater  

SciTech Connect (OSTI)

This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize the design for manufacturing. This work included the initiation of a large field testing program (over 125 units) and an in-depth reliability program intended to minimize the risks associated with a new product introduction. At the time of this report, A.O. Smith plans to introduce this product to the marketplace in the early 2006 time period.

Peter Pescatore

2006-01-11T23:59:59.000Z

60

Preliminary Modeling, Testing and Analysis of a Gas Tankless Water Heater  

SciTech Connect (OSTI)

Tankless water heaters offer significant energy savings over conventional storage-tank water heaters, because thermal losses to the environment are much less. Although standard test results are available to compare tankless heaters with storage tank heaters, actual savings depend on the draw details because energy to heat up the internal mass depends on the time since the last draw. To allow accurate efficiency estimates under any assumed draw pattern, a one-node model with heat exchanger mass is posed here. Key model parameters were determined from test data. Burner efficiency showed inconsistency between the two data sets analyzed. Model calculations show that efficiency with a realistic draw pattern is {approx}8% lower than that resulting from using only large {approx}40 liter draws, as specified in standard water-heater tests. The model is also used to indicate that adding a small tank controlled by the tankless heater ameliorates unacceptable oscillations that tankless with feedback control can experience with pre-heated water too hot for the minimum burner setting. The added tank also eliminates problematic low-flow cut-out and hot-water-delay, but it will slightly decrease efficiency. Future work includes model refinements and developing optimal protocols for parameter extraction.

Burch, J.; Thornton, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

Lekov, Alex

2011-01-01T23:59:59.000Z

62

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

Lekov, Alex B.

2010-01-01T23:59:59.000Z

63

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experiencesstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

64

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network [OSTI]

for gas and electric storage water heaters. It presents theboth gas and electric storage water heaters, and heat pumpliters) for gas storage water heaters and a maximum input

Lekov, Alex

2011-01-01T23:59:59.000Z

65

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

develop condensing gas storage water heaters to qualify forgas furnace and gas storage water heater. This study focusesis predominantly storage water heaters. Regionally, gas-

Lekov, Alex

2011-01-01T23:59:59.000Z

66

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experienceslarger market for heat pump water heaters (US Department offurnace or heat pump and electric water heater (26%; US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

67

Advances in the Research of Heat Pump Water Heaters  

E-Print Network [OSTI]

This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

68

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers [EERE]

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

69

Outdoor Outfitter Gets Greener With Solar Water Heater | Department...  

Broader source: Energy.gov (indexed) [DOE]

Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater October 8, 2010 - 12:51pm Addthis L.L. Beans flagship store sees...

70

Solar Water Heater Rebate Program (U.S. Virgin Islands)  

Broader source: Energy.gov [DOE]

The Virgin Islands Energy Office currently offers rebates to residents for purchasing solar water heaters from local vendors. The program will cover residential, solar water heaters of 120 gallons...

71

TVA Partner Utilities- Energy Right Water Heater Program  

Broader source: Energy.gov [DOE]

The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each...

72

TVA Partner Utilities- Energy Right Water Heater Program  

Broader source: Energy.gov [DOE]

The Tennessee Valley Authority (TVA) energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local...

73

TVA Partner Utilities- Energy Right' Water Heater Program  

Broader source: Energy.gov [DOE]

The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each...

74

Covered Product Category: Commercial Gas Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

75

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

76

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network [OSTI]

of a Drop-In Heat Pump Water Heater, Oak Ridge National Lab.CA. Maxwell, J. 2004. Heat Pump Water Heater Economic Model.water heaters. For heat pump water heaters, the study also

Lekov, Alex

2011-01-01T23:59:59.000Z

77

Heat pump water heater and method of making the same  

DOE Patents [OSTI]

An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

Mei, Viung C. (Oak Ridge, TN); Tomlinson, John J. (Knoxville, TN); Chen, Fang C. (Knoxville, TN)

2001-01-01T23:59:59.000Z

78

Feasibility of Using Measurements of Internal Components of Tankless Water Heaters for Field Monitoring of Energy and Water Use  

E-Print Network [OSTI]

Test Procedures for Water Heaters; Final Rule," FederalTesting of Tankless Gas Water Heater Performance," DavisInc. , "T-K2 Instantaneous Water Heater Installation Manual

Lutz, Jim

2008-01-01T23:59:59.000Z

79

Field Monitoring Protocol: Heat Pump Water Heaters  

SciTech Connect (OSTI)

This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

2013-02-01T23:59:59.000Z

80

Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint  

SciTech Connect (OSTI)

Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.

Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Numerical Analysis of Water Temperature Distribution in the Tank of ASHPWH it ha Cylindrical Condenser  

E-Print Network [OSTI]

Air source heat pump water heaters (ASHPWH) are becoming increasingly popular for saving energy, protecting the environment and security purposes. The water temperature distribution in the tank is an important parameter for an ASHPWH. This paper...

Wang, D.; Shan, S.; Wang, R.

2006-01-01T23:59:59.000Z

82

Heat Pump Water Heaters | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9HarveyWellnessFebruaryWater Heaters Heat

83

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)  

SciTech Connect (OSTI)

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

Hudon, K.

2012-05-01T23:59:59.000Z

84

Covered Product Category: Residential Electric Resistance Water Heaters  

Broader source: Energy.gov [DOE]

FEMP sets federal efficiency requirements and provides acquisition guidance across a variety of product categories, including residential electric resistance water heaters.

85

Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments  

E-Print Network [OSTI]

Emissions from Residential Water Heaters Table of Contents46 Table 10. Storage water heaters evaluated experimentally50 Table 11. Published information for water heater

Rapp, VH

2014-01-01T23:59:59.000Z

86

Stratification in hot water tanks  

SciTech Connect (OSTI)

Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

Balcomb, J.D.

1982-04-01T23:59:59.000Z

87

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Broader source: Energy.gov [DOE]

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

88

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network [OSTI]

of a Drop-In Heat Pump Water Heater, Oak Ridge National Lab.Clear Seas Research. 2006. Water Heater Study. Plumbing andJ. 2003. Incorporating Water Heater Replacement into the

Lekov, Alex

2011-01-01T23:59:59.000Z

89

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

associated with the EU water heater test procedure loadEU test procedure for water heaters. Load No. Delivered Max.period to allow the water heater to adjust completely to

Lutz, Jim

2012-01-01T23:59:59.000Z

90

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.

2010-01-01T23:59:59.000Z

91

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

92

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

gas and electric storage water heaters, heat-pump watersmall gas-fired storage water heaters with a large burner.such as electric storage water heaters, the comparison of

Lutz, Jim

2012-01-01T23:59:59.000Z

93

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

and F. Southworh. (2004). Heat pump water heater technology:a larger market for heat pump water heaters (U.S. Departmentfurnace or heat pump and electric water heater (26%). (U.S.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

94

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump water heater Australia/

Lutz, Jim

2012-01-01T23:59:59.000Z

95

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

96

Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)  

SciTech Connect (OSTI)

Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

Not Available

2012-09-01T23:59:59.000Z

97

Utilization of Heat Pump Water Heaters for Load Management  

SciTech Connect (OSTI)

The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

2014-01-01T23:59:59.000Z

98

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

99

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, John W. (Sag Harbor, NY)

1983-06-28T23:59:59.000Z

100

Rock Hill Utilities- Water Heater and Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Monitoring SERC Technologies: On-Demand Tankless Water Heaters  

Broader source: Energy.gov [DOE]

A webinar by Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, about On-Demand Tankless Water Heaters and how to properly monitor the installation.

102

New Home Buyer Solar Water Heater Trade-Off Study  

SciTech Connect (OSTI)

This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

Symmetrics Marketing Corporation

1999-08-18T23:59:59.000Z

103

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

104

Blue Ridge Mountain Electric Membership Corporation- Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Blue Ridge Mountain EMC and TVA, its power supplier, offer the Energy Right and In Home Energy Evaluation programs to qualified members. To qualify for water heater rebates provided by the Energy...

105

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network [OSTI]

#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

Oak Ridge National Laboratory

106

Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

Not Available

2010-09-01T23:59:59.000Z

107

Heat Pump Water Heaters and American Homes: A Good Fit?  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

2010-05-14T23:59:59.000Z

108

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

109

Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments  

E-Print Network [OSTI]

46 Table 10. Storage water heaters evaluated experimentallyfor interchangeability experiments for storage water heaterfor experiments with storage water heater AW01. 53

Rapp, VH

2014-01-01T23:59:59.000Z

110

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect (OSTI)

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

111

Development of a Low Cost Heat Pump Water Heater - First Prototype  

SciTech Connect (OSTI)

Until now the heat pump water heater (HPWH) has been a technical success but a market failure because of its high initial cost. Oak Ridge National Laboratory (ORNL) was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. ORNL was also tasked to verify the technical feasibility of the cost saving opportunities where necessary and appropriate. The objective was to retain most of the HPWH s energy saving performance while reducing cost and simple payback period to approximately three years in a residential application. Several cost saving opportunities were found. Immersing the HPWH condenser directly into the tank allowed the water-circulating pump to be eliminated and a standard electric resistance storage water heater to be used. In addition, designs could be based on refrigerator compressors. Standard water heaters and refrigerator compressors are both reliable, mass produced, and low cost. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water heater tank through a sleeve affixed to one of the standard penetrations at the top of the tank. The sleeve contour causes the bayonet-style condenser to helix while being pushed into the tank, enabling a condenser of sufficient heat transfer surface area to be inserted. Based on this design, ORNL fabricated the first laboratory prototype and completed preliminary laboratory tests in accordance with the DOE Simulated Use Test Procedure. Hardening during double-wall condenser fabrication was not overcome, so the prototype is single-walled with a liner. The prototype unit was found to have an energy factor of 2.02, verifying that the low-cost design retains most of the HPWH s energy saving performance. Industry involvement is being sought to resolve the fabrication issue and quantify progress on reducing cost and simple payback period to approximately three years in a residential application. This report provides information on the design, prototype construction, laboratory test data, and analyses of this HPWH.

Mei, V. C. [Oak Ridge National Laboratory (Retired); Tomlinson, J. J. [Oak Ridge National Laboratory (Retired)

2007-09-01T23:59:59.000Z

112

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network [OSTI]

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

113

Covered Product Category: Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

114

Demand Response Performance of GE Hybrid Heat Pump Water Heater  

SciTech Connect (OSTI)

This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

2013-07-01T23:59:59.000Z

115

Covered Product Category: Residential Gas Storage Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

116

Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

117

Whole-Home Gas Tankless Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for whole-home gas water heaters under the FEMP-designated product program.

Not Available

2010-06-01T23:59:59.000Z

118

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect (OSTI)

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

119

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

120

DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER  

E-Print Network [OSTI]

#12;DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER (2} (3) (21 icense in and to any copyright covering the drticle. This paper describes a high-efficiency water heater which uses a design approach quite different from the conventional center-flue water heater. While high

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS  

E-Print Network [OSTI]

#12;A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS William P a heat pump water heater (HPWH). After developing the HPWH, a field-test plan was implemented whereby 20 evaluate this effect. #12;INTRODUCTION Domestic water heaters account for approximately 2.5 EJ (2.4 x 1015

Oak Ridge National Laboratory

122

Development of a Low Cost Heat Pump Water Heater - Second Prototype  

SciTech Connect (OSTI)

Since the 1980s various attempts have been made to apply the efficiency of heat pumps to water heating. The products generated in the 80s and 90s were not successful, due in part to a lack of reliability and difficulties with installation and servicing. At the turn of the century, EnvironMaster International (EMI) produced a heat pump water heater (HPWH) based on a design developed by Arthur D. Little (ADL), with subsequent developmental assistance from Oak Ridge National Laboratory (ORNL) and ADL. This design was a drop-in replacement for conventional electric water heaters. In field and durability testing conducted by ORNL, it proved to be reliable and saved on average more than 50% of the energy used by the best conventional electric water heater. However, the retail price set by EMI was very high, and it failed in the market. ORNL was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. Several cost saving opportunities were found. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water tank through a sleeve affixed to one of the standard penetrations at the top of the tank. After some experimentation, a prototype unit was built with a double-wall coil inserted into the tank. When tested it achieved an energy factor (EF) of 2.12 to 2.2 using DOE-specified test procedures. A.O. Smith contacted ORNL in May 2006 expressing their interest in the ORNL design. The prototype unit was shipped to A.O. Smith to be tested in their laboratory. After they completed their test, ORNL analyzed the raw test data provided by A.O. Smith and calculated the EF to be approximately 1.92. The electric resistance heating elements of a conventional electric water heater are typically retained in a heat pump water heater to provide auxiliary heating capacity in periods of high demand. A.O. Smith informed us that when they applied electric resistance backup heating, using the criterion that resistance heat would be applied whenever the upper thermostat saw water temperatures below the heater s nominal setpoint of 135oF, they found that the EF dropped to approximately 1.5. This is an extremely conservative criterion for backup resistance heating. In a field test of the previously mentioned EMI heat pump water heater, residential consumers found satisfactory performance when the criterion for use of electric resistance backup heating was the upper temperature dropping below the set point minus 27 degrees. Applying this less conservative criterion to the raw data from the original A.O. Smith EF tests indicates that electric resistance heating would never have come on during the test, and thus the EF would have remained in the vicinity of 1.9. A.O. Smith expressed concern about having an EF below 2, as that value triggers certain tax advantages and would assist in their marketing of the product. We believe that insertion of additional length of tubing plus a less conservative set point for electric resistance backup heating would remedy this concern. However, as of this writing, A.O. Smith has not decided to proceed with a commercial product.

Mei, V. C. [Oak Ridge National Laboratory (Retired); Craddick, William G [ORNL

2007-09-01T23:59:59.000Z

123

Field Performance of Heat Pump Water Heaters in the Northeast  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Shapiro, C.; Puttagunta, S.

2013-08-01T23:59:59.000Z

124

SMUD- Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

125

Clark Public Utilities- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed...

126

Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks  

SciTech Connect (OSTI)

The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

2012-07-19T23:59:59.000Z

127

Dehumidifying water heater. Technical progress report  

SciTech Connect (OSTI)

Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

Not Available

1992-08-18T23:59:59.000Z

128

Salem Electric- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

129

O R E G O N S T A T E U N I V E R S I T Y E x t e n s i o n S e r v i c e WATER STORAGE FOR EMERGENCIES  

E-Print Network [OSTI]

'll need to seek alternative sources. Emergency Inside Water Sources Water heater tank Toilet tank The water heater tank and the toilet tank (not the bowl) are water sources that you might be able to use the #12;water to your house before using these sources to prevent contamination. Turn off the water heater

Tullos, Desiree

130

Electric Water Heater Modeling and Control Strategies for Demand Response  

SciTech Connect (OSTI)

Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

2012-07-22T23:59:59.000Z

131

Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments  

E-Print Network [OSTI]

Water Heaters 7.0 Glossary of Abbreviations AGA American Gas Association ANSI American National Standards

Rapp, VH

2014-01-01T23:59:59.000Z

132

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network [OSTI]

Storage Water Heater.draft gas-fired storage water heater. The flue damper waswater heater, gas-fired storage water heater, flue damper,

Lutz, James D.

2009-01-01T23:59:59.000Z

133

Storage Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |Energy Steps toStorage Water

134

Solar Hot Water Heater Industry in Barbados  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolarSolarSolar Hot Water

135

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

2010-11-24T23:59:59.000Z

136

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type Water Heaters Tankless or Demand-Type Water

137

Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model  

SciTech Connect (OSTI)

Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

2014-09-05T23:59:59.000Z

138

High Efficiency R-744 Commercial Heat Pump Water Heaters  

SciTech Connect (OSTI)

The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

Elbel, Dr. Stefan W.; Petersen, Michael

2013-04-25T23:59:59.000Z

139

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water Heater Stock

140

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water Heater Stock3

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water Heater Stock34

142

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water Heater Stock345

143

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

Water Heaters Jim Lutz, Lawrence Berkeley National Laboratory January 25, 2011 The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standards

Lutz, Jim

2012-01-01T23:59:59.000Z

144

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

145

Sustainable Energy Resources for Consumers (SERC)- On-Demand Tankless Water Heaters  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters.

146

Mountain Association for Community Economic Development- Solar Water Heater Loan Program  

Broader source: Energy.gov [DOE]

The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans...

147

Assessment of radioisotope heaters for remote terrestrial applications  

SciTech Connect (OSTI)

This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

Uherka, K.L.

1987-05-01T23:59:59.000Z

148

Tankless water heaters fill the bill at fast-food restaurants  

SciTech Connect (OSTI)

This article explains why Kentucky Fried Chicken has installed a PH-24 water heater. The tankless water heater meets the restaurant's criteria for space spacing, flow rates, certification and availability, and money saving efficiency. This article describes the system and its advantages.

Not Available

1988-02-01T23:59:59.000Z

149

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

the indirect increase in home heating (and the decrease inincrease the home’s heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

Franco, Victor

2011-01-01T23:59:59.000Z

150

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

151

Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint  

SciTech Connect (OSTI)

In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

Burch, J.

2012-06-01T23:59:59.000Z

152

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolve to Save EnergySandiaDepartmentofYour

153

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network [OSTI]

Oil? Fired Residential Water Heaters. Berkeley Heights, Newof Residential Gas Water Heaters. Chicago, IL, Gas ApplianceDampers for Natural Draft Water Heaters: Technical Report.

Lutz, James D.

2009-01-01T23:59:59.000Z

154

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

155

An Analysis Method for Operations of Hot Water Heaters by Artificial Neural Networks  

E-Print Network [OSTI]

Authors tried to apply an Artificial Neural Network (ANN) to estimation of state of building systems. The systems used in this study were gas combustion water heaters. Empirical equations to estimate gas consumption from measureble properies...

Yamaha, M.; Takahashi, M.

2004-01-01T23:59:59.000Z

156

Clay Electric Cooperative, Inc- Energy Smart Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per...

157

Gibson Electric Membership Corporation- Residential Energy Efficient Water Heater Loan Program  

Broader source: Energy.gov [DOE]

Gibson Electric Membership Corporation provides loans to its residential customers to finance new, energy efficient water heaters. The loans are interest-free and can be paid off in as many as 3...

158

Tri-County Electric Cooperative- Energy Efficient Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating...

159

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

160

Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method and apparatus for enhanced heat recovery from steam generators and water heaters  

DOE Patents [OSTI]

A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

2006-06-27T23:59:59.000Z

162

Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank  

E-Print Network [OSTI]

Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank 1 contains no salt and tank 2 contains 246 grams of salt. Water con- taining 50 grams of salt per liter is added to tank 1 at the rate 2 liters/minute. Water containing no salt is added to tank 2

163

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote  

E-Print Network [OSTI]

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

Feldman, Joel

164

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.  

E-Print Network [OSTI]

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use is a function of surrounding air temperature, humidity, hot water usage, and the logic controlling the heat pump

165

Feasibility of Using Measurements of Internal Components ofTankless Water Heaters for Field Monitoring of Energy and Water Use  

SciTech Connect (OSTI)

The objective of this study was to determine if it was feasible to collect information regarding energy use and hot water delivery from tankless gas water heaters using the sensors and controls built into the water heaters. This could then be used to determine the water heater efficiency ? the ratio of energy out (hot water delivered) to energy in (energy in the gas) in actual residential installations. The goal was to be as unobtrusive as possible, and to avoid invalidating warranties or exposing researchers to liability issues. If feasible this approach would reduce the costs of instrumentation.This paper describes the limited field and laboratory investigations to determine if using the sensors and controls built into tankless water heaters is feasible for field monitoring.It was more complicated to use the existing gas flow, water and temperature sensors than was anticipated. To get the signals from the existing sensors and controls is difficult and may involve making changes that would invalidate manufacturer warrantees. The procedures and methods for using signals from the existing gas valves, water flow meters and temperature sensors will vary by model. To be able to monitor different models and brands would require detailed information about each model and brand.Based on these findings, we believe that for field monitoring projects it would be easier, quicker and safer to connect external meters to measure the same parameters rather than using the sensors and controls built into tankless water heaters.

Lutz, Jim; Biermayer, Peter

2008-04-17T23:59:59.000Z

166

Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater  

SciTech Connect (OSTI)

The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC design was then implemented on a prototype heater that was being developed simultaneously with the controller development. (The prototype's geometry and components are based on a currently marketed heater, but several improvements have been made.) The MPC's temperature control performance was a vast improvement over the existing controller. With a benchmark for superior control performance established, five additional control methods were tested. One problem with MPC control is that it was found to be extremely difficult to implement in a TWH, so that it is unlikely to be widely adopted by manufacturers. Therefore the five additional control methods were selected based on their simplicity; each could be implemented by a typical manufacturer. It was found that one of these methods performed as well as MPC, or even better under many circumstances. This method uses a Feedback-Compensated Feed-Forward algorithm that was developed for this project. Due to its simplicity and excellent performance this method was selected as the controller of choice. A final higher-capacity prototype heater that uses Feedback-Compensated Feed-Forward control was constructed. This prototype has many improvements over the currently marketed heaters: (1) excellent control; (2) a modular design that allows for different capacity heaters to be built easily; (3) built-in fault detection and diagnosis; (4) a secondary remote user-interface; and (5) a TRIAC switching algorithm that will minimize 'flicker factor'. The design and engineering of this prototype unit will allow it to be built without an increase in cost, compared with the currently marketed heater. A design rendering of the new product is shown below. It will be launched with a new marketing campaign by Keltech in early 2009.

David Yuill

2008-06-30T23:59:59.000Z

167

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces  

SciTech Connect (OSTI)

This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

Not Available

1993-11-01T23:59:59.000Z

168

NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

Not Available

2012-01-01T23:59:59.000Z

169

Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint  

SciTech Connect (OSTI)

Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2014-01-01T23:59:59.000Z

170

PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82�ºC (180�ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

2011-07-01T23:59:59.000Z

171

Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters  

SciTech Connect (OSTI)

In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

Freeman, S.L.

1997-01-01T23:59:59.000Z

172

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect (OSTI)

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

173

Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

2012-07-01T23:59:59.000Z

174

Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

175

Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports  

SciTech Connect (OSTI)

Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

1980-01-01T23:59:59.000Z

176

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

miles) Montgomery AL [13] Ashland, TN [14] Middleville,MI Johnson City, TN Ashland, TN [14] Ashland, TN [14] Average Distance Traveled: Northern

Lu, Alison

2011-01-01T23:59:59.000Z

177

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

stayed constant. Total Energy Use Global Warming Potential1. Total Energy Use: Northern California Global Warming2. Total Energy Use: Southern California Global Warming

Lu, Alison

2011-01-01T23:59:59.000Z

178

Tankless Coil and Indirect Water Heaters | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013 FINAL MEETING SUMMARY7,Tank Waste

179

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

180

Measure Guideline: Heat Pump Water Heaters in New and Existing Homes  

SciTech Connect (OSTI)

This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

Shapiro, C.; Puttagunta, S.; Owens, D.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)  

Broader source: Energy.gov [DOE]

The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

182

Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

2012-02-01T23:59:59.000Z

183

New Braunfels Utilities- Residential Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available...

184

E-Print Network 3.0 - anechoic water tank Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

185

Performance Analysis of a Transcritical CO2 Heat Pump Water Heater Incorporating a Brazed-Plate Gas-cooler.  

E-Print Network [OSTI]

??This study focuses on the experimental testing and numerical modeling of a 4.5 kW transcritical CO2 heat pump water heater at Queen’s University in the… (more)

Murray, PORTIA

2015-01-01T23:59:59.000Z

186

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

187

Study Design And Realization Of Solar Water Heater  

SciTech Connect (OSTI)

Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

Lounis, M. [LAAR Laboratory-Physics Department-USTOMB 31000 Oran (Algeria); Boudjemaa, F.; Akil, S. Kouider [Genie Climatic Department-CUKM 44000-Khemis Miliana (Algeria)

2011-01-17T23:59:59.000Z

188

Which Water Heater Is Right for You? | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome to Energy.gov/Data WelcomeWhich Water

189

Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint  

SciTech Connect (OSTI)

In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

Burch, J.; Huggins, J.; Long, S.; Thornton, J.

2012-06-01T23:59:59.000Z

190

The impact of water flow configuration on crystallisation in LiBr/H2O absorption water heater  

SciTech Connect (OSTI)

Lithium Bromide (LiBr) strong solution entering the absorber tends to crystallise when the absorber temperature is increased for a fixed evaporating pressure. This is considered the key technical barrier for the development of a LiBr absorption heat pump water heater. There are several approaches to avoid the crystallisation problem, such as chemical crystallisation inhibitors, heat and mass transfer enhancement and thermodynamic cycle modification. This paper investigates and compares two flow configurations of LiBr absorption heat pump water heater to evaluate the allowable operating conditions for each. The simulation results indicated that introducing the process water through the absorber first results in lower absorber temperature and hence less tendency for crystallisation.

Wang, Kai [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2011-03-01T23:59:59.000Z

191

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect (OSTI)

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

192

Water Tanks Demolition and Deactivation (D&D) Project (4589)...  

Broader source: Energy.gov (indexed) [DOE]

Water Tanks Demolition and Deactivation (D&D) Projects (4589) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee...

193

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect (OSTI)

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

194

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents [OSTI]

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

195

Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America  

SciTech Connect (OSTI)

Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could sufficiently develop this technology to impact the water heater market in the near term.

Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

2006-12-31T23:59:59.000Z

196

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

197

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect (OSTI)

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

198

Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort  

SciTech Connect (OSTI)

Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

2014-07-21T23:59:59.000Z

199

2015-03-25 Issuance: Definitions Regarding Consumer Water Heaters Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding definitions for consumer water heaters, as issued by the Acting Deputy Assistant Secretary for Energy Efficiency on March 25, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

200

2015-03-26 Issuance: Residential Water Heaters; Notice of Proposed Rulemaking Withdrawal  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking withdrawal regarding Energy Conservation Standards for Residential Water Heaters, as issued by the Acting Deputy Assistant Secretary for Energy Efficiency on March 26, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

2014-06-27 Issuance: Test Procedures for Residential and Commercial Water Heaters; Final Rule  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule regarding test procedures for residential and commercial water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

202

Is My Water Safe? disaster may disrupt the electricity needed to pump  

E-Print Network [OSTI]

food, brushing teeth and keeping clean. Water storage You can store water ahead for use in emergencies. Emergency water Your hot water heater or water pressure tank could supply many gallons of safe water during an emergency. Before using water from the water heater, switch off the gas or elec- tricity that heats

203

Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier  

SciTech Connect (OSTI)

This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

Ashdown, BG

2005-01-11T23:59:59.000Z

204

Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments  

SciTech Connect (OSTI)

The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

Rapp, VH; Singer, BC

2014-03-01T23:59:59.000Z

205

Emergency Factsheet for Disinfecting Water Wells by Shock Chlorination  

E-Print Network [OSTI]

an alternate water source during the treatment period. Most water treatment equipment (such as water heaters, release the air to allow the tank to be filled with chlorinated water. Drain all hot water heatersEmergency Factsheet for Disinfecting Water Wells by Shock Chlorination Mark L. McFarland, Associate

206

Development of Environmentally Benign Heat Pump Water Heaters for the US Market  

SciTech Connect (OSTI)

Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

Abdelaziz, Omar [ORNL] [ORNL; Wang, Kai [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL; Roetker, Jack [General Electric - Appliance Park] [General Electric - Appliance Park

2012-01-01T23:59:59.000Z

207

National Solar Water Heater Workshop Present at DOE Region V meeting for managers of State Energy Extension Service and State Energy Conservation Plan, March 18-19, 1981  

SciTech Connect (OSTI)

After a brief description of the National Solar Water Heater Workshop and some comments by users of the solar water heater, the hardware supplier handbook is presented. The performance expected of a hardware supplier is described, solar system components and their specifications are listed, and information is provided to assist the hardware supplier in obtaining necessary materials. (LEW)

Mumma, S.A.; Marinello, M.G.

1981-01-01T23:59:59.000Z

208

Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities  

SciTech Connect (OSTI)

This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

Ashdown, BG

2004-08-04T23:59:59.000Z

209

Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)  

Broader source: Energy.gov [DOE]

To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

210

OG 4.4.06 1 Use of Instrumented Water Tanks for the Improvement of Air  

E-Print Network [OSTI]

OG 4.4.06 1 Use of Instrumented Water Tanks for the Improvement of Air Shower Detector Sensitivity (5m 2 ), water Cherenkov detectors (tanks) will be deployed around the pond to effectively extend its from the Milagro pond. 2 Water Tank Detector & Array The criteria for selecting a detector design

California at Santa Cruz, University of

211

Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements  

E-Print Network [OSTI]

Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic and radiated noise, respectively. Measurement of test panels in a water tank gives only the reflection in a water tank has already been presented in a previous paper [2]. The purpose of the present paper

Paris-Sud XI, Université de

212

West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance  

SciTech Connect (OSTI)

West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

2012-11-01T23:59:59.000Z

213

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

Storage Water Heater .point for modeling storage water heaters. The algorithmsfired, natural draft storage water heater. Figure 1 shows a

Lutz, Jim

2014-01-01T23:59:59.000Z

214

Development of minimum efficiency standards for large capacity air conditioners, and commercial water heaters, refrigerators, and freezers. Final report  

SciTech Connect (OSTI)

The California Energy Resources Conservation and Development Commission has promulgated appliance energy efficiency standards and energy conservation standards for new construction with the objective of reducing energy consumption in the State of California. The following appliance categories are specifically addressed: large capacity air conditioners; commercial water heaters; and commercial refrigerators and freezers. The tasks that have been performed include: an energy use pattern study for the subject equipment; an examination of the size distribution of commercial air conditioning equipment; an examination of the different types of commercial air conditioning systems; an evaluation of the effectiveness of economizers in reducing commercial air conditioning system energy consumption in California; an examination of the effects of oversizing commercial air conditioners; a detailed study of supermarket refrigeration and air conditioning equipment; an evaluation of the economic feasibility of utilizing air conditioner waste heat to heat water; an assessment of the applicability of existing test procedures for small water heaters to large water heaters; and a brief investigation of the marketing and distribution systems for air conditioning and refrigeration equipment. Results of the efforts are described.

Merrill, P.S.; Rettberg, R.J.; Erickson, R.C.; Toor, J.S.

1980-05-01T23:59:59.000Z

215

REVIEW SHEET 3 (1) A tank contains 100 gallon of salt water which ...  

E-Print Network [OSTI]

solution of 2lbs of salt per gallon enters the tank at a rate of 3 gallons per minute while a flow of fresh water runs into the tank at a rate of 5 gallons per minute.

2014-04-30T23:59:59.000Z

216

Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I  

SciTech Connect (OSTI)

This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

NONE

1996-01-30T23:59:59.000Z

217

Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E  

SciTech Connect (OSTI)

This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

NONE

1996-01-30T23:59:59.000Z

218

Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

219

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

actively implementing demand side management, after a seriesblackouts in 2008. Demand side management programs are now

Johnson, Alissa

2013-01-01T23:59:59.000Z

220

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network [OSTI]

around BC: Kamloops, Victoria and Williams Lake. Electric and gas-fired tank water heaters of various The resulting data is presented from a variety of angles, including the relative impacts of water heater ratingSimulation of energy use in residential water heating systems by Carolyn Dianarose Schneyer B

Victoria, University of

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register request for information regarding test procedures and energy conservation standards for residential solar water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 14, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

222

White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)  

E-Print Network [OSTI]

electric storage tank water heaters (electric water heatersElectric storage tank water heaters Washing machines (including tank storage electric water heaters, gas water

Zhou, Nan

2013-01-01T23:59:59.000Z

223

Monty C. Dozier, Assistant Professor and Extension Water Resources Specialist  

E-Print Network [OSTI]

·Water heaters: Turn off the power that heats the tank and let the tank cool. Place a contain- er underER-002 6-06 Monty C. Dozier, Assistant Professor and Extension Water Resources Specialist Courtney such as a hurricane or flood, your water supplies may have become contaminated or been temporarily cut off. To make

224

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department of EnergyEqualHeaters |

225

Optimal arrangement of structural and functional parts in a flat plate integrated collector storage solar water heater (ICSSWH)  

SciTech Connect (OSTI)

Parameters that affect the efficiency of a flat plate integrated collector storage solar water heater (ICSSWH) are examined experimentally and numerically. This specific ICSSWH contains water that is not refreshed. The service water is heated indirectly through an immersed heat exchanger (HE) in contact with the front and back major surfaces. A forced convection mechanism consisting of a pump that brings the storage water into motion by recirculation is used for heat transfer intensification. The two major (front and back) flat plate surfaces need to be well interconnected so that they are not deformed by the weight of the contained water and the exerted high-pressure. Two main factors that influence the performance are optimized: the position and size of the recirculation ports and the arrangement and size of the interconnecting fins. Both factors are explored to maximize the velocity flow field of the recirculated storage water. Consequently, the heat transfer rate between the two water circuits is maintained at high levels. Various 3D computational fluid dynamics (CFD) models are developed using the FLUENT package. An experimental model, made by Plexiglas, is used for the visualization of the flow field. Flow velocities are measured using a laser doppler velocimetry (LDV) system. The optimal arrangement increases the mean storage water velocity by 65% and raises the outlet temperatures up to 8 C. (author)

Gertzos, K.P.; Caouris, Y.G. [Department of Mechanical Engineering and Aeronautics, University of Patras, 265 00 Patras (Greece)

2008-04-15T23:59:59.000Z

226

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

227

Auto-Calibration and Control Strategy Determination for a Variable-Speed Heat Pump Water Heater Using Optimization  

SciTech Connect (OSTI)

This paper introduces applications of the GenOpt optimizer coupled with a vapor compression system model for auto-calibration and control strategy determination towards the development of a variable-speed ground-source heat pump water heating unit. The GenOpt optimizer can be linked with any simulation program using input and output text files. It effectively facilitates optimization runs. Using our GenOpt wrapper program, we can flexibly define objectives for optimizations, targets, and constraints. Those functionalities enable running extensive optimization cases for model calibration, configuration design and control strategy determination. In addition, we describe a methodology to improve prediction accuracy using functional calibration curves. Using the calibrated model, we investigated control strategies of the ground-source heat pump water heater, considering multiple control objectives, covering the entire operation range.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2012-01-01T23:59:59.000Z

228

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology  

SciTech Connect (OSTI)

The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

Not Available

1993-11-01T23:59:59.000Z

229

Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA  

SciTech Connect (OSTI)

A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Parker, Danny L. [Washington River Protection Systems, Richland, WA (United States); Tabor, Cynthia L. [Washington River Protection Systems, Richland, WA (United States); Holm, Melissa J. [Washington River Protection Systems, Richland, WA (United States)

2013-11-11T23:59:59.000Z

230

EBR-II Primary Tank Wash-Water Alternatives Evaluation  

SciTech Connect (OSTI)

The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. The path forward includes developing the OBA into a well engineered solution for achieving RCRA clean closure of the EBR-II Primary Reactor Tank system. Several high level tasks are also part of the path forward such as reassigning responsibility of the cleanup project to a dedicated project team that is funded by the DOE Office of Environmental Management, and making it a priority so that adequate funding is available to complete the project. Based on the experience of the sodium cleanup specialists, negotiations with the DEQ will be necessary to determine a risk-based de minimus quantity for acceptable amount of sodium that can be left in the reactor systems after cleanup has been completed.

Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

2008-05-01T23:59:59.000Z

231

Review of experiments to evaluate the ability of electrical heater rods to simulate nuclear fuel rod behavior during postulated loss-of-coolant accidents in light water reactors  

SciTech Connect (OSTI)

Issues related to using electrical fuel rod simulators to simulate nuclear fuel rod behavior during postulated loss-of-coolant accident (LOCA) conditions in light water reactors are summarized. Experimental programs which will provide a data base for comparing electrical heater rod and nuclear fuel rod LOCA responses are reviewed.

McPherson, G D; Tolman, E L

1980-01-01T23:59:59.000Z

232

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.  

E-Print Network [OSTI]

.; Sparn, B.; Christensen, D.; Maguire, J. (2012). Heat Pump Water Heater Technology Assessment Based, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

233

Green Systems Solar Hot Water  

E-Print Network [OSTI]

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

Schladow, S. Geoffrey

234

Langerhans Lab Protocols Fish tank water changing protocol.docx written 11/26/12 by JW Page 1 of 1  

E-Print Network [OSTI]

Langerhans Lab Protocols Fish tank water changing protocol.docx written 11/26/12 by JW Page 1 of 1 Fish Tank Water Changing Fry and tanks: 1. Remove air stone & lid, then take tank from shelf and place fry to make sure it matches # on tank label. 4. Use small (air stone size) plastic tubing to siphon

Langerhans, Brian

235

TOXICOLOGICAL AND STRUCTURAL CONSEQUENCES FROM SODIUM-WATER REACTION IN CELL CONTAINING THE SECONDARY SODIUM TANK  

SciTech Connect (OSTI)

The analysis will show the consequences should the solid sodium in the Secondary Sodium Tank react with a presumed layer of water in the cell. The Peer Review Checklist is attached.

MARUSICH RM

2008-06-25T23:59:59.000Z

236

Convective heater  

DOE Patents [OSTI]

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

Thorogood, Robert M. (Macungie, PA)

1986-01-01T23:59:59.000Z

237

Convective heater  

DOE Patents [OSTI]

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

Thorogood, R.M.

1983-12-27T23:59:59.000Z

238

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

E-Print Network [OSTI]

by DOE. Electric storage tank water heaters These data havewater heaters, gas storage tank water heater efficiency can

Bojda, Nicholas

2011-01-01T23:59:59.000Z

239

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

air source to be added Discharge Includes: Source energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump

Lutz, Jim

2012-01-01T23:59:59.000Z

240

Modeling water retention of sludge simulants and actual saltcake tank wastes  

SciTech Connect (OSTI)

The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity.

Simmons, C.S.

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network [OSTI]

this indirect increase in home heating (and the decrease inincrease the home’s heating load in the heating season (electricity (42% of homes) for water heating. (DOE EIA 2005)

Lekov, Alex

2011-01-01T23:59:59.000Z

242

Performance of Gas-fired Water Heaters in a 10-home Field Study  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "Are high-efficiency hot water heating systems worth the cost?"

243

Pore-Water Extraction Scale-Up Study for the SX Tank Farm  

SciTech Connect (OSTI)

The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

2013-01-15T23:59:59.000Z

244

Dynamics and solutions to some control problems for water-tank systems  

E-Print Network [OSTI]

1 Dynamics and solutions to some control problems for water-tank systems Nicolas Petit , Pierre translations and rotations. The fluid motion is described by linearized wave equations under shallow water describe the lack of approximate controllability. The first contribution of the paper consists of models

245

An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters  

SciTech Connect (OSTI)

The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

1992-06-01T23:59:59.000Z

246

ELECTRICAL HEATERS FOR THERMO-MECHANICAL TESTS AT THE STRIPA MINE  

E-Print Network [OSTI]

5.5 Dewatering Pump 6. ELECTRICAL HEATER CONTROL SYSTEMS 6.1water influx ABSTRACT Electrical heaters were installed atcanister) which houses the electrical heater elements; c. d.

Burleigh, R.H.

2010-01-01T23:59:59.000Z

247

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

248

Shock chlorination is a method of disinfect-ing a water well. It is recommended when  

E-Print Network [OSTI]

period. Most water treatment equipment (such as water heaters, softeners and pressure tanks) should alsoShock chlorination is a method of disinfect- ing a water well. It is recommended when a water is the source of bacteria, the system will be contaminated again every time water is pumped into the plumbing

249

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

E-Print Network [OSTI]

for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,for Residential Water Heaters, Direct Heating Equipment, andthe Energy Consumption of Water Heaters. Title 10 Code of

Lutz, Jim

2014-01-01T23:59:59.000Z

250

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network [OSTI]

in Residential Hot Water Heaters. Berkeley, CA: Lawrenceelectricity savings because gas hot water heaters are moreprevalent than electric water heaters in California. Bathing

Benenson, P.

2010-01-01T23:59:59.000Z

251

A Systems Framework for Assessing Plumbing Products-Related Water Conservation  

E-Print Network [OSTI]

of Natural Gas Tankless Water Heaters. Center for Energy andEnvironment: Tankless Water Heaters. Coughlin, K. (2006).Compatibility with tankless water heaters Water waste with

Williams, Alison

2012-01-01T23:59:59.000Z

252

White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)  

E-Print Network [OSTI]

electric storage tank water heaters, washing machines,Electric storage tank water heaters Washing machines (top-furnace, electric storage tank water heaters, variable speed

Zhou, Nan

2013-01-01T23:59:59.000Z

253

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9HarveyWellnessFebruary

254

Electric Storage Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaineElectric

255

Residential Absorption Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL| DepartmentResidential

256

Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Hawaii Energy, a third-party administered public benefits fund, provides incentives for energy efficiency and conservation to customers of the Hawaiian Electric Company (HECO) and its subsidiaries,...

257

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Mains Pressure Electric Storage Water Heaters Small MainsPressure Electric Storage Water Heaters (Storage & instantaneous water heaters Storage tanks

McNeil, MIchael

2011-01-01T23:59:59.000Z

258

Dampers for Natural Draft Heaters: Technical Report  

SciTech Connect (OSTI)

Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

Lutz, James D.; Biermayer, Peter; King, Derek

2008-10-27T23:59:59.000Z

259

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

260

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Instrumented Water Tanks can Improve Air Shower Detector Sensitivity  

E-Print Network [OSTI]

Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.

Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

1999-01-01T23:59:59.000Z

262

Instrumented Water Tanks can Improve Air Shower Detector Sensitivity  

E-Print Network [OSTI]

Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.

R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

1999-07-15T23:59:59.000Z

263

ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES  

SciTech Connect (OSTI)

A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in inhibited water (IW) and in DWPF recycle simulant (3).

Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

2011-10-20T23:59:59.000Z

264

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network [OSTI]

1979). retort water, boiler blowdown, and heater- treaterGeokinetics Retort Water Occidental Heater-Treater :ss.ssa) situ Occidental Heater-Treater Water Retort 6 modified

Fish, Richard H.

2013-01-01T23:59:59.000Z

265

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network [OSTI]

Two Demand Electric Water Heaters for Northeast Utilities.Two Demand Electric Water Heaters for Northeast Utilities.Johnson. Heat Pump Water Heater Field Test: 30 Crispaire

Lutz, Jim

2012-01-01T23:59:59.000Z

266

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network [OSTI]

gas or electric storage water heaters. The study’s goal washouses used a storage water heater. Without includinghouseholds which have storage water heaters, although this

Lutz, Jim

2012-01-01T23:59:59.000Z

267

Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm  

SciTech Connect (OSTI)

Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150?1000 ?m). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.

Krogstad, Eirik J.

2013-08-01T23:59:59.000Z

268

Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm  

SciTech Connect (OSTI)

A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

Truex, Michael J.; Oostrom, Martinus

2013-09-01T23:59:59.000Z

269

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011  

E-Print Network [OSTI]

conditioners and heat pumps, and water heaters We modifiedConditioners and Heat Pumps NAECA 1987 Water Heaters NAECAConditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

Meyers, Stephen

2013-01-01T23:59:59.000Z

270

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010  

E-Print Network [OSTI]

conditioners and heat pumps, and water heaters We modifiedConditioning Heat Pumps NAECA 1987 Water Heaters NAECA 1987Conditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

Meyers, Stephen

2013-01-01T23:59:59.000Z

271

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012  

E-Print Network [OSTI]

conditioners and heat pumps, and water heaters We modifiedConditioners and Heat Pumps NAECA 1987 Water Heaters NAECAConditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

Meyers, Stephen

2013-01-01T23:59:59.000Z

272

Grouped exposed metal heaters  

DOE Patents [OSTI]

A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

2010-11-09T23:59:59.000Z

273

Grouped exposed metal heaters  

DOE Patents [OSTI]

A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

2012-07-31T23:59:59.000Z

274

Rainwater harvesting systems that collect and convey rain-water from roofs to storage tanks are often the best or only  

E-Print Network [OSTI]

tanks are often the best or only source of water for many communities in the developing world. A common are swept into the storage tank along with the rainwater. While some systems divert the "first flush into gutters, through a series of pipes and into storage tanks. Three rainwater harvesting systems

Polz, Martin

275

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

276

Classification of heart valve sounds from experiments in an anechoic water tank  

SciTech Connect (OSTI)

In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise, including surface reflections. Experiments were conducted in a deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The Transdec measurements are free of reverberations, but not totally free of acoustic and electrical noise. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve opening sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well. We believe this is because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

Axelrod, M C; Clark, G A; Scott, D

1999-06-01T23:59:59.000Z

277

White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)  

E-Print Network [OSTI]

refrigerators, electric storage tank water heaters (electric water heaters for short), variable speed room airhousehold gas tankless water heaters (gas water heaters for

Zhou, Nan

2013-01-01T23:59:59.000Z

278

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

279

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

Corletti, M.M.; Lau, L.K.; Schulz, T.L.

1993-12-14T23:59:59.000Z

280

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network [OSTI]

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space  

SciTech Connect (OSTI)

The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2012-01-01T23:59:59.000Z

282

Pipe Freeze Prevention for Passive Solar Water Heaters Using a Room-Air Natural Convection Loop: Preprint  

SciTech Connect (OSTI)

Conference paper regarding research in the use of freeze prevention for passive solar domestic water heating systems.

Burch, J.; Heater, M.; Brandemuhl, M.; Krarti, M.

2006-05-01T23:59:59.000Z

283

Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations  

SciTech Connect (OSTI)

This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

Parazin, R.J.

1998-07-31T23:59:59.000Z

284

Explosives tester with heater  

DOE Patents [OSTI]

An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

Del Eckels, Joel (Livermore, CA); Nunes, Peter J. (Danville, CA); Simpson, Randall L. (Livermore, CA); Whipple, Richard E. (Livermore, CA); Carter, J. Chance (Livermore, CA); Reynolds, John G. (San Ramon, CA)

2010-08-10T23:59:59.000Z

285

Northward Market Extension for Passive Solar Water Heaters by Using Pipe Freeze Protection with Freeze-Tolerant Piping: Preprint  

SciTech Connect (OSTI)

Conference paper regarding research in freeze-protection methods that could extend market acceptance for passive solar domestic water heating systems in more northern climates if the U.S.

Burch, J.; Heater, M.; Brandemuhl, M.; Krarti, M.

2006-05-01T23:59:59.000Z

286

Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule  

E-Print Network [OSTI]

The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

2002-01-01T23:59:59.000Z

287

Classification of heart valve sounds from experiments in an anechoic water tank  

SciTech Connect (OSTI)

In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise. The main goal of this experiment was to obtain measurements of ''pure'' heart valve sounds free of the scattering effects of the body. Experiments were conducted at the Transdec facility in San Diego [2]. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

Axelrod, M C; Clark, G A; Scott, D

1999-06-01T23:59:59.000Z

288

Space Heaters The University recognizes that individuals have different levels of comfort associated with  

E-Print Network [OSTI]

for space heating. 14. Do not use space heaters or any other electric appliance around water. 15Space Heaters The University recognizes that individuals have different levels of comfort associated with temperature and heat. The use of electric space heaters as a temporary measure is permitted

de Lijser, Peter

289

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

end use point, at the water heater in one second intervalsand monitoring at the water heater and hot water end uses.of water at the trunk (water heater) and twigs (individual

Lutz, Jim

2012-01-01T23:59:59.000Z

290

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

of Natural Gas Tankless Water Heaters. Center for Energy andhot water from the water heater to each end-use locationMixed Temperature Water Water Heater Drain Indoor Boundary

Lutz, Jim

2012-01-01T23:59:59.000Z

291

Energy Conservation in Process Heaters  

E-Print Network [OSTI]

ENERGY CONSERVATION IN PROCESS HEATERS Roger l~. Bagge Neste Engineering Porvoo, Finland ABSTRACT OPTIMIZATION OF EMER~Y USE Energy savings in refinery and petrochemical fired heaters can basically be achieved in two ways: Thru optimization...

Bagge, R. W.

1982-01-01T23:59:59.000Z

292

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

and Simulation of a Smart Water Heater. ” In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model User’s

Lutz, Jim

2014-01-01T23:59:59.000Z

293

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

294

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

E-Print Network [OSTI]

gas or electric storage water heaters. The goal was to helpa demand and a storage water heater. For each case ofof natural gas storage and tankless water heaters 24 water

Lutz, Jim

2014-01-01T23:59:59.000Z

295

Covered Product Category: Residential Electric Resistance Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets Federal efficiency...

296

Absorption Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergy PHEVAbengoaAbsocold:

297

Water Heaters | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,Warren County Rural EHeaters Jump to:

298

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

hr) 2. Pilot Input Rate (Btu/hr) 3. Excess Air (%) 4. Off-atm) 14. Higher Heating Value (Btu/SCF) 1028.0 15. SpecificProtection Tubes R (hr*ft2*F/Btu)? Fitting Emissivity SCREEN

Biermayer, Peter

2012-01-01T23:59:59.000Z

299

Regenerative air heater  

DOE Patents [OSTI]

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, Paul B. (Maple Grove, MN); Baldner, Richard (Minnetonka, MN)

1982-01-01T23:59:59.000Z

300

Regenerative air heater  

DOE Patents [OSTI]

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, P.B.; Baldner, R.

1980-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Subsurface heaters with low sulfidation rates  

DOE Patents [OSTI]

A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

John, Randy Carl; Vinegar, Harold J

2013-12-10T23:59:59.000Z

302

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

Lutz, Jim

2012-01-01T23:59:59.000Z

303

EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations  

E-Print Network [OSTI]

many types of water heaters and storage tanks, including gasdifferent Water Heaters between ACM and EnergyPlus. (Storage

Hong, Tianzhen

2009-01-01T23:59:59.000Z

304

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

Kronberg, J.W.

1995-07-11T23:59:59.000Z

305

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

306

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Scott.  Dec 2003.  "Water Heater Calculator" Excel sheet.  Pump  (with Tank) Water Heaters."  Available at  water heater, and a  family of four.  

Al-Beaini, S.

2010-01-01T23:59:59.000Z

307

White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)  

E-Print Network [OSTI]

household gas tankless water heaters, electricstorage tank water heaters, washing machines, automaticof gas-fired tankless water heaters) Under the combined

Zhou, Nan

2013-01-01T23:59:59.000Z

308

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsbuilt for electric storage water heaters and heat pumps asthat electric storage tank water heaters will be replaced

Letschert, Virginie

2010-01-01T23:59:59.000Z

309

DOE Publishes Notice of Proposed Rulemaking for Residential Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has published a notice of proposed rulemaking regarding test procedures for residential water heaters and certain commercial water heaters. 78 FR 66201 (November 4, 2013). DOE...

310

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network [OSTI]

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

311

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011  

E-Print Network [OSTI]

and Heat Pumps NAECA 1987 Water Heaters NAECA 1987 FurnacesPumps EPACT 1992 Water Heaters, Hot Water Supply Boilers andand heat pumps, and water heaters We modified the analytical

Meyers, Stephen

2013-01-01T23:59:59.000Z

312

Methods for forming long subsurface heaters  

DOE Patents [OSTI]

A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

Kim, Dong Sub

2013-09-17T23:59:59.000Z

313

High efficiency solar air heaters with novel built-in heat storage for use in a humidification-dehumidification desalination cycle  

E-Print Network [OSTI]

Compared to solar water heaters, solar air heaters have received relatively little investigation and have resulted in few commercial products. However, in the context of a Humidification-Dehumidification (HD) Desalination ...

Summers, Edward K

2010-01-01T23:59:59.000Z

314

Storage Tanks (Arkansas)  

Broader source: Energy.gov [DOE]

The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

315

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

Volume III, Storage Water Heaters With Input Ratings AboveVolume III, Storage Water Heaters With Input Ratings AboveVolume III, Storage Water Heaters With Input Ratings Above

Lutz, Jim

2012-01-01T23:59:59.000Z

316

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network [OSTI]

and R.K. Johnson. Heat Pump Water Heater Field Test: 30a Market-Optimized Heat- Pump Water Heater. Prepared by TIAXcost savings of heat pump water heaters Field test of

Lutz, Jim

2012-01-01T23:59:59.000Z

317

Heater head for stirling engine  

DOE Patents [OSTI]

A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

Corey, John A. (R.D. #2, Box 101 E, North Troy, NY 12182)

1985-07-09T23:59:59.000Z

318

Phase change material storage heater  

DOE Patents [OSTI]

A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

Goswami, D. Yogi (Gainesville, FL); Hsieh, Chung K. (Gainesville, FL); Jotshi, Chand K. (Gainesville, FL); Klausner, James F. (Gainesville, FL)

1997-01-01T23:59:59.000Z

319

Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site  

SciTech Connect (OSTI)

Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

2013-06-28T23:59:59.000Z

320

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Sizing Storage and Heat Pump  (with Tank) Water Heaters."  litre storage tank by the gas condensing water heater.  The 

Al-Beaini, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks  

SciTech Connect (OSTI)

Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if necessary to de-rate critical components. There are currently no tools that automatically convert the NDE data to formats compatible with structural analysis programs. While radiographic techniques still provide significant advantages in spatial resolution, non-ionizing techniques are still preferred. Radar imagining in the 1–5 GHz has become the most useful. Unfortunately the algorithms and underlying assumptions used in these reconstructions are proprietary, and it is not possible to assess the quality and limitations of the analytical methods used to generate the derived structural data. The hypothesis that water intrusion may contribute to potential rebar corrosion of the tank domes provided the primary guidance in reviewing and evaluating available NDE technologies. Of primary concern is the need to employ technologies that provide the best opportunity for visualizing the rebar and providing quantitative data that can be integrated into structural analysis efforts to better understand and quantify the structural capacity of the domes. The conclusion is that an imaging system capable of locating and quantifying the distribution and conditions of the cement, aggregate, and rebar will provide the most valuable baseline upon which to build a case for the integrity of the structure. If successful, such a system would fulfill the need to incorporate valuable data into current structural load capacity analysis.

Watkins, Michael L.; Pardini, Allan F.

2008-05-09T23:59:59.000Z

322

In-tank recirculating arsenic treatment system  

DOE Patents [OSTI]

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

323

Heater head for Stirling engine  

SciTech Connect (OSTI)

This patent describes a heater head for a Stirling engine comprising: a housing for enclosing the heater head with gas at a substantial elevated pressure; insulator means attached to the housing for insulating the heater head; inlet means attached to a regenerator in the housing for admission of relatively high pressure working fluid from the regenerator of a Stirling engine; a first annular heating wall in the housing attached to the inlet means for heating the working fluid; and, a second annular heating wall in the housing concentric with the first heating wall but of lesser diameters so that an annular space is formed between the first heating wall and the second heating wall for heating working fluid; and a third heating wall in the housing concentric with and smaller in diameter than the second heating wall forming the condensing area of a heat pipe between the second heating wall and the third heating wall.

White, M.A.; Emigh, S.G.

1987-06-09T23:59:59.000Z

324

Water Heating Requirements – Overview Page 5-1 5. Water Heating Requirements 5.1 Overview 5  

E-Print Network [OSTI]

. Electric heat pump water heaters, however, are closer to the efficiency of typical gas systems, because

unknown authors

325

Pressurizer tank upper support  

DOE Patents [OSTI]

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

1994-01-01T23:59:59.000Z

326

Pressurizer tank upper support  

DOE Patents [OSTI]

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

Baker, T.H.; Ott, H.L.

1994-01-11T23:59:59.000Z

327

The Ashland tank collapse  

SciTech Connect (OSTI)

The estimated 3.9-million-gallon diesel oil spill from a collapsed storage tank at the Floreffe, Pa., terminal of Ashland Oil Co. has received a lot of attention, and for good reason. On Jan. 2, 1988 a 40-year-old, 48-ft-high, 120-ft-in diameter, reassembled tank suddenly ruptured and emptied its contents in a massive inland-water way fuel spill. An EPA-estimated 750,000 gallons washed over the 10-foot-high dike (with a holding capacity 110 percent that of the tank) into a drainage system on adjacent property to storm sewers that eventually empty into the Monongahela River, which runs into the Ohio River. More than 180,000 gal were recovered by cleanup, while 2.5 to 3.1 MMgal were contained by the tank farm's dike system.

Prokop, J.

1988-05-01T23:59:59.000Z

328

BOILING CRISIS:THEORY,SIMULATION,AND EXPERIMENTSBOILING CRISIS: THEORY, SIMULATION, AND EXPERIMENTS Boiling is a very efficient way to transfer heat from a heater to the liquid heat carrier. We discuss the  

E-Print Network [OSTI]

that separates the liquid from the heater. Film boiling can be also observed in the kitchen by sprinkling water onto a hot frying pan. In spite of the large temperature of the heater (the pan) the water drops Boiling is a very efficient way to transfer heat from a heater to the liquid heat carrier. We discuss

Nikolayev, Vadim S.

329

Tank characterization data report: Tank 241-C-112  

SciTech Connect (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

330

Welding shield for coupling heaters  

DOE Patents [OSTI]

Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

Menotti, James Louis (Dickinson, TX)

2010-03-09T23:59:59.000Z

331

Performance improvement of direct- and indirect-fired heaters  

SciTech Connect (OSTI)

The operating performance of direct and indirect heaters is discussed, and principles and guidelines that can be applied to effect improvements in efficiency are presented. This paper also discusses the associated heater efficiencies and several useful operating techniques to approach the maximum, steady-state heater efficiency. The techniques presented apply to all types of direct-and indirect-fired heaters: salt bath heaters, propane vaporizers, heater/treaters, production heaters, and glycol and amine regenerators.

Sams, G.W.; Hunter, J.D.

1988-08-01T23:59:59.000Z

332

Adjusting alloy compositions for selected properties in temperature limited heaters  

DOE Patents [OSTI]

Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

Brady; Michael Patrick (Oak Ridge, TN), Horton, Jr.; Joseph Arno (Oak Ridge, TN), Vitek; John Michael (Oak Ridge, TN)

2010-03-23T23:59:59.000Z

333

Sampling and analysis of water from Upper Three Runs and its wetlands near Tank 16 and the Mixed Waste Management Facility  

SciTech Connect (OSTI)

In April and September 1993, sampling was conducted to characterize the Upper Three Runs (UTR) wetland waters near the Mixed Waste Management Facility to determine if contaminants migrating from MWMF are outcropping into the floodplain wetlands. For the spring sampling event, 37 wetlands and five stream water samples were collected. Thirty-six wetland and six stream water samples were collected for the fall sampling event. Background seepline and stream water samples were also collected for both sampling events. All samples were analyzed for RCRA Appendix IX volatiles, inorganics appearing on the Target Analyte List, tritium, gamma-emitting radionuclides, and gross radiological activity. Most of the analytical data for both the spring and fall sampling events were reported as below method detection limits. The primary exceptions were the routine water quality indicators (e.g., turbidity, alkalinity, total suspended solids, etc.), iron, manganese, and tritium. During the spring, cadmium, gross alpha, nonvolatile beta, potassium-40, ruthenium-106, and trichloroethylene were also detected above the MCLs from at least one location. A secondary objective of this project was to identify any UTR wetland water quality impacts resulting from leaks from Tank 16 located at the H-Area Tank Farm.

Dixon, K.L.; Cummins, C.L.

1994-06-01T23:59:59.000Z

334

Drain-Water Heat Recovery | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

works well with all types of water heaters, especially with demand and solar water heaters. Drain-water heat exchangers can recover heat from the hot water used in showers,...

335

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Drain Water Heat Recovery  

E-Print Network [OSTI]

household, the NPV of DWHR is -$203.68 for homes with electric water heaters and -$464.88 for homes with natural gas water heaters. DWHR is much more economical for households with electric hot water heaters as their energy costs are much higher. A household of 4 or more people with an electric hot water heater would

336

SLOSHING OF LIQUIDS IN RIGID ANNULAR CYLINDRICAL AND TORUS TANKS DUE TO SEISMIC GROUND MOTIONS  

E-Print Network [OSTI]

response of water in annular tank model of water = 1 underof Fixed-Base Liquid Storage Tank,'' U.S. , Japan Seminar onSloshing in Axisymmetric Tanks, 11 Ph.D. Dissertation,

Aslam, M.

2013-01-01T23:59:59.000Z

337

Joint used for coupling long heaters  

DOE Patents [OSTI]

Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

Menottie, James Louis

2013-02-26T23:59:59.000Z

338

Parallel heater system for subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

2011-10-25T23:59:59.000Z

339

CO2 Conversion By Nano Heaters  

ScienceCinema (OSTI)

A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

None

2014-06-23T23:59:59.000Z

340

CO2 Conversion By Nano Heaters  

SciTech Connect (OSTI)

A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

None

2014-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SINGLE HEATER TEST FINAL REPORT  

SciTech Connect (OSTI)

The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between multiple organizations performing their part in the test.

J.B. Cho

1999-05-01T23:59:59.000Z

342

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

343

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

344

A Study on the Failure of Industrial Electric Heater  

E-Print Network [OSTI]

The break down mechanism of a cylindrical electric heater is investigated by studying the uneven heating behavior of the heater by measuring the surface temperature variation of the heater when it is subjected to a boundary condition of constant...

Chyu, M. C.

345

Retrofit Integrated Space & Water Heating: Field Assessment,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

directly replace the existing forced air furnace and water heater, and consist of a high efficiency water heater or boiler and an optimized hydronic air handler. The air handlers...

346

Subsurface connection methods for subsurface heaters  

DOE Patents [OSTI]

A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

2010-12-28T23:59:59.000Z

347

A SOLAR TEST COLLECTOR FOR EVALUATION OF BOTH SELECTIVE AND NON-SELECTIVE ABSORBERS  

E-Print Network [OSTI]

and Storage System~Design An electric water heater serveswater and storage tank for hot water. The water heater is a

Lampert, Carl M.

2011-01-01T23:59:59.000Z

348

Dual Tank Fuel System  

DOE Patents [OSTI]

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

349

Strategy Guideline: Proper Water Heater Selection  

SciTech Connect (OSTI)

This document is no longer available. Please contact Cheryn.Metzger@nrel.gov for further information.

Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

2012-08-01T23:59:59.000Z

350

Tankless Water Heaters: Do They Really Work?  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on July 24-26, 2012.

351

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,Home Aimeebailey's pictureWiki Page

352

Solar Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple It

353

Commercial Water Heaters | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building1Program

354

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisTheDecember 29, 2014Standardized

355

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPowerSohamBG JumppoolJump

356

Water Heaters (Storage Electric) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResultsEnergyEfficiencyTheThe

357

Water Heaters (Storage Oil) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While

358

Water Heaters (Tankless Electric) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTankless Electric - v1.0.xlsx More Documents &

359

DOE_Water_Heater_Meeting_111612.pdf  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93Decemberof EnergySeptember 6, 2012 ScottNovember

360

Water Heater Controller - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition Information

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Storage Gas Water Heaters | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R.StevenStop.Storage

362

Tankless Gas Water Heaters | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATION 1.Take9/09Audit

363

Solar Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourA NewGrowthIllustration

364

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, June 2011TO0CNG and3, 2015CO2CO

365

Residential Water Heaters Webinar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGHResidentialFreezersofResidential

366

Heat Pump Water Heater Performance in  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

367

Warren RECC- Electric Water Heater Rebate  

Broader source: Energy.gov [DOE]

Warren Rural Electric Cooperative Corporation (RECC) provides service to customers in the south-central Kentucky counties of Ohio, Butler, Grayson, Edmonson, Warren, Simpson, Logan and Barren. Upon...

368

STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)  

E-Print Network [OSTI]

,000 Btu/hr), electric resistance and heat pump water heaters, list Energy Factor (EF). For large gas storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal Efficiency, Standby Loss and Rated Input. For instantaneous gas water heaters, list the Thermal Efficiency

369

E-Print Network 3.0 - aluminium electrolysis tanks Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminium electrolysis tanks Page: << < 1 2 3 4 5 > >> 1 PRE-INVESTIGATION WATER ELECTROLYSIS...

370

Drain Tank Information for Developing Design Basis of the Preliminary Design  

SciTech Connect (OSTI)

Tokamak Cooling Water System (TCWS) drain tanks (DTs) serve two functions: normal operation and safety operation. Normal DTs are used for regular maintenance operations when draining is necessary. Safety DTs are used to receive the water leaked into the Vacuum Vessel (VV) after an in-vessel loss of coolant accident (LOCA) event. The preliminary design of the DTs shall be based on the information provided by this document. The capacity of the normal DTs is estimated based on the internal volume of in-vessel components [e.g., First Wall/Blanket (FW/BLK) and Divertor (DIV)]; Neutral Beam Injector (NBI) components; and TCWS piping, heat exchangers, electric heaters, pump casing, pressurizers, and valves. Water volumes have been updated based on 2004-design information, changes adopted because of approved Project Change Requests (PCRs), and data verification by US ITER and AREVA Federal Services, the US ITER A and E Company. Two tanks will store water from normal draining operations of the FW/BLK and DIV Primary Heat Transfer Systems (PHTSs). One tank will store water from normal draining operations of the NBI PHTS. The capacity of the safety DTs is based on analysis of a design basis accident: a large leak from in-vessel components. There are two safety DTs that will receive water from a VV LOCA event and drainage from the VV, as needed. In addition, there is one sump tank for the DIV that will be used for collecting drain water from the draining and drying processes and specifically for draining the DIV system as the DIV cassette lines are at a lower elevation than the DT connection point. Information documented in this report must be refined and verified during the preliminary design of the DTs, and there are several aspects to be considered to complete the preliminary design. Input to these design considerations is discussed in this report and includes, but is not limited to, water inventory; operating procedures/maintenance; Failure Modes and Effects Analysis (FMEA); tank layout and dimensions, including design margin; classification under French Nuclear Pressure Directives, Equipements Sous Pression Nucleaires (ESPN); and adaptations for construction.

Ferrada, Juan J [ORNL

2012-02-01T23:59:59.000Z

371

Drain Tank Information for Developing Design Basis of the Preliminary Design  

SciTech Connect (OSTI)

Tokamak Cooling Water System (TCWS) drain tanks (DTs) serve two functions: normal operation and safety operation. Normal DTs are used for regular maintenance operations when draining is necessary. Safety DTs are used to receive the water leaked into the Vacuum Vessel (VV) after an in-vessel loss of cooling accident (LOCA) event. The preliminary design of the DTs shall be based on the information provided by this document. The capacity of the normal DTs is estimated based on the internal volume of in-vessel components [e.g., First Wall/Blanket (FW/BLK) and Divertor (DIV)], Neutral Beam Injector (NBI) components, and TCWS piping, heat exchangers, electric heaters, pump casing, pressurizers, and valves. Water volumes have been updated based on 2004 design information, changes adopted because of approved Project Change Requests (PCRs), and data verification by U.S. ITER. Two tanks will store water from normal draining operations of the FW/BLK and DIV Primary Heat Transfer Systems (PHTSs). One tank will store water from normal draining operations of the NBI PHTS. The capacity of the safety DTs is based on analysis of a design-basis accident:1 a large leak from in-vessel components. There are two safety DTs that will receive water from a VV LOCA event and drainage from the VV, as needed. In addition, there is one sump tank for the DIV that will be used for collecting drain water from the draining and drying processes and specifically for draining the DIV system as the DIV cassettes lines are at a lower elevation than the DT connection point. Information documented in this report must be refined and verified during the preliminary design of the DTs, and there are several aspects to be considered to complete the preliminary design. Input to these design considerations is discussed in this report and includes, but is not limited to, water inventory; operating procedures/maintenance; Failure Modes and Effects Analysis (FMEA); tank layout anddimensions, including design margin; classification under French Nuclear Pressure Directives, Equipements Sous Pression Nucleaires (ESPN); and adaptations for construction.

Ferrada, Juan J [ORNL

2011-01-01T23:59:59.000Z

372

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

373

Varying properties along lengths of temperature limited heaters  

DOE Patents [OSTI]

A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX); Ginestra, Jean Charles (Richmond, TX)

2011-07-26T23:59:59.000Z

374

Is your electric process heater safe?  

SciTech Connect (OSTI)

Over the past 35 years, electric process heaters (EPHs) have been used to heat flowing fluids in different sectors of the energy industry: oil and gas exploration and production, refineries, petrochemical plants, pipeline compression facilities and power-generation plants. EPHs offer several advantages over fired heaters and shell-and-tube exchangers, which have been around for many years, including: smaller size, lighter weight, cleaner operation, lower capital costs, lower maintenance costs, no emissions or leakage, better control and improved safety. However, while many industrial standards have addressed safety concerns of fired heaters and shell-and-tube exchangers (API, TEMA, NFPA, OSHA and NEC), no standards address EPHs. The paper presents a list of questions that plant operators need to ask about the safety of their electric process heaters. The answers are also given.

Tiras, C.S.

2000-04-01T23:59:59.000Z

375

A radiological characterization of remediated tank battery sites  

SciTech Connect (OSTI)

Tank battery sites have historically been used for the initial processing of crude oil which separates water and sediment from the produced oil. Typically, one or more producing wells is connected to a tank battery site consisting of storage and separation tanks. Historical operating practices also included a production holding pit for increaesd separation of oil, water, and sediment.

Hebert, M.B. [NORMCO, Amelia, LA (United States); Scott, L.M. [Louisiana State Univ., Baton Rouge, LA (United States); Zrake, S.J. [Ashland Exploration, Inc., Houston, TX (United States)

1995-03-01T23:59:59.000Z

376

Approved Space Heaters In order to ensure that all space heaters meet current safety guidelines, the University Fire Department  

E-Print Network [OSTI]

EHS 1/2012 Approved Space Heaters In order to ensure that all space heaters meet current safety approved a limited selection of space heaters for use within the University, which are available at Central Stores. The following Space Heaters are approved for use in University of Connecticut buildings provided

Holsinger, Kent

377

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

378

Diesel particulate filter with zoned resistive heater  

SciTech Connect (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

379

Preoperational test report, cross-site transfer water flush system (POTP-001)  

SciTech Connect (OSTI)

This report documents the results of the testing performed per POTP-001, for the Cross-Site Transfer Water Flush System. (HNF-1552, Rev. 0) The Flush System consists of a 47,000 gallon tank (302C), a 20 hp pump, two 498kW heaters, a caustic addition pump, various valves, instruments, and piping. The purpose of this system is to provide flush water at 140 F, 140gpm, and pH 11-12 for the Cross-Site Transfer System operation.

Parsons, G.L.

1998-02-20T23:59:59.000Z

380

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82�ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

2012-04-01T23:59:59.000Z

382

Estimating the Annual Water and Energy Savings in Texas A & M University Cafeterias using Low Flow Pre-Rinse Spray Valves  

E-Print Network [OSTI]

equal to 100,000 British thermal units (BTU).1 Therm is equal to 29.3 kWh Temperature rise through Heater The difference in the water temperature supplied to the water heater, and the water exiting the water heater. This is typically 70*F, which... assumes a water line temperature of 75*F and a water heater setting of 145*F Water Heater Efficiency The percentage of energy delivered to the water divided by the amount of energy consumed by the water heater viii TABLE OF CONTENTS...

Rebello, Harsh Varun

2011-08-08T23:59:59.000Z

383

Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport  

SciTech Connect (OSTI)

The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

2002-04-24T23:59:59.000Z

384

Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport  

SciTech Connect (OSTI)

The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

2002-04-24T23:59:59.000Z

385

Soil science Disinfection of drain water in greenhouses  

E-Print Network [OSTI]

Soil science Disinfection of drain water in greenhouses using a wet condensation heater C Steinberg November 1994) Summary — A wet condensation heater has been modified to disinfect drain water were introduced into the disinfection circuit above the heater. Water was checked downstream

Paris-Sud XI, Université de

386

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect (OSTI)

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

387

Performance characterization of a hydrogen catalytic heater.  

SciTech Connect (OSTI)

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

Johnson, Terry Alan; Kanouff, Michael P.

2010-04-01T23:59:59.000Z

388

AX Tank Farm tank removal study  

SciTech Connect (OSTI)

This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1999-02-24T23:59:59.000Z

389

Vapor canister heater for evaporative emissions systems  

SciTech Connect (OSTI)

Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

Bishop, R.P.; Berg, P.G.

1987-01-01T23:59:59.000Z

390

Design, Stress Analysis and Operating Experience in Feedwater Heaters  

E-Print Network [OSTI]

The performance of feedwater heaters has a direct bearing on the thermal efficiency of the plant. A typical feedwater heater may have three distinct regions of heat transfer, namely desuperheating, condensing and subcooling zones. The design...

Singh, K. P.; Libs, T.

1980-01-01T23:59:59.000Z

391

HVAC vs. Space Heaters: Which is More Efficient? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Let's start with a basic tenet: electric space heaters are less efficient than HVAC systems. I cannot replace my heating system with room heaters if I want to save money....

392

Nuclear Plant Feedwater Heater Handbook. Volume 1. Primer. Final report  

SciTech Connect (OSTI)

This document is the first part of a three volume handbook covering closed feedwater heaters for electric power generating plants. This volume is a primer to the subject of feedwater heaters and their integration into the plant. 24 refs.

Bell, R.J.; Wells, T.G. Jr.

1985-06-01T23:59:59.000Z

393

Construct Mechanical Pike and Tow Tank Chengcheng Feng  

E-Print Network [OSTI]

Construct Mechanical Pike and Tow Tank Chengcheng Feng Faculty Mentor: Professor Yahya Modarres to study the influence of different parameters on acceleration. My second goal is to build a water tank by using a particle image velocimetry (PIV) system. This tank is a testing platform that can be utilized

Mountziaris, T. J.

394

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

395

Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

1996-11-01T23:59:59.000Z

396

ICPP tank farm closure study. Volume 2: Engineering design files  

SciTech Connect (OSTI)

Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

NONE

1998-02-01T23:59:59.000Z

397

Underground storage tank 431-D1U1, Closure Plan  

SciTech Connect (OSTI)

This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

Mancieri, S.

1993-09-01T23:59:59.000Z

398

Fired heater for coal liquefaction process  

DOE Patents [OSTI]

A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

Ying, David H. S. (Macungie, PA)

1984-01-01T23:59:59.000Z

399

HANFORD TANK CLEANUP UPDATE  

SciTech Connect (OSTI)

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

400

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network [OSTI]

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

1992 CBECS User-Needs Study  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

HEATERS ..... 4 5. WITH INSTANTANEOUS HEATERS AT POINT OF USE (NO HOT WATER STORAGE TANKS) ... 5 6. OTHER TYPE OF DISTRIBUTED SYSTEM ... 6 SPECIFY...

402

U.S. Department of Energy Categorical Exclusion ...  

Broader source: Energy.gov (indexed) [DOE]

Dismantle and removal (D&R) of Domestic Water (DW) & Process Water (PWS) heater tanks Savannah River Site AikenAikenSouth Carolina Two Domestic Water (DW) heater tanks...

403

Analysis of ICPP tank farm infiltration  

SciTech Connect (OSTI)

This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults.

Richards, B.T.

1993-10-01T23:59:59.000Z

404

Development and Field Testing of a Hybrid Water Heating and Dehumidification Appliance  

E-Print Network [OSTI]

standard system is replaced by a Heat Pump Water Heater (HPWH), the performance can be increased by 140

Aaron K. Ball; Chip Ferguson; William Mcdaniel

405

Eleana near-surface heater experiment final report  

SciTech Connect (OSTI)

This report summarizes the results of a near-surface heater experiment operated at a depth of 23 m in argillite within the Eleana Formation on the Nevada Test Site (NTS). The test geometrically simulated emplacement of a single canister of High-Level Waste (HLW) and was operated at a power level of 2.5 kW for 21 days, followed by 3.8 kW to 250 days, when the power was turned off. Below 85 to 100{sup 0}C, there was good agreement between modeled and measured thermal results in the rock and in the emplacement hole, except for transient transport of water in the heater hole. Above 100{sup 0}C, modeled and measured thermal results increasingly diverged, indicating that the in-situ rock-mass thermal conductivity decreased as a result of dehydration more than expected on the basis of matrix properties. Correlation of thermomechanical modeling and field results suggests that this decrease was caused by strong coupling of thermal and mechanical behavior of the argillite at elevated temperatures. No hole-wall decrepitation was observed in the experiment; this fact and the codrrelation of modeled and measured results at lower temperatures indicate that there is no a priori reason to eliminate argillaceous rocks from further consideration as a host rock for nuclear wastes.

Lappin, A R; Thomas, R K; McVey, D F

1981-04-01T23:59:59.000Z

406

Tank characterization report: Tank 241-C-109  

SciTech Connect (OSTI)

Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

Simpson, B.C.; Borshiem, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

407

Computational Modeling of Ballast Tanks to Improve Understanding and Maximize Effectiveness of Management Practices and Treatment  

E-Print Network [OSTI]

Computational Modeling of Ballast Tanks to Improve Understanding and Maximize Effectiveness tanks exchange coastal ballast water with mid-ocean seawater (referred to as "ballast water exchange of high-resolution computational fluid dynamics (CFD) to model ballast tank water flow and to predict EE

408

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

water heating (high efficiency tanks and heat pump water heaters), and higher efficiency showerheads Efficiency TanksHigh Efficiency Tanks Heat Pump and Solar Water HeatersHeat Pump and Solar Water Heaters 2 covering residential lighting, appliances and water heating. Time permitting, staff will also provide

409

INSTALLATION CERTIFICATE CF-6R-MECH-01 Domestic Hot Water (DHW) (Page 1 of 2)  

E-Print Network [OSTI]

,000 Btu/hr), electric resistance and heat pump water heaters, list Energy Factor (EF). For large gas storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal Efficiency, Standby Loss and Rated Input. For instantaneous gas water heaters, list the Thermal Efficiency

410

How Control Improvements Save Process Heater Fuel  

E-Print Network [OSTI]

such use can be expected. Process Heater Combustion Control Systems The recommended approach today differs only in detail from a combustion control system installed on a process heater in 1946 at Shell Oil Co., Wood River Refinery. In their 1948 paper... Net + 15% Excess Natural Gas 7.18 7.88 9.06 ., (l000 Btu) Refinery Gas 7.21 7.84 9.02 (l600 Btu) Fuel Oil No. 6 7.31 7.75 8.91 (18,000 Btu) Coal 7.56 7.79 8.96 (11,500 Btu) 184 ESL-IE-79-04-20 Proceedings from the First Industrial Energy...

Dukelow, S. G.

1979-01-01T23:59:59.000Z

411

A performance correlation of horizontal solar heaters  

E-Print Network [OSTI]

A PERFORMANCE CORRELATION OF HORIZONTAL SOLAR HEATERS A Thesis by WILFORD HUGO GOPFFARTH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1964... Major Subject: Chemical Engineering ABSTRACT The purpose of this work was to determine design parameters for flat plastic covered solar collectors. First, the transmittance ? absorp- tion product as a function of the angle of incidence was determined...

Gopffarth, Wilford Hugo

1964-01-01T23:59:59.000Z

412

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010  

E-Print Network [OSTI]

Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

Meyers, Stephen

2013-01-01T23:59:59.000Z

413

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012  

E-Print Network [OSTI]

Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

Meyers, Stephen

2013-01-01T23:59:59.000Z

414

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011  

E-Print Network [OSTI]

Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

Meyers, Stephen

2013-01-01T23:59:59.000Z

415

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013  

E-Print Network [OSTI]

Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

, Stephen Meyers

2014-01-01T23:59:59.000Z

416

Lid heater for glass melter  

DOE Patents [OSTI]

A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

417

Lid heater for glass melter  

DOE Patents [OSTI]

A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

Phillips, T.D.

1993-12-14T23:59:59.000Z

418

Septic Tanks (Oklahoma)  

Broader source: Energy.gov [DOE]

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

419

Tank 241-TX-105 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

420

Tank 241-T-111 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111.

Homi, C.S.

1995-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DIESEL FUEL TANK FOUNDATIONS  

SciTech Connect (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

422

INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND  

E-Print Network [OSTI]

designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

J. Stene

423

Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration  

DOE Patents [OSTI]

A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)

2010-11-09T23:59:59.000Z

424

Automated robotic equipment for ultrasonic inspection of pressurizer heater wells  

DOE Patents [OSTI]

A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

Nachbar, Henry D. (Ballston Lake, NY); DeRossi, Raymond S. (Amsterdam, NY); Mullins, Lawrence E. (Middle Grove, NY)

1993-01-01T23:59:59.000Z

425

two tanks 1/7/2008 1 0 20 40 60 80 100  

E-Print Network [OSTI]

two tanks 1/7/2008 1 0 100 200 300 400 0 20 40 60 80 100 x t 0 100 200 300 400 0 20 40 60 80 100 tanks Two identical cylindrical tanks X and Y with identical holes in the centre of the bottom are placed one above the other. Tank X starts with 400 ml of water and tank Y starts empty. At t=0 (minutes

Taylor, Peter

426

Multi-step heater deployment in a subsurface formation  

DOE Patents [OSTI]

A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

Mason, Stanley Leroy (Allen, TX)

2012-04-03T23:59:59.000Z

427

Household Water Quality Home Water Quality Problems  

E-Print Network [OSTI]

in water heater. Scale buildup in pipes and re duced water flow. Hard water due to calcium and magnesiumHousehold Water Quality Home Water Quality Problems­ Causes and Treatments Blake Ross, Extension Many areas have water containing impurities from natural or artificial sources. These impurities may

Liskiewicz, Maciej

428

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

429

Gas Swimming Pool Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergyGas Swimming Pool Heaters Gas

430

E-Print Network 3.0 - alkaline tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ty of wasted feed affect tank water quality. As pelleted feeds are introduced... the tanks to wash out the waste by-products. Additionally, the oxygen concentration within the...

431

Accelerated Tank Closure Demonstrations at the Hanford Site  

SciTech Connect (OSTI)

Among the highest priorities for action under the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a), hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: Protecting human health and the environment; Minimizing/eliminating potential waste releases to the soil and groundwater; Preventing water infiltration into the tank; Maintaining accessibility of surrounding tanks for future closure; Maintaining tank structural integrity; Complying with applicable waste retrieval, disposal, and closure regulations; Maintaining flexibility for final closure options in the future. This paper provides an overview of the Hanford Site tank waste mission with emphasis on the Accelerated Tank Closure Demonstration Project. Included are discussions of single-shell tank waste retrieval and closure challenges, progress made to date, lessons learned, regulatory approach, data acquisition, near-term retrieval opportunities, schedule, and cost.

Sams, Terry L.; Riess, Mark J.; Cammann, Jerry W.; Lee, Timothy A.; Nichols, David

2003-02-27T23:59:59.000Z

432

A N A S S E S S M E N T O F HONORS THINK TANK REPORT MAY 2013  

E-Print Network [OSTI]

A N A S S E S S M E N T O F HONORS THINK TANK REPORT MAY 2013 Awareness, Use, EducationUstAinAbility At the University of UtAh Wasatch Waters Think Tank Honors College May 2013 #12;Please cite this report as follows: Wasatch Waters Think Tank. 2013. An assessment of water: awareness, use, education, and sustainability

Feschotte, Cedric

433

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers [EERE]

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

434

Natural Sloshing Frequencies in Truncated Conical Tanks I. Gavrilyuk1, M. Hermann2, I. Lukovsky3, O. Solodun3, A. Timokha3  

E-Print Network [OSTI]

Natural Sloshing Frequencies in Truncated Conical Tanks I. Gavrilyuk1, M. Hermann2, I. Lukovsky3, O tanks. After earthquakes water tanks play an important role, by making the water available needed be practiced with the construction of the tanks in order to assure their safety and functionality during

435

Shock Chlorination of Stored Water Supplies  

E-Print Network [OSTI]

of their well water. While these procedures effectively may san- itize water wells and distribution systems, addition- al steps may be necessary to shock- chlorinate water stored in tanks. Storage Tanks In several regions of Texas, such as the Texas Hill... Country and the Central Texas Blacklands, water is pumped from wells into large storage tanks. Pipes from such tanks then deliver water to houses for domestic use. However, shock-chlorinating a water well alone may not provide enough chlorinated water...

Dozier, Monty; McFarland, Mark L.

2005-05-25T23:59:59.000Z

436

Tank characterization reference guide  

SciTech Connect (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

437

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

SciTech Connect (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

438

Electrical noise characteristics of a doped silicon microcantilever heater-thermometer  

E-Print Network [OSTI]

Electrical noise characteristics of a doped silicon microcantilever heater-thermometer Elise A with resistive heater-thermometers,10­13 there is a lack of published reports on the electrical noise silicon heater- thermometer cantilevers.12 However, a key difference is that doped silicon heater-thermometers

King, William P.

439

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

440

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Broader source: Energy.gov [DOE]

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sacramento Ordinance to Waive Fees for Solar Hot Water  

Broader source: Energy.gov [DOE]

An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

442

NV Energy (Northern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

443

An Analysis of Steam Process Heater Condensate Drainage Options  

E-Print Network [OSTI]

The production and reliability performance of Steam Process Heaters can be significantly affected by the condensate drainage design that is employed. There are currently a variety of drainage options which can be confusing to a system designer who...

Risko, J. R.

444

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

445

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1983-01-01T23:59:59.000Z

446

Temperature limited heater utilizing non-ferromagnetic conductor  

DOE Patents [OSTI]

A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

Vinegar; Harold J. (Bellaire, TX), Harris; Christopher Kelvin (Houston, TX)

2012-07-17T23:59:59.000Z

447

Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings  

E-Print Network [OSTI]

GAS TURBINE FIRED HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas... as in steam turbines. A specific example of how cogeneration can work in this way is in the integration of a gas turbine with a fired heater as shown in Figure 2. Electrical or mechanical power is delivered by the gas turbine while the exhaust combustion...

Iaquaniello, G.; Pietrogrande, P.

448

Tank Problems Here are some additional problems involving flow in and out of a container. These kinds of problems  

E-Print Network [OSTI]

9­28­1998 Tank Problems Here are some additional problems involving flow in and out of a container­order linear equations for which you can find an integrating factor. Example. A tank contains 20 gallons of pure water. Water containing 2 pounds of dissolved yogurt per gallon enters the tank at 4 gallons per

Ikenaga, Bruce

449

Robotic Inspection System for Bulk Liquid Storage Tanks  

E-Print Network [OSTI]

for aboveground storage tanks (ASTs) requires: drainage of the product; cleaning of the vessel with water or solvents; physical removal, collection and containment of petroleum and chemical waste residues, including the waste streams created by the cleaning...

Hartsell, D. R.; Hakes, K. J.

450

Tank 48 - Chemical Destruction  

SciTech Connect (OSTI)

Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

2013-01-09T23:59:59.000Z

451

Underground Storage Tank Regulations  

Broader source: Energy.gov [DOE]

The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

452

Double Shell Tank (DST) Utilities Specification  

SciTech Connect (OSTI)

This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

SUSIENE, W.T.

2000-04-27T23:59:59.000Z

453

Water augmented indirectly-fired gas turbine systems and method  

DOE Patents [OSTI]

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

454

PCB extraction from ORNL tank WC-14 using a unique solvent  

SciTech Connect (OSTI)

This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60{degrees}F but insoluble in water above 90{degrees}F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL`s Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination.

Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

1995-09-01T23:59:59.000Z

455

Heat Pump Water Heater Modeling in EnergyPlus (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

Wilson, E.; Christensen, C.

2012-03-01T23:59:59.000Z

456

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

used for many years for space heating and cooling. It can be found in small and large products alike, such as window air conditioners used in homes through large rooftop units...

457

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

expense (i.e. , from a less energy efficient design toa more energy efficient design) to the decrease in annual

Franco, Victor

2011-01-01T23:59:59.000Z

458

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

Central Air Conditioners and Heat Pumps Including. May,pump technology to extract heat from the surrounding air (air flow requirements of HPWHs increase installation costs. Introduction A heat pump

Franco, Victor

2011-01-01T23:59:59.000Z

459

Linn County Rural Electric Cooperative- Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial,...

460

ENERGY STAR Residential Water Heaters to Save Americans Up to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

program, formed in 1992 as a voluntary, market-based partnership that seeks to reduce air pollution through increased energy efficiency. DOE and EPA work to offer businesses...

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat Pump Water Heater Basics | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergyGasDeployment |ExchangersHomes

462

Selecting a New Water Heater | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolve to

463

Sizing a New Water Heater | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolve toSemiannual

464

Commercial Absorption Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural Resources Defenseon SmartAbsorption

465

Conventional Storage Water Heater Basics | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking

466

List of Water Heaters Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassiveMachine Controls Incentives

467

Building America Expert Meeting: Recommendations for Applying Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent NelsonEvaluationHomesFieldManagementin

468

Advanced Hybrid Water Heater using Electrochemical Compressor | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41Adam GarberStartDepartment ofLeadof

469

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan

470

DOE Publishes Notice of Proposed Rulemaking for Residential Water Heater  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOEAVAILABLE ONLINEfor the Dehumidifierandand

471

Predictive Control of Hot Water Heaters - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaverPredicting TheIndustrial

472

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

into The Weatherization Assistance Program, May 2003. D&Rand DOE’s weatherization assistance program (Kelso 2003),

Franco, Victor

2011-01-01T23:59:59.000Z

473

A Combined Water Heater, Dehumidifier, and Cooler (WHDC) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5SUMMARIES8/14PracticesEnergy A

474

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF LOCAL ENERGY PROGRAMSof Energy

475

Covered Product Category: Commercial Gas Water Heaters | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilers Covered ProductFryers

476

Solar Hot Water Heater Industry in Barbados | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFutureU.S. technologicalEnergy

477

Tankless Coil and Indirect Water Heater Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »Coil and Indirect

478

Tankless Demand Water Heater Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »Coil andDemand

479

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12

480

Adsorption Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative Records Schedule 1

Note: This page contains sample records for the topic "water heater tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Saving Absorption Heat Pump Water Heater - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecondCareerFebruary 2005Energy Saver 101:

482

Residential Absorption Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokinetic EnergyIssuesPowerofAdvance

483

GeoSprings Hybrid Water Heater - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals.Genomefor GenomicsGeoSprings

484

Solar Water Heaters and the Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernmentSmartDay 7Solar panels

485

Tankless Gas Water Heater Performance - Building America Top Innovation |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at YoungSuspect|THE WHITEDepartment of Energy

486

Making Water Heaters More Efficient | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time information TourTourAnaloguesOurMake

487

Covered Product Category: Residential Electric Resistance Water Heaters |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilersDataHotof EnergyDepartment

488

Covered Product Category: Residential Gas Storage Water Heaters |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilersDataHotofFurnaces

489

Covered Product Category: Residential Heat Pump Water Heaters | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilersDataHotofFurnacesEnergyof

490

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

rating of at least 4000 Btu per hour per gallon of storedpackaged boiler that has an input rating from 300,000 Btu/hrto 12,500,000 Btu/hr (and at least 4,000 Btu/hr per gallon

Lutz, Jim

2012-01-01T23:59:59.000Z

491

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

492

Columbia Water and Light- Solar Rebates  

Broader source: Energy.gov [DOE]

Columbia Water and Light (CWL) offers rebates to its commercial and residential customers for the purchase of solar water heaters and solar photovoltaic systems. These rebates are available for...

493

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS  

SciTech Connect (OSTI)

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global buckling of the tank under increased vacuum) could occur.

MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

2007-02-14T23:59:59.000Z

494

Underground storage tank 291-D1U1: Closure plan  

SciTech Connect (OSTI)

The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

495

Ashland Electric Utility- Bright Way to Heat Water Loan  

Broader source: Energy.gov [DOE]

The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water...

496

Ashland Electric Utility- Bright Way to Heat Water Rebate  

Broader source: Energy.gov [DOE]

The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water...

497

TANK SPACE OPTIONS REPORT  

SciTech Connect (OSTI)

Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

WILLIS WL; AHRENDT MR

2009-08-11T23:59:59.000Z

498

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, A.; Swift, G.W.

1984-06-13T23:59:59.000Z

499

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

500

POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS  

SciTech Connect (OSTI)

High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

2007-03-29T23:59:59.000Z