Sample records for water generating units

  1. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Strzepek, Kenneth M.

    2012-06-15T23:59:59.000Z

    Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

  2. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  3. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J. (Energy Systems); ( NE)

    2011-02-24T23:59:59.000Z

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  4. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  5. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  6. Estimated Water Flows in 2005: United States

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16T23:59:59.000Z

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

  7. Sandia National Laboratories: Electric Power Generation and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InterconnectsElectric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and...

  8. STOCHASTIC FLOW SEQUENCE GENERATION AND ASPINALL UNIT OPERATIONS

    E-Print Network [OSTI]

    to incorporate paleo #12;iv reconstructed data. The selected methods are then employed to generate syntheticSTOCHASTIC FLOW SEQUENCE GENERATION AND ASPINALL UNIT OPERATIONS By KENNETH C NOWAK B Flow Sequence Generation and Aspinall Unit Operations written by Kenneth C Nowak has been approved

  9. Occurrence of Low-Temperature Geothermal Waters in the United...

    Open Energy Info (EERE)

    Occurrence of Low-Temperature Geothermal Waters in the United States, in Assessment of Geothermal Resources of the United States -- 1978 Jump to: navigation, search OpenEI...

  10. Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on

    E-Print Network [OSTI]

    Olden, Julian D.

    for electricity generation from coal. Historical water use by the energy sector is related to patterns of fishEnergy, Water and Fish: Biodiversity Impacts of Energy- Sector Water Demand in the United States Rising energy consumption in coming decades, combined with a changing energy mix, have the potential

  11. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01T23:59:59.000Z

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  12. Increasing Thermoelectric Generation Water Use

    E-Print Network [OSTI]

    Keller, Arturo A.

    22-23, 2007 University of California, Santa Barbara #12;2© 2007 Electric Power Research Institute, Inc. All rights reserved. Energy/Water Nexus #12;3© 2007 Electric Power Research Institute, Inc. All and demand ­ Electricity grid topology ­ Societal and economic infrastructure sustainability #12;4© 2007

  13. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  14. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of(BETO)Next Generation

  15. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30T23:59:59.000Z

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

  16. Feasibility Assessment of the Water Energy Resources of the United...

    Energy Savers [EERE]

    Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A Feasibility...

  17. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15T23:59:59.000Z

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  18. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  19. Optimization of Water Consumption in Second Generation Bioethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Water Consumption in Second Generation Bioethanol Plants Mariano Martína optimization of second generation bioethanol production plants from lignocellulosic switchgrass when using

  20. Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir

    E-Print Network [OSTI]

    Keller, Arturo A.

    Forum on Energy & Water Sustainability April 10th /09 2 Outline 1. Project goal and motivation Commercial unit fuel cell 5. Conclusions #12;Second Forum on Energy & Water Sustainability April 10th /09 3 for Municipal Water Providers #12;Second Forum on Energy & Water Sustainability April 10th /09 4 Water

  1. Fluorescent lamp unit with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-08-08T23:59:59.000Z

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  2. 33 CFR 2.36: Navigable Waters of the United States, navigable...

    Open Energy Info (EERE)

    navigable waters, and territorial watersLegal Abstract This regulation provides the definition for "navigable waters of the United States, navigable waters, and territorial...

  3. Optimization of auxiliary power systems design for large generating units

    SciTech Connect (OSTI)

    Fabri, E.I.; Kang, E.K.; Dusterdick, R.W.

    1980-01-01T23:59:59.000Z

    Modern fossil and nuclear generating units require the support of a fairly large and complex electric auxiliary power system. The selection of an optimized and cost-effective auxiliary power transformer rating may be a difficult process, since the loading profile and coincident operation of the loads often cannot be firmly defined at an early stage of design. The authors believe that this important design process could be greatly aided by systematic field tests and recording of the actual auxiliary loading profiles during various modes of plant operations.

  4. Property:NbrGeneratingUnits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSizeNbrGeneratingUnits Jump to: navigation,

  5. Water resources. Bureau of Reclamation's Bonneville Unit: future repayment arrangements

    SciTech Connect (OSTI)

    Not Available

    1986-03-01T23:59:59.000Z

    GAO is convinced that: the Bureau of Reclamation's use of the Water Supply Act of 1958 to defer a portion of municipal and industrial (M and I) costs of the Bonneville Unit was illegal, the Bureau's use of ad valorem (percentage of value) tax revenues from property owners to increase the Bonneville Unit's M and I customers repayment obligation under the 1965 contract was improper, and the Department of Energy Organization Act 1977 requires congressional approval of the modified cost allocation of the Bonneville Unit initiated by the Bureau in 1984.

  6. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    condensing furnaces and water heaters and power vent waterheater, electric water heaters and furnaces, which includeResidential Gas Furnaces and Water Heaters in United States

  7. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Energy Savers [EERE]

    Paper NRELCP-550-47685 August 2010 Tool for Generating Realistic Residential Hot Water Event Schedules Preprint Bob Hendron and Jay Burch National Renewable Energy...

  8. Non-invasive field measurements of soil water content using a pulsed 14 MeV neutron generator

    E-Print Network [OSTI]

    Johnson, Peter D.

    Non-invasive field measurements of soil water content using a pulsed 14 MeV neutron generator S-3120, United States 1. Introduction Knowledge of soil water content is critical to agricultural, hydrological from H will be a function of the soils' water-content. To the best of our knowledge

  9. Operable Generating Units in the United States by State and Energy Source, 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBGOperable Generating Units in the

  10. Water value in power generation: Experts distinguish water use and consumption 

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01T23:59:59.000Z

    Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

  11. Water value in power generation: Experts distinguish water use and consumption

    E-Print Network [OSTI]

    Kalisek, D

    2013-01-01T23:59:59.000Z

    Winter 2013 tx H2O 11 ] Story by Danielle Kalisek In Grimes County, the sun sets over Gibbons Creek Reservoir, the cooling water supply for an adjacent power plant. Photo by Leslie Lee. WATER VALUE IN POWER GENERATION Experts distinguish... water use and consumption Having enough water available for municipal and agricultural needs is o#23;en discussed; however, having the water needed to generate electric power and the electricity needed to treat and transport water is a struggle all...

  12. Test factoring with amock: generating readable unit tests from system tests

    E-Print Network [OSTI]

    Glasser, David Samuel

    2007-01-01T23:59:59.000Z

    Automated unit tests are essential for the construction of reliable software, but writing them can be tedious. If the goal of test generation is to create a lasting unit test suite (and not just to optimize execution of ...

  13. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    DOE Patents [OSTI]

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05T23:59:59.000Z

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  14. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D. (Environmental Science Division)

    2011-05-09T23:59:59.000Z

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

  15. El Dorado County Water Systems Energy Generation Project

    E-Print Network [OSTI]

    water systems within the El Dorado Irrigation District and the Georgetown Divide Public UtilityEl Dorado County Water Systems Energy Generation Project RENEWABLE ENERGY RESEARCH www systems, there is significant room for improvement in energy management, efficiency, and reducing demand

  16. Tool-Assisted Unit-Test Generation and Selection Based on Operational Abstractions

    E-Print Network [OSTI]

    Xie, Tao

    Tool-Assisted Unit-Test Generation and Selection Based on Operational Abstractions Tao Xie1 of Washington, Seattle, WA 98105 Abstract. Unit testing, a common step in software development, presents a chal- lenge. When produced manually, unit test suites are often insufficient to identify defects. The main

  17. Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility

    E-Print Network [OSTI]

    Barner, Robert Buckner

    2007-04-25T23:59:59.000Z

    -cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), Sodium-cooled Fast Reactor (SFR), Supercritical-water-cooled Reactor (SCWR) and the Very-high-temperature Reactor (VHTR). An international effort to develop these new... and the hydrogen production plant4,5. Davis et al. investigated the possibility of helium and molten salts in the IHTL2. The thermal efficiency of the power conversion unit is paramount to the success of this next generation technology. Current light water...

  18. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15T23:59:59.000Z

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  19. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

    2013-11-15T23:59:59.000Z

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  20. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01T23:59:59.000Z

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  1. Symstra: A Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution

    E-Print Network [OSTI]

    Weimer, Westley

    Symstra: A Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution Tao Xie1 write tests for every aspect of the classes they develop. However, manual test generation is time [12] to generate covering method sequences. But AsmLT requires the user to carefully choose

  2. Symstra: A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution

    E-Print Network [OSTI]

    Xie, Tao

    Symstra: A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution Tao Xie1 testers) who write tests for every aspect of the classes they develop. However, manual test generation] to generate covering method sequences. But AsmLT requires the user to carefully choose sufficiently large

  3. Water chemistry of breeder reactor steam generators. [LMFBR

    SciTech Connect (OSTI)

    Simpson, J.L.; Robles, M.N.; Spalaris, C.N.; Moss, S.A.

    1980-08-01T23:59:59.000Z

    The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed.

  4. United Nations Association -Nebraska Division Hears Roger Gold's "World's Water Problems"

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    water problem there is the lack of water during the dry season. In the monsoons, water is collectedUnited Nations Association - Nebraska Division Hears Roger Gold's "World's Water Problems Dictionary (1980), and the New York Times Everyday Dictionary (1982). One-toorders are many of the 54 Water

  5. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  6. Maintenance practices for emergency diesel generator engines onboard United States Navy Los Angeles class nuclear submarines

    E-Print Network [OSTI]

    Hawks, Matthew Arthur

    2006-01-01T23:59:59.000Z

    The United States Navy has recognized the rising age of its nuclear reactors. With this increasing age comes increasing importance of backup generators. In addition to the need for decay heat removal common to all (naval ...

  7. Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-07-01T23:59:59.000Z

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown from the existing SJGS Unit 3 tower--during the summer months of 2005. If successful, there may be follow-on testing using produced water. WSAC is discussed in this deliverable. Recall that Deliverable 4, Emerging Technology Testing, describes the pilot testing conducted at a salt water disposal facility (SWD) by the CeraMem Corporation. This filtration technology could be a candidate for future demonstration testing and is also discussed in this deliverable.

  8. Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods

    E-Print Network [OSTI]

    Römisch, Werner

    - storage hydro plants a large-scale mixed integer optimization model for unit commitment is developed optimal scheduling of on/o decisions and output levels for generating units in a power system over on the shares of nuclear, conventional thermal, hydro and pumped-storage hydro power in the underlying

  9. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01T23:59:59.000Z

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  10. Shockwave generation by a semiconductor bridge operation in water

    SciTech Connect (OSTI)

    Zvulun, E.; Toker, G.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2014-05-28T23:59:59.000Z

    A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition, the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.

  11. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units With larger portion of growing electricity demand which is being fed through distributed generation (DG power system. Being able to operate in both grid-connected and islanded mode, a microgrid manages

  12. Metal-Oxo Catalysts for Generating Hydrogen from Water

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-06-23T23:59:59.000Z

    Scientists at Berkeley Lab have developed an inexpensive, highly efficient catalyst that can be used in the electrolysis of water to generate H2—a source of clean fuel, a reducing agent for metal ores, and a reactant used to produce hydrochloric acid and other chemicals. The catalyst is a metal-oxo complex in which modified pyridine rings surround an earth-abundant, low cost metal, such as molybdenum. Compared to other molecular catalysts, the Berkeley Lab compound has a longer life,...

  13. Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County 

    E-Print Network [OSTI]

    Leigh, E.; Fipps, G.

    2008-01-01T23:59:59.000Z

    TR-322 2008 Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College... Station Guy Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station March 20, 2007 Water Loss Test Results for the West Main Pipeline United Irrigation...

  14. Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County

    E-Print Network [OSTI]

    Leigh, E.; Fipps, G.

    TR-322 2008 Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College... Station Guy Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station March 20, 2007 Water Loss Test Results for the West Main Pipeline United Irrigation...

  15. Ground-Water Recharge in the Arid and Semiarid Southwestern United States --

    E-Print Network [OSTI]

    Ground-Water Recharge in the Arid and Semiarid Southwestern United States -- Climatic and Geologic and semiarid southwest- ern United States results from the complex interplay of climate, geology and Range subregions. Introduction The arid and semiarid southwestern United States is among the fastest

  16. Pseudo-random number generators for Monte Carlo simulations on Graphics Processing Units

    E-Print Network [OSTI]

    Vadim Demchik

    2010-03-09T23:59:59.000Z

    Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed-up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is present.

  17. u.s. Water Institutes/Centers Celebrate 25th Anniversary United Kingdom Geophysicist Now

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    of ground and surface water by heavy metals, excessive nutrient levels in lakes that lead to eutrophicationu.s. Water Institutes/Centers Celebrate 25th Anniversary United Kingdom Geophysicist Now Head of UNL Geology Department Groundwater quality remains a major emphasis for study at water resources

  18. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect (OSTI)

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05T23:59:59.000Z

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  19. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31T23:59:59.000Z

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  20. Method of generating hydrogen by catalytic decomposition of water

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Dorris, Stephen E. (LaGrange Park, IL); Bose, Arun C. (Pittsburgh, PA); Stiegel, Gary J. (Library, PA); Lee, Tae-Hyun (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  1. Single-bridge unit-connected HVDC generation with increased pulse number

    SciTech Connect (OSTI)

    Villablanca, M.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

    1993-04-01T23:59:59.000Z

    A true unit-connected generator-HVdc convertor scheme is proposed which removes the need to use two bridges in series to achieve twelve-pulse operation. Moreover, the combination of a single main bridge and an auxiliary feedback dc ripple reinjection bridge is shown to increase the pulse number from 6 to 18. This is achieved purely by natural commutation and is equally valid for rectification and inversion. The theoretical waveforms are validated by extensive experimental verification.

  2. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  3. AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the static pressure, / , the slope of the water waves, the air kinematic viscosity. Wave characteristics wereAIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES Hubert Branger1 the structure of the air flow in the very close vicinity of the water-surface above wind-generated waves. We

  4. Growth and mortality of the oyster, Crassostrea virginica (Gmelin) in an electric generating station cooling lake receiving heated discharge water

    E-Print Network [OSTI]

    Oja, Robert Kenneth

    1974-01-01T23:59:59.000Z

    throughout the tudy. STUDY ARZA AND ?)vTHODS Studg Area Thi. study was conducted at the Houston Lighting and Power Camp- y's Cedar Bayou Generating Station in Baytown, Texas. The plant comprises two 750-mcg watt units with individual water circulating... group, was located at the . intake canal of the power plant. The remaining four stations were located within the cooling lake (I'ig. 2, p. ll ). The station oositions were selected to encompass th maximum water temperature range within the lake. Prior...

  5. Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Rogers, J.

    2010-10-01T23:59:59.000Z

    Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15-20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

  6. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  7. Cross section generation strategy for high conversion light water reactors

    E-Print Network [OSTI]

    Herman, Bryan R. (Bryan Robert)

    2011-01-01T23:59:59.000Z

    High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

  8. Low-NO{sub x} combustion chamber for a power generation gas-turbine unit

    SciTech Connect (OSTI)

    Gutnik, M.N.; Tumanovsky, A.G.; Soudarev, A.V.; Vinogradov, E.D.; Zakharov, Y.I.; Lobanov, D.V.; Akulov, V.A.

    1998-07-01T23:59:59.000Z

    The findings of the experimental studies over major operating characteristics of a full-scale combustion chamber (CC) for a new power generation 25 MW gas turbine unit of the AO ``Turbomotorny Zavod'' (Ekaterinburg) production are presented. A technique of the pre-mixed lean combustion with the excess air coefficient being approximately equal to 1.9--2.2 underlies the low NO{sub x} combustor design. Interrelations between the major combustor characteristics and design and duty parameters in parallel with the optimum algorithm of the combustor loading ensuring the minimum toxic exhausts into atmosphere are also shown in the paper.

  9. The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units

    E-Print Network [OSTI]

    Joskow, Paul L.

    1984-01-01T23:59:59.000Z

    This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

  10. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31T23:59:59.000Z

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  11. The role of the United States Water Resources Engineering Community in responding to the water related needs of the developing world

    E-Print Network [OSTI]

    Ormond, Timothy Paul

    1993-01-01T23:59:59.000Z

    THK ROLE OF THK UNITED STATES WATER RESOURCES ENGINEERING COMMUNITY IN RESPONDING TO THE WATER- RELATED NEEDS OF THK DEVELOPING WORLD A Thesis by TIMOTHY PAUL ORMOND Submitted to thc Office of Graduate Studies of Texas AdtM Vnivcrsdy... in partial fulfdlmcnt of the requirements for thc dcgrcc of MASTER OF SCIENCE August 1993 Major Subject: Civil Engineering THF. ROLE OF THE UNITED STATES WATER RESOURCES ENGINEERING COMMUNITY IN RESPONDING TO THE WATER-RELATED NEEDS OF THE DEVELOPING...

  12. The Next Generation Air Particle Detectors for the United States Navy

    SciTech Connect (OSTI)

    Robert Hayes and Craig Marianno

    2007-06-24T23:59:59.000Z

    Design and testing of the United States Navy’s next generation air particle detector (NGAPD) is presently underway. The NGAPD is intended for use in nuclear applications for the United States Navy and is being designed to detect airborne Co-60 with a reduction in false alarms and improved ease of use. Features being developed include gamma compensation, low maintenance, commercial off-the-shelf electronics, and spectrum simulation for quality assurance and functional testing applications. By supplying a spectrum simulator, the radon stripping algorithm can be running when a simulated anthropogenic source spectrum (e.g., from Co-60 or transuranics) is superimposed on the radon progeny spectrum. This will allow alarm levels to be tested when the air flow is running and the radon stripping algorithm is providing the instrument response output. Modern units evaluate source spectra with the air flow off and the radon spectrum absent thereby not testing the true system performance which comes out of the radon stripping algorithm. Testing results of the preliminary prototype show promise along with computer simulations of source spectra. Primary testing results taken to date include gamma compensation, thermal insults, vibration and spectrum simulation.

  13. Storm water control plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document provides the Environmental Restoration Program with information about the erosion and sediment control, storm water management, maintenance, and reporting and record keeping practices to be employed during Phase II of the remediation project for the Lower East Fork Poplar Creek (LEFPC) Operable Unit.

  14. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Office of Environmental Management (EM)

    Residential Hot Water Event Schedules: Preprint Presented at SimBuild 2010; New York, New York; August 1519, 2010 47685.pdf More Documents & Publications Model Simulating...

  15. Surfactant/Water Interactions at the Air/Water Interface Probed by Vibrational Sum Frequency Generation

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    Surfactant/Water Interactions at the Air/Water Interface Probed by Vibrational Sum Frequency and orientation of water molecules at an air/water interface has been measured in the presence of cationic spectrum of both the surfactant and water molecules at the water surface. In the presence of the charged

  16. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  17. Evolution of water waves generated by subaerial solid landslide S. Viroulet1,*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Evolution of water waves generated by subaerial solid landslide S. Viroulet1,* , D. C´ebron1,2 , O laws allow thus to predict the time evolution of the maximum amplitude wave generated by an aerial of landslide tsunamis are more dif- ficult than those generated by tectonic source due to the lack of knowledge

  18. Generator, mechanical, smoke: For dual-purpose unit, XM56, Yuma Proving Ground, Yuma, Arizona

    SciTech Connect (OSTI)

    Driver, C.J.; Ligotke, M.W.; Moore, E.B. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bowers, J.F. (Dugway Proving Ground, UT (United States))

    1991-10-01T23:59:59.000Z

    The US Army Chemical Research, Development and Engineering Center (CRDEC) is planning to perform a field test of the XM56 smoke generator at the US Army Yuma Proving Ground (YPG), Arizona. The XM56, enabling the use of fog oil in combination with other materials, such as graphite flakes, is part of an effort to improve the efficiency of smoke generation and to extend the effectiveness of the resulting obscurant cloud to include the infrared spectrum. The plan field operation includes a road test and concurrent smoke- generation trials. Three M1037 vehicles with operation XM56 generators will be road-tested for 100 h. Smoke will be generated for 30 min from a single stationary XM56 four times during the road test, resulting in a total of 120 min of smoke generation. The total aerial release of obscurant materials during this test is expected to be 556 kg (1,220 lb) of fog oil and 547 kg (1,200 lb) of graphite flakes. This environmental assessment has evaluated the consequences of the proposed action. Air concentrations and surface deposition levels were estimated using an atmospheric dispersion model. Degradation of fog oil and incorporation of graphite in the soil column will limit the residual impacts of the planned action. No significant impacts to air, water, and soil quality are anticipated. risks to the environment posed by the proposed action were determined to be minimal or below levels previously found to pose measurable impacts. Cultural resources are present on YPG and have been identified in adjacent areas; therefore, off-road activities should be preceded by a cultural resource survey. A Finding of No Significant Impact is recommended. 61 refs., 1 fig.

  19. Thermochemical generation of hydrogen and oxygen from water

    DOE Patents [OSTI]

    Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  20. Thermochemical generation of hydrogen and oxygen from water

    DOE Patents [OSTI]

    Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  1. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOE Patents [OSTI]

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27T23:59:59.000Z

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  2. A practical design for an integrated HVDC unit - connected hydro-electric generating station

    SciTech Connect (OSTI)

    Ingram, L. (Manitoba HVDC Research Centre, Winnipeg (CA))

    1988-10-01T23:59:59.000Z

    To date, several authors (see reference list) have proclaimed benefits which can be achieved by integrating HVDC converter stations directly with generating units. The cost of a significant amount of plant and facilities found in conventional schemes is thereby eliminated. So far as is known however, no detailed studies have been done to quantify these benefits. This paper outlines the results of a study made recently by the Manitoba HVDC Research Centre to determine the practicality of such a scheme. To give credence to the results an actual hydro station design was used incorporating a HVDC thyristor valve scheme in a hypothetical situation. Financial and other benefits were determined for this example together with conclusions and recommendations for future specific projects and further areas of study.

  3. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    across the hot water control valve is 5 psi and 2 psi for the coil and pipeline. The flow coefficient of the control valves are 9 GPIW~S~~,~ for hot water valve and 13 GPIW~S~~.~ for the chilled water control valve. The designed loop pressure is 7... 14: Using dry coil model will introduce certain error for the cooling coil simulation since the heat transfer coefficient is higher when the coil is wet. Thermostat Model: The thermostat generates a pneumatic pressure signal from 3 to 15 psig...

  4. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    SciTech Connect (OSTI)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  5. Design and Operation of Fan-Coil Units in Using River Water as Chilled Water

    E-Print Network [OSTI]

    Jiang, A.; Chen, H.; Ma, W.; Zhu, H.

    2006-01-01T23:59:59.000Z

    ) in the system. An approximate formula is proposed for computing the cooling capacity of FCUs when the temperature of water supply is a little higher than designed temperature. Finally, recommendations are given for the design of the FCUs to follow dry operating...

  6. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, Daniel J. (Export, PA); Schrader, Kenneth J. (Penn Hills, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1994-01-01T23:59:59.000Z

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  7. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03T23:59:59.000Z

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  8. Large Field Erected and Packaged High Temperature Water (HTW) Generators for Coal Firing

    E-Print Network [OSTI]

    Boushell, C. C.

    1980-01-01T23:59:59.000Z

    The purpose of the paper is to disseminate information on the energy savings possible with High Temperature Water (HTW) for heating and industrial process application and to provide information on coal fired HTW generator design and availability....

  9. Electrochemical investigations of stable cavitation from bubbles generated during reduction of water

    E-Print Network [OSTI]

    Deymier, Pierre

    Electrochemical investigations of stable cavitation from bubbles generated during reduction April 2014 Keywords: Megasonic cleaning Stable cavitation Microstreaming Hydrogen bubbles Water on wafers without affect- ing the transient cavitation responsible for feature damage. Ã? 2014 Elsevier B

  10. Water Loss Test Results: West Main Canal United Irrigation District of Hidalgo County

    E-Print Network [OSTI]

    Leigh, E.; Fipps, G.

    IRRIGATION TECHNOLOGY CENTER Texas Cooperative Extension ? Texas Agricultural Experiment Station Texas A&M University System 1 Extension Associate, and Professor and Extension Agricultural Engineer... Table 3. Data for Test UN1: West Main District: United Irrigation District of Hidalgo County Test ID: UN1 Canal: West Main Lining Type: Lined Starting Water Span Widths: SG1: 11.21 ft, SG3: 11.24 ft, SG5: 11.26 ft Date...

  11. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow, and wind direction on water depth, fetch, and the resulting wave-generated shear stresses. We identify four. Wiberg (2009), Importance of wind conditions, fetch, and water levels on wave-generated shear stresses

  12. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    SciTech Connect (OSTI)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20T23:59:59.000Z

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  13. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01T23:59:59.000Z

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  14. Hydrogen Generation from Water Disassociation Using Small Currents and Harmonics Trien N. Nguyen1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Hydrogen Generation from Water Disassociation Using Small Currents and Harmonics Trien N. Nguyen1 1 Department of Physics, Purdue School of Science Hydrogen can be produced cheaply and efficiently from water sources using a combination of harmonics and small currents. Hydrogen is a clean and virtually

  15. Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Water Research 39 (2005) 942­952 Electricity generation from cysteine in a microbial fuel cell Abstract In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter. Keywords: Bacteria; Biofuel cell; Microbial fuel cell; Electricity; Power output; Shewanella; Fuel cell 1

  16. Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge

    E-Print Network [OSTI]

    Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum

  17. Electrokinetic Hydrogen Generation from Liquid Water Microjets Andrew M. Duffin and Richard J. Saykally,*

    E-Print Network [OSTI]

    Cohen, Ronald C.

    of natural gas. These thermal methods are relatively cheap, but they do not mitigate difficulties associatedElectrokinetic Hydrogen Generation from Liquid Water Microjets Andrew M. Duffin and Richard J, 2007; In Final Form: May 31, 2007 We describe a method for generating molecular hydrogen directly from

  18. Unit Commitment of Generator Sets During Dynamic Positioning Operation Based on

    E-Print Network [OSTI]

    Johansen, Tor Arne

    is large (Radan, 2008). A method for selecting the correct units must therefore be used, as testing all

  19. The maximum potential to generate wind power in the contiguous United States is more than three times

    E-Print Network [OSTI]

    The maximum potential to generate wind power in the contiguous United States is more than three) study. The new analysis is based on the latest computer models and examines the wind potential at wind responsible for the increased wind potential in the study. Developed in collaboration with renewable energy

  20. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31T23:59:59.000Z

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  1. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    SciTech Connect (OSTI)

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-14T23:59:59.000Z

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  2. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    market research on solar water heaters. National Renewabletankless combined space/water heaterds, solar water heaters,combined solar space/water heater, electric water heaters

  3. Characterization of solids in the Three Mile Island Unit 2 reactor defueling water

    SciTech Connect (OSTI)

    Campbell, D. O.

    1987-12-01T23:59:59.000Z

    Because of the impact of poor water clarity on defueling operations at the Three Mile Island Unit 2 Nuclear Power Station, a study was undertaken to characterize suspended particulates in the reactor defueling water. The examination included cascade filtration through Nuclepore filters of progressively smaller pore sizes, using three water samples obtained at different times and after varying degrees of clarification. The solids collected on the filters were examined with a scanning electron microscope and analyzed with energy-dispersive x-ray fluorescence. A wide variety of solids was observed, and 26 elements were detected. These included all the materials expected from the reactor system (uranium, zirconium, silver, cadmium, indium, iron, chromium, and nickel), chemicals and zeolites used to decontaminate the water (aluminum, silicon, sodium), common impurities (potassium, chlorine, sulfur, magnesium, calcium, and others), as well as some unexpected metals (molybdenum, manganese, bromine, and lead). There was also evidence for the presence of organic material. A diverse assortment of particles with widely varying surface properties was found to be present.

  4. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect (OSTI)

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17T23:59:59.000Z

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  5. NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect (OSTI)

    Fondeur, F.; Peters, T.; Fink, S.

    2011-09-29T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and no leachate was observed in the NGS from any of the polymers studied.

  6. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30T23:59:59.000Z

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  7. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  8. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28T23:59:59.000Z

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  9. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    LD Antrim; NP Kohn

    2000-09-05T23:59:59.000Z

    This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.

  10. Potential Water Use Conflicts Generated by Irrigated Agriculture in Rhode Island

    E-Print Network [OSTI]

    Gold, Art

    Potential Water Use Conflicts Generated by Irrigated Agriculture in Rhode Island Arthur Gold. Drought stress regularly occurs in turf and nursery crops planted on loam and sandy loam soils. Epstein rain in the summer for sandy loam soils and after 6 days without rain on silt loam soils. Supplemental

  11. Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water

    E-Print Network [OSTI]

    the use of strong acids and bases, thus reducing their environmental impact and increasing Generation from Water Yujie Sun,,,, Chong Liu,, David C. Grauer,, Junko Yano, Jeffrey R. Long,*,, Peidong, and long-term aqueous stability, offer promising features for potential use in solar energy applications

  12. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01T23:59:59.000Z

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  13. Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current Filtering and

    E-Print Network [OSTI]

    Chen, Zhe

    compensator consists of a virtual fundamental impedance loop for enhanced sharing of reactive power) units, and also provide a more reliable electricity service [2]. On the other hand, during the islanded

  14. Optimal Placement and Sizing of Distributed Generator Units using Genetic Optimization

    E-Print Network [OSTI]

    -scale production units (e.g. fuel cells, micro-CHPs, photovoltaic panels) and the liberalization of the energy reliability, etc. This optimization problem can be solved in different ways like exhaustive searches [14

  15. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  16. Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-09-25T23:59:59.000Z

    In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

  17. Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities Worakarn Wongsaichua, Wei-Jen Lee Soontorn Oraintara Chiman Kwan Frank Zhang

    E-Print Network [OSTI]

    Oraintara, Soontorn

    Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities is to rejuvenate the idea of integrated resource planning and promote the distributed generation via traditional or renewable generation facilities for the deregulated utility systems. Fuel cell and photovoltaic are the most

  18. Nonlinear Adaptive Control of Networked Power Generators with Remote Measurement Units

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of view of Control Engineering the power systems urge for more modern and accurate techniques. Due provided by Phasor Measurement Units (PMU). The proposed control system is designed in a robust way measurements on control schemes. In the last three decades the power systems have been growing in complexity

  19. Impact of unit commitment constraints on generation expansion planning with renewables

    E-Print Network [OSTI]

    Palmintier, Bryan Stephen

    Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...

  20. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    heaterds, solar water heaters, combined solar space/watermarket research on solar water heaters. National Renewableheaters, combined space heating and water heating appliances 3 , solar

  1. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

  2. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    around 25% of the gas water heating market by 2015. DOE alsoSpace Heating and Water Heating Market Characterization Thespace heating and water heating market differs significantly

  3. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    gas space heating and water heating technologies. 3.Heating and Gas Water Heating Technology Characterizationspace and water heating technologies. It also shows that

  4. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01T23:59:59.000Z

    change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

  5. Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a,*, Randal J. Southard a

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a Soil particle size distribution Soil water content a b s t r a c t Management of soils to reduce earlier work of predicting tillage-generated dust emissions based on soil properties. We focus

  6. The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies

    E-Print Network [OSTI]

    Strasser, J.; Mannapperuma, J.

    THE MOBILE TEST AND DEMONSTRATION UNIT, A COOPERATIVE PROJECT BETWEEN EPRl, UTll.JTIES AND INDUSTRY TO DEMONSTRATE NEW WATER TREATMENT TECHNOLOGIES Jurgen Strasser Consultant to the EPRI Food Office Process & Equipment Technology... agencies are encouraging the reduction of the discharge of high BOD and TSS waste water to the local mlUlicipalities and/or waterways. EPRI collaborated with utilities, the US Dept. of Energy, food processor trade groups, and scientists from the Calif...

  7. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect (OSTI)

    Oyama, S. [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-Chome, Hyogo-ku, Kobe (Japan); Minatsuki, I.; Shimizu, K. [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo (Japan)

    2012-07-01T23:59:59.000Z

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  8. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

    2002-07-15T23:59:59.000Z

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  9. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmore »of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.« less

  10. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJth of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  11. Operation and Control of Distribution Systems with high level integration of Renewable Generation units

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    models Probabilistic methodologies are being applied to power system analysis since 70' [9] becauseOperation and Control of Distribution Systems with high level integration of Renewable Generation. Diagonal 649 Pavelló A, 08028 Barcelona, Spain Summary Traditional power systems have a hierarchical

  12. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Reuter, Martin

    and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation Geological Survey (USGS) inventories and a recent NREL report. To illustrate the model capabilities, we the Renewable Energy Futures (REF) calculations performed by

  13. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  14. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    in United States New Construction Market Alex B. Lekov,in United States New Construction Market Alex B. Lekov,New single-family home construction represents a significant

  15. Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin

    E-Print Network [OSTI]

    Milman, Anita Dale

    2009-01-01T23:59:59.000Z

    have been caused to a lack of water; rather it is believedconsider how, given a lack of clear water management goals,incomplete due to a lack of surface water measurements. Not

  16. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    and F. Southworh. (2004). Heat pump water heater technology:a larger market for heat pump water heaters (U.S. Departmentfurnace or heat pump and electric water heater (26%). (U.S.

  17. Water footprint of electric power generation : modeling its use and analyzing options for a water-scarce future

    E-Print Network [OSTI]

    Delgado Martín, Anna

    2012-01-01T23:59:59.000Z

    The interdependency between water and energy, sometimes called the water-energy nexus, is growing in importance as demand for both water and energy increases. Energy is required for water treatment and supply, while virtually ...

  18. MHK Technologies/OCGen turbine generator unit TGU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHKOCGen turbine generator

  19. Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    E-Print Network [OSTI]

    K. Graf; G. Anton; J. Hoessl; A. Kappes; T. Karg; U. Katz; R. Lahmann; C. Naumann; K. Salomon; C. Stegmann

    2005-09-15T23:59:59.000Z

    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.

  20. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06T23:59:59.000Z

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  1. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect (OSTI)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17T23:59:59.000Z

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  2. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    SciTech Connect (OSTI)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15T23:59:59.000Z

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  3. Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector

    E-Print Network [OSTI]

    Payne, Stephen Ellis

    1993-01-01T23:59:59.000Z

    Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz...

  4. Dresden Unit 2 hydrogen water chemistry: Chemical surveillance, oxide-film characterization, and recontamination during Cycle 10: Final report

    SciTech Connect (OSTI)

    Ruiz, C.P.; Peterson, J.P.; Robinson, R.N.; Sundberg, L.L.

    1989-03-01T23:59:59.000Z

    This document provides an Executive Summary of work performed under Project RP1930-7, BWR Hydrogen Water Chemistry - Chemical Surveillance. It describes the work performed to monitor chemical and radiological performance at Commonwealth Edison's Dresden Nuclear Power Station Unit 2 during Cycle 10, its second full fuel cycle on Hydrogen Water Chemistry. It includes the results of water chemistry measurements, shutdown gamma scan/dose rate measurements, and the results of stainless steel oxide film characterization. This experience at Dresden-2 continues to demonstrate that a plant can operate on Hydrogen Water Chemistry with only minor impact on plant parameters, compared with the beneficial effect on intergranular stress corrosion cracking (IGSCC) mitigation of sensitized stainless steel components. 4 figs., 2 tabs.

  5. Mapping water availability, projected use and cost in the western United States

    SciTech Connect (OSTI)

    Vincent C. Tidwell; Barbara D. Moreland; Katie M. Zemlick; Barry L. Roberts; Howard D. Passell; Daniel Jensen; Christopher Forsgren; Gerald Sehlke; Margaret A. Cook; Carey W. King

    2014-06-01T23:59:59.000Z

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  6. Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A, and I-22 Hidalgo County Irrigation District No. 2 

    E-Print Network [OSTI]

    Fipps, G.; Leigh, E.

    2008-01-01T23:59:59.000Z

    TR-330 2008 Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A and I-22 Hidalgo County Irrigation District No. 2 By: Eric Leigh, Extension Associate, Biological and Agricultural Engineering... Guy Fipps, Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering Texas Water Resources Institute Technical Report October 2008 Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A, and I...

  7. Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A, and I-22 Hidalgo County Irrigation District No. 2

    E-Print Network [OSTI]

    Fipps, G.; Leigh, E.

    TR-330 2008 Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A and I-22 Hidalgo County Irrigation District No. 2 By: Eric Leigh, Extension Associate, Biological and Agricultural Engineering... Guy Fipps, Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering Texas Water Resources Institute Technical Report October 2008 Water Loss Test Results for the Pipeline Units: I-19/I-18, I-7A, and I...

  8. An evaluation of the United Kingdom Clean Coal Power Generation Group`s air-blown gasification cycle

    SciTech Connect (OSTI)

    Wheeldon, J.M.; Brown, R.A. [Electric Power Research Inst., Palo Alto, CA (United States); McKinsey, R.R. [Bechtel Group, Inc., San Francisco, CA (United States); Dawes, S.G. [British Coal Corp., Cheltenham (United Kingdom)

    1996-12-31T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is conducting an engineering and economic study of various pressurized fluidized-bed combustor (PFBC) designs. Studies have been completed on bubbling and circulating PFBC technologies and on an advanced PFBC power plant technology, in which the feed coal is partially gasified and the residual char burned in a PFBC. The United Kingdom Clean Coal Power Generation Group`s (CCPGG) air-blown gasification cycle (ABGC), known formerly as the British Coal Topping Cycle, also partially gasifies the feed coal, but uses a circulating atmospheric fluidized-bed combustor (AFBC) to burn the residual char. Although not a PFBC plant, the study was completed to effect a comparison with the advanced PFBC cycle.

  9. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    water heater includes the cost of changes to the heat exchanger and the tank.water heaters, included in Options 3 and 6, are not yet available for residential storage tankand water heater type is primarily driven by first cost considerations and limited availability of power vent and condensing storage-tank

  10. The Center for Water-Energy Efficiency is a not-for-profit research and development unit at the University of California, Davis, leading innovations in

    E-Print Network [OSTI]

    California at Davis, University of

    The Center for Water-Energy Efficiency is a not-for-profit research and development unit at the University of California, Davis, leading innovations in water and energy efficient technologies and policies between water and energy and to use and allocate both more efficiently. Collaborating with partners

  11. Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas

    E-Print Network [OSTI]

    Mills, R L; Mayo, R M; Nansteel, M; Dhandapani, B; Phillips, J; Phillips, Jonathan

    2004-01-01T23:59:59.000Z

    It was demonstrated that low pressure (~0.2 Torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features which are not explained by conventional plasma models. First, significant (> 0.25 nm) hydrogen Balmer_ line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges was explained by some researchers to result from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again, at distances up to 5 cm from the coupler, were observed. The line inversion suggest...

  12. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  13. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  14. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01T23:59:59.000Z

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  15. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29T23:59:59.000Z

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  16. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

  17. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect (OSTI)

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06T23:59:59.000Z

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  18. Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1993

    E-Print Network [OSTI]

    Scripps Institution of Oceanography

    1994-01-01T23:59:59.000Z

    California 120'5L.6y/ Pacific Gas and Electric Company The Pacific Gas and Electric Company has a power generating plant

  19. Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1992

    E-Print Network [OSTI]

    Scripps Institution of Oceanography

    1993-01-01T23:59:59.000Z

    California 35'22.2X, 120°5l.6'W Pacific Gas and Electric Company The Pacific Gas and Electric Company has a power generating plant

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  1. early 300 species of mussels inhabit fresh-water rivers, streams, and lakes in the United

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    remnant populations of mussels. Dam construction, siltation, water pollution, mining and industrial wastes important commercial value in the cul- tured pearl and jewelry industry. Our pearly mussels are of unique mussels are underway. However, water pollution continues to threaten streams crucial to their survival

  2. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01T23:59:59.000Z

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  3. Next Generation Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of(BETO) 2015NextNext

  4. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30T23:59:59.000Z

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  5. Determination of Nickel Species in Stack Emissions from Eight Residual Oil-Fired Utility Steam-Generating Units

    SciTech Connect (OSTI)

    F Huggins; K Galbreath; K Eylands; L Van Loon; J Olson; E Zillioux; S Ward; P Lynch; P Chu

    2011-12-31T23:59:59.000Z

    XAFS spectroscopy has been used to determine the Ni species in particulate matter collected on quartz thimble filters in the stacks of eight residual (No. 6 fuel) oil-burning electric utility steam-generating units. Proper speciation of nickel in emitted particulate matter is necessary to correctly anticipate potential health risks. Analysis of the spectroscopic data using least-squares linear combination methods and a newly developed method specific for small quantities of Ni sulfide compounds in such emissions show that potentially carcinogenic Ni sulfide compounds are absent within the detection limits of the method ({le}3% of the total Ni) in the particulate matter samples investigated. In addition to the major nickel sulfate phase (NiSO{sub 4} {center_dot} 6H{sub 2}O), lesser amounts of (Ni,Mg)O and/or NiFe{sub 2}O{sub 4} were also identified in most emission samples. On the basis of the results from these emission characterization studies, the appropriateness of the U.S. Environmental Protection Agency's assumption that the Ni compound mixture emitted from residual oil-fired power plants is 50% as carcinogenic as nickel subsulfide (Ni{sub 3}S{sub 2}) should be re-evaluated.

  6. The Economic Value of Irrigation Water in the Western United States: An Application to Ridge Regression

    E-Print Network [OSTI]

    Frank, M. D.; Beattie, B. R.

    the form of a multiplicative function with nine domain variables, i.e., irrigation water applied, value of land and buildings, hired labor expenditures, fuel and lubricant expenditures, fertilizer and lime expenditures, feed expenditures, value of machinery...

  7. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  8. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  9. Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations

    SciTech Connect (OSTI)

    Wu, Chijui; Lee, Yuangshung (National Taiwan Inst. of Tech., Taipie (Taiwan, Province of China))

    1993-03-01T23:59:59.000Z

    An active and reactive power (P-Q) simultaneous control scheme which is based on a superconducting magnetic energy storage (SMES) unit is designed to damp out the subsynchronous resonant (SSR) oscillations of a turbine-generator unit. In order to suppress unstable torsional mode oscillations, a proportional-integral-derivative (PID) controller is employed to modulate the active and reactive power input/output of the SMES unit according to speed deviation of the generator shaft. The gains of the proposed PID controller are determined by pole assignment approach based on modal control theory. Eigenvalue analysis of the studied system shows that the PID controller is quite effective over a wide range of operating conditions. Dynamic simulations using the nonlinear system model are also performed to demonstrate the damping effect of the proposed control scheme under disturbance conditions.

  10. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  11. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29T23:59:59.000Z

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

  12. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    SciTech Connect (OSTI)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01T23:59:59.000Z

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  13. USGS Professional Paper 1703--Ground-Water Recharge in the Arid and Semiarid Southwestern United States--

    E-Print Network [OSTI]

    water at the land surface can occur at discreet locations, such as in stream channels, or be distributed on temperature include viscosity, density, and surface tension, all of which affect hydraulic conductivity the sun, radiant cooling into space, and evapotranspi- ration, in addition to the advective and conductive

  14. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  15. Photoelectrochemical water splitting and hydrogen generation by a spontaneously formed InGaN nanowall network

    SciTech Connect (OSTI)

    Alvi, N. H., E-mail: nhalvi@isom.upm.es, E-mail: r.noetzel@isom.upm.es; Soto Rodriguez, P. E. D.; Kumar, Praveen; Gómez, V. J.; Aseev, P.; Nötzel, R., E-mail: nhalvi@isom.upm.es, E-mail: r.noetzel@isom.upm.es [ISOM Institute for Systems Based on Optoelectronics and Microtechnology, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Alvi, A. H. [Department of Physics, Government College University, Faisalabad (Pakistan); Alvi, M. A. [Department of Chemistry, Government College University, Faisalabad (Pakistan); Willander, M. [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, 60174 Norrköping (Sweden)

    2014-06-02T23:59:59.000Z

    We investigate photoelectrochemical water splitting by a spontaneously formed In-rich InGaN nanowall network, combining the material of choice with the advantages of surface texturing for light harvesting by light scattering. The current density for the InGaN-nanowalls-photoelectrode at zero voltage versus the Ag/AgCl reference electrode is 3.4?mA cm{sup ?2} with an incident-photon-to-current-conversion efficiency (IPCE) of 16% under 350?nm laser illumination with 0.075?W·cm{sup ?2} power density. In comparison, the current density for a planar InGaN-layer-photoelectrode is 2?mA cm{sup ?2} with IPCE of 9% at zero voltage versus the Ag/AgCl reference electrode. The H{sub 2} generation rates at zero externally applied voltage versus the Pt counter electrode per illuminated area are 2.8 and 1.61??mol·h{sup ?1}·cm{sup ?2} for the InGaN nanowalls and InGaN layer, respectively, revealing ?57% enhancement for the nanowalls.

  16. A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: An examination of salt effects

    E-Print Network [OSTI]

    Lawson, Catherine L.

    , purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally. Swiegersc , Leone Spicciaa * a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia b, University of Wollongong, Wollongong, NSW 2522, Australia ABSTRACT Most transport fuels are derived from

  17. Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target

    E-Print Network [OSTI]

    Lahmann, R; Graf, K; Hößl, J; Kappes, A; Katz, U; Mecke, K; Schwemmer, S

    2015-01-01T23:59:59.000Z

    The generation of hydrodynamic radiation in interactions of pulsed proton and laser beams with matter is explored. The beams were directed into a water target and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed with varying pulse energies, sensor positions, beam diameters and temperatures. The obtained data are matched by simulation results based on the thermo-acoustic model with uncertainties at a level of 10%. The results imply that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the medium. The heating results in a fast expansion or contraction and a pressure pulse of bipolar shape is emitted into the surrounding medium. An interesting, widely discussed application of this effect could be the detection of ultra-high energetic cosmic neutrinos in future large-scale acoustic neutrino detectors. For this application a validation of the sound generation mechanism to high accur...

  18. Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters and Sediment Near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    LD Antrim; NP Kohn

    2000-09-06T23:59:59.000Z

    This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.

  19. 1052 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 2, MAY 2010 Co-Optimization of Generation Unit Commitment

    E-Print Network [OSTI]

    Oren, Shmuel S.

    into electric network optimization models. Optimal transmission switching is a straight- forward way to leverage economics, power system reliability, power transmission control, power transmission economics. NOMENCLATURE. Generator. Set of generators at node . Transmission element (line or transformer). Set of transmission

  20. Occurrence of Low-Temperature Geothermal Waters in the United States, in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys Water JumpOccoquan,

  1. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu. [JSC 'Interavtomatka' (Russian Federation); Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V. [JSC 'Reftinskaya GRES' (Russian Federation)

    2009-03-15T23:59:59.000Z

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  2. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24T23:59:59.000Z

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  4. Sidestream treatment of high silica cooling water and reverse osmosis desalination in geothermal power generation

    SciTech Connect (OSTI)

    Mindler, A.B.; Bateman, S.T.

    1981-01-19T23:59:59.000Z

    Bench scale and pilot plant test work has been performed on cooling water for silica reduction and water reuse, at DOE's Raft River Geothermal Site, Malta, Idaho in cooperation with EG and G (Idaho), Inc. Technical supervision was by Permutit. A novel process of rusting iron shavings was found effective and economical in reducing silica to less than 20 mg/l. Reverse Osmosis was investigated for water reuse after pretreatment and ion exchange softening.

  5. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  6. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    SciTech Connect (OSTI)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and with the exception of CPVC, no leachate was observed in the NGS from any of the polymers studied. The testing shows no major concerns for compatibility over the short duration of these tests but does indicate that longer duration exposure studies are warranted, especially for Tefzel. However, the physical changes experienced by Tefzel in the improved solvent were comparable to the physical changes obtained when Tefzel is placed in CSSX baseline solvent. Therefore, there is no effect of the improved solvent beyond those observed in CSSX baseline solvent.

  7. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    Columbia University

    ! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of solid wastes and advance sustainable waste management in the U.S. to the level of several leading

  8. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water

    E-Print Network [OSTI]

    acknowledgment of OTC copyright. Abstract Preliminary designs for first generation Ocean Thermal Energy Conversion (OTEC) plants utilizing either closed cycle (CC) or open cycle (OC) concepts are presented

  9. Nickel and Sulfur Speciation of Residual Oil Fly Ashes from Two Electric Utility Steam-Generating Units

    SciTech Connect (OSTI)

    Galbreath,K.; Schulz, R.; Toman, D.; Nyberg, C.; Huggins, F.; Huffman, G.; Zillioux, E.

    2005-01-01T23:59:59.000Z

    Representative duplicate fly ash samples were obtained from the stacks of 400- and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned 0.9 and 0.3 wt % S residual (No. 6 fuel) oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for Ni concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and X-ray diffraction.

  10. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    of structural storm-water best management practices. Waterbest management practices (BMPs) for removing them. Storm-water

  11. Comparative Water Law and Management: The Yellow River Basin In Western China and the State of Kansas In the Western United States

    E-Print Network [OSTI]

    Griggs, Burke W.; Peck, John C.; Yupeng, Xue

    2009-01-01T23:59:59.000Z

    @BCL@A8059DC2.DOC (DO NOT DELETE) 8/17/2009 7:50 AM 428 COMPARATIVE WATER LAW AND MANAGEMENT: THE YELLOW RIVER BASIN IN WESTERN CHINA AND THE STATE OF KANSAS IN THE WESTERN UNITED STATES Burke W. Griggs Counsel, Division of Water Resources... Kansas Department of Agriculture John C. Peck Professor of Law, University of Kansas School of Law Special Counsel, Foulston Siefkin, LLP Xue Yunpeng Deputy Division Chief / Senior Engineer Department of Water Resources Management and Regulation Yellow...

  12. Water-related constraints to the development of geothermal electric generating stations

    SciTech Connect (OSTI)

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01T23:59:59.000Z

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  13. The effects of the Cedar Bayou Electric Generating Station on phytoplankton in adjacent waters 

    E-Print Network [OSTI]

    Smith, Jay Montgomery

    1983-01-01T23:59:59.000Z

    . ~pa e 1 Sampling, Hydrology, and Sample Treatment. Chlorophyll a Concentrati. ons Primary Productivity . Bioassay Studies 9 11 12 ~ ~ 13 RESULTS, 15 Temperature. Salinity . Chlorophyll a Concentrations Primary Productivity Bioassay... Studies DISCUSSION CONCLUSION REFERENCES APPENDIX 15 15 ~ ? 21 27 33 57 70 71 75 125 LIST OF TABLES Table Page 1 Surface water temperature ranges and means at sample stations from February 1978 through June 1979 . 17 2 Surface water...

  14. Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility 

    E-Print Network [OSTI]

    Barner, Robert Buckner

    2007-04-25T23:59:59.000Z

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost...

  15. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    ! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW of solid wastes and advance sustainable waste management in the U.S. to the level of several leading-2010, the Earth Engineering Center (EEC) of Columbia University conducted a bi- annual survey on Municipal Solid

  16. Removal of Filter Cake Generated by Manganese Tetraoxide Water-based Drilling Fluids

    E-Print Network [OSTI]

    Al Mojil, Abdullah Mohammed A.

    2011-10-21T23:59:59.000Z

    Three effective solutions to dissolve the filter cake created by water-based drilling fluids weighted with Mn3O4 particles were developed. Hydrochloric acid at concentration lower than 5 wt% can dissolve most of Mn3O4-based filter cake. Dissolving...

  17. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect (OSTI)

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16T23:59:59.000Z

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  18. Hydordesulfurization of dibenzothiophene using hydrogen generated in situ by the water-gas shift reaction in a trickle bed reactor

    E-Print Network [OSTI]

    Hook, Bruce David

    1984-01-01T23:59:59.000Z

    ; Lands and Mrnkova, 1966). Singhal et al. (1981a, b) studied DBT desulfurization at 558-623K, 3. 1 MPa, in the gas phase over a standard CoO-MoO, /7-AlsO, catalyst. Both of these mechanisms are consistent with the generalized mechanism for HDS...HYDRODESULFURIZATION OF DIBENZOTHIOPHENE USING HYDROGEN GENERATED IN SITU BY THE WATER ? GAS SHIFT REACTION IN A TRICKLE BED REACTOR A Thesis BRUCE DAVID HOOK Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  19. Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination

    E-Print Network [OSTI]

    alternative carbon-neutral energy tech- nologies. Harnessing solar energy to synthesize sustainable chemical multiple redox features on glassy carbon, including a one-proton, one-electron coupled oxidative wave systems into sustainable energy generation devices. Introduction The combination of rising global energy

  20. Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station

    E-Print Network [OSTI]

    Fay, Noah

    largest user of energy in the state of Arizona. It is powered by a coal plant in Northern Arizona, the Navajo Generating Station (NGS), that is among the dirtiest coal power plants in the country. The future of this power plant is currently being debated by the U.S. Environmental Protection Agency (EPA

  1. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  2. Year 5 Post-Remediation Biomonitoring of Pesticides and other Contaminants in Marine Waters near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    Kohn, Nancy P.; Kropp, Roy K.

    2002-08-01T23:59:59.000Z

    Marine sediment remediation at the United Heckathorn Superfund Site in Richmond, California, was completed in April 1997. The Record of Decision included a requirement for five years of post-remediation monitoring be conducted in the waterways near the site. The present monitoring year, 2001? 2002, is the fifth and possibly final year of post-remediation monitoring. In March 2002, water and mussel tissues were collected from the four stations in and near Lauritzen Channel that have been routinely monitored since 1997-98. A fifth station in Parr Canal was sampled in Year 5 to document post-remediation water and tissue concentrations there. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples and in tissue samples from resident (i.e., naturally occurring) mussels. As in Years 3 and 4, mussels were not transplanted to the study area in Year 5. Year 5 concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with those from Years 1 through 4 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch Program and the Ecological Risk Assessment for the United Heckathorn Superfund Site. Year 5 water samples and mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples during Year 2 monitoring and were added to the water and mussel tissue analyses in 1999. Contaminants of concern in Year 5 water samples were analyzed in both bulk (total) phase and dissolved phase, as were total suspended solids, to evaluate the contribution of particulates to the total contaminant concentration.

  3. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.

  4. Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis

    2010-09-01T23:59:59.000Z

    RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.

  5. Environmental Assessment for DOE permission for off-loading activities to support the movement of Millstone Unit 2 steam generator sub-assemblies across the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), for the proposed granting of DOE permission of offloading activities to support the movement Millstone Unit 2 steam generator sub-assemblies (SGSAs) across the Savannah River Site (SRS). Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and the Department is issuing this Finding of No Significant Impact. On the basis of the floodplain/wetlands assessment in the EA, DOE has determined that there is no practicable alternative to the proposed activities and that the proposed action has been designed to minimize potential harm to or within the floodplain of the SRS boat ramp. No wetlands on SRS would be affected by the proposed action.

  6. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides, and Proteins at Hydrophilic and Hydrophobic Solid-Water Interfaces

    E-Print Network [OSTI]

    Holinga, George J.

    2010-01-01T23:59:59.000Z

    Chapter 2 Sum Frequency Generation Vibrational Spectroscopy2.1. Sum Frequency Generation Vibrational SpectroscopyIntroduction Sum frequency generation (SFG) vibrational

  7. Sweeney LUBRICATION OF STEAM, GAS AND WATER TURBINES IN POWER GENERATION- A CHEVRONTEXACO EXPERIENCE

    E-Print Network [OSTI]

    Peter James Sweeney

    On 9 October 2001 two US oil companies Chevron and Texaco merged. Their long-term joint venture operation, known as Caltex (formed in 1936 and operating in East and Southern Africa, Middle East, Asia and Australasia), was incorporated into the one global energy company. This global enterprise will be highly competitive across all energy sectors, as the new company brings together a wealth of talents, shared values and a strong commitment to developing vital energy resources around the globe. Worldwide, ChevronTexaco is the third largest publicly traded company in terms of oil and gas reserves, with some 11.8 billion barrels of oil and gas equivalent. It is the fourth largest producer, with daily production of 2.7 million barrels. The company also has 22 refineries and more than 21,000 branded service stations worldwide. This paper will review the fundamentals of lubrication as they apply to the components of turbines. It will then look at three turbine types, steam, gas and water, to address the different needs of lubricating oils and the appropriate specifications for each. The significance of oil testing both for product development and in-service oil monitoring will be reviewed, together with the supporting field experience of ChevronTexaco. The environmental emissions controls on turbines and any impact on the lubricants will be discussed. Finally, the trends in specifications for lubricating oils to address the modern turbines designs will be reviewed. Key Words: geothermal, lubrication, turbines, in-service testing 1.

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  12. Polymer treatments for D Sand water injection wells: Sooner D Sand Unit Weld County, Colorado. Final report, April 1997

    SciTech Connect (OSTI)

    Cannon, T.J.

    1998-10-01T23:59:59.000Z

    Polymer-gel treatments in injection wells were evaluated for improving sweep efficiency in the D Sandstone reservoir at the Sooner Unit, Weld County, Colorado. Polymer treatments of injection wells at the Sooner Unit were expected to improve ultimate recovery by 1.0 percent of original-oil-in-place of 70,000 bbl of oil. The Sooner D Sand Unit was a demonstration project under the US Department of Energy Class I Oil Program from which extensive reservoir data and characterization were obtained. Thus, successful application of polymer-gel treatments at the Sooner Unit would be a good case-history example for other operators of waterfloods in Cretaceous sandstone reservoirs in the Denver Basin.

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water...

  14. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  15. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12T23:59:59.000Z

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  16. Energy Management in Olefins Units 

    E-Print Network [OSTI]

    Wells, T. A.

    1982-01-01T23:59:59.000Z

    to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit...

  17. Energy Management in Olefins Units

    E-Print Network [OSTI]

    Wells, T. A.

    1982-01-01T23:59:59.000Z

    to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit...

  18. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of desalination research. The primary technological method of generating additional water supplies is through desalination and enhanced water reuse and recycling technologies....

  19. Nationwide water availability data for energy-water modeling.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01T23:59:59.000Z

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  20. Water

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's commitment to develop and deploy clean, domestic power generation from hydropower, waves, and tides.

  1. POST-REMEDIATION BIOMONITORING OF PESTICIDES AND OTHER CONTAMINANTS IN MARINE WATERS AND SEDIMENT NEAR THE UNITED HECKATHORN SUPERFUND SITE, RICHMOND, CALIFORNIA

    SciTech Connect (OSTI)

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-06T23:59:59.000Z

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. Sediment analyses showed the presence of elevated DDT, dieldrin, PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.

  2. From Emergency to Fix: Point-of-Use Water Filtration Technology in Colonias Along the United States-Mexico Border

    E-Print Network [OSTI]

    Vandewalle, Emily Lauren

    2014-04-30T23:59:59.000Z

    Small-scale decentralized facilities and technologies are rapidly becoming a dominant technological fix to deliver water to underserved populations in developing nations. This project examines the case of a university partnership with government...

  3. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    important fuel for power plants generating electricity. Inelectric power-generating plants in the United Statesthermal electricity-generating plants are moving from once-

  4. Post-remediation biomonitoring of pesticides and other contaminants in marine waters and sediment near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    LD Antrim; NP Kohn

    2000-05-26T23:59:59.000Z

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were dramatically lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. The lowest levels were found at the Richmond Inner Harbor Channel station (4.1 {micro}g/kg total DDT and 0.59 {micro}g/kg dieldrin, wet weight; mean of resident and transplant mussels). Mean chlorinated pesticide concentrations were highest at Lauritzen Canal/End (82 {micro}g/kg total DDT and 7.1 {micro}g/kg dieldrin, wet weight), followed by Lauritzen Canal/Mouth (22 {micro}/kg total DDT and 1.7 {micro}g/kg dieldrin, wet weight) and Santa Fe Channel/End (7.5 {micro}g/kg total DOT and 0.61 {micro}g/kg dieldrin, wet weight). These levels are 95% to 99% lower than those recorded by the California State Mussel Watch program prior to EPA's response actions. The levels of PCBs in mussel tissue were also reduced by 93% to 97% from preremediation levels. Surface sediment concentrations of dieldrin and DDT in November 1998 were highest in samples from the head or north end of Lauritzen Canal and progressively lower toward the mouth, or south end. Total DDT ranged from 130 ppm (dry weight) at the north end to 3 ppm at the south end. Dieldrin concentrations decreased from 3,270 ppb (dry weight) at the north end to 52 ppb at the south end. These results confirmed elevated pesticide concentrations in sediments collected from Lauritzen Channel by Anderson et al. (1999). The pesticide concentrations were lower than maximum concentrations found in the 1993 Remedial Investigation but comparable to the median levels measured before remediation was completed. Sediment analyses also showed the presence of elevated PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.

  5. Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor

    SciTech Connect (OSTI)

    Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Limited, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai, PIN-400094 (India)

    2012-07-01T23:59:59.000Z

    700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

  6. Correlation between water-vapor transport from the Gulf of Mexico and precipitation in the eastern United States

    E-Print Network [OSTI]

    Wright, John Vinson

    1973-01-01T23:59:59.000Z

    precipitation inland, are very much appreciated. There is little doubt that the Gulf has a great influence on the amount and character of precipit. tion that does occur in the eastern United States, i. e. , the area generally east of the Rocky Mountains... moisture flux. Cobb found that precipitation which is signif icantly greater than normal did not occur when the flux of moisture was unusually small, and that a large moisture flux does not result in abnormally high precipitation if it is associated...

  7. Water, chloroform, acetonitrile, and atrazine adsorption to the amorphous silica surface studied by vibrational sum frequency generation spectroscopy

    E-Print Network [OSTI]

    Water, chloroform, acetonitrile, and atrazine adsorption to the amorphous silica surface studied the air­silica interface before, during, and after adsorption of water, chloroform, acetonitrile the compounds. Adsorption of chloro- form and acetonitrile was weaker compared to water. Binding to the surface

  8. Integrated Assessment of Hadley Centre (HadCM2) Climate Change Projections on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States.I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model.

    SciTech Connect (OSTI)

    Rosenberg, Norman J.; Brown, Robert A.; Izaurralde, R Cesar C.; Thomson, Allison M.

    2003-06-30T23:59:59.000Z

    This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologic unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.

  9. "Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water Heating

  10. Nanomaterial Composites for Next Generation Water Filters: Cooperative Research and Development Final Report, CRADA Number CRD-06-197

    SciTech Connect (OSTI)

    Ginley, D.

    2013-04-01T23:59:59.000Z

    Under this CRADA, the Parties will produce and test a composite filter element that will remove particles, bacteria and viruses to produce safe drinking water.

  11. Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants

    SciTech Connect (OSTI)

    Douglas G. Hall

    2006-01-01T23:59:59.000Z

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  12. Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation

    SciTech Connect (OSTI)

    Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

    2011-09-15T23:59:59.000Z

    The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

  13. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish on the web 15th September 2009 DOI: 10.1039/b911412m This study presents a microfluidic system components: (1) a toxicity testing chip containing a microfluidic gradient generator which creates a linear

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

  18. Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/

    DOE Patents [OSTI]

    Robinson, P.R.; Bamberger, C.E.

    1980-02-08T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  19. CONVERT 15 WELLS TO BORS PUMPING UNITS AND TEST/COMPARE TO CONVENTIONAL UNITS

    SciTech Connect (OSTI)

    Walter B. North

    2003-02-04T23:59:59.000Z

    A new type of fluid lifting equipment called Balanced Oil Recovery System (trade named BORS Lift{trademark}) was installed on several idle oil wells to demonstrate the operating efficiency of this innovative equipment technology. The BORS Lift system is designed to bring oil to the surface without the accompanying formation water. The BORS Lift system uses an innovative strap mechanism that takes oil from the top of the downhole oilwater column and lifts it to the surface, eliminating production of the formation water. Eliminating salt water production could potentially increase oil production, reduce operational costs, benefit the environment, and cut salt water disposal costs. Although the BORS Lift units did not function as intended, lessons learned during the course of the field demonstration project resulted in improvements in the technology and redesign of subsequent generation BORS Lift units which are reported to have significantly improved their performance characteristics. BORS Lift units were installed on 15 temporarily abandoned wells which had been shut down due to low oil production, high water production, and uneconomic operating conditions. The wells had been producing with artificial lift at a high watercut from a shallow (850-900 feet), pressure depleted oil sand reservoir prior to being shut down. The electrical motor driven BORS Lift units provided a possible approach for economically returning the shallow, low-volume oil wells to production. The BORS Lift units used in this field demonstration were designed to recover up to roughly 22 barrels of fluid per day from depths ranging to 1,700 feet, ideal for many marginal stripper well operations. The BORS units were first-production-model test units, operated under oil field conditions for the first time, and were naturally expected to experience some design problems. From the onset, the operator experienced mechanical, design, and operational problems with the BORS Lift units and was unable to maintain un-interrupted production operations. The inventor provided considerable on-site technical support in an ongoing effort to correct the problems with the units and the inventor worked extensively with the operator to make design and manufacturing changes to the units to try to improve their reliability and performance. The operational problems were mostly related to the durability of the various components under oil field operating conditions such as inadequate mechanical, electrical, and electronic design for rough service, extended operation, and severe weather conditions. During the course of the demonstration project, it further appeared that the producing formation lacked sufficient reservoir energy and/or favorable oil properties to mobilize and displace oil from the formation into the well bore in order to recharge the oil column in the well. The BORS Lift units were then moved to a second lease which appeared to have more favorable WTI quality oil properties. Eight of these units were reported to have been installed and placed in operation on the second lease, however, operational difficulties continued. It was determined that the units were inadequately designed and would need to be replace by improved second generation units. Due to the lack of success with the first generation units and the extra cost to replace them with the redesigned units, the operators decided not to continue with the project and the project was terminated at that point.

  20. The effects of a steam-electric generating plant on suitability of adjacent estuarine waters for growth of phytoplankton

    E-Print Network [OSTI]

    Kelsey, John Allen

    1974-01-01T23:59:59.000Z

    and Adams (1969) and Adams (1969) im- plied that power plant operations in California's tidal waters have acted to decrease kelp (Macrocystis spp. ) bed densities and the associated biota, when water temperature in the immediate discharge areas reached 2... permanent rise in temperature. Steeman-Nielsen and Jorgensen (1968) showed that some planktonic algae that had not been exposed to adverse influences such as poisons, oronounced nutrient deficiencies, or light shocks, showed little change...

  1. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive.1 Optimum Electric-Power Generating Unit . . . . . . . . . . . . . . . . . . . . . . 8.7 Annual Capacity.21 Hydropower Generating Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23 Largest Units

  2. Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22 

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

    2007-01-01T23:59:59.000Z

    of replacing aged mortar-joint pipe in pipeline units I-7A, I-18, and I-22 with new rubber-gasketed, reinforced concrete pipe. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified...

  3. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    power plants, water withdrawals for electricity generationelectricity generation in 2009 (33). Water used in thermal electric power plantsplant with CCS technologies requires roughly 1,000 gallons of water for every megawatt-hour of electricity generation (

  4. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21T23:59:59.000Z

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  5. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  6. Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells

    E-Print Network [OSTI]

    transformed from simple contaminant removal to a more sustainable task with a goal of less energy consumption and more water recovery. ``Less energy consumption'' requires a more efficient treatment process, and of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA a r t i c l e i n f o Article history: Received 19 November

  7. Response of the water balance to climate change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons

    E-Print Network [OSTI]

    Gordon, W. S; Famiglietti, J. S

    2004-01-01T23:59:59.000Z

    distribution: The role of the water balance, Am. Nat. , 135,NPP): The importance of water avail- ability, Global Change1982a), Ecological optimality in water-limited natural soil-

  8. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08T23:59:59.000Z

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

  9. The effects of a steam-electric generating plant on suitability of adjacent estuarine waters for growth of phytoplankton 

    E-Print Network [OSTI]

    Kelsey, John Allen

    1974-01-01T23:59:59.000Z

    by fluoromet- rically measuring the growth of Skeletonema costatum and naturally occurring mixed phytoplankton populations in an artificial seawater medium (NH-15), filter sterilized sample water and a 1:1 mixture of the NH-15 and sterile sample medium... AND METHODS 14 Hydrological Method . Sampling and Sample Treatment Glassware Preparation Method Standing Crop Measurement Method Primary Production Rate Measurement Method Medium Suitability Assay Method 14 14 15 16 17 19 RESULTS. 24 Hydrological...

  10. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United...

  11. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31T23:59:59.000Z

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  12. Year 4 Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect (OSTI)

    Kohn, Nancy P.; Kropp, Roy

    2001-12-20T23:59:59.000Z

    This report is fourth in a series of annual reports describing the results of biomonitoring following remediation of the United Heckathorn Superfund Site.

  13. NOx emissions retrofit at Reliant Energy, W.A. Parish Generating Station, Unit 7: Achieving 0.15 lb/MBtu

    SciTech Connect (OSTI)

    Gessner, T.M.; Hoh, R.H.; Ray, B.; Dorazio, T.; Jennings, P.; Sikorski, K.

    1999-07-01T23:59:59.000Z

    The current Clean Air Act (CAA), Title 1 regulations require States to develop implementation plans (SIPs) which address NO{sub x} emissions as part of the ozone non-attainment requirements. The EPA has recommended NO{sub x} limits of 0.15 lb/MBtu for utility boilers. In this paper, Reliant Energy and ABB C-E Services, Inc. will discuss a project where 0.15 lb NO{sub x}/MBtu can be achieved with the TFS 2000{trademark} R firing system and highly reactive Powder River Basin (PRB) fuels. Reliant Energy will retrofit their W.A. Parish Unit 7 with this system in the first quarter of 1999. This is part of Reliant Energy's drive to lower NO{sub x} emissions and meet future air quality requirements at the W.Q. Parish station.

  14. 50Are U Still Nuts? That's right... It's time for more unit conversion exercises!

    E-Print Network [OSTI]

    Problem 1: The solar constant is an important number if you are trying to build a solar, hot water heater: The Solar Constant is the amount of energy that the sun delivers to the surface of Earth each second or generate electricity using solar panels. Although astronomers use ergs and centimeter units, solar energy

  15. Basis for Interim Operation (BIO) for the Rework Unit (RW), Du Pont Water (DW) Plant, Moderator Processing Facility (MPF), and Technical Purification Facility (TPF)

    SciTech Connect (OSTI)

    Horne, R.E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-01-01T23:59:59.000Z

    The mission of the Heavy Water portion of D Area (or 400 Area) at SRS is to purify the site inventory of heavy water for storage in the Reactor Areas for future DOE missions.

  16. Report on Produced Water

    Office of Scientific and Technical Information (OSTI)

    purposes include water for hydraulic fracturing at oil and gas sites, water for power generation, dust control, and fire control. To initiate production Johnston et al....

  17. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect (OSTI)

    Holinga IV, G.H.

    2010-08-01T23:59:59.000Z

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  18. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  19. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  20. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  1. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  2. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

  3. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

  4. Final Report: Particulate Emissions Testing, Unit 1, Potomac...

    Broader source: Energy.gov (indexed) [DOE]

    were completed while Unit 1 was operating at 90% of full load (84MW) or greater. Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria,...

  5. EFFICIENT PARALLELIZATION OF STOCHASTIC SIMULATION ALGORITHM FOR CHEMICALLY REACTING SYSTEMS ON THE GRAPHICS PROCESSING UNIT

    E-Print Network [OSTI]

    Li, Hong; Petzold, Linda

    2009-01-01T23:59:59.000Z

    REACTING SYSTEMS ON THE GRAPHICS PROCESSING UNIT H. Li ? L.The current generation of graphics processing units (GPU) issystems on the low cost graphics processing unit (GPU)

  6. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  7. Can't have one without the other: Water and energy are interdependent 

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    , is needed to pump, treat, heat, and move water, and extract ?new? water from desalination, reuse, and other sources. As the United States develops new energy sources to replace imported petroleum and natural gas, the demand for water to produce... one without the other.? Water is needed to produce most energy, and energy is needed to develop and use water. Water is used to extract and process oil, gas, and other fuels, and is an integral part of electric-power generation. Energy, in turn...

  8. Decision Support for IntegratedDecision Support for Integrated WaterWater--Energy PlanningEnergy Planning

    E-Print Network [OSTI]

    Keller, Arturo A.

    , a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security/Commercial -Industrial -Agriculture -Environment -Energy Energy Providers -Peak/Base -Generation Type -Location -Capacity Dynamics: BroadSystem Dynamics: Broad PerspectivePerspective Energy for Water Municipal Use Agriculture

  9. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect (OSTI)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01T23:59:59.000Z

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  10. Power systems simulations of the western United States region.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.; Decision and Information Sciences

    2010-03-15T23:59:59.000Z

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  11. Regional Variation in Residential Heat Pump Water Heater Performance...

    Energy Savers [EERE]

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States...

  12. Tsunami Information Sources: Part 4 (With a section on impulsively generated waves by a rapid mass movement, either submerged, or into a body of water)

    E-Print Network [OSTI]

    Wiegel, Robert L.

    2008-01-01T23:59:59.000Z

    Generation, Modeling, Risk and Mitigation, NATO Science Series, IV,Generation, Modeling, Risk and Mitigation, NATO Science Series, IV,Generation, Modeling, Risk and Mitigation, Istanbul, Turkey, May 23-26, 2001, NATO Science Series, IV,

  13. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01T23:59:59.000Z

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  14. Efficiency United (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Efficiency United program is intended to provide assistance and incentives to customers who employ energy efficient measures. Programs offer rebates on natural gas water heaters, clothes...

  15. Generating Unit Retirements in the United States by State, 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-15

  16. Generating Unit Retirements in the United States by State, 2004

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-154" "Note:

  17. Generating Unit Retirements in the United States by State, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-154" "Note:5"

  18. Generating Unit Retirements in the United States by State, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-154"

  19. Generating Unit Retirements in the United States by State, 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-154"7" "Note:

  20. Generating Unit Retirements in the United States by State, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-154"7"

  1. Generating Unit Retirements in the United States by State, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-154"7"9"

  2. Generating Unit Retirements in the United States by State, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15

  3. The challenges of a water system management handover in eastern Ethiopia : from the United Nations Refugee Agency to a local community

    E-Print Network [OSTI]

    Chung, Christophe (Christopher J.)

    2011-01-01T23:59:59.000Z

    During the height of a political crisis in the late 1980s, hundreds of thousands of Somali refugees crossed into eastern Ethiopia. A humanitarian crisis soon unfolded as water was in short supply in the arid region. In ...

  4. UNIT NUMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 UNIT NAME C-611 Underaround Diesel Tank REGULATORY STATUS: AOC LOCATION: Immediately southeast of C-611 APPROXIMATE DIMENSIONS: 1000 gallon FUNCTION: Diesel storage OPERATIONAL...

  5. Nuclear steam-generator transplant total rises

    SciTech Connect (OSTI)

    Smock, R.

    1982-09-01T23:59:59.000Z

    Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

  6. United Power- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    United Power, in conjunction with wholesale power supplier Tri-State Generation and Transmission (TSGT), offers rebates for the installation of a variety of commercial energy efficient equipment...

  7. Retrieval of Cloud Ice Water Content Profiles from Advanced Microwave Sounding Unit-B Brightness Temperatures Near the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect (OSTI)

    Seo, E-K.; Liu, G.

    2005-03-18T23:59:59.000Z

    One of the Atmospheric Radiation Measurement (ARM) Program important goals is to develop and test radiation and cloud parameterizations of climate models using single column modeling (SCMs) (Randall et al. 1996). As forcing terms, SCMs need advection tendency of cloud condensates besides the tendencies of temperature, moisture and momentum. To compute the tendency terms of cloud condensates, 3D distribution of cloud condensates over a scale much larger than the climate model's grid scale is needed. Since they can cover a large area within a short time period, satellite measurements are useful utilities to provide advection tendency of cloud condensates for SCMs. However, so far, most satellite retrieval algorithms only retrieve vertically integrated quantities, for example, in the case of cloud ice, ice water path (IWP). To fulfill the requirement of 3D ice water content field for computing ice water advection, in this study, we develop an ice water content profile retrieval algorithm by combining the vertical distribution characteristics obtained from long-term surface radar observations and satellite high-frequency microwave observations that cover a large area. The algorithm is based on the Bayesian theorem using a priori database derived from analyzing cloud radar observations at the Southern Great Plains (SGP) site. The end product of the algorithm is a 3D ice water content covering 10{sup o} x 10{sup o} surrounding the SGP site during the passage of the satellite. This 3D ice water content, together with wind field analysis, can be used to compute the advection tendency of ice water for SCMs.

  8. The key to superior water chemistry at a PWR nuclear station

    SciTech Connect (OSTI)

    Dolan, R.; Miller, L.K.; Olejar, L.L.; Salem, E.

    1983-01-01T23:59:59.000Z

    This paper demonstrates how a condensate polishing unit can be successfully used to treat the feedwater for circulating-type pressurized water reactors (PWRs). Water chemistry at the Salem Generating Station, a two-unit, four-loop Westinghouse PWR located in New Jersey, is discussed. Topics considered include a plant description and the history of early operation, the role of constant surveillance, makeup water quality, the effect of freezing on gel-type anion exchange resin, a total organic carbon (TOC) survey, steam generator chemistry, steam generator inspection, condensate polisher operation, and management philosophy. The SEPREX condensate polishing process, in which the complete separation of the anion exchange resin from the cation exchange resin is achieved by flotation separation, is examined. It is concluded that the utilization of a condensate polishing process such as SEPREX provides the operating personnel at the plant with the necessary means to maintain the minimum desired level of contaminants within the steam generator.

  9. Snow water equivalent estimation using blackbox optimization

    E-Print Network [OSTI]

    Alarie et al.

    2011-02-23T23:59:59.000Z

    Feb 23, 2011 ... Abstract: Accurate measurements of snow water equivalent (SWE) is an ... managing water resources for hydroelectric power generation.

  10. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  11. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of(BETO)Next

  12. Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas

    E-Print Network [OSTI]

    Pacsi, Adam P

    The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion ...

  13. UNIT NUMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 C-750B Diesel UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner of C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Diesel storage OPERATIONAL STATUS: Removed...

  14. Total Petroleum Systems and Assessment Units (AU)

    E-Print Network [OSTI]

    Torgersen, Christian

    Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

  15. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 feet wide by 30 feet long FUNCTION: Provide cooling water for computer systems and HVAC systems various plant buildings. OPERATIONAL STATUS: Active DATES OPERATED: 1953 to...

  16. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  17. Downhole steam generator with improved preheating/cooling features

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM); Mulac, Anthony J. (Tijeras, NM)

    1983-01-01T23:59:59.000Z

    An apparatus for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  18. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident at RatonU.S.Adoption ofWind and Water Power

  19. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect (OSTI)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17T23:59:59.000Z

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  20. ransmission, rather than generation, is

    E-Print Network [OSTI]

    to expand transmission capacity adequately: Over 40 years, the amount of electricity generated in the United's power plants to its customers. It was never designed for getting power from any generator to anyT ransmission, rather than generation, is generally the con- straint preventing cus- tomers from

  1. ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM

    E-Print Network [OSTI]

    Krieg, B.

    2010-01-01T23:59:59.000Z

    Water Projects Generating Plants and Shiftable Generationfrom "base load" generating plants. ing" and saves energy.Cily flow PUfflj);ng - GeneratIng Plant San LUIS Reservo,,'

  2. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  3. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  4. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  5. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  6. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  7. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  8. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  9. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  10. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Broader source: Energy.gov (indexed) [DOE]

    Conclusions 3 TEG Device Located in the Heater Core Loop 4 Heater Core Thermostat Water Pump TEG Unit ( emulated) Exhaust Gas In Exhaust Gas Out Radiator Existing hardware...

  11. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    generation of 17,445 TWh (69). 4.2 Thermal Electric Powergeneration in 2009 (33). Water used in thermal electric

  12. Development of enclosed life support system for underground rescue employing a photocatalytic metal oxide thin film to generate oxygen from water and reduce carbon dioxide

    E-Print Network [OSTI]

    Trivedi, Meghna S

    2006-01-01T23:59:59.000Z

    Despite major improvements in technology and safety regulations, coal mining continues to be a hazardous industry. Catastrophic accidents, related largely to underground explosions and generation of toxic gases, commonly ...

  13. Milliwatt Generator Project

    SciTech Connect (OSTI)

    Latimer, T.W.; Rinehart, G.H.

    1992-05-01T23:59:59.000Z

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  14. The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP conducts research on new

    E-Print Network [OSTI]

    The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water conducts research on new development opportunities and provides a comprehensive hydropower database integrating information about existing hydropower plants. Research Summary and Resources Example: · Existing

  15. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19T23:59:59.000Z

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  16. Water-splitting using photocatalytic porphyrin-nanotube composite devices

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Miller, James E. (Albuquerque, NM); Wang, Zhongchun (Albuquerque, NM); Medforth, Craig J. (Winters, CA)

    2008-03-04T23:59:59.000Z

    A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

  17. Survival of zooplankton entrained into the cooling water system and supplemental cooling towers of a steam-electric generating station located on Galveston Bay, Texas

    E-Print Network [OSTI]

    Chase, Cathleen Louise

    1977-01-01T23:59:59.000Z

    is not an unlimited resource. Another method supplements the open ? cycle system with external cooling facilities, through which the heated water passes before it flows into the receiving body. Ex- ternal cooling facilities may be wet-cooling towers, dry-cooling...

  18. Improving water quality with a "territorial" agri-environmental policy? Insights from the new generation AES in South-West France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Improving water quality with a "territorial" agri-environmental policy? Insights from the new with the Local Agri-Environmental Schemes (LAES), the French contractual policy instrument within the European underlie the French agri-environmental policy, from a retrospective of the successive national schemes set

  19. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-12-16T23:59:59.000Z

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  20. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  1. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25T23:59:59.000Z

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings...

  5. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    reliability evaluation of generation systems including Photovoltaic (PV) and Concentrated Solar Power (CSP) plants. Unit models of PV and CSP are developed first, and then generation system model is constructed to evaluate the reliability of generation systems...

  6. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07T23:59:59.000Z

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  7. ST ATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES RESEARCH...

    Broader source: Energy.gov (indexed) [DOE]

    conditioning (Carrier) and power generation (UTC Power). UTRC works directly with the UTC business units and outside partners to develop technology solutions that transition into...

  8. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01T23:59:59.000Z

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  9. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  10. Parallel Simulation for a Fish Schooling Model on a General-Purpose Graphics Processing Unit

    E-Print Network [OSTI]

    Li, Hong; Kolpas, Allison; Petzold, Linda; Moehlis, J

    2009-01-01T23:59:59.000Z

    Model on a General-Purpose Graphics Processing Unit Hong LiThe current generation of graphics processing units is well-we will describe how a Graphics Pro- cessor Unit (GPU) can

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to find linkages between water power grid services and water availability. All balancing areas have the same basic needs for responsive resources (generation and sometimes...

  13. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01T23:59:59.000Z

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  15. United States Department of Correlation and Prediction

    E-Print Network [OSTI]

    Standiford, Richard B.

    United States Department of Correlation and Prediction Agriculture Forest Service of Snow Water L. Azuma #12;McGurk, Bruce J.; Azuma, David L. 1992. Correlation and prediction of snow water" and, by implication, prediction of wilderness snow data by nonwilderness sensors that are typically

  16. Ice, Snow and Water: impacts of climate change on California and Himalayan Asia

    E-Print Network [OSTI]

    Fenner, R. A.

    2009-01-01T23:59:59.000Z

    of Climate Change on Water, Biodiversity and Livelihoods”Dallas 5. The United Nations World Water Development Report3 (2009) “Water in a Changing World” Unesco Publishing (

  17. analyzing steam generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  18. advanced steam generators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  19. asco steam generators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  20. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  1. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29T23:59:59.000Z

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  2. Abundance and distribution of macro-crustaceans in the intake and discharge areas before and during early operation of the Cedar Bayou Generating Station

    E-Print Network [OSTI]

    Schmidt, Monroe

    1972-01-01T23:59:59.000Z

    and Discharge Areas Before and During Early Operation of the Cedar Bayou Generating Station. (May 1972) Monroe Schmidt, A. A. , Blinn College; B. S. , Texas A&M University Directed by: Dr. Kirk Strawn Two trawl and 1 seine station in Tabbs Bay, 2 trawl... were collected twice monthly from May through October 1970. Genera- tion of electric power (and discharge of heated water) by Unit 1, a 750 MW steam-electric unit of the Houston Lighting and Power Company's Cedar Bayou Generating Station, began...

  3. Inventory of power plants in the United States 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-10-23T23:59:59.000Z

    The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. The Summary Statistics chapter contains aggregate capacity statistics at the national and various regional levels for operable electric generating units and planned electric generating unit additions. Aggregate capacity data at the national level are presented by energy source and by prime mover. Aggregate capacity data at the various regional levels are presented by prime energy source. Planned capacity additions in new units are summarized by year, 1991 through 2000. Additionally, this chapter contains a summary of electric generating unit retirements, by energy source and year, from 1991 through 2000. The chapter on Operable Electric Generating Units contains data about each operable electric generating unit and each electric generating unit that was retired from service during the year. Additionally, it contains a summary by energy source of electric generating unit capacity additions and retirements during 1990. Finally, the chapter on Projected Electric Generating Unit Additions contains data about each electric generating unit scheduled by electric utilities to start operation between 1991 and 2000. 11 figs., 22 tabs.

  4. Optimizing with constraints: a case study in scheduling maintenance of electric power units

    E-Print Network [OSTI]

    Dechter, Rina

    industry is that of optimally schedul­ ing preventative maintenance of power generating units within of the electric power industry: optimally scheduling preventative maintenance of power generating units within or two dozen power generating units which can be individually scheduled for preventive maintenance. Both

  5. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  6. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  7. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07T23:59:59.000Z

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  8. Iowa Water Center Annual Technical Report

    E-Print Network [OSTI]

    influence water quality and restoration potential? How does stream channelization influence water quality of the United States. Human activities have altered stream hydrology that affects water quality. Stream-2010 Iowa Water Center research program is on stream dynamics affecting water quality. We are interested

  9. Water Works! Water Resources Engineering and Turbine Energy

    E-Print Network [OSTI]

    Barrash, Warren

    Water Works! Water Resources Engineering and Turbine Energy Facilitators: Dr. Jairo Hernandez. This energy can be used to generate electricity (dams and turbines), produce mechanical work (wells), as well

  10. Downhole steam generator with improved preheating/cooling features. [Patent application

    DOE Patents [OSTI]

    Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

    1980-10-10T23:59:59.000Z

    An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Space Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Computers and Other Electronics in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in...

  14. Spatial Water Balance in Texas

    E-Print Network [OSTI]

    Reed, Seann; Maidment, David; Patoux, Jerome

    Water availability is critical to the economy in the state of Texas. Numerous reservoirs and conveyance structures have been constructed across the State to meet the water supply needs of farmers, municipalities, industries, and power generating...

  15. Water Network Design by MINLP

    E-Print Network [OSTI]

    2008-02-12T23:59:59.000Z

    Feb 13, 2008 ... ... on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . .... The hydraulic head is the total energy per unit of weight of the water, and it is ..... used to model the hydraulic and water quality behavior of water ...

  16. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-06-10T23:59:59.000Z

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  19. Physiological and genetic control of water stress tolerance in zoysiagrass

    E-Print Network [OSTI]

    Dewey, Daniel Wade

    2006-04-12T23:59:59.000Z

    and outdoor conservation measures. The United States uses 340 billion gallons per day of fresh water with 80 percent of the water consumed in the United States being used for agricultural purposes (Schaible, 2004; United States Geological Survey, 1995a..., and Texas are also giving rebates for, or encouraging, the replacement of turfgrass with more water efficient species (Arizona Department of Water Resources, 2004; City of Albuquerque, 2004; City of Austin, 2004; El Paso Water Utilities, 2004; San Diego...

  20. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  1. International Water Resources Association Water International, Volume 28, Number 2, Pages 209216, June 2003

    E-Print Network [OSTI]

    Scott, Christopher

    ­216, June 2003 209 Facing Water Scarcity in Jordan Reuse, Demand Reduction, Energy, and Transboundary, United States Agency for International Development, Cairo, Egypt, and Amal Hijazi, United States Agency, demand management, energy-water linkages, and transboundary water management. While progress in Jordan

  2. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    SciTech Connect (OSTI)

    Beardwood, E.S.

    1999-07-01T23:59:59.000Z

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  3. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  4. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)

    1980-01-01T23:59:59.000Z

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  5. Accelerating the Fourier split operator method via graphics processing units

    E-Print Network [OSTI]

    Heiko Bauke; Christoph H. Keitel

    2010-12-17T23:59:59.000Z

    Current generations of graphics processing units have turned into highly parallel devices with general computing capabilities. Thus, graphics processing units may be utilized, for example, to solve time dependent partial differential equations by the Fourier split operator method. In this contribution, we demonstrate that graphics processing units are capable to calculate fast Fourier transforms much more efficiently than traditional central processing units. Thus, graphics processing units render efficient implementations of the Fourier split operator method possible. Performance gains of more than an order of magnitude as compared to implementations for traditional central processing units are reached in the solution of the time dependent Schr\\"odinger equation and the time dependent Dirac equation.

  6. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

    2013-11-05T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

  7. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    SciTech Connect (OSTI)

    Ferguson, Michael James

    2005-12-15T23:59:59.000Z

    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N{sub 2}, H{sub 2}, O{sub 2} and NH{sub 3} that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH{sub 2} ({approx}3325 cm{sup -1}) and NH ({approx}3235 cm{sup -1}) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH{sub 2}, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH{sub 2} signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H{sub 2}O and D{sub 2}O, the only spectral feature was in the range of the free OH or free OD. From the absence of SFG spectra of ice-like structure we conclude that surface hydroxides are formed and no liquid water is present on the surface. Other than model catalysis, gas phase anion photoelectron spectroscopy of the Cl + H{sub 2} van der Waals well, silicon clusters, germanium clusters, aluminum oxide clusters and indium phosphide clusters were studied. The spectra help to map out the neutral potential energy surfaces of the clusters. For aluminum oxide, the structures of the anions and neutrals were explored and for silicon, germanium and indium phosphide the electronic structure of larger clusters was mapped out.

  8. EIGHT CHANNEL PROGRAMMABLE PULSE GENERATOR

    E-Print Network [OSTI]

    Kleinfeld, David

    Master-8 EIGHT CHANNEL PROGRAMMABLE PULSE GENERATOR Operation Manual A.M.P.I. A.M.P.I. 123Uzlel St and the programming simple and easy to learn. Master-8 is an attractive unit and you will enjoy working with its eight -- Modes of operation 11 -- Setting the parameters 13 -- Triggering 14 -- Eight stored paradigms 14

  9. Minimum Stream Flow and Water Sale Contracts (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

  10. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A. [INL; Busby, Jeremy [ORNL; Hallbert, Bruce [INL; Bragg-Sitton, Shannon [INL; Smith, Curtis [INL; Barnard, Cathy [INL

    2014-04-01T23:59:59.000Z

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  11. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01T23:59:59.000Z

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  12. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01T23:59:59.000Z

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  13. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF FOSSIL-FUEL NUCLEAR, GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  14. Optimizing with constraints: a case study in scheduling maintenance of electric power units

    E-Print Network [OSTI]

    Dechter, Rina

    is that of optimally schedul- ing preventative maintenance of power generating units within a power plant. We show how: optimally scheduling preventative maintenance of power generating units within a power plant. We de ne can be individually scheduled for preventive maintenance. Both the required duration of each unit

  15. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  16. Green energy: The implementation and utilization of renewable energy in the United States

    SciTech Connect (OSTI)

    Murry, N.L. [Coastal Contractors and Engineers, Inc., West Berlin, NJ (United States)

    1998-12-31T23:59:59.000Z

    Renewable energy has become a viable solution for the United States (US) increasing demand for energy. Often referred to as Green Energy, renewable energy uses the earth`s natural resources to create energy. The wind, sun, water, and the earth`s molten core each offer an attainable form of energy. Hydroelectricity uses running water, wind power uses high speed winds, solar panels collect solar energy as heat, and geothermal energy uses the earth`s molten core to heat water. The Department of Energy classifies Renewable Energy into the following sections: Geothermal Energy, Fuel from Biomass, and Solar Electric. Solar Electric is further subdivided into Solar Thermal Electric, Photovoltaics (Solar Cells), Wind/Windmills, Ocean Thermal Electric and Hydropower/Hydroelectric Dams. Currently, renewable energy provides only 12% of the US electricity supply. Approximately 10% of this is supplied by hydroelectric sources, 1% of this is supplied by hydroelectric sources, 1% is supplied by biomass, and less than 1% is supplied by geothermal, wind and solar combined. Nationally, the generating capacity of renewable energy has increased slightly during the 1990`s. Renewable energy generation contributes to approximately 94 thousand Megawatts of electricity compared to approximately 682 thousand Megawatts of electricity generated from nonrenewables in the year 1996. The continued implementation and utilization of renewable energy in the US are dependent upon several variables. These variables include: the support from Federal and State governments, utility purchase requirements if utility deregulation is passed, and consumer education on the environmental benefits of renewable energy.

  17. Water: May be the Best Near-Term Benefit and Driver of a Robust Wind Energy Future (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Reategui, S.

    2009-05-01T23:59:59.000Z

    Water may be the most critical natural resource variable that affects the selection of generation options in the next decade. Extended drought in the western United States and more recently in the Southeast has moved water management and policy to the forefront of the energy options discussions. Recent climate change studies indicate that rising ambient temperatures could increase evapotranspiration by more than 25% to 30% in large regions of the country. Increasing demand for electricity, and especially from homegrown sources, inevitably will increase our thermal fleet, which consumes 400 to 700 gal/MWh for cooling. Recovering the vast oil shale resources in the West (one of the energy options discussed) is water intensive and threatens scarce water supplies. Irrigation for the growing corn ethanol industry requires 1,000 to 2,000 gallons of water for 1 gallon of production. Municipalities continue to grow and drive water demands and emerging constrained market prices upward. As illustrated by the 20% Wind Energy by 2030 analysis, wind offers an important mitigation opportunity: a 4-trillion-gallon water savings. This poster highlights the emerging constrained water situation in the United States and presents the case for wind energy as one of the very few means to ameliorate the emerging water wars in various U.S. regions.

  18. Designing Water Smart Landscapes Activity

    E-Print Network [OSTI]

    Designing Water Smart Landscapes Activity Objective: Create a water smart home landscape. Materials://aggie-horticulture.tamu.edu/plantanswers/publications/publications.html Draw the plants, using tracing paper. Citizenship Activity Develop a water smart plan for a non generations. Reference For additional assistance with planning your home landscape, refer to "Planning

  19. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    SciTech Connect (OSTI)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.; Elcock, D.; Tidwell, V. C.; Hallett, K.; Macknick, J.; Wigmosta, M. S.; Tesfa, T. K. (Environmental Science Division); (Sandia National Laboratory); (National Renewable Energy Laboratory); (Pacific Northwest National Laboratory)

    2012-02-09T23:59:59.000Z

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) and the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require further study. The Pacific Northwest is vulnerable because of its heavy reliance on hydroelectri

  20. The Water-Energy Nexus: Challenges and Opportunities Overview...

    Broader source: Energy.gov (indexed) [DOE]

    Present day water and energy systems are interdependent. Water is used in all phases of energy production and electricity generation. Energy is required to extract, convey, and...

  1. Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels

    SciTech Connect (OSTI)

    Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)

    2002-07-01T23:59:59.000Z

    Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

  2. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  3. dddddddddddddddddddddddddddddddddddddd United States

    E-Print Network [OSTI]

    Hubbard, Susan

    , and is on the verge of a major water shortage. As vineyards consume more rural acre- age, competition for water irrigation. However, California uses the largest volume of water of any state in the nation resources is increasing, which has increased the pres- sure on California vintners to use water more

  4. Unit selection in a concatenative speech synthesis system using a large speech database 

    E-Print Network [OSTI]

    Hunt, Andrew; Black, Alan W

    One approach to the generation of natural-sounding synthesized speech waveforms is to select and concatenate units from a large speech database. Units (in the current work, phonemes) are selected to produce a natural realisation of a target phoneme...

  5. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  6. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

  7. Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

    to the project’s construction cost when evaluating the cost of saving water. The historic average diversion-energy usage level of 201,384 BTU {59.02 kwh} per ac-ft of water diverted (by the District) for calendar years 2002-2006 is used to estimate energy... or longer period is possible, but 49 years is considered reasonable and consistent with engineering expectations (Michalewicz). Sensitivity analyses are utilized to examine the effects of this assumption. Initial Construction Costs: Total initial...

  8. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  9. Clean Water Act Jurisdiction Following the U.S . Supreme Court's Decision

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Clean Water Act Jurisdiction Following the U.S . Supreme Court's Decision in Rapanos v. United the jurisdiction over waters of the United States under the Clean Water Act. 3 The chart below summarizes the key will assert jurisdiction over the following waters: " Traditional navigable waters " Wetlands adjacent

  10. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  11. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  12. Hardness of water.

    E-Print Network [OSTI]

    Rahul Oza

    This project is helpful to those people who live in the coastal based and they are suffering every year with problem of safe drinking water and not available throughout the year. It has given ideas, technology and economical way of solution for water crisis and it’s also solving problem of scare by use of different methods to development evelopment new water source in water scare area of Saurashtra and Kutch in Gujarat. Saurashtra land is containing of different types of minerals specially bauxite, calcite, fluoride so many mineral based industries are developed here and those who continuous nuous need this as raw materials and they used many mines and processes units. These minerals are creating problem to polluted ground water some are melting and increasing TDS more than 6000 mg/l and

  13. INEEL Source Water Assessment

    SciTech Connect (OSTI)

    Sehlke, Gerald

    2003-03-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL’s public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

  14. Hydrogeologic Assessment of the East Bear Creek Unit, San Luis National Wildlife Refuge

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01T23:59:59.000Z

    Addendum to East Bear Creek Design Data Report, Centraltest wells in East Bear Creek Unit ……………. 41 Appendix B :C : East Bear Creek Refuge Water Supply ……………………………………. 64

  15. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect (OSTI)

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01T23:59:59.000Z

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  16. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  17. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01T23:59:59.000Z

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  18. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Space Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  6. United States Department of

    E-Print Network [OSTI]

    ., Ashland, OR 97520 and Gwyneth Myer, Consultant, 220 W. Rapp Rd. Unit 3, Talent, OR 97540. #12;2 THE FIRE

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Computers and Other Electronics in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  11. Inventory of Power Plants in the United States, October 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-27T23:59:59.000Z

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  12. Dubuque generation station, Dubuque, Iowa

    SciTech Connect (OSTI)

    Peltier, R.

    2008-10-15T23:59:59.000Z

    Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

  13. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

  14. New Rate Schedule CV-GID1 UNITED STATES DEPARTMENT OF ENERGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GID1 UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION CENTRAL VALLEY PROJECT SCHEDULE OF RATE FOR GENERATOR IMBALANCE SERVICE Effective: October 1, 2011,...

  15. Third Report to the President of the United States of America...

    Office of Environmental Management (EM)

    and improved efficiencies in conversion processes. 6 In the United States, GHG emission reductions since 2005 from electricity and heat generation were driven in part by...

  16. Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population

    SciTech Connect (OSTI)

    Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

    2006-09-01T23:59:59.000Z

    This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

  17. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Charges Relating to Nuclear Reactor Safety," 1976, availablestudies of light-water nuclear reactor safety, emphasizingstudies of overall nuclear reactor safety have been

  18. Radioisotope Thermoelectric Generator F7 Flight Unit Acceptance Buy Off

    SciTech Connect (OSTI)

    none,

    1997-02-20T23:59:59.000Z

    These are viewgraphs from the subject presentation. The LMMS E-7 history is outlined; Qualification and use of the F-7 GPHS-RTG for the Cassini mission; and the F-7 acceptance test program and performance are described.

  19. Large Steam Generating Units for the Combustion of Refuse

    E-Print Network [OSTI]

    Adams, P. J.; Robinson, C. C.

    1981-01-01T23:59:59.000Z

    Many by-products of our economy are considered 'waste' and are disposed of as landfill or by incineration. A shortage of landfill sites and increasingly higher fuel prices have stimulated interests in the conversion of burnable waste products...

  20. Large Steam Generating Units for the Combustion of Refuse

    E-Print Network [OSTI]

    Adams, P. J.; Robinson, C. C.

    "Many by-products of our economy are considered ""waste"" and are disposed of as landfill or by incineration. A shortage of landfill sites and increasingly higher fuel prices have stimulated interests in the conversion of burnable waste products...

  1. Next Generation Rooftop Unit - 2013 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of(BETO)

  2. Next Generation Rooftop Unit - 2013 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter Newsletter Better

  3. Entropy Generation Analysis of Desalination Technologies

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an ...

  4. Renewable Electricity Generation Success Stories | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

  5. Adapting California's water management to climate change

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    and ecosystems, to reducing flood risks, to generating hydropower. Although state and federal agencies have roles, with important implications for water demand, water quality management, and flood risk. Over 150 hydropower

  6. Rate Setting for Small Water Systems

    E-Print Network [OSTI]

    Dozier, Monty; Theodori, Gene L.; Jensen, Ricard

    2007-03-28T23:59:59.000Z

    Knowing how to set the proper rate for water service is a challenge for small water systems. They must generate enough revenue to remain solvent, but offer affordable service. This publication describes the various types of rates and explains...

  7. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounselGeneral User Generation

  8. A Fresh Perspective for Managing Water in California: Insights from Applying the European Water Framework Directive to the Russian River

    E-Print Network [OSTI]

    Grantham, Ted; Christian-Smith, Juliet; Kondolf, G. Mathias; Scheuer, Stefan

    2008-01-01T23:59:59.000Z

    Stormwater Management Hydropower Generation Wastewateragricultural irrigation, hydropower, industry, fishing,dams for water storage and hydropower and diversions for

  9. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1972 STATISTICAL DIGEST NO. 66 Prepared by STATISTICS;ACKNOWLEDGMENTS The data in this edition of "Fishery Statistics of the United States" were collected in co- operation with the various States and tabulated by the staff of the Statistics and Market News Division

  10. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29T23:59:59.000Z

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  11. United States Department of

    E-Print Network [OSTI]

    Brown, Gregory G.

    Assessment Thomas M. Quigley, Editor U.S. Department of Agriculture Forest Service Pacific Northwest Research, and Andy Wilson. Thomas M. Quigley Editor United States Department of Agriculture Forest Service United Service, Pacific Northwest Research Station. 120 p. (Quigley, Thomas M., ed.; Interior Columbia Basin

  12. United States Environmental

    E-Print Network [OSTI]

    Loudon, Catherine

    Protect Your Family From Lead in Your Home United States Environmental Protection Agency United · What you can do to protect your family · Where to go for more information Before renting or buying Family from Lead Hazards If you think your home has lead-based paint: · Don't try to remove lead

  13. Water protection in coke-plant design

    SciTech Connect (OSTI)

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  14. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30T23:59:59.000Z

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  15. STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements with Multiple Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water

  16. Quaternary Ammonium Compounds as Water Channel Blockers

    E-Print Network [OSTI]

    de Groot, Bert

    /AQP2/AQP4, whereas the water permeability of AQP3 and AQP5, which lack a corresponding TyrQuaternary Ammonium Compounds as Water Channel Blockers SPECIFICITY, POTENCY, AND SITE OF ACTION, West Mains Road, EH9 3JJ Scotland, United Kingdom Excessive water uptake through Aquaporins (AQP) can

  17. Antenna unit and radio base station therewith

    DOE Patents [OSTI]

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10T23:59:59.000Z

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  18. Sandia National Laboratories: Conventional Water Power: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydropower generation while maintaining or improving environmental performance. Water Use Optimization Sandia will modify and extend the functionality of our hydropower...

  19. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01T23:59:59.000Z

    for 1985 Power Plant Type Electricity Generation (1015BTU)Electricity Generation and Capacity for Po'". :cr Plant Typeelectricity generation energy will form the major por- tion of water requirements Since coast, almost all the power for future plants

  20. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    : The submersible laser bathymetric (LBath) optical system is capable of simultaneously providing visual images- dynamical wing. This underwater package is pulled through the water by a single towed cable with fiber optic special high energy density optical fibers. A remote Pentium based PC also at the surface is used

  1. Unit hydrograph application to stormwater collection system design and analysis

    E-Print Network [OSTI]

    Spinks, Melvin Gerald

    1987-01-01T23:59:59.000Z

    review of each model studied and its capabilities follows. Storm Water Management Model. ? The Storm Water Management Model (SWMM) was developed by the United States Environmental Protection Agency for the analysis of urban stormwater runoff... backwater analysis option uses the Direct Step Method to compute the water surface profiles in the storm sewer system. Two case studies with complex stormwater collection systems were modeled to verify and validate the hydrologic and hydraulic methods...

  2. Water Intoxication

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01T23:59:59.000Z

    2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

  3. Mobile inspection and repackaging unit

    SciTech Connect (OSTI)

    Whitney, G.A.; Roberts, R.J. [Westinghouse Hanford Co., Richland, WA (United States). Solid Waste Disposal Div.

    1993-12-31T23:59:59.000Z

    Storage of large volumes of radioactive mixed waste (RMW) generated over the past 20 years at the Hanford Site has resulted in various waste management challenges. Presently, disposal capacity for RMW does not exist. Containers holding RMW will be stored until processing facilities can be completed to provide treatment and final disposal. Because of the complexity of these wastes, special projects have been initiated to properly manage them. This paper addresses one such project. The goal of this project is to develop a mobile inspection and repackaging unit (IRU) for solid RMW. The paper describes the structural design, equipment, ventilation system, instruments and electrical systems, video monitors and recorders, materials handling, and waste processing of containers.

  4. Automatically clustering similar units for unit selection in speech synthesis. 

    E-Print Network [OSTI]

    Black, Alan W; Taylor, Paul A

    1997-01-01T23:59:59.000Z

    This paper describes a new method for synthesizing speech by concatenating sub-word units from a database of labelled speech. A large unit inventory is created by automatically clustering units of the same phone class ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Televisions in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Televisions in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  8. Stochastic Unit Commitment in

    E-Print Network [OSTI]

    Römisch, Werner

    the amount of installed pumped storage capacity enables the inclusion of pumped storage plants units. Its total capacity is about 13,000 megawatts (MW), including a hydro capacity of 1,700 MW

  9. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01T23:59:59.000Z

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Space Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Space Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Space...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  14. Voltage verification unit

    DOE Patents [OSTI]

    Martin, Edward J. (Virginia Beach, VA)

    2008-01-15T23:59:59.000Z

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Televisions in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  16. United States Department of

    E-Print Network [OSTI]

    of a typical wind energy production facility, the results warrant further research on the use of acoustic;1 INTRODUCTION Over the past decade, wind energy production capacity in the United States has increased

  17. " Million Housing Units, Preliminary"

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, By Number of Household Members, 2009" " Million Housing Units, Preliminary" ,,"Number of Household Members" ,"Total U.S.1 (millions)"...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Computers and Other Electronics in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South"...

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Computers and Other Electronics in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty...

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

  3. Water Efficiency

    Energy Savers [EERE]

    Water Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group...

  4. Dynamic characteristics of gas-water interfacial plasma under water

    SciTech Connect (OSTI)

    Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-06-15T23:59:59.000Z

    Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

  5. The Institute for Water & Watersheds Annual Technical Report

    E-Print Network [OSTI]

    timber and salmon to solar panels and semiconductors. But water supply and demand in the state of the United States. In the academic community there is growing recognition that the solutions to future water

  6. Drinking Water Problems: Radionuclides

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2006-08-04T23:59:59.000Z

    can accumulate to harmful levels in drinking water. As radionuclides decay, they emit radioactive parti- cles such as alpha particles, beta particles and gamma rays. Each type of particle produces different effects on humans. Alpha particles... penetrating, alpha particles cause more damage per unit volume than do beta particles or gamma rays. Beta particles and gamma rays deposit their ener- gy over longer distances. Beta particles can be stopped by a piece of wood or a thin sheet of metal...

  7. Existing Generating Unit in the United States by State and Energy Source, 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples 2011

  8. Existing Generating Unit in the United States by State and Energy Source, 2004

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples 20114"

  9. Existing Generating Unit in the United States by State and Energy Source, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples 20114"5"

  10. Existing Generating Unit in the United States by State and Energy Source, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples

  11. Existing Generating Unit in the United States by State and Energy Source, 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples7" "Note:

  12. Existing Generating Unit in the United States by State and Energy Source, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples7"

  13. Existing Generating Unit in the United States by State and Energy Source, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn Maples7"09"

  14. Existing Generating Unit in the United States by State and Energy Source, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohn

  15. Generating Unit Additions in the United States by State and Energy Source, 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-15 Apr-15Nov-14Power

  16. Generating Unit Additions in the United States by State and Energy Source, 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15 Mar-15 Apr-15Nov-14PowerRetirement

  17. Best Buys and Unit Pricing

    E-Print Network [OSTI]

    Anding, Jenna

    2000-02-02T23:59:59.000Z

    This guide explains how to determine a unit price--the cost of an item based on a specific unit such as pound or ounce. Unit pricing can be used to identify foods that are the most economical....

  18. UNITED STATES OF AMERICA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Act, when high stream flows, wind generation, and insufficient load combine to endanger fish protected under Federal environmental law. Complainants challenge Bonneville's...

  19. UNITED STATES OF AMERICA

    Energy Savers [EERE]

    will increase domestic gas prices, likely causing an increase in coal-fired electricity generation and thus increasing emissions of greenhouse gases, conventional, and toxic air...

  20. Simulation of EOR (enhanced oil recovery) processes in stochastically generated permeable media

    SciTech Connect (OSTI)

    Waggoner, J.R.; Castillo, J.L.; Lake, L.W. (Texas Univ., Austin, TX (USA). Dept. of Petroleum Engineering)

    1990-01-01T23:59:59.000Z

    Many enhanced oil recovery (EOR) processes involve injecting an agent, such as steam or CO{sub 2}, that is much more mobile than the resident oil. Other EOR processes attempt to improve sweep efficiency by adding polymer or surfactant to the injected water to create a favorable mobility ratio. This study examines the effect of statistically generated heterogeneity on miscible displacements at unfavorable and favorable mobility ratios. The principal goal is to delineate the effects of fingering, dispersion and channeling on volumetric sweep efficiency. Two-dimensional heterogeneous permeability fields are generated with variability (heterogeneity) and spatial correlation as characterizing parameters. Four levels of correlation and three of variability make up a 12 element matrix. At each element of the matrix, a miscible displacement simulation at unit mobility ratio shows the effect of the heterogeneity, and simulations at mobility ratios of 10 and 0.5 show the effect of viscous force differences combined with heterogeneity. 20 refs., 7 figs., 3 tabs.

  1. UNIVERSITIES COUNCIL ON WATER RESOURCES JOURNAL OF CONTEMPORARY WATER RESEARCH & EDUCATION

    E-Print Network [OSTI]

    Delaware, University of

    . It is shown that water use affects primarily the generation and consumptive aspects of the energy sector that exploits the synergies between the energy and water sectors. Synergic benefits derived from water, whereas~ energy utilization ilnpacts all aspects of the water sector. In California, around 19 percent

  2. Our Forests in the [Water] Balance Water: Brought by a forest near you

    E-Print Network [OSTI]

    the amount and type of precipitation that falls across the western United States. Research shows a trend1 Our Forests in the [Water] Balance Water: Brought by a forest near you Water is a crucial, industry, energy, recreation, and the natural resources we manage and care about. While most citizens

  3. Sandia Energy - Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phasor Measurement Units Home Stationary Power Grid Modernization Cyber Security for Electric Infrastructure Phasor Measurement Units Phasor Measurement Unitsashoter2015-05-11T21:0...

  4. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed aims at the cost optimal scheduling of on/o decisions and output levels for generating units. The power

  5. Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Lacewell, Ronald D.; Michelsen, Ari M.; Rister, M. Edward; Assadian, Naomi; Eriksson, Marian; Freeman, Roger; Jacobs, Jennifer H.; Madison, W. Tom; McGuckin, James T.; Morrison, Wendy; Robinson, John R.C.; Staats, Chris; Sheng, Zhuping; Srinivasan, R.; Villalobos, Joshua I.

    TR- 275 2004 Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States Allen W. Sturdivant Ronald D. Lacewell Ari M. Michelsen M. Edward Rister Naomi Assadian Marian Eriksson Roger Freeman Jennifer H... Flood-Control Projects in the United States Prepared for: INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES SECTION EL PASO, TEXAS SEPTEMBER 2004 Prepared by: Texas Agriculture Experiment Station, and Texas Water Resources Institute of the Texas...

  6. Accounting for and finance of generation investment

    E-Print Network [OSTI]

    Newbery, David

    , although peak demand growth was falling. Initially the capacity margin was below the comfort level of 20% (for a coal-fired system with high growth rates). The move to larger generation units and higher efficiencies designed for higher quality UK coal... , or the electricity company faces bankruptcy, common features of the Indian ESI (Newbery, 2007). One common feature of many ESIs, and notably of generation, is that the book value of assets is far below their modern equivalent asset (MEA) replacement cost...

  7. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  8. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  9. Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Blackwell, D.D. and others

    Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

  10. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    always been a major concern in these small volcanic islands where rain water harvesting, ground waterVirgin Islands Water Resources Research Institute Annual Technical Report FY 2007 Virgin Islands Water Resources Research Institute Annual Technical Report FY 2007 1 #12;Introduction The United States

  11. Puerto Rico Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Puerto Rico Water Resources Research Institute Annual Technical Report FY 2009 Puerto Rico Water Resources Research Institute Annual Technical Report FY 2009 1 #12;Introduction The Puerto Rico Water of Puerto Rico. The Institute is one of 54 water research centers established throughout the United States

  12. Puerto Rico Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Puerto Rico Water Resources Research Institute Annual Technical Report FY 2010 Puerto Rico Water Resources Research Institute Annual Technical Report FY 2010 1 #12;Introduction The Puerto Rico Water of Puerto Rico. The Institute is one of 54 water research centers established throughout the United States

  13. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Sustainable Water Consumption

    E-Print Network [OSTI]

    demand of plastic bottled water, additional unsustainable resources are required to support this demand drinking water solutions. Three methods will be compared; plastic bottled water, WaterFillz units method of delivering drinking water to students showed that plastic bottled water is not a solution

  14. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  15. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    SciTech Connect (OSTI)

    Michael L. Wilson

    2001-02-08T23:59:59.000Z

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  16. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    SciTech Connect (OSTI)

    none,

    1982-04-01T23:59:59.000Z

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  17. Bringing Water into an Integrated Assessment Framework

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald; Pitcher, Hugh M.

    2010-11-30T23:59:59.000Z

    We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economic systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLA®, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and streamflow through The Dalles dam. Water also enters the Columbia River via runoff from land. The model runs on a monthly timescale to account for the impact of seasonal variations of climate, streamflows, and water uses. Data for the model prototype were obtained from national databases and ecosystem model results. The WPM can be run from three sources: 1) directly from STELLA, 2) with the isee Player®, or 3) the web version of WPM constructed with NetSim® software. When running any of these three versions, the user is presented a screen with a series of buttons, graphs, and a table. Two of the buttons provide the user with background and instructions on how to run the model. Currently, there are five types of scenarios that can be manipulated alone or in combination using the Sliding Input Devices: 1) interannual variability (e.g., El Niño), 2) climate change, 3) salmon policy, 4) future population, and 5) biodiesel production. Overall, the WPM captured the effects of streamflow conditions on hydropower production. Under La Niña conditions, more hydropower is available during all months of the year, with a substantially higher availability during spring and summer. Under El Niño conditions, hydropower would be reduced, with a total decline of 15% from normal weather conditions over the year. A policy of flow augmentation to facilitate the spring migration of smolts to the ocean would also reduce hydropower supply. Modeled hydropower generation was 23% greater than the 81 TWh reported in the 1995 U.S. Geological Survey (USGS) database. The modeling capability presented here contains the essential features to conduct basin-scale analyses of water allocation under current and future climates. Due to its underlying data structure iv and conceptual foundation, the WPM should be appropriate to conduct IA modeling at national and global scales.

  18. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14T23:59:59.000Z

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  19. Solving Unit Commitment by a Unit Decommitment Method

    E-Print Network [OSTI]

    Solving Unit Commitment by a Unit Decommitment Method Chung-Li Tsengy,Chao-an Liz, Shmuel S. Oren x October 14, 1997 Abstract In this paper, we present an e cient and robust method for solving unit commit- ment problem using a unit decommitment method. 1 Introduction A problem that must be frequently solved

  20. Integrated Assessment of Hadley Centre (HadCM2) Climate-Change Impacts on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States. Part II. Regional Agricultural Production in 2030 and 2095.

    SciTech Connect (OSTI)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Brown, Robert A.; Thomson, Allison M.

    2003-06-30T23:59:59.000Z

    This study used scenarios of the HadCM2 GCM and the EPIC agroecosystem model to evaluate climate change impacts on crop yields and ecosystem processes. Baseline climate data were obtained from records for 1961-1990. The scenario runs for 2025-2034 and 2090-2099 were extracted from a HadCM2 run. EPIC was run on 204 representative farms under current climate and two 10-y periods centered on 2030 and 2095, each at CO2 concentrations of 365 and 560 ppm. Texas, New Mexico, Colorado, Utah, Arizona, and California are projected to experience significant temperature increases by 2030. Slight cooling is expected by 2030 in Alabama, Florida, Maine, Montana, Idaho, and Utah. Larger areas are projected to experience increased warming by 2095. Uniform precipitation increases are expected by 2030 in the NE. These increases are predicted to expand to the eastern half of the country by 2095. EPIC simulated yield increases for the Great Lakes, Corn Belt and Northeast regions. Simulated yields of irrigated corn yields were predicted to increase in almost all regions. Soybean yields could decrease in the Northern and Southern Plains, the Corn Belt, Delta, Appalachian, and Southeast regions and increase in the Lakes and Northeast regions. Simulated wheat yields exhibited upward yield trends under scenarios of climate change. National corn production in 2030 and 2095 could be affected by changes in three major producing regions. In 2030, corn production could increase in the Corn Belt and Lakes regions but decrease in the Northern Plains leading to an overall decrease in national production. National wheat production is expected to increase during both future periods. A proxy indicator was developed to provide a sense of where in the country, and when water would be available to satisfy change in irrigation demand for corn and alfalfa production as these are influenced by the HadCM2 scenarios and CO2-fertilization.