Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Modeling Water Withdrawal and Consumption for Electricity Generation in the United States  

E-Print Network (OSTI)

Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

Strzepek, Kenneth M.

2012-06-15T23:59:59.000Z

2

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

3

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

4

A Survey of Water Use and Sustainability in the United States with a Focus on Power Generation  

Science Conference Proceedings (OSTI)

EPRI has identified water resource sustainability and its relation to electric power as one of the key challenges within EPRI's Electricity Technology Roadmap. This report presents an overview of present and future freshwater availability and generation demand for fresh water in the United States. The report takes a first step toward development of a comprehensive framework for evaluating possible impacts of water supply limitations on electric power generation and management approaches to limiting these...

2003-12-03T23:59:59.000Z

5

Next Generation Rooftop Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

6

Next Generation Rooftop Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

7

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

8

Next Generation Rooftop Unit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Rooftop Unit Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit (RTU). More than half of U.S. commercial building space is cooled by packaged heating, ventilation, and air conditioning (HVAC) equipment. Existing rooftop HVAC units consume more than 1.3% of the United States' annual energy usage annually. Project Description This project seeks to evaluate optimal design strategies for significantly improving the efficiency of rooftop units. The primary market for this project is commercial buildings, such as supermarkets and hotels. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy and Oak Ridge National

9

IEP - Water-Energy Interface: Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Water Management Power Plant Water Management The availability of clean and reliable sources of water is a critical issue across the United States and throughout the world. Under the Innovations for Existing Plants Program (IEP), the National Energy Technology Laboratory (NETL) has pursued an integrated water-energy R&D program that addresses water management issues relative to coal-based power generation. This initiative intended to clarify the link between energy and water, deepen the understanding of this link and its implications, and integrate current water-related R&D activities into a national water-energy R&D program. Please click on each research area for additional information. Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water

10

Renewable Electricity Generation in the United States  

E-Print Network (OSTI)

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

11

Electrokinetic Power Generation from Liquid Water Microjets  

E-Print Network (OSTI)

Electrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.for electrokinetic power generation. By creating a jet of

Duffin, Andrew M.

2008-01-01T23:59:59.000Z

12

Estimated Water Flows in 2005: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

Smith, C A; Belles, R D; Simon, A J

2011-03-16T23:59:59.000Z

13

Water Use in Electricity Generation Technologies  

Science Conference Proceedings (OSTI)

Water use is increasingly viewed as an important sustainability metric for electricity generation technologies. Most of the attention on the link between electricity generation and water use focuses on the water used in cooling thermoelectric power plants during operations. This is warranted given the size of these withdrawals; however, all electricity generation technologies, including those that do not rely on thermoelectric generation, use water throughout their life cycles. Each life cycle stage cont...

2012-05-23T23:59:59.000Z

14

Domestic Hot Water Event Schedule Generator - Energy ...  

Residential hot water use in the United States accounts for 14-25% of all the energy consumed in a home. With the rise of more advanced water heating ...

15

Property:NbrGeneratingUnits | Open Energy Information  

Open Energy Info (EERE)

NbrGeneratingUnits NbrGeneratingUnits Jump to: navigation, search Property Name NbrGeneratingUnits Property Type Number Description Number of Generating Units. Pages using the property "NbrGeneratingUnits" Showing 12 pages using this property. B BLM Geothermal Facility + 3 + Blundell 1 Geothermal Facility + 1 + Blundell 2 Geothermal Facility + 1 + E ENEL Salt Wells Geothermal Facility + 2 + F Faulkner I Energy Generation Facility + 6 + N Navy I Geothermal Facility + 3 + Navy II Geothermal Facility + 3 + Neal Hot Springs Geothermal Power Plant + 3 + North Brawley Geothermal Power Plant + 5 + P Puna Geothermal Facility + 10 + R Raft River Geothermal Facility + 1 + Rocky Mountain Oilfield Testing Center + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:NbrGeneratingUnits&oldid=400184#SMWResults"

16

Wind generating capacity is distributed unevenly across the United ...  

U.S. Energy Information Administration (EIA)

The highest concentration of wind turbines in the United States is in the Great Plains states, where the best conditions for onshore wind power generation exist.

17

Produced water volumes and management practices in the United States.  

SciTech Connect

Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced water generated in the United States and the manner in which produced water is managed. This report presents an overview of produced water, summarizes the study, and presents results from the study at both the national level and the state level. Chapter 2 presents background information on produced water, describing its chemical and physical characteristics, where it is produced, and the potential impacts of produced water to the environment and to oil and gas operations. A review of relevant literature is also included. Chapter 3 describes the methods used to collect information, including outreach efforts to state oil and gas agencies and related federal programs. Because of the inconsistency in the level of detail provided by various state agencies, the approaches and assumptions used to extrapolate data values are also discussed. In Chapter 4, the data are presented, and national trends and observations are discussed. Chapter 5 presents detailed results for each state, while Chapter 6 presents results from federal sources for oil and gas production (i.e., offshore, onshore, and tribal lands). Chapter 7 summarizes the study and presents conclusions.

Clark, C. E.; Veil, J. A. (Environmental Science Division)

2009-09-01T23:59:59.000Z

18

Generating Unit Retirements in the United States by State, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

19

Generating Unit Retirements in the United States by State, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

9" 9" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

20

Generating Unit Retirements in the United States by State, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

6" 6" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Generating Unit Retirements in the United States by State, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

10" 10" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

22

Generating Unit Retirements in the United States by State, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

23

Generating Unit Retirements in the United States by State, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

24

Generating Unit Retirements in the United States by State, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4" 4" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

25

Generating Unit Retirements in the United States by State, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5" 5" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

26

Water Requirements for Thermoelectric Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, National Energy Technology Laboratory, Power Plant-Water R&D Program Barbara Carney * , Thomas Feeley, and Andrea McNemar U.S. Department of EnergyNational Energy...

27

EERE: Renewable Electricity Generation - Water  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sources of energy. Photo of the McNary Dam hydroelectric power plant. Solar Geothermal Wind Water Photo of a yellow floating waver energy device with a U.S. flag. The U.S....

28

Operable Generating Units in the United States by State and Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Generating Units in the United States by State and Energy Source, 2011" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form...

29

Water Use for Electric Power Generation  

Science Conference Proceedings (OSTI)

This report analyzes how thermoelectric plants use water and the strengths, limitations, and costs of available technologies for increasing water use efficiency (gal/MWh). The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2008-02-25T23:59:59.000Z

30

Figure 9.1 Nuclear Generating Units - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 9.1 Nuclear Generating Units Operable Units,1 1957-2011 Nuclear Net Summer Capacity Change, 1950-2011 Status of All Nuclear Generating Units, ...

31

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

32

A Hybrid Model for Hydroturbine Generating Unit Trend Analysis  

Science Conference Proceedings (OSTI)

According to the nonlinear and nonstationary characteristics of hydroelectricity systems, an hybrid prediction model based on wavelet transform and support vector machines is proposed in this paper for the trend analysis of hydroturbine generating unit ...

Min Zou; Jianzhong Zhou; Zhong Liu; Liangliang Zhan

2007-08-01T23:59:59.000Z

33

Economical operation of thermal generating units integrated with smart houses  

Science Conference Proceedings (OSTI)

This paper presents an economic optimal operation strategy for thermal power generation units integrated with smart houses. With the increased competition in retail and power sector reasoned by the deregulation and liberalization of power market make ... Keywords: particle swarm optimization, renewable energy sources, smart grid, smart house, thermal unit commitment

Shantanu Chakraborty; Takayuki Ito; Tomonobu Senjyu

2012-09-01T23:59:59.000Z

34

Unit Commitment Considering Generation Flexibility and Environmental Constraints  

Science Conference Proceedings (OSTI)

This paper proposes a new framework for power system unit commitment process, which incorporates the generation flexibility requirements and environmental constraints into the existing unit commitment algorithm. The generation flexibility requirements are to address the uncertainties with large amount of intermittent resources as well as with load and traditional generators, which causes real-time balancing requirements to be variable and less predictable. The proposed flexibility requirements include capacity, ramp and ramp duration for both upward and downward balancing reserves. The environmental constraints include emission allowance for fossil fuel-based generators and ecological regulations for hydro power plants. Calculation of emission rates is formulated. Unit commitment under this new framework will be critical to the economic and reliable operation of the power grid and the minimization of its negative environmental impacts, especially when high penetration levels of intermittent resources are being approached, as required by the renewable portfolio standards in many states.

Lu, Shuai; Makarov, Yuri V.; Zhu, Yunhua; Lu, Ning; Prakash Kumar, Nirupama; Chakrabarti, Bhujanga B.

2010-07-31T23:59:59.000Z

35

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

DOE Green Energy (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

36

Update on use of mine pool water for power generation.  

Science Conference Proceedings (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

37

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

38

San Onofre Nuclear Generating Station - Unit 1 Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

This report provides detailed information on the successful decommissioning activities of San Onofre Nuclear Generating Station, Unit 1 (SONGS 1). The report describes their experiences and lessons learned for managers of US and international plants beginning or currently engaged in decommissioning.

2008-12-04T23:59:59.000Z

39

Steam Generator Management Program: Assessment of Channel Head Susceptibility to Primary Water Stress Corrosion Cracking  

Science Conference Proceedings (OSTI)

There have been several documented cases of primary water stress corrosion cracking (PWSCC) indications in the divider plate assembly in Westinghouse model steam generators in operation outside the United States. These indications were observed in plants that operated with proper primary water chemistry. The function of the divider plate in most steam generators is to separate the cold and hot legs of the channel head as the primary water enters the steam generator so that the primary coolant flows up in...

2012-06-19T23:59:59.000Z

40

Hourly Energy Emission Factors for Electricity Generation in the United  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United Hourly Energy Emission Factors for Electricity Generation in the United States Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. This project utilized GridViewTM, an electric grid dispatch software package, to estimate hourly emission factors for all of the eGRID subregions in the continental United States. These factors took into account electricity imports and exports

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electrokinetic Power Generation from Liquid Water Microjets  

DOE Green Energy (OSTI)

Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

Duffin, Andrew M.; Saykally, Richard J.

2008-02-15T23:59:59.000Z

42

Fluorescent lamp unit with magnetic field generating means  

DOE Patents (OSTI)

A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

Grossman, M.W.; George, W.A.

1989-08-08T23:59:59.000Z

43

Decommissioning San Onofre Nuclear Generating Station Unit 1 (SONGS-1)  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant and termination of the plant license requires the removal of highly activated materials from inside the nuclear reactor pressure vessel (RPV). Such a task presents a major challenge in terms of technology, project management, and worker exposure. This report documents the approach taken by Southern California Edison (SCE) in their highly successful reactor vessel internals (RVI) segmentation of San Onofre Nuclear Generating Station Unit 1 (SONGS-1). The report detail...

2005-12-12T23:59:59.000Z

44

Examination of Crystal River Unit 3 Steam Generator Tube Sections  

Science Conference Proceedings (OSTI)

An examination of seven tubes removed from the Crystal River unit 3 steam generator characterized tube degradation associated with low-voltage eddy-current indications in the free span region above the lower tubesheet. The defects responsible for the low-voltage eddy-current signals consisted of small, relatively shallow, isolated, pit-like spots of outside-diameter-initiated intergranular attack, which had almost no effect on the burst strength of the tubing.

1994-05-31T23:59:59.000Z

45

Existing Generating Unit in the United States by State and Energy Source, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","MultiGenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

46

Existing Generating Unit in the United States by State and Energy Source, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","MultiGenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

47

WATER RESOURCES Water Resources is a unit concerned with the development of  

E-Print Network (OSTI)

and Institutional Aspects of Water Resources Management," 1975 background paper produced by the Food and Agricultureq SECTION II WATER RESOURCES Water Resources is a unit concerned with the development of public policy and the use or misuse of the national water supply. Subsection topics in this unit are general

US Army Corps of Engineers

48

Materials Challenges for Next-Generation Water Treatment  

Science Conference Proceedings (OSTI)

Materials Challenges for Next-Generation Water Treatment. Purpose: Thank you to all the participants for a great workshop! ...

2013-03-13T23:59:59.000Z

49

High Speed Rotational Motor Unit with Optimized Couplant Feed System for Ultrasonic Examination of Steam Generator Tubes  

Science Conference Proceedings (OSTI)

A high-speed rotational motor unit was designed and built to increase the ultrasonic data acquisition speed of steam generator tube examination in field applications. Rotational and couplant delivery speeds were optimized as they have a significant impact on data acquisition speed. The motor unit was designed to be waterproof and to move couplant (water) to the ultrasonic search unit in an efficient manner. Lessons learned from design and operations of laboratory motors were applied to this design. The r...

2005-11-15T23:59:59.000Z

50

Analysis of Steam Generator Tubing from Crystal River, Unit 3  

Science Conference Proceedings (OSTI)

Four tubes were removed from Crystal River Unit 3 steam generator B during the 1994 refueling outage (RFO 9). The tubes were examined to characterize any tube degradation associated with eddy current (EC) indications occurring at the 7th and 9th tube support plate (TSP) intersections, which were identified during RFO 8. Mechanical wear observed at the 7th and 9th TSP lands had almost no effect on the tubing's burst strength. Small patches of intergranular attack (IGA) were observed in the first freespan ...

1997-10-08T23:59:59.000Z

51

E.A. Gilbert Generating Unit, Maysville, Kentucky  

Science Conference Proceedings (OSTI)

The new, 368-MW E.A. Gilbert Generating Unit at the H.L. Spurlock Power Station in Maysville isn't just the cleanest coal-burning plant in Kentucky. Thanks to its circulating liquidized bed boiler from Alstom, it is one of the cleanest in the US. The boiler's ability to burn a wide variety of coals and even pet coke, biomass, or tire-derived fuels - also was a factor in Power's decision to name E.A. Gilbert a Top Plant of 2005. 3 figs., 2 tabs.

Wicker, K.

2005-08-01T23:59:59.000Z

52

Existing Generating Unit in the United States by State and Energy Source, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

09" 09" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

53

Existing Generating Unit in the United States by State and Energy Source, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

10" 10" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Initial Month of Operation","Initial Year of Operation","Unit Status"

54

Analysis of Water Rate Escalations across the United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis of Water Rate Escalations across the United States Analysis of Water Rate Escalations across the United States Elisabeth Giever Kate McMordie Stoughton Susan Loper October 2010 Executive Summary This document provides an overview of an analysis that examined changes in water rates across the country to develop a basic understanding of water rate escalations and how water rates are impacted from outside influences. The analysis investigated how water rates are influenced by the geographic region, water source, and drought tendencies. For example, one observation of the analysis found that cities located in regions of long term drought may have higher escalation rates than cities in water rich environments. Typical escalation rates were found to be between 4 and 8%. This information can be

55

Large Steam Generating Units for the Combustion of Refuse  

E-Print Network (OSTI)

Many by-products of our economy are considered 'waste' and are disposed of as landfill or by incineration. A shortage of landfill sites and increasingly higher fuel prices have stimulated interests in the conversion of burnable waste products into heat for process and the generation of power. Interest in the combustion of the most widely distributed waste products, household and industrial municipal refuse, is rapidly escalating. The assembly of a large complex for power and steam production by the combustion of municipal refuse, however, is a very complex process requiring the cooperation of many governmental, private, industrial, environmental and financial entities. A number of refuse burning plants have been and are being built. Many projects are in the planning stage. This paper reviews the background available in the combustion for steam generation of municipal refuse in shredded form on spreader stokers. This paper also provides up-to-date information regarding the design, construction, and operational status of the two large steam generating units for the combustion of municipal refuse presently being completed at the Hooker Chemical installation in Niagara Falls, New York.

Adams, P. J.; Robinson, C. C.

1981-01-01T23:59:59.000Z

56

Large Steam Generating Units for the Combustion of Refuse  

E-Print Network (OSTI)

"Many by-products of our economy are considered ""waste"" and are disposed of as landfill or by incineration. A shortage of landfill sites and increasingly higher fuel prices have stimulated interests in the conversion of burnable waste products into heat for process and the generation of power. Interest in the combustion of the most widely distributed waste products, household and industrial municipal refuse, is rapidly escalating. The assembly of a large complex for power and steam production by the combustion of municipal refuse, however, is a very complex process requiring the cooperation of many governmental, private, industrial, environmental and financial entities. A number of refuse burning plants have been and are being built. Many projects are in the planning stage. This paper reviews the background available in the combustion for steam generation of municipal refuse in shredded form on spreader stokers. This paper also provides up-to-date information regarding the design, construction, and operational status of the two large steam generating units for the combustion of municipal refuse presently being completed at the Hooker Chemical installation in Niagara Falls, New York."

Adams, P. J.; Robinson, C. C.

1981-04-01T23:59:59.000Z

57

United States Environmental Protection Agency Office of Water  

E-Print Network (OSTI)

United States Environmental Protection Agency Office of Water Washington, D. C. 20460 United States States Environmental Protection Agency (EPA) hereby establish the policy and procedures pursuant to which 19, 1989, DEPARTMENT OF THE ARMY/ENVIRONMENTAL PROTECTION AGENCY MEMORANDUM OF AGREEMENT CONCERNING

US Army Corps of Engineers

58

Electrokinetic Power Generation from Liquid Water Microjets  

E-Print Network (OSTI)

electrokinetic energy to electrical power. Previous studiescurrents to generate electrical power have employed twodetermine the electrical power that can be generated from

Duffin, Andrew M.

2008-01-01T23:59:59.000Z

59

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

60

Next-Generation Photovoltaic Technologies in the United States: Preprint  

DOE Green Energy (OSTI)

This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

McConnell, R.; Matson, R.

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A new method for stochastic production simulation in generation system with multiple hydro units  

SciTech Connect

This paper describes a new method of calculating loss of load probability, expected energy generation and production cost for units in a generating system with multiple hydro units. The method uses the equivalent load duration curve (ELDC) obtained by convolving the distributions of the original load and the forced outage power loss of all generators. Hydro units are scheduled on the ELDC according to their assigned energy and available capacity. Then the deconvolution procedure is performed to obtain a load duration curve for an equivalent system without hydro units. The expected energy of the thermal units is achieved by convolving the generating units in an economic merit order of loading.

Chen, S.J.

1988-06-01T23:59:59.000Z

62

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network (OSTI)

process also generates electrical power, which could becurrents to generate electrical power, 9-11 with Kwokat the nozzle, the electrical power is found to be ~2·10 -4

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

63

Estimating Water Needs to Meet 2025 Electricity Generating Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

(fossil, nuclear, or biomass) to heat water to steam that is used to drive a turbine-generator. Steam exhausted from the turbine is condensed and recycled to a steam generator or...

64

The use of dispersants in pressurised water reactor steam generators.  

E-Print Network (OSTI)

??Environmental degradation promoted by the presence of sludge piles in the steam generators of Pressurised Water Reactors (PWR) can pose a threat to their safe… (more)

Tulloch, Sam

2011-01-01T23:59:59.000Z

65

Table HC2.8 Water Heating Characteristics by Type of Housing Unit ...  

U.S. Energy Information Administration (EIA)

Water Heating Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings Housing With--Units (millions) Energy Information Administration

66

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network (OSTI)

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquirá Associate Professor Electricity Heat Water #12;Second Forum on Energy & Water Sustainability April 10th /09 6 PEM Fuel Cells for research 2. Fuel-cell fundamentals 3. Implications of using water from fuel cells in a society

Keller, Arturo A.

67

Natural circulation steam generator model for optimal steam generator water level control  

SciTech Connect

Several authors have cited the control of steam generator water level as an important problem in the operation of pressurized water reactor plants. In this paper problems associated with steam generator water level control are identified, and advantages of modern estimation and control theory in dealing with these problems are discussed. A new state variable steam generator model and preliminary verification results using data from the loss of fluid test (LOFT) plant are also presented.

Feeley, J.J.

1979-06-01T23:59:59.000Z

68

Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods \\Lambda  

E-Print Network (OSTI)

deals with the fuel cost optimal scheduling of on/off decisions and output levels for generating unitsSolving the Unit Commitment Problem in Power Generation by Primal and Dual Methods \\Lambda D and results of test runs are reported. 1 Introduction The unit commitment problem in electricity production

Römisch, Werner

69

Bubble deaeration of water at reduced unit loads  

Science Conference Proceedings (OSTI)

Whenever the load is reduced, the parameters of the water and steam being introduced into the deaerator, as well as the pressure, also change. A study was conducted to ascertain the reasons for the improvement in water deaeration whenever the unit load is reduced. The study of the deaerator demonstrated that reducing the load on the turbine produces a reduction in the amount of oxygen contained in the feedwater from 25-30 to 8-12 ..mu..g/kg.

Kondrat'ev, A.D.; Kurnyk, L.N.

1982-11-01T23:59:59.000Z

70

Test factoring with amock: generating readable unit tests from system tests  

E-Print Network (OSTI)

Automated unit tests are essential for the construction of reliable software, but writing them can be tedious. If the goal of test generation is to create a lasting unit test suite (and not just to optimize execution of ...

Glasser, David Samuel

2007-01-01T23:59:59.000Z

71

Water Use for Electricity Generation and Other Sectors: Recent Changes (1985-2005) and Future Projections (2005-2030)  

Science Conference Proceedings (OSTI)

This study presents an updated scoping assessment of current and future water withdrawal requirements, compared with water availability, resolved at the level of counties across the contiguous United States. This report will be useful to power sector environment, generation, and delivery managers; power sector planners; government energy and water resource managers and regulators; and the municipal and agricultural sectors.

2011-11-10T23:59:59.000Z

72

Interim Project Results: United Parcel Service's Second-Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application for Each Engine and Truck Manufacturer Hybrid Drive Unit Transmission InverterControls Partners Brakes (ABS) Eaton Hybrid Electric System UPS' hybrid-electric...

73

EVALUATION OF SINGLE AND DUAL TURBINE-GENERATOR UNITS FOR PL-3  

SciTech Connect

The investigation performed relative to the selection of a turbine- generator unit for the PL-3 portable nuclear power plant, Byrd Station, Antarctica, is described. Available conventional equipment was surveyed to minimize air shipment, installation, and cost requirements. Pertinent details of functional performance were considered. A comparison was drawn between the alternatives of utilizing either a single turbine generator unit shipped partially disassembled or twin, half-capacity units shipped assembled. The conclusion reached was that a single turbine-generator unit should be used with the turbine and generator shipped separately. (auth)

Prall, T.F.

1962-03-01T23:59:59.000Z

74

AEO2011: Renewable Energy Generation by Fuel - United States...  

Open Energy Info (EERE)

United States This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy...

75

Text to Text : plot unit searches generated from English  

E-Print Network (OSTI)

The story of Macbeth centers around revenge. World War I was started by an act of revenge. Even though these two stories are seemingly unrelated, humans use the same concept to draw meaning from them. Plot units, revenge ...

Nackoul, David Douglas

2010-01-01T23:59:59.000Z

76

Climate Impact on Water Availability for Electricity Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Impact on Water Availability for Electricity Generation Speaker(s): Denis Aelbrecht Date: April 11, 2006 - 12:00pm Location: Bldg. 90 Europe and France experienced a huge...

77

Improved taguchi method based contracted capacity optimization for power consumer with self-owned generating units  

Science Conference Proceedings (OSTI)

The paper proposes an improved Taguchi method to determine the best capacity contracts and dispatch the power output of the self-owned generating units from almost infinite combinations. To be achieved are savings of total power expenses of the consumers ... Keywords: capacity contracts, improved Taguchi method, self-owned generating units

Hong-Tzer Yang; Pai-Chun Peng; Chung-His Huang

2007-05-01T23:59:59.000Z

78

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Vogtle Electric Generating Plant, Units 3 and 4 76: Vogtle Electric Generating Plant, Units 3 and 4 EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 Summary This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download February 17, 2012 EIS-0476: Notice of Adoption of Final Environmental Impact Statement Vogtle Electric Generating Plant, Units 3 and 4, Issuance of a Loan Guarantee to Support Funding for Construction, Burke County, GA

79

Feedwater Iron Optimization: Quad Cities Generating Station Unit 1  

Science Conference Proceedings (OSTI)

EPRI's BWR Water Chemistry Guidelines 2004 Revisions (report 1008192) recommends feedwater iron control in the range of 0.1 ppb 1.0 ppb for plants operating with reducing chemistry conditions for intergranular stress corrosion cracking (IGSCC) mitigation. Since all U.S. plants now operate under moderate hydrogen water chemistry (HWC-M) or noble metals chemical addition and hydrogen water chemistry (NMCA+HWC), it is appropriate to target the lower end of the range (0.1 0.5 ppb) to minimize zinc requiremen...

2008-08-18T23:59:59.000Z

80

Automatic generation of water distribution systems based on GIS data  

Science Conference Proceedings (OSTI)

In the field of water distribution system (WDS) analysis, case study research is needed for testing or benchmarking optimisation strategies and newly developed software. However, data availability for the investigation of real cases is limited due to ... Keywords: Algorithmic network generation, GIS-data, Hydraulic simulation, Modular design system, Water distribution system

Robert Sitzenfrei, Michael MöDerl, Wolfgang Rauch

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Surface Water Temperatures At Shore Stations, United States West Coast 1975 - 1976  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.Thermograph record of intake water at Pacific Gas andtakes daily water temperatures at the intake pipe to their

Scripps Institution of Oceanography

1978-01-01T23:59:59.000Z

82

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1994  

E-Print Network (OSTI)

generators. The plant's water intake structure, which isoff the rocks near the water intake for the laboratory, andat the aquarium's water system intake located in a deep

Scripps Institution of Oceanography

1995-01-01T23:59:59.000Z

83

Surface Water Temperatures At Shore Stations, United States West Coast 1977  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.Thermograph record of intake water at Pacific Gas andtemperatures and water samples at the intake pipe to their

Scripps Institution of Oceanography

1978-01-01T23:59:59.000Z

84

Surface Water Temperatures At Shore Stations, United States West Coast 1978  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.Off rocks near water intake for laboratory Thermographthat monitors the cooling intake water for the generators.

Scripps Institution of Oceanography

1979-01-01T23:59:59.000Z

85

Development of Next Generation Phasor Measurement Unit Features  

Science Conference Proceedings (OSTI)

This report addresses the communications and computing foundations necessary to achieve the smart transmission grid: one capable of anticipating problems and automatically reconfiguring itself after an event. Wide-Area Measurement System (WAMS) is a new technology that enables major advances in power system operation, protection, and maintenance. Key building blocks of WAMS are synchronized phasor measurement units (PMUs), or synchrophasors. When linked together, they can provide a precise and comprehens...

2009-10-30T23:59:59.000Z

86

Siting and sizing of distributed generation units using GA and OPF  

Science Conference Proceedings (OSTI)

This paper deals with the important task of finding the optimal siting and sizing of Distributed Generation (DG) units for a given distribution network so that the cost of active and reactive power generation can be minimized. The optimization technique ... Keywords: distributed generation, genetic alghorithm(GA), optimal power flow(OPF)

M. Hosseini Aliabadi; M. Mardaneh; B. Behbahan

2008-01-01T23:59:59.000Z

87

The Potential of Desalination as an Alternative Water Supply in the United States.  

E-Print Network (OSTI)

??Many parts of the United States are facing water shortages. Planners have to ensure that there will be an adequate water supply to meet the… (more)

Naini, Anjali Nina

2013-01-01T23:59:59.000Z

88

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

Science Conference Proceedings (OSTI)

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

89

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

SciTech Connect

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

90

Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint  

SciTech Connect

The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

Hendron, B.; Burch, J.; Barker, G.

2010-08-01T23:59:59.000Z

91

Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters  

DOE Green Energy (OSTI)

The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

None

1983-02-01T23:59:59.000Z

92

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

DOE Green Energy (OSTI)

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

93

Program on Technology Innovation: Power Generation and Water Sustainability  

Science Conference Proceedings (OSTI)

This brochure summarizes the Electric Power Research Institute (EPRI) Report 1015371, Program on Technology Innovation: An Energy/Water Sustainability Program for the Electric Power Industry. It presents a research planbased on business, economic, and technical considerationsthat would create and test new technology and science to overcome present and future constraints on thermoelectric and hydroelectric generation resulting from limited fresh water availability. The 10 year plan has an overall budget o...

2007-09-10T23:59:59.000Z

94

AEO2011: Renewable Energy Generation by Fuel - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 120, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation United States Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - United States- Reference Case (xls, 119.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

95

Mathematical model of steam generator feed system at power unit of nuclear plant  

Science Conference Proceedings (OSTI)

A mathematical model of a steam generator feed system at a power unit of a nuclear plant with variable values of transfer function coefficients is presented. The model is realized in the MATLAB/Simulink/Stateflow event-driven simulation.

E. M. Raskin; L. A. Denisova; V. P. Sinitsyn; Yu. V. Nesterov

2011-05-01T23:59:59.000Z

96

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network (OSTI)

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

97

Hybrid simulation and optimization-based capacity planner for integrated photovoltaic generation with storage units  

Science Conference Proceedings (OSTI)

Unlike fossil-fueled generation, solar energy resources are geographically distributed and highly intermittent, which makes their direct control difficult and requires storage units. The goal of this research is to develop a flexible capacity planning ...

Esfandyar M. Mazhari; Jiayun Zhao; Nurcin Celik; Seungho Lee; Young-Jun Son; Larry Head

2009-12-01T23:59:59.000Z

98

Generation of Optimal Unit Distance Codes for Rotary Encoders through Simulated Evolution  

Science Conference Proceedings (OSTI)

An evolutionary algorithm is used to generate unit distance codes for absolute rotary encoders. The target is to obtain a code suitable for disk size reduction, or for resolution increase, thus overcoming the limitations of conventional Gray codes. Obtained ...

Stefano Gregori; Roberto Rossi; Guido Torelli; Valentino Liberali

2001-04-01T23:59:59.000Z

99

Maintenance practices for emergency diesel generator engines onboard United States Navy Los Angeles class nuclear submarines  

E-Print Network (OSTI)

The United States Navy has recognized the rising age of its nuclear reactors. With this increasing age comes increasing importance of backup generators. In addition to the need for decay heat removal common to all (naval ...

Hawks, Matthew Arthur

2006-01-01T23:59:59.000Z

100

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optimal Placement and Sizing of Distributed Generator Units using Genetic Optimization  

E-Print Network (OSTI)

and electricity in the distribution grid. A group of DG units can form a virtual power plant, being centrally of distributed generation units in a residential distri- bution grid. Power losses are minimized while grid topology with pro- duction and residential load data based on measurements. Different scenarios

102

E&WR - Water-Energy Interface: Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

E&WR - Water-Energy Interface E&WR - Water-Energy Interface Mine Water for Thermoelectric Power Generation: A Modeling Framework The purpose of this study, conducted by the National Mine Land Reclamation Center at West Virginia University, is to develop and demonstrate a framework for assessing the costs, technical and regulatory aspects, and environmental benefits of using mine water for thermo-electric power generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering, and environmental factors to be considered and evaluated in using mine water as an alternative to traditional freshwater supply. Development and demonstration of the framework involves the following activities: A field investigation and case study conducted for the proposed Beech Hollow Power Plant located in Champion, Pennsylvania. This 300 megawatt power plant has been proposed to burn coal refuse from the Champion coal refuse pile, which is the largest coal waste pile in Western Pennsylvania. The field study, based on previous mine pool research conducted by the National Mine Land Reclamation Center (NMLRC), identifies mine water sources sufficient to reliably supply the 2,000 to 3,000 gpm power plant water requirement.

103

Water chemistry of breeder reactor steam generators. [LMFBR  

Science Conference Proceedings (OSTI)

The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed.

Simpson, J.L.; Robles, M.N.; Spalaris, C.N.; Moss, S.A.

1980-08-01T23:59:59.000Z

104

Existing Generating Unit in the United States by State and Energy Source, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

105

Existing Generating Unit in the United States by State and Energy Source, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5" 5" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

106

Existing Generating Unit in the United States by State and Energy Source, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4" 4" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

107

Existing Generating Unit in the United States by State and Energy Source, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

6" 6" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts) ","Winter Capacity (Megawatts) ","Prime Mover","Energy Source 1","Energy Source 2 ","Initial Month of Operation","Initial Year

108

Modeling cooling water discharges from the Burrard Generating Station  

E-Print Network (OSTI)

Abstract-A three-dimensional numerical model was applied to examine the impact of the Burrard Generating Station cooling water on the circulation patterns and thermal regime in the receiving water of Port Moody Arm. A key aspect of this study involved properly incorporating the submerged cooling water buoyant jet into the 3D model. To overcome the scale and interface barriers between the near-field and far-field zones of the buoyant jet, a sub-grid scheme was applied, and the coupled system of equations of motion, heat conservation and state are solved with a single modeling procedure over the complete field. Special care was taken with the diffusion and jet entrainment by using a second order turbulence closure model for vertical diffusion and the Smagorinsky formula for horizontal diffusion as well as jet entrainment. The model was calibrated and validated in terms of buoyant jet trajectory, centerline dilution, and temperature and velocity profiles. Extensive modeling experiments without and with the Burrard Generating Station in operation were then carried out to investigate the receiving water circulations and thermal processes under the influence of the cooling water discharge. The model results reveal that under the influence of the cooling water discharge, peak ebb currents are stronger than peak flood currents in the near-surface layer, and the reverse is true in the near-bottom layer. Meanwhile, the model revealed a well-developed eddy at the southeast side of the buoyant jet in the near-surface layer. It is also found that the warmer water released from the cooling water discharge is mainly confined to the upper layer of the Arm, which is largely flushed out of the Arm through tidal mixing processes, and a corresponding inflow of colder water into the Arm occurs within the lower layer. I.

J. Jiang; D. B. Fissel; D. D. Lemon

2002-01-01T23:59:59.000Z

109

Generating Hydrogen through Water Electrolysis using Concentrator Photovoltaics  

Science Conference Proceedings (OSTI)

Hydrogen can be an important element in reducing global climate change if the feedstock and process to produce the hydrogen are carbon free. Using nuclear energy to power a high temperature water electrolysis process meets these constraints while another uses heat and electricity from solar electric concentrators. Nuclear researchers have estimated the cost of hydrogen generated in this fashion and we will compare their estimates with those we have made for generating hydrogen using electricity and waste heat from a dish concentrator photovoltaic system. The conclusion is that the costs are comparable and low enough to compete with gasoline costs in the not too distant future.

McConnell, R.; Thompson, J.

2005-01-01T23:59:59.000Z

110

Small power systems study technical summary report. Volume II. Inventory of small generating units in U. S. utility systems  

SciTech Connect

Data identifying small (less than or equal to 10 MW) power units in the United States are tabulated. The data are listed alphabetically by state and are reported sequentially for investor owned utilities, municipal utilities, and electrical cooperatives and other utility systems. For a given utility system, the generating units are divided into steam turbines, diesel generators and gas turbines. The number and size of generating units are listed. A summary tabulation of the number of generating units of each type and total generating capacity by state is presented.

Sitney, L.R.

1978-05-31T23:59:59.000Z

111

Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities  

SciTech Connect

The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown from the existing SJGS Unit 3 tower--during the summer months of 2005. If successful, there may be follow-on testing using produced water. WSAC is discussed in this deliverable. Recall that Deliverable 4, Emerging Technology Testing, describes the pilot testing conducted at a salt water disposal facility (SWD) by the CeraMem Corporation. This filtration technology could be a candidate for future demonstration testing and is also discussed in this deliverable.

Kent Zammit; Michael N. DiFilippo

2005-07-01T23:59:59.000Z

112

MHK Technologies/Water Current Generator Motor | Open Energy Information  

Open Energy Info (EERE)

Generator Motor Generator Motor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Global Energies Inc Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Simple Vertical Axis fully submerged open design flow through unit operating an onboard Pump unit that drives an on shore power generation system Slow turning swim through for Marine life Anchoring depends on topography and composition of resource bed Removable Scalable Please note that the Website is very old and needs updating In 2007 we hired Independent Engineering firm in Seattle to conduct extensive fluid dynamic testing or our design concepts and overall system Tests were completed much more extensively than we envisioned and were very positive for our needs and build out of a full size model We have been stuck and broke as it s all out of pocket in this position ever since as those Engineering costs were much more than anticipated

113

Prevention of Flow Restrictions in Generator Stator Water Cooling Circuits  

Science Conference Proceedings (OSTI)

Generator stator water cooling systems are designed to operate with dissolved oxygen (DO) concentrations of either more than 2 parts per million (ppm) or less than 50 parts per billion (ppb). Large- and small-scale experimental studies and literature surveys show that if the system operates with DO concentration in either design range, copper corrosion-product-particle release rates are low and do not lead to plugging of hollow strands or clogging of strainers. In the range between the extremes -- ...

2002-02-06T23:59:59.000Z

114

Pseudo-random number generators for Monte Carlo simulations on Graphics Processing Units  

E-Print Network (OSTI)

Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed-up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is present.

Vadim Demchik

2010-03-09T23:59:59.000Z

115

Surface Water Temperatures At Shore Stations, United States West Coast 1984  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Trinidadthat monitors the cool- ing intake water for the generators.

Scripps Institution of Oceanography

1985-01-01T23:59:59.000Z

116

Surface Water Temperatures and Salinities At Shore Stations, United States West Coast 1987  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.at the intake pipe to their aquarium water system located in

Scripps Institution of Oceanography

1988-01-01T23:59:59.000Z

117

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1989  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.at the intake pipe to their aquarium water system located in

Scripps Institution of Oceanography

1990-01-01T23:59:59.000Z

118

Surface Water Temperatures At Shore Stations, United States West Coast 1974  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.takes daily water temperatures at the intake pipe to theirof hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1977-01-01T23:59:59.000Z

119

Surface Water Temperatures At Shore Stations, United States West Coast 1982  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.that monitors the cooling intake water for the generators.for rocks near water laboratory intake Granite Canyon 55.0'W

Scripps Institution of Oceanography

1983-01-01T23:59:59.000Z

120

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1988  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.at the intake pipe to their aquarium water system located in

Scripps Institution of Oceanography

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Surface Water Temperatures At Shore Stations, United States West Coast 1973  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.takes daily water temperatures at the intake pipe to theirof hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1975-01-01T23:59:59.000Z

122

Surface Water Temperatures At Shore Stations, United States West Coast 1986  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Farallónthat monitors the cool­ ing intake water for the generators.

Scripps Institution of Oceanography

1987-01-01T23:59:59.000Z

123

Surface Water Temperatures At Shore Stations, United States West Coast 1983  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Granitethat monitors the cool­ ing intake water for the generators.

Scripps Institution of Oceanography

1984-01-01T23:59:59.000Z

124

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1990  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the generators.of hot water is outside the bay, the intake temperatures

Scripps Institution of Oceanography

1991-01-01T23:59:59.000Z

125

Surface Water Temperatures At Shore Stations, United States West Coast 1985  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.Station Off rocks near water intake for laboratory Farallónthat monitors the cool­ ing intake water for the generators.

Scripps Institution of Oceanography

1986-01-01T23:59:59.000Z

126

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1993  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. T hthat monitors the cooling intake water for the generators.of hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1994-01-01T23:59:59.000Z

127

MHK Technologies/OCGen turbine generator unit TGU | Open Energy Information  

Open Energy Info (EERE)

OCGen turbine generator unit TGU OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile Primary Organization Ocean Renewable Power Company Project(s) where this technology is utilized *MHK Projects/Cook Inlet Tidal Energy *MHK Projects/East Foreland Tidal Energy *MHK Projects/Lubec Narrows Tidal *MHK Projects/Nenana Rivgen *MHK Projects/Treat Island Tidal *MHK Projects/Western Passage OCGen Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description he OCGen turbine-generator unit (TGU) is unidirectional regardless of current flow direction. Two cross flow turbines drive a permanent magnet generator on a single shaft. OCGen modules contain the ballast/buoyancy tanks and power electronics/control system allowing for easier installation. The OCGen TGU can be stacked either horizontally or vertically to form arrays.

128

Fault diagnosis for the feedwater heater system of a 300MW coal-fired power generating unit based on RBF neural network  

Science Conference Proceedings (OSTI)

In this paper, a new style radial basis function (RBF) neural network is used for fault diagnosis of the high-pressure feed-water heater system of a coal-fired power generating unit. The structure of the RBF network and its training algorithm are given. ...

Liangyu Ma; Yongguang Ma; Jin Ma

2005-08-01T23:59:59.000Z

129

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

130

Demonstration of Clyde Bergemann Water Cannons at Alabama Power Company's Plant Miller Unit 1  

Science Conference Proceedings (OSTI)

This report documents the findings of a demonstration of Clyde Bergemann Water Cannons at Alabama Power Company's Plant Miller Unit 1.

2004-11-08T23:59:59.000Z

131

Precipitation Trends and Water Consumption Related to Population in the Southwestern United States, 1930–83  

Science Conference Proceedings (OSTI)

The possible effects of climatic fluctuations on renewable water supplies in the western United States was examined, especially as it is impacted by the growth of population and water consumption in recent decades.

Henry F. Diaz; Ronald L. Holle; Joe W. Thorn Jr.

1985-02-01T23:59:59.000Z

132

Investigation of an Emergency Diesel Generator Reliability Program, A Case Study of Crystal River Unit 3  

Science Conference Proceedings (OSTI)

The Florida Power Corporation Crystal River nuclear station has markedly improved emergency diesel generator (EDG) reliability at its Unit 3 reactor. Analysis of plant activities that contributed to this improvement demonstrates the effectiveness of applying practical EDG reliability programs and confirms the usefulness of proposed EPRI guidelines for such programs.

1989-01-26T23:59:59.000Z

133

Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998  

Reports and Publications (EIA)

The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Information Center

1999-10-15T23:59:59.000Z

134

Supply Curves for Rooftop Solar PV-Generated Electricity for the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

A0-44073 A0-44073 November 2008 Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Prepared under Task No. PVB7.6301 Technical Report NREL/TP-6A0-44073 November 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

135

The Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

The Relevance of Generation The Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States Sari Fink, Kevin Porter, and Jennifer Rogers Exeter Associates, Inc. Columbia, Maryland Subcontract Report NREL/SR-6A20-48987 October 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States Sari Fink, Kevin Porter, and Jennifer Rogers Exeter Associates, Inc. Columbia, Maryland

136

Fact Sheet on Water Use in the United States The United States continues to improve water-use efficiency.  

E-Print Network (OSTI)

time, the economic productivity of water ­ measured as dollars of GDP produced with every hundred the dollars of gross domestic product (GDP) produced with every 100 gallons of water used. The U.S. now produces far more wealth, with far less water, than at any time in the past. Not all the news about water

137

Generation of a 400 GPa pressure in water using converging strong shock waves  

SciTech Connect

Results related to the generation of an extreme state of water with pressure up to (4.3 {+-} 0.2){center_dot}10{sup 11} Pa, density up to 4.2 {+-} 0.1 g/cm{sup 3}, and temperature up to 2.2 {+-} 0.1 eV in the vicinity of the implosion axis of a converging strong shock wave are reported. The shock wave was produced by the underwater electrical explosion of a cylindrical Cu wire array. A {approx}8 kJ pulse generator with a current amplitude {<=}550 kA and rise time of 350 ns was used to explode arrays having varying lengths, radii, and number of wires. Hydrodynamic numerical simulations coupled to the experimental data of the shock wave propagation in water, rate of energy deposition into the array, and light emission from the compressed water in the vicinity of the implosion axis were used to determine the pressure, density, and temperature profiles during the implosion. Results of a comparison between these parameters obtained with the SESAME and quantum molecular dynamics data bases of equation of state for water are reported as well. Also, the dependences of the maximal pressure in the vicinity of the implosion axes on the array radius and the deposited energy density per unit length are reported.

Fedotov-Gefen, A.; Efimov, S.; Gilburd, L.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, 32000 Haifa (Israel)

2011-06-15T23:59:59.000Z

138

Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4  

Science Conference Proceedings (OSTI)

This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects.

VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A. [Argonne National Lab., IL (United States)

1997-09-01T23:59:59.000Z

139

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

driven by first cost considerations and the availability of power vent and condensing water heaters. Little analysis has been performed to assess the economic impacts of the...

140

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Investigations of Temperature Effects on NOAA's Next Generation Water Level Measurement System  

Science Conference Proceedings (OSTI)

The National Oceanic and Atmospheric Administration collects tide and water-level data by using an acoustic tide gauge in its Next Generation Water Level Measurement System (NGWLMS). The elevation of the water is calculated from the round-trip ...

David L. Portep; H. H. Shih

1996-06-01T23:59:59.000Z

142

Tri-State Generation and Transmission Association's Springverville unit 3 earns POWER's highest honor  

Science Conference Proceedings (OSTI)

It is said that pioneers take the arrows. In the case of Springerville Unit 3 - a 418 MW(net) expansion of a Tucson Electric Power facility in Arizona and the first pulverized coal-fired units built in the US in more than decade, the arrows were many. Although Tri-State (the developer), Tuscon Electric (the host), and Bechtel Power (the EPC contractor) were wounded by delayed deliveries of major equipment, bankruptcy of a major supplier, and a labor shortage, the companies showed their pioneering spirit and completed the project ahead of schedule. For ushering in a new generation of clean and desperately needed baseload capacity, Springerville Unit 3 is POWER magazine's 2006 Plant of the Year. 9 figs.

Peltier, R.

2006-09-15T23:59:59.000Z

143

Single-bridge unit-connected HVDC generation with increased pulse number  

Science Conference Proceedings (OSTI)

A true unit-connected generator-HVdc convertor scheme is proposed which removes the need to use two bridges in series to achieve twelve-pulse operation. Moreover, the combination of a single main bridge and an auxiliary feedback dc ripple reinjection bridge is shown to increase the pulse number from 6 to 18. This is achieved purely by natural commutation and is equally valid for rectification and inversion. The theoretical waveforms are validated by extensive experimental verification.

Villablanca, M.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

1993-04-01T23:59:59.000Z

144

Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

Not Available

2012-01-01T23:59:59.000Z

145

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets  

SciTech Connect

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

Duffin, Andrew M.; Saykally, Richard J.

2007-05-31T23:59:59.000Z

146

Method of generating hydrogen by catalytic decomposition of water  

DOE Green Energy (OSTI)

A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

Balachandran, Uthamalingam (Hinsdale, IL); Dorris, Stephen E. (LaGrange Park, IL); Bose, Arun C. (Pittsburgh, PA); Stiegel, Gary J. (Library, PA); Lee, Tae-Hyun (Naperville, IL)

2002-01-01T23:59:59.000Z

147

Supply Curves for Solar PV-Generated Electricity for the United States  

DOE Green Energy (OSTI)

Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

Denholm, P.; Margolis, R.

2008-11-01T23:59:59.000Z

148

Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States  

Science Conference Proceedings (OSTI)

Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15-20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

Fink, S.; Porter, K.; Rogers, J.

2010-10-01T23:59:59.000Z

149

Long-Term Water Prospects in the Western United States  

Science Conference Proceedings (OSTI)

Based on the changes in the size of closed basin lakes, the author shows that water availability has undergone large fluctuations in response to conditions experienced during full glacial time and during the period of deglaciation. Based on these ...

Wallace Broecker

2010-12-01T23:59:59.000Z

150

DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES  

SciTech Connect

A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

Ashish Gupta

2002-06-01T23:59:59.000Z

151

Metal-Oxo Catalysts for Generating Hydrogen from Water ...  

Clean and sustainable alternative to fossil fuels; Can be used with sea water and other abundant, untreated water sources; Applications and Industries.

152

Estimating Water Needs to Meet 2025 Electricity Generating Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

demand and capacity forecasts from AEO 2006 with representative water withdrawal and consumption estimates to identify regions where water issues could become acute. Future...

153

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

154

Surface Water Temperatures At Shore Stations, United States West Coast 1981  

E-Print Network (OSTI)

o f f the rocks near the water intake f o r the laboratory.a t monitors the cooling intake water f o r the generators.Thermograph record o f intake water a t P a c i f i c Gas

Scripps Institution of Oceanography

1982-01-01T23:59:59.000Z

155

Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

Not Available

2011-11-01T23:59:59.000Z

156

Inspecting the Circulating Water System at Crystal River Unit 3 for Evidence of Microbial Corrosion  

Science Conference Proceedings (OSTI)

Water line inspections at the Florida Power Company Crystal River unit 3 revealed microbiologically influenced corrosion (MIC) in welded regions of inlet piping. Recommendations for decreasing MIC in those regions include removal of inlet pipe girth welds, rewelding with high-nickel filler rods, and treating cooling water with biocides.

1989-03-15T23:59:59.000Z

157

Cross section generation strategy for high conversion light water reactors  

E-Print Network (OSTI)

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

158

A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer  

Science Conference Proceedings (OSTI)

A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in ...

Rosario Q. Iannone; Daniele Romanini; Samir Kassi; Harro A. J. Meijer; Erik R. Th Kerstel

2009-07-01T23:59:59.000Z

159

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Number of Water Heaters" "1.",106.3,74.5,60.9,4,1.8,2.2,5.5 "2 or More",3.7,3.3,3,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,0.3,"Q","Q","N","Q","Q"

160

"Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Number of Water Heaters" "1.",106.3,31.9,7.9,3.4,5.8,13.7,1.1 "2 or More",3.7,0.4,"Q","Q","Q","Q","N" "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q",0.6,"Q"

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Next Generation Air Particle Detectors for the United States Navy  

Science Conference Proceedings (OSTI)

Design and testing of the United States Navy’s next generation air particle detector (NGAPD) is presently underway. The NGAPD is intended for use in nuclear applications for the United States Navy and is being designed to detect airborne Co-60 with a reduction in false alarms and improved ease of use. Features being developed include gamma compensation, low maintenance, commercial off-the-shelf electronics, and spectrum simulation for quality assurance and functional testing applications. By supplying a spectrum simulator, the radon stripping algorithm can be running when a simulated anthropogenic source spectrum (e.g., from Co-60 or transuranics) is superimposed on the radon progeny spectrum. This will allow alarm levels to be tested when the air flow is running and the radon stripping algorithm is providing the instrument response output. Modern units evaluate source spectra with the air flow off and the radon spectrum absent thereby not testing the true system performance which comes out of the radon stripping algorithm. Testing results of the preliminary prototype show promise along with computer simulations of source spectra. Primary testing results taken to date include gamma compensation, thermal insults, vibration and spectrum simulation.

Robert Hayes and Craig Marianno

2007-06-24T23:59:59.000Z

162

Econometric Analyses of Public Water Demand in the United States  

E-Print Network (OSTI)

Two broad surveys of community- level water consumption and pricing behavior are used to answer questions about water demand in a more flexible and dynamic context than is provided in the literature. Central themes of price representation, aggregation, and dynamic adjustment tie together three econometric demand analyses. The centerpiece of each analysis is an exogenous weighted price representation. A model in first-differences is estimated by ordinary least squares using data from a personally-conducted survey of Texas urban water suppliers. Annual price elasticity is found to vary with weather and income, with a value of -0.127 at the data mean. The dynamic model becomes a periodic error correction model when the residuals of 12 static monthly models are inserted into the difference model. Distinct residential, commercial, and industrial variables and historical climatic conditions are added to the integrated model, using new national data. Quantity demanded is found to be periodically integrated with a common stochastic root. Because of this, the structural monthly models must be cointegrated to be consistent, which they appear to be. The error correction coefficient is estimated at -0.187. Demand is found to be seasonal and slow to adjust to shocks, with little or no adjustment in a single year and 90% adjustment taking a decade or more. Residential and commercial demand parameters are found to be indistinguishable. The sources of price endogeneity and historical fixes are reviewed. Ideal properties of a weighted price index are identified. For schedules containing exactly two rates, weighting is equivalent to a distribution function in consumption. This property is exploited to derive empirical weights from the national data, using values from a nonparametric generalization of the structural demand model and a nonparametric cumulative density function. The result is a generalization of the price difference metric to a weighted level-price index. The validity of a uniform weighting is not rejected. The weighted price index is data intensive, but the payoff is increased depth and precision for the economist and accessibility for the practitioner.

Bell, David

2011-12-01T23:59:59.000Z

163

The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units  

E-Print Network (OSTI)

This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

Joskow, Paul L.

1984-01-01T23:59:59.000Z

164

Solar Buildings: Solar Water Heaters, The Next Generation  

DOE Green Energy (OSTI)

This document explains the U.S. Department of Energy's Solar Buildings Program's efforts regarding the research, development, and deployment of solar water heating technology.

NREL

1998-10-29T23:59:59.000Z

165

Cycle Chemistry Guidelines for Shutdown, Layup, and Startup of Combined Cycle Units with Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Complete optimization of cycle chemistry in a combined-cycle unit requires more than proper selection and optimization of operating chemistry. Protection of the steam-water cycle also is essential during shutdown, layup, and startup phases. These guidelines consider protection of steam- and water-touched components at these times, consistent with the operating cycle chemistries in use.

2006-03-21T23:59:59.000Z

166

Planning for a multi-generational future : policies, regulations, and designs for multi-generational housing in the United States  

E-Print Network (OSTI)

Multi-generational housing is a rising trend that is increasingly being considered as a viable housing option for the Boomerang generation, Baby Boomers and the aging population, and immigrant families. Cultural preferences, ...

Shin, Stephanie H

2012-01-01T23:59:59.000Z

167

Pressurized Water Reactor Steam Generator Layup: Corrosion Evaluation  

Science Conference Proceedings (OSTI)

This final report summarizes work completed on a project to evaluate the current PWR steam generator layup guidance based on corrosion mitigation of steam generator components. It was performed in three phases. Phase 1 of this project included an extensive literature review of the corrosion test data, and development of a gap analysis to determine additional data needed to update the current guideline recommendations. Phase 2 was a corrosion test measurement program to evaluate the general corrosion rate...

2007-12-14T23:59:59.000Z

168

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

169

An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation  

Science Conference Proceedings (OSTI)

This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

John Rodgers; James Castle

2008-08-31T23:59:59.000Z

170

Pressurized Water Reactor Steam Generator Lay-up: Corrosion Evaluation  

Science Conference Proceedings (OSTI)

This interim report summarizes work completed to date for a project to develop improved lay-up guidance for PWR Steam Generators (SG). Phase 1 of this project included a detailed literature review and a gap analysis of additional work needed to quantify the corrosion behavior of SG materials under wet lay-up conditions. As a result of the gap analysis, EPRI designed a corrosion test program (Phase 2) to measure general corrosion rates of steam generator materials under lay-up conditions. This report summ...

2005-12-16T23:59:59.000Z

171

Program on Technology Innovation: Water Resources for Thermoelectric Power Generation  

Science Conference Proceedings (OSTI)

Due to severe drought conditions in the Southwest in recent years, EPRI and the U.S. Department of Energys National Energy Technology Laboratory have sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. Two of the studies assess the use of saline waters in power plants. The third describes the adaptation of a deterministic watershed model to forecast the impact of climate change on river hydrology in t...

2006-11-06T23:59:59.000Z

172

Solar Desalination in the Southwest United States: A Thermoeconomic Analysis Utilizing the Sun to Desalt Water in High Irradiance Regions .  

E-Print Network (OSTI)

??Water scarcity and high irradiance overlap in the southwestern United States. This thesis explores solar energy as a method to power desalination in the Southwest.… (more)

Stroud, Matthew

2012-01-01T23:59:59.000Z

173

Solar desalination in the southwest United States| A thermoeconomic analysis utilizing the sun to desalt water in high irradiance regions.  

E-Print Network (OSTI)

?? Water scarcity and high irradiance overlap in the southwestern United States. This thesis explores solar energy as a method to power desalination in the… (more)

Stroud, Matthew

2012-01-01T23:59:59.000Z

174

Review of water resource potential for developing geothermal resource sites in the western United States  

DOE Green Energy (OSTI)

Water resources at 28 known geothermal resource areas (KGRAs) in the western United States are reviewed. Primary emphasis is placed upon examination of the waer resources, both surface and ground, that exist in the vicinity of the KGRAs located in the southwestern states of California, Arizona, Utah, Nevada, and New Mexico. In most of these regions water has been in short supply for many years and consequently a discussion of competing demands is included to provide an appropriate perspective on overall usage. A discussion of the water resources in the vicinity of KGRAs in the States of Montana, Idaho, Oregon, and Washington are also included.

Sonnichsen, J.C. Jr.

1980-07-01T23:59:59.000Z

175

Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States  

SciTech Connect

Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2013-07-01T23:59:59.000Z

176

Steam Generator Management Program: Pressurized Water Reactor Steam Generator Examination Guidelines: Revision 7  

Science Conference Proceedings (OSTI)

This report provides requirements for examination plans and processes that are necessary to meet the performance criteria set forth in the Nuclear Energy Institute (NEI) 97-06, Steam Generator Program.

2007-10-10T23:59:59.000Z

177

Intercomparison of Global Reanalyses and Regional Simulations of Cold Season Water Budgets in the Western United States  

Science Conference Proceedings (OSTI)

Estimating water budgets of river basins in the western United States is a challenge because of the effects of complex terrain and lack of comprehensive observational datasets. This study aims at comparing different estimates of cold season water ...

L. Ruby Leung; Yun Qian; Jongil Han; John O. Roads

2003-12-01T23:59:59.000Z

178

Bottom-up derivation of an effective thermostat for united atoms simulations of water  

E-Print Network (OSTI)

In this article we derive the effective pairwise interactions in a Langevin type united atoms model of water. The interactions are determined from the trajectories of a detailed molecular dynamics simulation of simple point charge water. A standard method is used for estimating the conservative interaction, whereas a new "bottom-up" method is used to determine the effective dissipative and stochastic interactions. We demonstrate that, when compared to the standard united atoms model, the transport properties of the coarse-grained model is significantly improved by the introduction of the derived dissipative and stochastic interactions. The results are compared to a previous study, where a "top-down" approach was used to obtain transport properties consistent with those of the simple point charge water model.

Eriksson, Anders; Nystrom, Johan; Tunstrom, Kolbjorn

2009-01-01T23:59:59.000Z

179

Managing Water Resource Requirements for Growing Electric Generation Demands  

Science Conference Proceedings (OSTI)

This report is a general guide to analytical techniques used to address water resource management as related to long-term sustainability planning, and short-term regulatory requirements, including total maximum daily loads, endangered species, and relicensing of hydropower facilities. The example applications presented in the report highlight the capability of the techniques, and help electric power company and government regulatory staffs identify the best approach for a specific need.

2009-12-02T23:59:59.000Z

180

Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation  

SciTech Connect

The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Large Field Erected and Packaged High Temperature Water (HTW) Generators for Coal Firing  

E-Print Network (OSTI)

The purpose of the paper is to disseminate information on the energy savings possible with High Temperature Water (HTW) for heating and industrial process application and to provide information on coal fired HTW generator design and availability.

Boushell, C. C.

1980-01-01T23:59:59.000Z

182

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, Daniel J. (Export, PA); Schrader, Kenneth J. (Penn Hills, PA); Schulz, Terry L. (Murrysville Boro, PA)

1994-01-01T23:59:59.000Z

183

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

1994-05-03T23:59:59.000Z

184

The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen  

DOE Green Energy (OSTI)

The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

2012-06-20T23:59:59.000Z

185

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

186

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

187

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

Science Conference Proceedings (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

188

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

Risk: The Treatment of Renewable Energy in Western UtilityEmerging Driver of New Renewable Generation in the WesternEnergy Efficiency and Renewable Energy (Office of Planning,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

189

Aging, Generations, and the Development of Partisan Polarization in the United States  

E-Print Network (OSTI)

Alwin, Duane F. 1994. "Aging, Personality, and SocialDuane F. Alwin. 1989. "Aging and Susceptibility to AttitudeAging, Generations, and the Development of Partisan

Stoker, Laura; Jennings, M. Kent

2006-01-01T23:59:59.000Z

190

Optimal Sizing of a Stand-alone Wind/Photovoltaic Generation Unit using Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

A hybrid wind/photovoltaic generation system is designed to supply power demand. The aim of this design is minimization of the overall cost of the generation scheme over 20 years of operation. Full demand supply is modeled as constraint for optimization ... Keywords: genetic algorithm, optimal sizing, particle swarm optimization, photovoltaic, wind energy

Ali Kashefi Kaviani; Hamid Reza Baghaee; Gholam Hossein Riahy

2009-02-01T23:59:59.000Z

191

Extreme-Value Statistics for Snowpack Water Equivalent in the Northeastern United States Using the Cooperative Observer Network  

Science Conference Proceedings (OSTI)

A procedure is developed to estimate extreme-value statistics for snowpack water equivalent (SWE) using historical snow depth measurements at cooperative observer stations in the northeastern United States. The method specifies “pseudodensities” ...

Daniel S. Wilks; Megan McKay

1996-05-01T23:59:59.000Z

192

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renewabletankless combined space/water heaterds, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.

2010-01-01T23:59:59.000Z

193

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network (OSTI)

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its associated coil and valve stem position. Thus, the non-intrusive virtual flow meter introduced in this paper provides a solution to one of the measurement barriers and challenges: a low cost, reliable energy metering system at the AHU level. Mathematical models were built and the preliminary experiments were conducted to investigate the feasibility of the virtual flow meter applications. As a result, the valve flow meter can be a cost effective means for water flow measurements at the AHU and thus provides an effective index for detecting and diagnosing the AHU operation faults.

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

194

Impact of unit commitment constraints on generation expansion planning with renewables  

E-Print Network (OSTI)

Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...

Palmintier, Bryan Stephen

195

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network (OSTI)

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

196

Integrated high speed intelligent utility tie unit for disbursed/renewable generation facilities  

Science Conference Proceedings (OSTI)

After experiencing the price hikes and rotating blackouts in California, the disbursed or distributed generation (DG) is considered as one of the most attractive alternatives for future utility industry. In addition to the conventional DG that uses fossil-fuel ...

Worakarn Wongsaichua / Wei-Jen Lee; Soontorn Oraintara

2005-01-01T23:59:59.000Z

197

Evaluation of an Ultrasonic Search Unit for Examination of Steam Generator Tube U-Bends  

Science Conference Proceedings (OSTI)

Nondestructive examination (NDE) techniques with high flaw detection probability and accurate flaw characterization are essential to perform cost effective structural integrity assessments of steam generator tubes. Such assessments are essential in assuring the integrity of the primary coolant loop. Ultrasonic examination technology has been developed and demonstrated to provide high quality results for examination of steam generator tubes. These ultrasonic techniques have been focused on straight sectio...

2004-12-03T23:59:59.000Z

198

Impacts of 1997—98 El Niño Generated Weather in the United States  

Science Conference Proceedings (OSTI)

This paper assesses the major impacts on human lives and the economy of the United States resulting from weather events attributed to El Niño 1997-98. Southern states and California were plagued by storms, whereas the northern half of the nation ...

Stanley A. Changnon

1999-09-01T23:59:59.000Z

199

Design of heat-recovery and seed-recovery units in MHD power generation  

DOE Green Energy (OSTI)

Crucial and limiting engineering and materials problems associated with the design of an MHD steam bottoming plant are discussed. Existing experimental and theoretical results on corrosion, fouling and deposits, potassium seed recovery and regeneration, are reviewed. The state of knowledge regarding the design of heat recovery and seed recovery units for coal-fired MHD plants is inadequate at the present time.

Bergman, P.D.; Joubert, J.I.; Demski, R.J.; Bienstock, D.

1974-01-01T23:59:59.000Z

200

Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States  

DOE Green Energy (OSTI)

In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

Bolinger, Mark; Wiser, Ryan

2005-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM  

E-Print Network (OSTI)

dam and the Thermalito pumped storage units in the north,This generation pumped storage, and recovery generation, (electricity demand. In a pumped-storage system, water is

Krieg, B.

2010-01-01T23:59:59.000Z

202

Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities  

Science Conference Proceedings (OSTI)

Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

C. McGowin; M. DiFilippo; L. Weintraub

2006-06-30T23:59:59.000Z

203

Methods for generating and shaping a seismic energy pulse. [Primacord explosive under water  

SciTech Connect

A straight piece of Primacord is suspended in water and detonated by a blasting cap. The primary and surface-reflected pulses are combined to shape the seismic signal by choosing the length and depth of the Primacord and the position of the blasting cap. The effects of the bubble or secondary seismic pulses are reduced because of the elongated bubbles generated.

Itria, O.A.

1975-09-30T23:59:59.000Z

204

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

DOE Green Energy (OSTI)

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

205

Land Use for Wind, Solar, and Geothermal Electricity Generation Facilities in the United States  

Science Conference Proceedings (OSTI)

This report provides data and analysis of the land use associated with utility-scale wind, photovoltaic (PV), concentrating solar power (CSP), and geothermal projects. The analysts evaluated 458 existing or proposed projects, representing (as of 2012 third quarter) 51% of installed wind capacity, 80% of PV and CSP capacity, and all known geothermal power plants in the United States. The report identifies two major land use classes: 1) direct area (land permanently or temporarily disturbed due to ...

2012-12-31T23:59:59.000Z

206

Water reuse and recycle in the US steam-electric-generating industry - an assessment of current practice and potential for future applications  

Science Conference Proceedings (OSTI)

The study assesses the current and future potential for wastewater reuse and recycle by the steam-electric-generating industry in the United States. Fifty-three power plants employing one or more of the following reuse/recycle measures were identified by a literature search and interviews with reuse/recycle experts--cascading higher-quality wastewaters to lower-quality uses, recirculating ash sluice water, using cooling tower makeup or sidestream softening, treating and reclaiming wastewaters, using dry-cooling systems, and using municipal effluents as plant-intake water. Detailed case studies were performed on eight of the 53 plants surveyed.

Breitstein, L.; Tucker, R.C.

1986-01-01T23:59:59.000Z

207

Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve  

SciTech Connect

A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

Song, Li; Wang, Gang; Brambley, Michael R.

2013-04-28T23:59:59.000Z

208

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09  

SciTech Connect

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

2009-11-25T23:59:59.000Z

209

A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation.  

Science Conference Proceedings (OSTI)

We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments.

Constantinescu, E. M; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2011-02-01T23:59:59.000Z

210

www.mdpi.com/journal/ijerph Bottled Water: United States Consumers and Their Perceptions of Water Quality  

E-Print Network (OSTI)

Abstract: Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report bottled water as their primary drinking water source when they perceive that drinking water is not safe. Furthermore, those who give lower ratings to the quality of their ground water are more likely to regularly purchase bottle water for drinking and use bottle water as their primary drinking water source.

Zhihua Hu; Lois Wright Morton; Robert L. Mahler

2011-01-01T23:59:59.000Z

211

A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION  

DOE Green Energy (OSTI)

The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

Shiao-Hung Chiang; Guy Weismantel

2004-03-01T23:59:59.000Z

212

Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect

This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.

LD Antrim; NP Kohn

2000-09-05T23:59:59.000Z

213

Summary of three regional assessment studies of solar electric generation opportunities in the Southwest, Southeast, and Northeast United States  

DOE Green Energy (OSTI)

Market opportunities for solar generation of electricity for utility and for residential/commercial/industrial applications in the Northeast, Southeast, and Southwest regions of the United States were evaluated in three studies (JBF 1979, Stone and Webster 1979a, 1979b) and are summarized. The evaluations were based on both economic analyses and user perception of what they would require to select or approve the use of solar electric generation for themselves or for their employers. Over 30 utilities and several industrial and commercial firms and homeowners were involved. Solar electric technologies considered included biomass, hybrid retrofit, OTEC, photovoltaic, solar thermal, and wind. The studies projected that solar electric technologies could account for several percent of the forecast generation in year 2000 in the Southeast and Southwest regions,and up to 10 to 20% in the Northeast region. No single solar electric technology or application (for utility or industrial/commercial/residential use) arrived earlier at economic breakeven than other technologies in the Southeast region, but wind generation for both utility and industrial applications predominated in the Northeast region. The Southwest region, in which only utility applications were considered, showed wind energy and retrofit hybrid (a solar adjunct to an existing fossil-fueled plant) to be the most likely early applications.

Watts, R.L.; Harty, H.

1981-02-01T23:59:59.000Z

214

Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures  

DOE Green Energy (OSTI)

In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

2010-10-19T23:59:59.000Z

215

Incorporating Uncertainty of Wind Power Generation Forecast into Power System Operation, Dispatch, and Unit Commitment Procedures  

Science Conference Proceedings (OSTI)

An approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. An assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty - both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures). A new method called the 'flying-brick' technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through EMS integration illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems in control rooms.

Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Huang, Zhenyu; Subbarao, Krishnappa

2011-06-23T23:59:59.000Z

216

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

217

Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature  

Open Energy Info (EERE)

content has been downloaded from IOPscience. Please scroll down to see the full text. content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 192.174.37.50 This content was downloaded on 04/11/2013 at 23:01 Please note that terms and conditions apply. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature View the table of contents for this issue, or go to the journal homepage for more 2012 Environ. Res. Lett. 7 045802 (http://iopscience.iop.org/1748-9326/7/4/045802) Home Search Collections Journals About Contact us My IOPscience IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 7 (2012) 045802 (10pp) doi:10.1088/1748-9326/7/4/045802 Operational water consumption and withdrawal factors for electricity generating technologies:

218

Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers  

SciTech Connect

Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called ``hi-pot`` (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven`s Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the ``double source`` method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

Loss, W.M.; Dietz, R.N.

1991-09-01T23:59:59.000Z

219

Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers  

SciTech Connect

Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called hi-pot'' (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven's Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the double source'' method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

Loss, W.M.; Dietz, R.N.

1991-09-01T23:59:59.000Z

220

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in their early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were modeled using the process code HYSYS; a three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor and power conversion unit by means of an intermediate heat transport loop. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative heat exchanger size and turbomachinery work were estimated for the different working fluids. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. Recommendations on the optimal working fluid for each configuration were made. The helium working fluid produced the highest overall plant efficiency for the three-shaft and reheat cycle; however, the nitrogen-helium mixture produced similar efficiency with smaller component sizes. The CO2 working fluid is recommend in the combined cycle configuration.

Barner, Robert Buckner

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optimal sizing study of hybrid wind/PV/diesel power generation unit  

Science Conference Proceedings (OSTI)

In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

2011-01-15T23:59:59.000Z

222

Estimating Water Needs to Meet 2025 Electricity Generating Capacity Forecasts by NERC Region  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL-2006/1235 NETL-2006/1235 August 2006 Revised April 8, 2008 Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

223

Bordering on Water Management: Ground and Wastewater in the United States - Mexico Transboundary Santa Cruz Basin  

E-Print Network (OSTI)

change and global water resources. Global Environmentalin Managing International Water Resources (No. WPS 1303):Darcy Lecture Tour. Ground Water, 45(4), 390-391. Sadoff,

Milman, Anita Dale

2009-01-01T23:59:59.000Z

224

Establishing a Groundwater Protection Program for New Nuclear Generating Units: Appendix to the EPRI Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

New nuclear power plants should plan for groundwater protection early in the planning process. The construction project team should be made aware of the need to establish the groundwater protection program prior to the construction planning process. This document provides guidance for establishing Groundwater Protection Programs for new nuclear generating units. It applies to new nuclear generating units on both new and existing nuclear power plant ...

2013-03-27T23:59:59.000Z

225

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

Science Conference Proceedings (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

226

Simulation System on the Thermal Stress and Fatigue Life Loss of Startup and Shutdown for a Domestic 600MW Steam Turbo Generator Unit  

Science Conference Proceedings (OSTI)

The Simulation System on the thermal stresses and fatigue life loss of the rotator during startup and shutdown for a domestic 600MW steam turbo generator unit, By means of the analysis of Simulation System on the thermal stress and life loss of the rotor, ... Keywords: steam turbine unit, thermal stress, Fatigue Life Loss, rotator, startup, shutdown

Yunchun Xia

2009-10-01T23:59:59.000Z

227

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce Operating Costs of Small Producers  

E-Print Network (OSTI)

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce produced water to create "green" electricity usable on site or for transmission off site . The goal the environmental impact by creating green electricity using produced water and no additional fossil fuel. Approach

228

WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water  

Science Conference Proceedings (OSTI)

Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

2004-11-01T23:59:59.000Z

229

Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project  

Science Conference Proceedings (OSTI)

An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation.

Wesley, D.A.; Hashimoto, P.S.

1982-04-01T23:59:59.000Z

230

Water footprint of electric power generation : modeling its use and analyzing options for a water-scarce future  

E-Print Network (OSTI)

The interdependency between water and energy, sometimes called the water-energy nexus, is growing in importance as demand for both water and energy increases. Energy is required for water treatment and supply, while virtually ...

Delgado Martín, Anna

2012-01-01T23:59:59.000Z

231

Dynamics of the Cold-Water Event off the Southeast Coast of the United States in the Summer of 2003  

Science Conference Proceedings (OSTI)

The cold-water event along the southeast coast of the United States in the summer of 2003 is studied using satellite data combined with in situ observations. The analysis suggests that the cooling is produced by wind-driven coastal upwelling, ...

Dongliang Yuan

2006-10-01T23:59:59.000Z

232

Hardware-in-the-loop simulation of pressurized water reactor steam-generator water-level control, designed for use within physically distributed testing environments.  

E-Print Network (OSTI)

??A hardware-in-the-loop model was developed to represent digital sensing and control of steam generator water-level. The model was created with an intention to serve as… (more)

Brink, Michael Joseph

2013-01-01T23:59:59.000Z

233

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

234

A new caustic process for softening produced water for steam generation  

Science Conference Proceedings (OSTI)

Oilfield produced water containing a high concentration of total dissolved solids (TDS) and hardness can successfully be softened for use as oilfield steam-generator feedwater. At the Belridge field in Kern County, CA, the combination of caustic softening and weak-acid cation exchange has been used to soften produced water containing 11,000 TDS and 550-ppm hardness to {lt}1-ppm hardness. The resultant sludge containing calcium carbonate and magnesium hydroxide is concentrated by centrifuging and is disposed of in a landfill. Compared to the use of conventional strong-acid ion exchange followed by weak acid or weak acid followed by weak-acid ion exchange systems, the process offers the benefits of lower capital and chemical costs, partial silica removal, and elimination of liquid waste discharge. This paper gives design parameters and operating conditions and discusses future applications in thermal recovery projects.

Jan, R.J.; Reed, T.G. Jr. (Mobil E and P U.S. (US))

1992-05-01T23:59:59.000Z

235

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1991  

E-Print Network (OSTI)

off tlw rocks near the water intake for the laboratory. T hthat monitors the cooling intake water for the gen- erators.of hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1992-01-01T23:59:59.000Z

236

Surface Water Temperatures At Shore Stations, United States West Coast 1980  

E-Print Network (OSTI)

has a large-volume water intake from which the daily wateroff the rocks near the water intake for the laboratory.Off rocks near water Intake for laboratory Thermograph

1981-01-01T23:59:59.000Z

237

Surface Water Temperatures, Salinities and Densities At Shore Stations, United States West Coast 1992  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. Thethat monitors the cooling intake water for the gen­ erators.of hot water is outside the bay, the intake temperatures are

Scripps Institution of Oceanography

1993-01-01T23:59:59.000Z

238

Steam Generator Management Program: Pressurized Water Reactor Generic Tube Degradation Predictions: Recirculating Steam Generators with Alloy 600TT, Alloy 690TT, and Alloy 800NG Tubing  

Science Conference Proceedings (OSTI)

Mill-annealed Alloy 600 heat transfer tubing in pressurized water reactor (PWR) steam generators (SGs) has experienced numerous modes of degradation. This report describes predictive models for determining expected tube degradation in recirculating steam generators with Alloy 600TT, Alloy 690TT, and Alloy 800NG tubing. Predictions are based on operating experience with similar designs and use improvement factors to characterize benefits resulting from SG design and material ...

2013-12-17T23:59:59.000Z

239

Generation of extreme state of water by spherical wire array underwater electrical explosion  

SciTech Connect

The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parameters of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.

Antonov, O.; Gilburd, L.; Efimov, S.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 3200 (Israel)

2012-10-15T23:59:59.000Z

240

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

D. Winiarski. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

heating appliances 3 , solar water heating, district heatingOther includes solar, wood, no heating c Electric resistance

Lekov, Alex B.

2010-01-01T23:59:59.000Z

242

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.

2010-01-01T23:59:59.000Z

243

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

244

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

NLE Websites -- All DOE Office Websites (Extended Search)

Break-even Cost for Residential Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL/TP-6A20-48986 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Prepared under Task No. SS10.2110 Technical Report

245

Jurisdictional waters of the United States Wetlands Assessment Analysis and Delineation  

E-Print Network (OSTI)

To improve and develop my professional skills, a wetland assessment and delineation was performed for Lakewood Heights, a proposed residential subdivision consisting of 133 hectares, more or less, located in northeast Harris County, Texas. The subject property was evaluated for its content of jurisdictional wetlands, based on U.S. Army corps of Engineers criteria, using interpretation of historical aerial photography, topographic maps, hydrology indicators, and data gathered from site reconnaissance activities. The identified wetland areas were delineated as accurately as possible, based on available information, and were mapped on a survey plat of the property. These areas were contrasted with surrounding uplands, which were mapped as well. Broad scale mapping of soil types by the SCS appears to have been moderately accurate. Through site reconnaissance activities, I verified the scs soil mapping, identified previously unmapped hydric soils, and evaluated and documented vegetation communities that further delineated wetland/upland boundaries. By employing the methods outlined in the 1987 Corps of Engineers Delineation manual that call for evaluations of hydric soils, hydrology indicators, and hydrophytic vegetation, I concluded that approximately 14.68 hectares of the subject property were jurisdictional wetlands. The remaining 118.32 hectares were classified as upland (non-wetland). The wetland delineations made on the subject property were approached in a conservative manner, taking into account transitional or overflow areas which are sometimes hard to define. Those areas which appeared adjacent to a saturated or inundated wetland within the same hydrologic and hydrophytic vegetation regime were included in wetland boundaries. This method of delineation, in my opinion, provides the highest reliability for, even under varying seasonal circumstances, those areas that would appear as jurisdictional waters of the United states. upon completion of the field assessment, the data were assembled into a technical report and presented to the client for his use. we discussed my findings, reviewed the methodology used to determine that wetlands did, in fact, exist on the property and examined land management options, including u.s. Army Corps of Engineers permit procedures.

Siems-Alford, Susan

1994-01-01T23:59:59.000Z

246

Probing supernova shock waves and neutrino flavor transitions in next-generation water-Cherenkov detectors  

E-Print Network (OSTI)

Several current projects aim at building a large water-Cherenkov detector, with a fiducial volume about 20 times larger than in the current Super-Kamiokande experiment. These projects include the Underground nucleon decay and Neutrino Observatory (UNO) in the Henderson Mine (Colorado), the Hyper-Kamiokande (HK) detector in the Tochibora Mine (Japan), and the MEgaton class PHYSics (MEMPHYS) detector in the Frejus site (Europe). We study the physics potential of a reference next-generation detector (0.4 Mton of fiducial mass) in providing information on supernova neutrino flavor transitions with unprecedented statistics. After discussing the ingredients of our calculations, we compute neutrino event rates from inverse beta decay ($\\bar\

G. L. Fogli; E. Lisi; A. Mirizzi; D. Montanino

2004-12-03T23:59:59.000Z

247

Water use and supply concerns for utility-scale solar projects in the Southwestern United States.  

SciTech Connect

As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations&maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO

2013-07-01T23:59:59.000Z

248

Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation  

SciTech Connect

Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

None

2010-03-01T23:59:59.000Z

249

Water bath calorimetric study of excess heat generation in 'resonant transfer' plasmas  

E-Print Network (OSTI)

Water bath calorimetry was used to demonstrate one more peculiar phenomenon associated with a certain class of mixed gas plasmas termed resonant transfer, or RT plasmas. Specifically, He/H2 (10%) (500 mTorr), Ar/H2 (10%) (500 mTorr), and H2O(g) (500 and 200 mTorr) plasmas generated with an Evenson microwave cavity consistently yielded on the order of 50% more heat than non RT plasma (controls) such as He, Kr, Kr/H2 (10%), under identical conditions of gas flow, pressure, and microwave operating conditions. The excess power density of RT plasmas was of the order 10 W / cm-3. In earlier studies with these same RT plasmas it was demonstrated that other unusual features were present including dramatic broadening of the hydrogen Balmer series lines, unique vacuum ultraviolet (VUV) lines, and in the case of water plasmas, population inversion of the hydrogen excited states. Both the current results and the earlier results are completely consistent with the existence of a hitherto unknown exothermic chemical reaction, such as that predicted by Mills, occurring in RT plasmas.

J. Phillips; R. L. Mills; X. Chen

2004-01-26T23:59:59.000Z

250

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

251

1052 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 2, MAY 2010 Co-Optimization of Generation Unit Commitment  

E-Print Network (OSTI)

grid controllability: to make better use of the existing system and meet growing demand with existing element , state . Maximum ramp up rate for generator . Maximum ramp down rate for generator . Maximum shutdown ramp rate for generator . Maximum startup ramp rate for generator . Number of periods. , Max

Oren, Shmuel S.

252

Method and apparatus for set point control for steam temperatures for start-up of the turbine and steam generator in unit power plants  

SciTech Connect

A method and apparatus are described for controlling the set point for steam temperatures for cold start-up of a steam generator-turbine unit wherein inlet steam temperature and turbine load absorption are steadily and substantially simultaneously increased in accordance with a predetermined relationship so as to reach their final values substantially synchronously.

Bloch, H.; Salm, M.

1978-05-23T23:59:59.000Z

253

Laser-driven shock experiments in pre-compressed water: Implications for magnetic field generation in Icy Giant planets  

SciTech Connect

Laser-driven shock compression of pre-compressed water (up to 1 GPa precompression) produces high-pressure, -temperature conditions in the water inducing two optical phenomena: opacity and reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semi-conductor to electronic conductor transition in water and is found at pressures above {approx}130 GPa for single-shocked samples pre-compressed to 1 GPa. This electronic conduction provides an additional contribution to the conductivity required for magnetic field generation in Icy Giant planets like Uranus and Neptune.

Lee, K; Benedetti, L R; Jeanloz, R; Celliers, P M; Eggert, J H; Hicks, D G; Moon, S J; Mackinnon, A; Henry, E; Koenig, M; Benuzzi-Mounaix, A; Collins, G W

2005-11-10T23:59:59.000Z

254

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

255

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

256

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

257

Comparison of energy storage systems in the United States chilled water versus two types of ice storage systems  

DOE Green Energy (OSTI)

Current US production non-storage heat pumps are compared to heat pumps using stored hot water and stored chilled water and to heat pumps using ice-on-coils as a means of using latent heat of fusion of water as a heat source. This equipment is also used as a means of stored cooling for air conditioning during hot weather. An ice-making heat pump which harvests ice as sheets of ice 3 to 4 times per hour and stores the ice in a large inexpensive bin is discussed. The advantages of such an ice-making heat pump to heat in cold weather and cool in hot weather is discussed as it relates to Electric Utility load management in different parts of the United States.

Fischer, H.C.

1984-01-01T23:59:59.000Z

258

Comparison of Advanced Residential Water Heating Technologies in the United States  

SciTech Connect

Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

Maguire, J.; Fang, X.; Wilson, E.

2013-05-01T23:59:59.000Z

259

Water | OpenEI  

Open Energy Info (EERE)

Water Water Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

260

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

DOE Green Energy (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA)

snpt3wa371 1,097 9,241 96.2 BWR Columbia Generating Station Unit Type Data for 2010 BWR = Boiling Water Reactor. Note: Totals may not equal sum of components due to ...

262

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA)

snpt3ks210 1,160 9,556 94.0 PWR Wolf Creek Generating Station Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not ...

263

Steam generator replacement overview  

Science Conference Proceedings (OSTI)

Since nuclear power began to be widely used for commercial purposes in the 1960s, unit operators have experienced a variety of problems with major components. Although many of the problems have diminished considerably, those associated with pressurized water reactor (PWR) steam generators persist. Steam generator problems rank second, behind refueling outages, as the most significant contributor to lost electricity generation. As of December 31, 1995, 38 steam generators had been replaced in 13 of the 72 operating PWRs, and three units had been shut down prematurely, due primarily (or partially) to degradation of their steam generators: Portland General Electric`s Trojan unit, located in Prescott, OR, in 1992; Southern California Edison`s San Onofre 1, located in San Clemente, CA, in 1992; and Sacramento Municipal Utility District`s Rancho Seco unit in 1989. In the coming years, operators of PWRs in the US with degraded steam generators will have to decide whether to make annual repairs (with eventual derating likely), replace the generators or shut the plants down prematurely. To understand the issues and decisions utility managers face, this article examines problems encountered at steam generators over the past few decades and identifies some of the remedies that utility operators and the nuclear community have employed, including operational changes, maintenance, repairs and steam generator replacement.

Chernoff, H. [Science Applications International Corp., McLean, VA (United States); Wade, K.C. [USDOE Energy Information Administration, Washington, DC (United States)

1996-01-01T23:59:59.000Z

264

Regional Variation in Residential Heat Pump Water Heater Performance in the United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Regional Variation in Residential Heat Pump Water Heater Performance in the US Jeff Maguire 4/30/13 Outline * Why HPWHs? * US Water Heating Market * Overview of HPWHs * Model Description * Results o HPWH Performance o Energy Savings Potential o Breakeven Cost 2 Heat Pump Water Heaters Save $300 a year over standard electric? Save $100 a year over standard gas? Heat Pump Electric Gas 3 Questions about HPWHs * Are HPWHs a good replacement for typical gas and electric storage water heaters? o In different locations across the country? o In conditioned/unconditioned space? o Source energy savings?

265

A Simple Method for Specifying Snowpack Water Equivalent in the Northeastern United States  

Science Conference Proceedings (OSTI)

Statistical regression models were developed to estimate snowpack water equivalent (SWE) using only meteorological variables available at National Co-operative Observer Program (co-op) sites. These include the square root of snow depth, the ...

D. Samelson; D. S. Wilks

1993-05-01T23:59:59.000Z

266

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

DOE Green Energy (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

267

Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering  

Science Conference Proceedings (OSTI)

We have formed a laser-induced plasma (LIP) in supercritical water (SCW) and studied associated molecular vibrations using spectroscopic methods. The accompanying forward and backward stimulated Raman scattering (SRS) of water molecules showed anisotropic behavior at supercritical conditions (>647 K and >22.1 MPa). The Raman shift of the backward SRS indicated that attractive interactions between water molecules and excess electrons generated by the LIP were dominant in the SCW. The backward SRS spectrum provided a microscopic view of the hydration environment around an excess electron, which is useful for controlling electron-driven chemical reactions and materials processing in SCW.

Yui, Hiroharu [Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjyuku-ku, Tokyo 162-8601 (Japan); PRESTO-JST, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075 (Japan); Tomai, Takaaki; Sawada, Masayoshi; Terashima, Kazuo [Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan)

2011-08-29T23:59:59.000Z

268

On the Potential Change in Surface Water Vapor Deposition over the Continental United States due to Increases in Atmospheric Greenhouse Gases  

Science Conference Proceedings (OSTI)

Characteristics of surface water vapor deposition (WVD) over the continental United States under the present climate and a future climate scenario reflecting the mid-twenty-first-century increased greenhouse gas concentrations were evaluated by ...

Zaitao Pan; Moti Segal; Charles Graves

2006-04-01T23:59:59.000Z

269

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity  

E-Print Network (OSTI)

, and the results were quantified using a Live/DeadTM cell assay. This work is a preliminary study cell line (RTgill-W1)--towards water toxicity testing Tomasz Glawdel,a Caglar Elbuken,a Lucy E. J. Leeb that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill

Le Roy, Robert J.

270

Data Quality Evaluation of Hazardous Air Pollutants Measurements for the US Environmental Protection Agency's Electric Utility Steam Generating Units Information Collection Request  

Science Conference Proceedings (OSTI)

In December 2009, the U.S. Environmental Protection Agency (EPA) issued an Information Collection Request (ICR) to owners of fossil fuel-fired, electric steam generating units. Part III of the ICR required that almost 500 selected power plant stacks be tested for emissions of four groups of substances classified as hazardous air pollutants under the Clean Air Act: acid gases and hydrogen cyanide; metals; volatile and semivolatile organics; and polychlorinated dibenzodioxins, dibenzofurans, and polychlori...

2010-12-18T23:59:59.000Z

271

Definition: British thermal unit | Open Energy Information  

Open Energy Info (EERE)

thermal unit thermal unit Jump to: navigation, search Dictionary.png British thermal unit The amount of heat required to raise the temperature of one pound of water one degree Fahrenheit; often used as a unit of measure for the energy content of fuels.[1][2] View on Wikipedia Wikipedia Definition The British thermal unit (BTU or Btu) is a traditional unit of energy equal to about 1055 joules. It is the amount of energy needed to cool or heat one pound of water by one degree Fahrenheit. In scientific contexts the BTU has largely been replaced by the SI unit of energy, the joule. The unit is most often used as a measure of power (as BTU/h) in the power, steam generation, heating, and air conditioning industries, and also as a measure of agricultural energy production (BTU/kg). It is still used

272

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

SciTech Connect

This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

Cassard, H.; Denholm, P.; Ong, S.

2011-02-01T23:59:59.000Z

273

Seasonal Climate Forecasts and Water Management for Steam-Electric Generation  

Science Conference Proceedings (OSTI)

A water demand model for electricity production is presented which estimates the variability of water demand for energy production as a function of climate, especially temperature. The model incorporates the effects of temperature on both ...

Noel P. Greis

1982-12-01T23:59:59.000Z

274

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie...

275

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents (OSTI)

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

276

Shallow water numerical model of the wave generated by the Vajont landslide  

Science Conference Proceedings (OSTI)

On October 9th 1963 a huge landslide fell into the Vajont artificial reservoir in Northern Italy, and displaced the water which overtopped the dam and produced a destructive wave that inundated the valley causing about 2000 casualties and complete devastation. ... Keywords: Finite volume scheme, Moving boundary condition, Numerical model, Shallow water equations, Vajont landslide

Silvia Bosa; Marco Petti

2011-04-01T23:59:59.000Z

277

Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters and Sediment Near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect

This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.

LD Antrim; NP Kohn

2000-09-06T23:59:59.000Z

278

Water Reactor Chemical Volume and Control System and Steam Generator Blowdown Resins and Filters Sourcebook: 2013 Edition  

Science Conference Proceedings (OSTI)

An understanding of ion exchange practices within the industry for the removal of soluble and insoluble contaminants and filtration practices for the removal of insoluble contaminants is important for providing insight into beneficial practices as well as conditions to avoid. This report includes information on system descriptions, system operating practices, resins, and filters used in pressurized water reactor (PWR) chemical volume and control, makeup purification, and steam generator blowdown ...

2013-08-23T23:59:59.000Z

279

Water-related constraints to the development of geothermal electric generating stations  

DOE Green Energy (OSTI)

The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

1981-06-01T23:59:59.000Z

280

Performance of an air-cooled ammonia-water absorption air conditioner at low generator temperatures  

DOE Green Energy (OSTI)

An ammonia--water absorption air conditioning system has been tested to investigate the stability of operation near the cut-off conditions. Circulation ratios were from 8 to 30. Relations for the estimation of the coefficient of performance and for the prediction of operating temperatures were derived and verified experimentally. Possible operating conditions for an air-cooled ammonia--water air conditioning system were concluded.

Dao, K.; Simmons, M.; Wolgast, R.; Wahlig, M.

1976-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

282

Steam Generating Units (duct burners) 40 CFR Part 60 Subpart GG- Standards of Performance for Stationary Gas Turbines  

E-Print Network (OSTI)

For nitrogen oxides has been determined to be selective catalytic reduction. l As authorized by the Northwest Clean Air Agency Regulation Section 300, this order is issued subject to the following restrictions and conditions: 1) The gas turbines shall burn either pipeline natural gas, or number 2 distillate oil with a sulfur content not to exceed 0.05 weight percent. The HRSG duct burners shall burn only pipeline natural gas. 2) Pollutant concentrations for each gas turbinelheat recovery steam generator stack shall not exceed the following:

unknown authors

2007-01-01T23:59:59.000Z

283

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network (OSTI)

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz windows. High speed movies, detailed data for fuel line pressures and needle lift signals were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base case conditions (50% by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m'), the break-up time was 0.30 msec. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the base case conditions, the spray tip penetration and initial jet velocity were 15% greater for coal water slurry than for diesel fuel or water. Results of this research and the correlation are specific to the tested coal-water slurry.

Payne, Stephen Ellis

1993-01-01T23:59:59.000Z

284

A compact generator based on Tesla transformer and water pulsed forming line for POS application  

Science Conference Proceedings (OSTI)

A compact generator based on Tesla transformer for application in plasma opening switch has been developed. This system will be used to produce microwave for plasma-microwave interaction studies. Overall dimension of this system is 6 feet by 4 feet. ...

Rajesh Kumar; Jignesh Patel; V. P. Anitha; Anurag Shyam

2011-02-01T23:59:59.000Z

285

Determination of Applicability of EDF Steam Generator Monitoring Algorithm to Pressurized Water Reactors Worldwide  

Science Conference Proceedings (OSTI)

This report documents work undertaken by the Electric Power Research Institute (EPRI) and Electricité de France (EDF) to determine the applicability of an EDF technique that estimates the level of deposit buildup on the steam generator's (SG's) tube support plates (TSPs) to plants worldwide.

2010-12-23T23:59:59.000Z

286

Capstone C60 Microturbine as a Water Heater and Standby Generator: Installation at Tomoka Correctional Institution  

Science Conference Proceedings (OSTI)

A Capstone C60 microturbine and matched Unifin heat recovery heat exchanger were installed as a water heater in the laundry of the Tomoka Correctional Institution in Daytona, Florida. This report chronicles the design, installation, and early operations of the project.

2005-03-29T23:59:59.000Z

287

Vorticity Generation in the Shallow-Water Equations as Applied to Hydraulic Jumps  

Science Conference Proceedings (OSTI)

The authors attempt to find a bridge between the vorticity dynamics of a finite cross-stream length hydraulic jump implied by the Navier-Stokes equations and that given by the shallow-water approximation (SWA) with the turbulence of the hydraulic ...

Richard Rotunno; Piotr K. Smolarkiewicz

1995-02-01T23:59:59.000Z

288

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network (OSTI)

parabolic solar troughs. A flow control valve adjustable for temperature and pressure, allowed the pressure within the troughs to build, thus increasing the boiling point of the water. At a temperature greater that was positioned at the focal point of sunlight within an 8 foot, 9 inch parabolic dish. The flash evaporation

Wu, Mingshen

289

DESTRUCTIVE EXAMINATION OF 3-CYCLE LWR (LIGHT WATER REACTOR) FUEL RODS FROM TURKEY POINT UNIT 3 FOR THE CLIMAX - SPENT FUEL TEST  

DOE Green Energy (OSTI)

The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reator fuel rods with similar burnups (28 GWd/MTU) and operating histories.

ATKIN SD

1981-06-01T23:59:59.000Z

290

Evaluation of the Submerged Demineralizer System (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station  

Science Conference Proceedings (OSTI)

This report discusses the Submerged Demineralizer System (SDS) flowsheet for decontamination of the high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station was evaluated at Oak Ridge National Laboratory in a study that included filtration tests, ion exchange column tests, and ion exchange distribution tests. The contaminated waters, the SDS flowsheet, and the experiments made are described. The experimental results were used to predict the SDS performance and to indicate potential improvements.

Campbell, D.O., Collins, E.D., King, L.J., Knauer, J.B.

1980-07-01T23:59:59.000Z

291

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

292

High Resolution DEM Generated from LiDAR Data for Water Respurce Management”, Monash university  

E-Print Network (OSTI)

Terrain patterns play an important role in determining the nature of water resources and related hydrological modelling. Digital Elevation Models (DEMs), offering an efficient way to represent ground surface, allow automated direct extraction of hydrological features (Garbrecht and Martz, 1999), thus bringing advantages in terms of processing efficiency, cost effectiveness, and accuracy assessment, compared with traditional methods based on topographic maps, field surveys, or photographic interpretations. However, researchers have found that DEM quality and resolution affect the accuracy of any extracted hydrological features (Kenward et al., 2000). Therefore, DEM quality and resolution must be specified according to the nature

X. j. Peterson

2006-01-01T23:59:59.000Z

293

Toward a simple molecular understanding of sum frequency generation at air-water interfaces  

Science Conference Proceedings (OSTI)

Second-order vibrational spectroscopies successfully isolate signals from interfaces, but they report on intermolecular structure in a complicated and indirect way. Here we adapt a perspective on vibrational response developed for bulk spectroscopies to explore the microscopic fluctuations to which sum frequency generation (SFG), a popular surface-specific measurement, is most sensitive. We focus exclusively on inhomogeneous broadening of spectral susceptibilities for OH stretching of HOD as a dilute solute in D{sub 2}O. Exploiting a simple connection between vibrational frequency shifts and an electric field variable, we identify several functions of molecular orientation whose averages govern SFG. The frequency-dependence of these quantities is well captured by a pair of averages, involving alignment of OH and OD bonds with the surface normal at corresponding values of the electric field. The approximate form we obtain for SFG susceptibility highlights a dramatic sensitivity to the way a simulated liquid slab is partitioned for calculating second-order response.

Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.

2009-01-13T23:59:59.000Z

294

Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D  

SciTech Connect

RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.

Cliff B. Davis

2010-09-01T23:59:59.000Z

295

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report  

Science Conference Proceedings (OSTI)

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.

Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

2009-07-22T23:59:59.000Z

296

THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES  

SciTech Connect

This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

Ashish Gupta

2003-01-15T23:59:59.000Z

297

Selenide isotope generator for the Galileo Mission: copper/water axially-grooved heat pipe topical report  

SciTech Connect

This report presents a summary of the major accomplishments for the development, fabrication, and testing of axially-grooved copper/water heat pipes for Selenide Isotopic Generator (SIG) applications. The early development consisted of chemical, physical, and analytical studies to define an axially-grooved tube geometry that could be successfully fabricated and provide the desired long term (up to seven years) performance is presented. Heat pipe fabrication procedures, measured performance and accelerated life testing of heat pipes S/Ns AL-5 and LT-57 conducted at B and K Engineering are discussed. S/N AL-5 was the first axially-grooved copper/water heat pipe that was fabricated with the new internal coating process for cupric oxide (CuO) and the cleaning and water preparation methods developed by Battelle Columbus Laboratories. Heat pipe S/N LT-57 was fabricated along with sixty other axially-grooved heat pipes allocated for life testing at Teledyne Energy Systems. As of June 25, 1979, heat pipes S/Ns AL-5 and LT-57 have been accelerated life tested for 13,310 and 6,292 respectively, at a nominal operating temperature of 225/sup 0/C without any signs of thermal performance degradation. (TFD)

Strazza, N.P.

1979-06-30T23:59:59.000Z

298

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

299

Removal of Filter Cake Generated by Manganese Tetraoxide Water-based Drilling Fluids  

E-Print Network (OSTI)

Three effective solutions to dissolve the filter cake created by water-based drilling fluids weighted with Mn3O4 particles were developed. Hydrochloric acid at concentration lower than 5 wt% can dissolve most of Mn3O4-based filter cake. Dissolving the filter cake in two-stage treatment of enzyme and organic acid was effective and eliminated the associated drawbacks of using HCl. Finally, combining low and safe concentration of HCl with an organic acid in one-stage treatment was very effective. Hydrochloric acid (10-wt%) dissolved 78 wt% of Mn3O4-based filter cake at 250°F after 28 hours soaking time. However, Chlorine gas was detected during the reaction of 5 to 15-wt% HCl with Mn3O4 particles. At 190°F, 1- and 4-wt% HCl dissolved most Mn3O4 particles (up to 70-wt% solubility). Their reactions with Mn3O4 particles followed Eq. 8 at 190°F, which further confirmed the absence of chlorine gas production at HCl concentrations lower than 5-wt%. EDTA and DTPA at high pH (12) and acetic, propionic, butyric, and gluconic acids at low pH (3-5) showed very low solubilities of Mn3O4 particles. GLDA, citric, oxalic, and tartaric acids produced large amount of white precipitation upon the reactions with Mn3O4 particles. Similarly, DTPA will produce damaging material if used to dissolve Mn3O4-based filter cake in sandstone formation. At 4-wt% acid concentration, lactic, glycolic, and formic acids dissolved Mn3O4 particles up to 76 wt% solubility at 190°F. Malonic acid at lower concentration (2-wt%) dissolved 54 wt% of Mn3O4 particles at 190°F. Manganese tetraoxide particles were covered with polymeric material (starch), which significantly reduced the solubility of filter cake in organic acids. Therefore, there was a need to remove Mn3O4-based filter cake in two-stage treatment. Enzyme-A (10-wt%) and Precursor of lactic acid (12.5-wt%) dissolved 84 wt% of the filter cake. An innovative approach led to complete solubility of Mn3O4 particles when low and safe concentration of HCl (1-wt%) combined with 4-wt% lactic acid at 190°F. HCl (1-wt%) combined with lactic acid (4-wt%), dissolved 85 wt% of the Mn3O4-based filter cake after 18-22 hours soaking time at 250°F in one stage treatment.

Al Mojil, Abdullah Mohammed A.

2010-08-01T23:59:59.000Z

300

RPSEA 08123-10 Final Report Signature RPSEA Final Report Electrical Power Generation from Produced Water: Field  

NLE Websites -- All DOE Office Websites (Extended Search)

RPSEA 08123-10 Final Report Signature RPSEA 08123-10 Final Report Signature RPSEA Final Report Electrical Power Generation from Produced Water: Field Demonstration for Ways to Reduce Operating Costs for Small Producers Project: 08123-10 April 30, 2012 Loy Sneary, President Robin Dahlheim, Sales Gulf Coast Green Energy 1801 7th St, Ste 230 Bay City, TX 77414 RPSEA 08123-10 Final Report Signature LEGAL NOTICE This report was prepared by Gulf Coast Green Energy as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of any of the entities: MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED WITH RESPECT TO

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets  

SciTech Connect

A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

2013-02-12T23:59:59.000Z

302

Framework to Evaluate Water Demands and Availability for Electrical Power Production Within Watersheds Across the United States: Dev elopment and Applications  

Science Conference Proceedings (OSTI)

A framework to evaluate the water resources available to sustain present and projected electrical power production is under development and has been applied to four case studies around the United States. Those case studies are: the Lower Coosa River Basin (AL), the Muskingum River Basin (OH), the San Juan River Basin (CO, UT, AZ, NM), and the Platte River Basin (NE, CO, WY). The river basins were chosen for the case studies because of the difference among these basins, including climatic conditions, wate...

2005-12-12T23:59:59.000Z

303

Engineering design construction and testing of a salt-water absorption unit optimized for use with a solar collector heat source  

DOE Green Energy (OSTI)

The development of a 3 ton direct evaporatively cooled LiBr chiller and the construction of three operable field test units suitable for use with flat plate collectors is reported. Compared to conventional LiBr chillers using shell and tube heat exchangers and a separate cooling tower this approach aims to reduce first cost, installation cost and parasitic power. The unit is packaged into a size approximately 94 cm square and 2 meters tall. It produces 7.2/sup 0/C (45F) chilled water with a .72 COP when fired with 89.4/sup 0/C (193F) hot water while rejecting heat to 25.6/sup 0/C (78F) wb ambient air. Power to operate the condenser fan, solution pump and surface wetting pump is 450 watts. This unit deals with water freezing by making the sump and wetting pump freeze resistant so that seasonal draining is not required. Low heat flux through the wetted surfaces yields performance insensitivity to the accumulation of scale.

Ferguson, T.; Merrick, R.H.

1979-03-01T23:59:59.000Z

304

Steam Generator Management Program: Flaw Tolerance Evaluation of the Steam Generator Channel Head  

Science Conference Proceedings (OSTI)

 Indications have previously been reported in the steam generator divider plate at operating plants outside the United States. The function of the divider plate in most steam generators is to separate the cold and hot legs of the channel head as the primary water enters the steam generator so that the primary coolant flows up into the tubes. As such, the divider plate is not considered a primary pressure ...

2013-04-25T23:59:59.000Z

305

Base unit definitions: Kilogram  

Science Conference Proceedings (OSTI)

... Unit of mass (kilogram), Abbreviations: CGPM, CIPM, BIPM. At the end of the 18th century, a kilogram was the mass of a cubic decimeter of water. ...

306

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

that do not contain a storage tank. The water is only heated as it passes through the heat exchanger. 3Use of a water heater for another housing unit also includes the use of...

307

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

that do not contain a storage tank. The water is only heated as it passes through the heat exchanger. 4Use of a water heater for another housing unit also includes the use of...

308

Atmospheric Water Vapor Transport in NCEP–NCAR Reanalyses: Comparison with River Discharge in the Central United States  

Science Conference Proceedings (OSTI)

The authors extract the water transport produced by the National Centers for Environmental Prediction reanalysis for a 10-yr period, 1984–93, and compare its convergence into two river basins with an independent dataset, river discharge (...

William J. Gutowski Jr.; Yibin Chen; Zekai Ötles

1997-09-01T23:59:59.000Z

309

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

Science Conference Proceedings (OSTI)

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19T23:59:59.000Z

310

Water  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's commitment to develop and deploy clean, domestic power generation from hydropower, waves, and tides.

311

Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 8  

SciTech Connect

This study`s objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care.

Schulz, R.K. [California Univ., Los Angeles, CA (United States); Ridky, R.W. [Maryland Univ., College Park, MD (United States). Dept. of Geology; O`Donnell, E. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-04-01T23:59:59.000Z

312

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

313

A Critique of the Climatic Record of “Water Equivalent of Snow on the Ground” in the United States  

Science Conference Proceedings (OSTI)

The water equivalent of snow on the ground (SWE) has been measured daily since 1952 at National Weather Service first-order stations whenever snow depth exceeded 5 cm (2 in). These data are used in snowmelt analyses, snow climatology, and snow ...

Thomas W. Schmidlin

1990-11-01T23:59:59.000Z

314

united stadium. united station.  

E-Print Network (OSTI)

??DC United is one of Major League Soccerâs most decorated franchises, yet it still plays its home games within the crumbling confines of RFK Stadium.… (more)

Groff, David R.

2011-01-01T23:59:59.000Z

315

C. A. La Electricidad de Caracas: Feasibility-study definitional report. Arreciffs Units 1 through 5 repowering project, electric power generation expansion Venezuela thermal power plant. Export trade information  

SciTech Connect

C.A. La Electricidad de Caracas (E.de C.) is a private company which in 1991 served some 830,000 customers in an area of 4,160 square kilometers surrounding Caracas. A program is underway by E.de C. for upgrading equipment and expanding the capacity of several of its existing generating facilities. The Arrecifes repowering project will involve the addition of about 330 MW of new natural gas fired gas turbine generators and heat recovery steam generators (HRSGs) to five existing thermal power units built 30 to 40 years ago which have steam turbine generator sets of 26 to 41 MW each. The existing steam boilers will be removed. The limited but seemingly sufficient space available is to be a primary focus of the feasibility study.

Not Available

1991-05-01T23:59:59.000Z

316

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

Dave Stecher; Katherine Allison; In Paper; Dave Stecher; Katherine Allison

2012-01-01T23:59:59.000Z

317

Steam Generator Management Program: Effects of Different pH Control Agents on Pressurized Water Reactor Plant Systems and Components  

Science Conference Proceedings (OSTI)

Corrosion of materials in the condensate, feedwater, and drain systems of PWRs generates a significant amount of corrosion products in the secondary cycle. These corrosion products are generally transported into the steam generators and deposit on tubing surfaces, tubesheets, and tube support plates. Increased corrosion results in elevated levels of undesired corrosion products being deposited into the steam generators. To minimize corrosion of the secondary system components, control of pH in the second...

2009-12-04T23:59:59.000Z

318

Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator  

DOE Green Energy (OSTI)

Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

2012-01-26T23:59:59.000Z

319

Texas Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

coil hot water storage tank, a backup instantaneous electric water heater, a hydronic fan coil unit for space heating, and an efficient plumbing manifold for domestic hot water...

320

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

Science Conference Proceedings (OSTI)

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Results of Water and Sediment Toxicity Tests and Chemical Analyses Conducted at the Central Shops Burning Rubble Pit Waste Unit, January 1999  

SciTech Connect

The Central Shops Burning Rubble Pit Operable Unit consists of two inactive rubble pits (631-1G and 631-3G) that have been capped, and one active burning rubble pit (631-2G), where wooden pallets and other non-hazardous debris are periodically burned. The inactive rubble pits may have received hazardous materials, such as asbestos, batteries, and paint cans, as well as non-hazardous materials, such as ash, paper, and glass. In an effort to determine if long term surface water flows of potentially contaminated water from the 631-1G, 631-3G, and 631-2G areas have resulted in an accumulation of chemical constituents at toxic levels in the vicinity of the settling basin and wetlands area, chemical analyses for significant ecological preliminary constituents of concern (pCOCs) were performed on aqueous and sediment samples. In addition, aquatic and sediment toxicity tests were performed in accordance with U.S. EPA methods (U.S. EPA 1989, 1994). Based on the results of the chemical analyses, unfiltered water samples collected from a wetland and settling basins located adjacent to the CSBRP Operable Unit exceed Toxicity Reference Values (TRVs) for aluminum, barium, chromium, copper, iron, lead, and vanadium at one or more of the four locations that were sampled. The water contained very high concentrations of clay particles that were present as suspended solids. A substantial portion of the metals were present as filterable particulates, bound to the clay particles, and were therefore not biologically available. Based on dissolved metal concentrations, the wetland and settling basin exceeded TRVs for aluminum and barium. However, the background reference location also exceeded the TRV for barium, which suggests that this value may be too low, based on local geochemistry. The detection limits for both total and dissolved mercury were higher than the TRV, so it was not possible to determine if the TRV for mercury was exceeded. Dissolved metal levels of chromium, copper, iron, lead and vanadium were below the TRVs. Metal concentrations in the sediment exceeded the TRVs for arsenic, chromium, copper, and mercury but not for antimony and lead. The results of the water toxicity tests indicated no evidence of acute toxicity in any of the samples. The results of the chronic toxicity tests indicated possible reproductive impairment at two locations. However, the results appear to be anomalous, since the toxicity was unrelated to concentration, and because the concentrations of pCOCs were similar in the toxic and the non-toxic samples. The results of the sediment toxicity tests indicated significant mortality in all but one sample, including the background reference sediment. When the results of the CSBRP sediment toxicity tests were statistically compared to the result from the background reference sediment, there was no significant mortality. These results suggest that the surface water and sediment at the CSBRP Operable Unit are not toxic to the biota that inhabit the wetland and the settling basin.

Specht, W.L.

1999-06-02T23:59:59.000Z

322

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

323

United Mechanisms for the Generation of Low- and High-Frequency Tropical Waves. Part I: Control Experiments with Moist Convective Adjustment  

Science Conference Proceedings (OSTI)

To examine several mechanisms for the generation of low- and high-frequency tropical waves, numerical experiments are conducted using an idealized nine-level R21 spectral model with the original scheme of moist convective adjustment (MCA). The ...

Y. Hayashi; D. G. Golder

1997-05-01T23:59:59.000Z

324

CFD Predictions of Severe Accident Steam Generator Flows in a 1/7. Scale Pressurized Water Reactor  

SciTech Connect

Computational Fluid Dynamics (CFD) is applied to steam generator inlet plenum mixing as part of a larger plan covering steam generator tube integrity. The technique is verified by comparing predicted results with severe accident natural circulation data from a 1/7. scale Westinghouse facility. This exercise demonstrates that the technique can predict the natural circulation and mixing phenomena relevant to steam generator tube integrity issues. The model includes primary side flow paths for a single hot leg and steam generator. Qualitatively, the experimentally observed flow phenomena are predicted. The paths of the natural circulation flows and the relative flow proportions are correctly predicted. Quantitatively, comparisons are made with temperatures, mass flows, and other parameters. All predictions are generally within 10% of the experimental values. Overall, there is a high degree of confidence in the CFD technique for prediction of the relevant flow phenomena associated with this type of severe accident sequence. (authors)

Boyd, Christopher; Hardesty, Kelly [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2002-07-01T23:59:59.000Z

325

Water Resource Trends and Implications for the Electric Power Industry  

Science Conference Proceedings (OSTI)

Water resources, both surface and groundwater, are subject to significant variation and change with respect to volume, flow, and quality. This report evaluates observed water resource trends within the United States and their implications for electric power generation. The report also addresses how individual companies have responded to these changes. The report will be of value to environment, generation, and planning managers within power companies, government agencies, and water resource stakeholders ...

2010-12-23T23:59:59.000Z

326

The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission  

Science Conference Proceedings (OSTI)

The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, ...

J. Fishman; L. T. Iraci; J. Al-Saadi; K. Chance; F. Chavez; M. Chin; P. Coble; C. Davis; P. M. DiGiacomo; D. Edwards; A. Eldering; J. Goes; J. Herman; C. Hu; D. J. Jacob; C. Jordan; S. R. Kawa; R. Key; X. Liu; S. Lohrenz; A. Mannino; V. Natraj; D. Neil; J. Neu; M. Newchurch; K. Pickering; J. Salisbury; H. Sosik; A. Subramaniam; M. Tzortziou; J. Wang; M. Wang

2012-10-01T23:59:59.000Z

327

Solving Unit Commitment by a Unit Decommitment Method  

E-Print Network (OSTI)

demand, and operating constraints such as spinning reserve requirements, over a short time horizon of power unit i is generating in time period t pmin i pmax i : minimum maximum rated capacity of unit i rmax i : maximum reserve for unit i ripit : reserve available from unit i in time period t minrmax i

328

LEGAL ISSUES FOR MARKET FINANCING OF CALIFORNIA WATER In part, this study investigates market methods for generating revenues for water resource system  

E-Print Network (OSTI)

. The energy crisis of the 1970's triggered the downfall of natural gas regulation. Regulators and industry from the natural gas and electric industries where de-coupling has taken place, and the last section UTILITIES Similar to the natural gas and electricity industries, California's water supply system can

Lund, Jay R.

329

Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants  

DOE Green Energy (OSTI)

Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

Douglas G. Hall

2006-01-01T23:59:59.000Z

330

Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Timothy Norman (Primary Contact), Monjid Hamdan Giner, Inc. (formerly Giner Electrochemical Systems, LLC) 89 Rumford Avenue Newton, MA 02466 Phone: (781) 529-0556 Email: tnorman@ginerinc.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001486 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Detail design and demonstrate subsystems for a unitized * electrolyzer system for residential refueling at 5,000 psi to meet DOE targets for a home refueling appliance (HRA) Fabricate and demonstrate unitized 5,000 psi system * Identify and team with commercialization partner(s) * Technical Barriers

331

Experiments on interactions between zirconium-containing melt and water (ZREX): Hydrogen generation and chemical augmentation of energetics  

DOE Green Energy (OSTI)

The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available.

Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S. [Nuclear Regulatory Commission, Washington, DC (United States)

1997-08-01T23:59:59.000Z

332

Evaluation and Uncertainty Estimation of NOAA/NSSL Next-Generation National Mosaic Quantitative Precipitation Estimation Product (Q2) over the Continental United States  

Science Conference Proceedings (OSTI)

Quantitative precipitation estimation (QPE) products from the next-generation National Mosaic and QPE system (Q2) are cross-compared to the operational, radar-only product of the National Weather Service (Stage II) using the gauge-adjusted and ...

Sheng Chen; Jonathan J. Gourley; Yang Hong; P. E. Kirstetter; Jian Zhang; Kenneth Howard; Zachary L. Flamig; Junjun Hu; Youcun Qi

2013-08-01T23:59:59.000Z

333

JMLUnit: the next generation  

Science Conference Proceedings (OSTI)

Designing unit test suites for object-oriented systems is a painstaking, repetitive, and error-prone task, and significant research has been devoted to the automatic generation of test suites. One method for generating unit tests is to use formal class ...

Daniel M. Zimmerman; Rinkesh Nagmoti

2010-06-01T23:59:59.000Z

334

Operational water consumption and withdrawal factors for electricity  

Open Energy Info (EERE)

4047 4047 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142254047 Varnish cache server Operational water consumption and withdrawal factors for electricity generating technologies Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available.

335

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

336

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

337

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

338

Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen  

DOE Green Energy (OSTI)

Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

Ruiz, R.

1997-12-01T23:59:59.000Z

339

Water and Sustainability (Volume 4): U.S. Electricity Consumption for Water Supply and Treatment -- The Next Half Century  

Science Conference Proceedings (OSTI)

The fast growing demand for clean, fresh water -- coupled with the need to protect and enhance the environment -- has made many areas of the United States and the rest of the world vulnerable to water shortages for various human uses. As they interact with the electricity industry, these uses encompass agricultural irrigation, thermoelectric generation, municipal water/wastewater treatment and distribution, and industrial processes. The dependency of electricity supply and demand on water availability ca...

2002-03-01T23:59:59.000Z

340

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

DOE Green Energy (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CONVERT 15 WELLS TO BORS PUMPING UNITS AND TEST/COMPARE TO CONVENTIONAL UNITS  

Science Conference Proceedings (OSTI)

A new type of fluid lifting equipment called Balanced Oil Recovery System (trade named BORS Lift{trademark}) was installed on several idle oil wells to demonstrate the operating efficiency of this innovative equipment technology. The BORS Lift system is designed to bring oil to the surface without the accompanying formation water. The BORS Lift system uses an innovative strap mechanism that takes oil from the top of the downhole oilwater column and lifts it to the surface, eliminating production of the formation water. Eliminating salt water production could potentially increase oil production, reduce operational costs, benefit the environment, and cut salt water disposal costs. Although the BORS Lift units did not function as intended, lessons learned during the course of the field demonstration project resulted in improvements in the technology and redesign of subsequent generation BORS Lift units which are reported to have significantly improved their performance characteristics. BORS Lift units were installed on 15 temporarily abandoned wells which had been shut down due to low oil production, high water production, and uneconomic operating conditions. The wells had been producing with artificial lift at a high watercut from a shallow (850-900 feet), pressure depleted oil sand reservoir prior to being shut down. The electrical motor driven BORS Lift units provided a possible approach for economically returning the shallow, low-volume oil wells to production. The BORS Lift units used in this field demonstration were designed to recover up to roughly 22 barrels of fluid per day from depths ranging to 1,700 feet, ideal for many marginal stripper well operations. The BORS units were first-production-model test units, operated under oil field conditions for the first time, and were naturally expected to experience some design problems. From the onset, the operator experienced mechanical, design, and operational problems with the BORS Lift units and was unable to maintain un-interrupted production operations. The inventor provided considerable on-site technical support in an ongoing effort to correct the problems with the units and the inventor worked extensively with the operator to make design and manufacturing changes to the units to try to improve their reliability and performance. The operational problems were mostly related to the durability of the various components under oil field operating conditions such as inadequate mechanical, electrical, and electronic design for rough service, extended operation, and severe weather conditions. During the course of the demonstration project, it further appeared that the producing formation lacked sufficient reservoir energy and/or favorable oil properties to mobilize and displace oil from the formation into the well bore in order to recharge the oil column in the well. The BORS Lift units were then moved to a second lease which appeared to have more favorable WTI quality oil properties. Eight of these units were reported to have been installed and placed in operation on the second lease, however, operational difficulties continued. It was determined that the units were inadequately designed and would need to be replace by improved second generation units. Due to the lack of success with the first generation units and the extra cost to replace them with the redesigned units, the operators decided not to continue with the project and the project was terminated at that point.

Walter B. North

2003-02-04T23:59:59.000Z

342

Potential for crop drying with geothermal hot water resources in the western United States: alfalfa, a case study. Report 305-100-02  

DOE Green Energy (OSTI)

Preliminary results of engineering, economic, and geographic analysis of the use of low-temperature geothermal heat for the commercial drying of grains, grasses, fruits, vegetables and livestock products in the United States are reported. Alfalfa (lucerne) dehydration was chosen for detailed process and cost study. Six different geothermal heat exchanger/dryer configurations were examined. A conveyor type that could utilize geothermal hot water for its entire heat requirement proved to be the most economical. A capital cost estimate for an all-geothermal alfalfa dehydration plant near the Heber Known Geothermal Resource Area in the Imperial Valley, California was prepared. The combined cost for heat exchangers and dryer is about $1.6 million. Output is about 11 metric tons per hour. Acreage, production and dollar value data for 22 dryable crops were compiled for the areas surrounding identified hydrothermal resources in 11 western states. The potential magnitude of fossil fuel use that could be replaced by geothermal heat for drying these crops will be estimated.

Wright, T.C.

1977-06-22T23:59:59.000Z

343

Generating capacity of the united power system of Russia and conditions of fuel supply to electric power plants for the period up to 2020  

SciTech Connect

Prospects of development of the energy economy in Russia are considered up to 2020. The proportion of thermal power plants (TPP) in the structure of the generating capacity of Russia amounts to about 70% (147 mln kW). The proportion of gas in the structure of fuel consumed by TPP amounts to 64%. It is predicted that the fraction of high-quality kinds of fuel (gas and fuel oil) will decrease in the considered period due to maximum involvement of coal in the fuel balance and wider use of combined-cycle and gas-turbine technologies that provide a lower specific consumption of fuel. It is planned to resort to advanced technologies both for reconstructing existing plants and erecting new ones. This paper deals with problems of fuel supply of fossil-fuel-fired thermal power plants in the light of the evolution of the energy economy of Russia. The demand of TPP for different kinds of fossil fuel, i.e., gas, coal, and fuel oil, is estimated for the whole of the country and for its regions according to two variants of development of the generating capacity with planned commissioning of combined-cycle plants with a total output of 32 mln kW and gas-turbine plants with a total output of 61 mln kW in the period of up to 2020. The tasks of the fuel policy to be solved in the considered period are presented.

V.I. Chemodanov; N.V. Bobyleva; N.G. Chelnokova; N.Yu. Sokolova [Energoset'proekt Institute, Moscow (Russian Federation)

2002-05-15T23:59:59.000Z

344

Unprecedented Generation Shifts  

Science Conference Proceedings (OSTI)

The economic recession, which reduced electricity demand, and falling natural gas costs have brought about unprecedented shifts in electric generation. These developments have affected coal-fired generation the most, leading to operational challenges (cycling and shut downs), deterioration of financial performance, and an awareness of the vulnerability of many units to retirement. A third force, though usually affecting natural gas unit operations more than coal, is the build-up of wind generation. This ...

2010-12-31T23:59:59.000Z

345

San Luis Unit technical record of design and construction. Volume 5. Construction Dos Amigos Pumping Plant, Pleasant Valley Pumping Plant. Central Valley Project, West San Joaquin Division, San Luis Unit, California. A water resources technical publication. Final report  

SciTech Connect

The technical record of design and construction of the San Luis unit is divided into seven volumes. This volume, number V, deals with the construction of two specific features of the San Luis unit, Dos Amigos Pumping Plant and Pleasant Valley Pumping Plant.

1974-09-01T23:59:59.000Z

346

Renewable Electricity Generation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind,...

347

Legend Units  

Science Conference Proceedings (OSTI)

... Syntax: LEGEND UNIT units> where is an integer number or parameter in the range 1 to 100 that specifies the legend identifier; and ...

2013-11-27T23:59:59.000Z

348

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

349

Method and apparatus for powering engine with exhaust generated steam  

SciTech Connect

An apparatus for installation in an automobile to generate steam with heat from the exhaust of an engine is provided. The steam is generated at a sufficient pressure for entry into the combustion chambers of the engine to increase the power output of the engine. The apparatus includes a water storage unit and a steam generator for generating steam with the water from the unit through transfer of heat from combusted gases in the exhaust system. The steam travels through steam inlet manifolds for entry into the combustion chambers. The entry is controlled by a cylinder injection timing valve assembly timed to the operation of the engine to enter the steam during the power stroke. A steam throttling control valve assembly is provided to throttle the steam input to the combustion chambers. A throttle proportioning control unit proportions the carburetor throttle and steam throttle assembly to the operator throttle input to provide the greatest efficiency in engine operation. The throttle proportioning control unit operates in response to the steam temperature and pressure within the steam generator. The apparatus may be adapted for use on an engine design for solely air fuel combustion with the cylinder adapter. A throttle linkage interchange unit may be provided to initiate operation of steam input only upon reaching a minimum engine temperature. An intake manifold vacuum control valve may be provided for selectively entering exhaust gases into the intake manifold of the engine to compensate for the vacuum variation due to the steam input to the combustion chamber.

Gill, P.A.

1983-10-18T23:59:59.000Z

350

Response to Request for Additional Information regarding Request for Approval of the Cyber Security Plan San Onofre Nuclear Generating Station, Units 2 and 3  

E-Print Network (OSTI)

By letter dated July 22, 2010 (Reference) Southern California Edison submitted a license amendment request for approval of the Cyber Security Plan for San Onofre Nuclear Generating Station (SONGS) in accordance with 10 CFR 73.54. The purpose of this license amendment was to provide an Implementation Schedule, provide a table of SONGS deviations from NEI 08-09 Revision 6, and add a sentence to the existing Facilities Operating Licenses (FOL) license condition for Physical Security to require SCE to fully implement and maintain in effect all provisions of the Commission approved Cyber Security Plan. By e-mail dated March 1, 2011, the NRC requested additional information through three generic questions developed by the NRC staff following discussions with the Nuclear Energy Institute and the industry Cyber Security Task Force. Responses to the NRC request for additional information are provided in the Enclosure to this letter.

Southern Edison; Douglas R. Bauder

2011-01-01T23:59:59.000Z

351

SOLERAS - Solar Cooling Engineering Field Tests Project: United Technologies Research Center. Design guidelines for solar heating/cooling/power generation systems  

Science Conference Proceedings (OSTI)

This report documents the methodology, design guidelines and analytical tools for the preliminary technical/economic evaluation of solar heating/cooling/power generation systems. In particular, it provides the theoretical framework, data bases and software tools for: determining the preliminary economic feasibility of solar-powered configurations compared with grid-supplied electric power and/or competing fossil fuels; selecting the optimum system configuration with respect to solar collector area and ''solar-side'' thermal storage capacity. Implementation of the methodology described in this report can be facilitated by the use of the accompanying IBM PC-compatible computer program ''SOLERAS''. This report represents the final task of the multi-year SOLERAS Program -- jointly sponsored by the US Department of Energy and the King Abdulaziz City for Science and Technology -- which involved the development and field-testing of a solar-powered cooling system in Phoenix, AZ. 11 refs., 37 figs.

Not Available

1987-01-01T23:59:59.000Z

352

Research Addressing Power Plant Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Power Plant Water Management to Minimize Water Use while Providing Reliable Electricity Generation Water and Energy 2 Water and Energy are inextricably linked. Because...

353

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

Science Conference Proceedings (OSTI)

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

354

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

355

Inventory of Nonutility Electric Power Plants in the United States  

Reports and Publications (EIA)

Final issue of this report. Provides annual aggregate statistics on generating units operated by nonutilities in the United States and the District of Columbia. Provides a 5-year outlook for generating unit additions and changes.

Information Center

2003-01-01T23:59:59.000Z

356

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

357

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

358

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

359

Simulation and performance analysis of an ammonia-water absorption heat pump based on the generator-absorber heat exchange (GAX) cycle  

Science Conference Proceedings (OSTI)

A computer simulation has been conducted to investigate the performance of an absorption heat pump, based on the Generator-Absorber Heat Exchange (GAX) cycle employing ammonia-water as the working fluid pair. The particular feature of this cycle is the ability to recover heat from the absorber and employ it to partially heat the generator, thus improving the COP. In the present study, a detailed simulation has been conducted of one of the preferred configurations for the cycle. A modular computer code for flexible simulation of absorption systems (ABSIM) was employed. Performance parameters, including COP and capacity, were investigated as functions of different operating parameters over a wide range of conditions in both the cooling and heating mode. The effect of the ambient temperature, the rectifier performance, the flowrate in the GAX heat transfer loop and the refrigerant flow control were investigated. COP`s on the order of 1.0 for cooling and 2.0 for heating have been calculated.

Grossman, G. [Israel Institute of Technology, Haifa (Israel); DeVault, R.C.; Creswick, F.A. [Oak Ridge National Lab., TN (United States)

1995-02-01T23:59:59.000Z

360

English Units  

Science Conference Proceedings (OSTI)

English Units. A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: English Units, ... 6, Height of steam point apparatus above ground (ft.), 0, ft. ...

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Unit Conversions  

Science Conference Proceedings (OSTI)

... volume flow units, which contain "atm", assume that the gas is: ideal; at a pressure of 101325 Pa; at a temperature of 0 °C. Be aware that the unit "atm ...

2012-10-02T23:59:59.000Z

362

Renewable Energy Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Generation Ltd Jump to: navigation, search Name Renewable Energy Generation Ltd Place Guildford, Surrey, England, United Kingdom Zip GU1 3DE Sector Renewable Energy, Wind energy...

363

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

364

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

365

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

366

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

367

Water Research Center Development -- Conceptual Design (Phase 0)  

Science Conference Proceedings (OSTI)

Impending regulations may place new restrictions on the consumption of water and the quality of wastewater discharges at electric generating units (EGUs). To help EGUs comply with any new water use and discharge limits, the Electric Power Research Institute (EPRI) is collaborating with Georgia Power Company (GPC), a subsidiary of Southern Company; Southern Company Services (SCS), Southern Company’s provider of technical services; and Southern Research Institute to collectively form the Water ...

2012-10-30T23:59:59.000Z

368

Water and Sustainability (Volume 2): An Assessment of Water Demand, Supply, and Quality in the U.S. -- The Next Half Century  

Science Conference Proceedings (OSTI)

The fast growing demand for clean, fresh water -- coupled with the need to protect and enhance the environment -- has made many areas of the United States and the rest of the world vulnerable to water shortages for various human uses. As they interact with the electricity industry, these uses encompass agricultural irrigation, thermoelectric generation, municipal water/wastewater treatment and distribution, and industrial processes. The dependency of electricity supply and demand on water availability ca...

2002-03-01T23:59:59.000Z

369

Next Generation Radioisotope Generators | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

» Next Generation Radioisotope Generators » Next Generation Radioisotope Generators Next Generation Radioisotope Generators Advanced Stirling Radioisotope Generator (ASRG) - The ASRG is currently being developed as a high-efficiency RPS technology to support future space missions on the Martian surface or in the vacuum of space. This system uses Stirling convertors, which have moving parts to mechanically convert heat to electricity. This power conversion system, if successfully deployed, will reduce the weight of each RPS and the amount of Pu-238 needed per mission. A HISTORY OF MISSION SUCCESSES For over fifty years, the Department of Energy has enabled space exploration on 27 missions by providing safe reliable radioistope power systems and radioisotope heater units for NASA, Navy and Air Force.

370

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Distributed Generation Investment by aemployer. ORMMES’06 Distributed Generation Investment by ato invest in a distributed generation (DG) unit that

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

371

50Are U Still Nuts? That's right... It's time for more unit conversion exercises!  

E-Print Network (OSTI)

Problem 1: The solar constant is an important number if you are trying to build a solar, hot water heater: The Solar Constant is the amount of energy that the sun delivers to the surface of Earth each second or generate electricity using solar panels. Although astronomers use ergs and centimeter units, solar energy

372

Condensate Polishing Guidelines for Pressurized Water Reactor and Boiling Water Reactor Plants - 2004 Revision  

Science Conference Proceedings (OSTI)

Successful condensate polishing allows more reliable operation of nuclear units by maintaining control of ionic and particulate impurity transport to the pressurized water reactor (PWR) steam generators and the boiling water reactor (BWR) and recirculation system. This report presents revisions of EPRI's 1997 nuclear industry consensus guidelines for the design and operation of deep bed and filter demineralizer condensate polishers. These guidelines are consistent with the 2000 revisions of EPRI's "BWR W...

2004-03-16T23:59:59.000Z

373

Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by Hidalgo County Irrigation District No. 2. The proposed project primarily consists of replacing aged mortar-joint pipe in pipeline units I-7A, I-18, and I-22 with new rubber-gasketed, reinforced concrete pipe. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for the cost of saving water are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost-of-saving water is estimated to be $385.46 per ac-ft. The calculated economic and financial cost-of-saving energy is estimated to be $0.0010735 per BTU {$3.663 per kwh}. In addition, expected real (vs. nominal) values are provided for the U.S. Bureau of Reclamation’s three principal evaluation measures specified in U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water saved measure is $510.92. The aggregate initial construction cost per unit of energy saved measure is $0.0013798 per BTU {$4.708 per kwh}. The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.53.

Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

2007-06-01T23:59:59.000Z

374

IEP - Water-Energy Interface: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers Several legislative acts are in place that could potentially impact water quality requirements and water use for fossil energy production as well as electricity generation. These acts regulate pollutant discharge and water intake directly and indirectly. Under regulations established by the United States Environmental Protection Agency (EPA), these Acts serve to maintain and improve the Nation's water resources for uses including but not limited to agricultural, industrial, nutritional, and recreational purposes. The Clean Water Act - The Federal Water Pollution Control Act, more commonly known as the Clean Water Act, provides for the regulation of discharges to the nation's surface waters. To address pollution, the act specifies that the discharge of any pollutant by any person is unlawful except when in compliance with applicable permitting requirements. Initial emphasis was placed on "point source" pollutant discharge, but 1987 amendments authorized measures to address "non-point source" discharges, including stormwater runoff from industrial facilities. Permits are issued under the National Pollutant Discharge Elimination System (NPDES), which designates the highest level of water pollution or lowest acceptable standards for water discharges. NPDES permits are typically administered by the individual states. With EPA approval, the states may implement standards more stringent than federal water quality standards, but may not be less stringent. Certain sections of the Act are particularly applicable to water issues related to power generation. These include:

375

Electric generating or transmission facility: determination of rate-making  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

376

Statement of Patricia Hoffman before the United States House...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

before the United States House of Representatives House Appropriations Subcommittee on Energy and Water Development Statement of Patricia Hoffman before the United States House of...

377

Energy Management in Olefins Units  

E-Print Network (OSTI)

The previous generations of olefin units were typically importers of utilities such as high pressure steam and electricity. But, in the new generation of units, diligent energy conservation efforts have reduced the high pressure steam demand to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit. It is necessary, therefore, to consider utility export as a valuable byproduct of olefins production and incorporate it within the utility network of the petrochemical complex. As with any byproduct of a process, it is necessary to be able to control its production and distribution.

Wells, T. A.

1982-01-01T23:59:59.000Z

378

The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States  

Science Conference Proceedings (OSTI)

A robust and easily implemented verification procedure based on the column-integrated precipitable water (IPW) vapor estimates derived from a network of ground-based global positioning system (GPS) receivers has been used to assess the quality of ...

M. K. Rama Varma Raja; Seth I. Gutman; James G. Yoe; Larry M. McMillin; Jiang Zhao

2008-03-01T23:59:59.000Z

379

Global Linear Stability of the Two-Dimensional Shallow-Water Equations: An Application of the Distributive Theorem of Roots for Polynomials on the Unit Circle  

Science Conference Proceedings (OSTI)

This paper deals with the numerical stability of the linearized shallow-water dynamic and thermodynamic system using centered spatial differencing and leapfrog time differencing. The nonlinear version of the equations is commonly used in both 2D ...

Jia Wang

1996-06-01T23:59:59.000Z

380

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Water Heating in U.S. Homes, by Housing Unit Type, 2009" Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters" 0,2.9,1.8,0.1,0.2,0.6,0.1 1,108.1,67.5,6.5,8.8,18.5,6.8 "2 or More",2.7,2.5,0.1,"Q","Q","Q" "Number of Tankless Water Heaters2" 0,110.4,69.5,6.5,8.9,18.6,6.8 1,3.1,2.2,0.2,0.2,0.5,"Q"

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EFFICIENT PARALLELIZATION OF STOCHASTIC SIMULATION ALGORITHM FOR CHEMICALLY REACTING SYSTEMS ON THE GRAPHICS PROCESSING UNIT  

E-Print Network (OSTI)

REACTING SYSTEMS ON THE GRAPHICS PROCESSING UNIT H. Li ? L.The current generation of graphics processing units (GPU) issystems on the low cost graphics processing unit (GPU)

Li, Hong; Petzold, Linda

2009-01-01T23:59:59.000Z

382

Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts  

E-Print Network (OSTI)

analysis of the N-1 reliable unit commitment 8. Schnyder,optimization of generation unit commitment and transmissionvariables associated with the unit commitment formulation: u

O’Neill, Richard P.; Hedman, Kory W.; Krall, Eric A.; Papavasiliou, Anthony; Oren, Shmuel S.

2010-01-01T23:59:59.000Z

383

Nuclear steam-generator transplant total rises  

Science Conference Proceedings (OSTI)

Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

Smock, R.

1982-09-01T23:59:59.000Z

384

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use Photo of a Temperate Wetland. Photo of a Temperate Wetland Applied Ecological Services, Inc. (AES) will study the use of restored wetlands to help alleviate the increasing stress on surface and groundwater resources from thermoelectric power plant cooling requirements. The project will develop water conservation and cooling strategies using restored wetlands. Furthermore, the project aims to demonstrate the benefits of reduced water usage with added economic and ecological values at thermoelectric power plant sites, including: enhancing carbon sequestration in the corresponding wetlands; improving net heat rates from existing power generation units; avoiding limitations when low-surface

385

A Realistic Hot Water Draw Specification for Rating Solar Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

thornton@tess-inc.com ABSTRACT In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. Bias...

386

Circumferential Cracking Investigation on a Supercritical Boiler — Martin Lake Unit 3  

Science Conference Proceedings (OSTI)

Luminants Martin Lake unit 3 is one of three supercritical boilers at the site. Lignite from nearby mines is the principal source of fuel, which is mixed with 10-20% Powder River Basin or western coal to assist combustion. The boiler was originally designed to generate around 750 MW, although it is now generating up to 850 MW. In 2000, water cannons were installed in the walls as a replacement for the wall blowers. At about the same time, after 21 years of operation without signs of cracking, the unit wa...

2010-06-30T23:59:59.000Z

387

Power systems simulations of the western United States region.  

DOE Green Energy (OSTI)

This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.; Decision and Information Sciences

2010-03-15T23:59:59.000Z

388

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

389

Metric Units  

Science Conference Proceedings (OSTI)

... A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: Metric Units, Elevation Converter, ... 6, Height of steam point apparatus above ground (m), 0, m, ...

2011-12-22T23:59:59.000Z

390

Occurrence and Potential Human-Health Relevance of Volatile Organic Compounds in Drinking Water from Domestic Wells in the United States  

E-Print Network (OSTI)

, Laboratory Reporting Level MCL, Maximum Contaminant Level MRL, Maximum Reporting Level MTBE, Methyl tert Figures 3 #12;Abstract BACKGROUND: As the population and demand for safe drinking water from domestic concentrations to U.S. EPA Maximum Contaminant Levels (MCLs) and Health-Based Screening Levels. RESULTS: VOCs

391

Energy and water development appropriations for fiscal year 1994. Hearings before a Subcommittee of the Committee on Appropriations, United States Senate, One Hundred Third Congress, First Session  

SciTech Connect

The hearings (H.R. 2445) address the Energy & Water Development Appropriations for Fiscal Year 1994. The Bonneville Power Administrations budget proposal were discussed. The need for cost cutting and a competitive rate structure were stressed. Statements and documents submitted for record by government officials are included.

1993-12-31T23:59:59.000Z

392

Renewable Generation Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Requirement Renewable Generation Requirement Eligibility Investor-Owned Utility Retail Supplier Savings For Bioenergy Buying & Making Electricity Water Solar Heating &...

393

Water Power for a Clean Energy Future (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

394

STEAM GENERATOR FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

Kinyon, B.W.; Whitman, G.D.

1963-07-16T23:59:59.000Z

395

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

396

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

397

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

398

Resources, and the United States Environmental Protection AgencyDesigning Rate Structures that Support Your Objectives: Guidelines for NC Water Systems  

E-Print Network (OSTI)

The purpose for these rate setting guidelines is to provide water and wastewater utility managers and technical assistance providers with a framework in setting water and wastewater rates and rate structures that would meet the state’s and the utility’s policies and objectives. These guidelines provide step by step instructions and necessary information to allow the utility manager to make an informed policy-driven choice on the rate structure design. These guidelines do not provide instruction on how to project revenues and costs and how to calculate rates (dollar amounts) to balance a budget, but references other documents that provide such guidelines. These rate setting guidelines were developed by the Environmental Finance Center at the

unknown authors

2009-01-01T23:59:59.000Z

399

EVALUATION OF KANIGEN, ELECTROLESS NICKEL PLATING FOR STEAM SIDE OF A SODIUM COMPONENT STEAM GENERATOR  

SciTech Connect

The evaluation of Kanigen electroless nickel plating for surfaces in contact with water and steam in a sodium-heated Type 316 stainless steel steam generator is reported. The purpose of the coating is to afford protection from stress corrosion cracking originating on the water-steam side of the unit. It is concluded that the Kanigen coating does not afford adequate protection for the service conditions. (D.L.C.)

1961-02-15T23:59:59.000Z

400

Laser system preset unit  

DOE Patents (OSTI)

An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

Goodwin, William L. (Knoxville, TN)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

402

Woodsdale Generating Station project management  

Science Conference Proceedings (OSTI)

This paper is written for those who are planning new generation construction, particularly combustion turbine units, which will, according to projections, constitute a significant portion of new generation construction during the 1990's. Our project management and schedule for the Woodsdale Generating Station is presented to aid others in the planning, organization, and scheduling for new combustion turbine stations.

Carey, R.P. (Cincinnati Gas and Electric Co., OH (United States))

1990-01-01T23:59:59.000Z

403

Water and Energy Interactions  

E-Print Network (OSTI)

Implications of Biofuel Production in the United States.second-generation biofuel production, including grasses andthat reduce biofuel crop production will reduce fuel

McMahon, James E.

2013-01-01T23:59:59.000Z

404

Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint  

DOE Green Energy (OSTI)

As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

Flowers, L.; Miner-Nordstrom, L.

2006-01-01T23:59:59.000Z

405

Analytical investigations of transitional operating modes of the second circuit of units at NPP with water-moderated reactors with consideration of control systems  

Science Conference Proceedings (OSTI)

A mathematical model for analysis of process parameters of equipment in the second circuit of nuclear power plants is presented, and the structure of the program and principles used for analysis of the equipment are described. A mathematical model for analysis of the deaerator and steam generator is described in detail. A computational analysis of several transitional modes, which is made possible on the basis of the mathematical model in question, is also presented in this paper, and a comparison is made with test data.

Pikin, M. A.; Nesterov, Yu. V. [JSC 'Vserossiiskii Teplotekhnicheskii Institut' (VTI) (Russian Federation)

2007-05-15T23:59:59.000Z

406

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

407

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

408

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Type of Housing Unit, 2005" 8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Number of Water Heaters" "1.",106.3,68.7,7.4,7.6,15.9,6.7 "2 or More",3.7,3.2,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,"Q","Q","Q",0.6,"Q" "Housing Units Served by Main Water Heater"

409

Program on Technology Innovation: Ohio River Water Quality Trading Pilot Program  

Science Conference Proceedings (OSTI)

Nitrogen discharges to surface waters from power plants are increasing as technologies such as selective catalytic reduction units, electrostatic precipitators, and flue gas desulfurization systems are installed to comply with more stringent air emission requirements. The nitrogen generated by these processes is being transferred to surface water discharges. Concurrently, water quality impairments by nitrogen, new instream nutrient criteria, and anticipated effluent limitations on total nitrogen discharg...

2010-10-15T23:59:59.000Z

410

T/g upgrade adds 15 MW, extends unit life. [Turbogenerator  

SciTech Connect

This article describes turbogenerator upgrade at Maine Yankee's PWR. Maine Yankee Atomic Power Co.'s excellent experience in the upgrading and uprating of the two low-pressure (l-p) steam turbines at its only generating unit - an 865-MW, three-loop pressurized-water reactor installed in 1972 - has motivated the utility to also contract for replacement of both the high-pressure (h-p) steam path and the generator. ABB Power Generation Inc., North Brunswick, NJ, which retrofitted the l-p steam-path components, will handle the other two projects as well.

Not Available

1990-02-01T23:59:59.000Z

411

BEOWAWE number1-A 10 MW geothermal unit in northern Nevada  

SciTech Connect

This paper describes a project to build and operate a nominal 10 mw electrical generating unit using the geothermal heat from the Beowawe, Nevada, geothermal reservoir to power an isobutane binary unit. This 10 mw unit would be fabricated on portable skids by equipment supplier for shipment to the site. The project will be owned and operated by the NORNEV Demonstration Geothermal Company which is made up of Pacific Power and Light, Eugene Water and Electric Board, Sierra Pacific Power Company, and Sacramento Municipal Utility District. The geothermal brine for powering the 10 mw binary WGU will be purchased from Chevron Resource Company. This first unit is a research and development unit and will, hopefully, lead to total development of the 300 mw plus Beowawe reservoir.

Keilman, L.

1982-10-01T23:59:59.000Z

412

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

413

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

414

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

415

Snow water equivalent estimation using blackbox optimization  

E-Print Network (OSTI)

Feb 23, 2011 ... Abstract: Accurate measurements of snow water equivalent (SWE) is an ... managing water resources for hydroelectric power generation.

416

The U.S. Generation IV Implementation Strategy  

SciTech Connect

This report has been prepared by the U.S. Department of Energy (DOE) to respond to Congressional direction contained in Senate Report 107-220 from the Senate Committee on Appropriations regarding the Energy and Water Development Appropriations for 2003. In that report, the Committee instructed the Department to prepare a report regarding how it intends to carry out the results of the Generation IV Roadmap. This report is the U.S. Department of Energy's response to the Congressional directive. It summarizes results from the Generation IV Technology Roadmap and the strategy for implementing of the Generation IV program in the United States. Planning for the implementation of the Generation IV program is based on (1) the long-term outlook for nuclear energy in the United States, (2) the advice of the Nuclear Energy Research Advisory Committee during the two-year development of the Generation IV Technology Roadmap, and (3) the need for the Generation IV program to be integrated with other nuclear energy research programs of the Department. Considerable emphasis is given to developing the priorities and necessary timelines for the U.S. Generation IV Program, as well as developing international R&D cooperation that will benefit the program and strengthen U.S. leadership in nuclear technology R&D.

2003-09-01T23:59:59.000Z

417

Milliwatt Generator Project  

DOE Green Energy (OSTI)

This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

Latimer, T.W.; Rinehart, G.H.

1992-05-01T23:59:59.000Z

418

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

419

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

420

Public data sources and modeling of district heating in the United States  

DOE Green Energy (OSTI)

A methodology for computerized modelling of hot water district heating service in any urban area in the United States is described. It is distinguished by the depth and breadth of its data bases, the ease with which any urban market can be analyzed and the wide variety of intermediate information which is obtained. Real housing and employment data, canvassed for the entire nation and made available on a very small area basis, are conjoined with local climate profiles, labor costs, land use intensity factors, fuel prices and fuel use profiles to generate profiles of heating demands and markets for district heat. This characterization of residential and commercial space and water heating demands permits a system design and costing of piping systems for distribution of hot water, subject to any penetration constraints imposed. A minimal number of assumptions are needed to generate these products from the data bases, many of which were generated in the public domain for other purposes.

Karkheck, J.; Tessmer, R.G., Jr.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Water Linkage: Projected Water Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2004 Executive Summary Thermoelectric generation requires large volumes of water, primarily for cooling. An analysis was conducted to estimate the demand...

422

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

Science Conference Proceedings (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

423

Consumption of Coal for Electricity Generation by State by Sector...  

Open Energy Info (EERE)

Coal for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of coal for electricity generation in the United States....

424

Illinois Nuclear Profile - LaSalle Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

425

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

426

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

427

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

428

What is U.S. electricity generation by energy source ...  

U.S. Energy Information Administration (EIA)

What is U.S. electricity generation by energy source? In 2012, the United States generated about 4,054 billion kilowatthours of electricity. About 68% ...

429

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

to a put option on natural gas generation, which increasesgeneration (DG) unit that operates on natural gas.While the long-term natural gas generation cost is

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

430

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

431

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

432

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

433

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, M.M.

1993-01-01T23:59:59.000Z

434

Steam generator tube rupture effects on a LOCA  

SciTech Connect

A problem currently experienced in commercial operating pressurized water reactors (PWR) in the United States is the degradation of steam generator tubes. Safety questions have arisen concerning the effect of these degraded tubes rupturing during a postulated loss-of-coolant accident (LOCA). To determine the effect of a small number of tube ruptures on the behavior of a large PWR during a postulated LOCA, a series of computer simulations was performed. The primary concern of the study was to determine whether a small number (10 or less of steam generator tubes rupturing at the beginning surface temperatures. Additional reflood analyses were performed to determine the system behavior when from 10 to 60 tubes rupture at the beginning of core reflood. The FLOOD4 code was selected as being the most applicable code for use in this study after an extensive analysis of the capabilities of existing codes to perform simulations of a LOCA with concurrent steam generator tube ruptures. The results of the study indicate that the rupturing of 10 or less steam generator tubes in any of the steam generators during a 200% cold leg break will not result in a significant increase in the peak cladding temperature. However, because of the vaporization of the steam generator secondary water in the primary side of the steam generator, a significant increase in the core pressure occurs which retards the reflooding process.

LaChance, J.L.

1979-01-01T23:59:59.000Z

435

Impact of Distributed Generation and Series Compensation on Distribution Network  

E-Print Network (OSTI)

are investigated. A doubly-fed induction generator (DFIG)-based DG unit and a series capacitor (SC) and a thyristor DFIG units. The converter of the DFIG is modeled as an unbalanced harmonic-generating source

Pota, Himanshu Roy

436

Local Generation Limited | Open Energy Information  

Open Energy Info (EERE)

Limited Place United Kingdom Sector Biomass Product UK-based biomass firm developing anaerobic digestion plants. References Local Generation Limited1 LinkedIn Connections...

437

CalEnergy Generation | Open Energy Information  

Open Energy Info (EERE)

steam-producing facilities in the United States and the Philippines. Worldwide, CalEnergy Generation focuses on growth through acquisition and fuel source diversification....

438

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities - EPRI The objective of this project is evaluation and development of the use of produced water...

439

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

440

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

Note: This page contains sample records for the topic "water generating units" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

442

Definition: Generator Owner | Open Energy Information  

Open Energy Info (EERE)

Generator Owner Entity that owns and maintains generating units.1 References Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up...

443

Generation Maintenance Applications Center: Maintenance Guide for Horizontal Split-Casing Closed Cooling Water Pumps in Combined-Cyc le Combustion-Turbine Plants  

Science Conference Proceedings (OSTI)

This report identifies the failure modes and general maintenance requirements for horizontal split-casing closed cooling water pumps used in utility combined-cycle combustion-turbine power plants. Information in this report was provided and reviewed by member utilities. Manufacturers’ information and Electric Power Research Institute (EPRI) database information was used as a basis for the ...

2012-11-21T23:59:59.000Z

444

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

445

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

446

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" 2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,,"Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent","Own","Rent" "Water Heating" "Total Homes",113.6,76.5,37.1,63.2,8.6,3.9,2.8,1.5,7.6,2.3,16.8,5.5,1.4 "Number of Storage Tank Water Heaters"

447

Reusing Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Reusing Water Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment cleaner than when it was pumped. How many times does LANL reuse water? Wastewater is generated from some of the facilities responsible for the Lab's biggest missions, such as the cooling towers of the Los Alamos Neutron Science Center, one of the Lab's premier science research

448

Turbine-Generator Auxiliary Systems, Volume 4: Generator Stator Cooling System  

Science Conference Proceedings (OSTI)

While there is a wealth of specific instructions, guidelines, experiences, and publications associated with water-cooled generators, the industry needs a comprehensive document that provides an unbiased overview of all technologies and related issues. This report deals with the specific features of water-cooled generators and the attached generator cooling water system. Though the primary focus is water-cooled stators, other possible components associated with rotor water cooling or attached systems, suc...

2008-12-22T23:59:59.000Z

449

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-B 3-B Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be scheduled pursuant to contracts between the Government and Carolina Power & Light Company (hereinafter called the Company) and the Customer. The Government is responsible for providing the scheduling. The Customer is responsible for providing a transmission arrangement. Nothing in this rate schedule shall preclude modifications to the aforementioned contracts to allow an eligible customer to elect service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the John H. Kerr and Philpott Projects (hereinafter

450

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-E 1-E Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be wheeled and scheduled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). Nothing in this rate schedule shall preclude an eligible customer from electing service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B. Russell Projects and sold under appropriate contracts between the Government and

451

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke-4-E Duke-4-E Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina served through the transmission facilities of Duke Energy Company (hereinafter called the Company) and the Customer. The Customer is responsible for providing a scheduling arrangement with the Government and for providing a transmission arrangement with the Company. Nothing in this rate schedule shall preclude modifications to the aforementioned contracts to allow an eligible customer to elect service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter

452

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-E 2-E Availability: This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). The customer is responsible for providing a scheduling arrangement with the Government. Nothing in this rate schedule shall preclude an eligible customer from electing service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B.

453

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MISS-1-N MISS-1-N Availability: This rate schedule shall be available to the South Mississippi Electric Power Association (hereinafter called the Customer) to whom power may be wheeled pursuant to contracts between the Government and PowerSouth Energy Cooperative (hereinafter called PowerSouth). Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B. Russell Projects and sold under appropriate contracts between the Government and the Customer. This rate schedule does not apply to energy from pumping operations at the Carters and Richard B. Russell Projects.

454

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-E 4-E Availability: This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina served through the transmission facilities of South Carolina Electric & Gas Company (hereinafter called the Company). The customer is responsible for providing a scheduling arrangement with the Government and for providing a transmission arrangement. Nothing in this rate schedule shall preclude an eligible customer from electing service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B.

455

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-A 1-A Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. Applicability: This rate schedule shall be applicable to the sale at wholesale energy generated from pumping operations at the Carters and Richard B. Russell Projects and sold under appropriate contracts between the Government and the Customer. The energy will be segregated from energy from other pumping operations. Character of Service: The energy supplied hereunder will be delivered at the delivery points provided for under appropriate contracts between the Government and the Customer.

456

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-E 3-E Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be scheduled pursuant to contracts between the Government and Duke Energy Company (hereinafter called the Company) and the Customer. The Customer is responsible for providing a transmission arrangement. Nothing in this rate schedule shall preclude modifications to the aforementioned contracts to allow an eligible customer to elect service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B.

457

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-E 2-E Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted pursuant to contracts between the Government and Duke Energy Company (hereinafter called the Company) and the Customer. The Customer is responsible for providing a scheduling arrangement with the Government. Nothing in this rate schedule shall preclude modifications to the aforementioned contracts to allow an eligible customer to elect service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter

458

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-E 3-E Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be scheduled pursuant to contracts between the Government and Southern Company Services, Incorporated (hereinafter called the Company) and the Customer. The Customer is responsible for providing a transmission arrangement. Nothing in this rate schedule shall preclude modifications to the aforementioned contracts to allow an eligible customer to elect service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter

459

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke-1-E Duke-1-E Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and South Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government and Duke Energy Company (hereinafter called the Company) and the Customer. Nothing in this rate schedule shall preclude modifications to the aforementioned contracts to allow an eligible customer to elect service under another rate schedule. Applicability: This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters and Richard B.