National Library of Energy BETA

Sample records for water ge energy

  1. Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry- Presentation by GE Global Research, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  2. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    SciTech Connect (OSTI)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-03-03

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering and network modification of Y-GeO{sub 2}.

  3. Flexible Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Opens in new window) Flexible Fuel Solutions Offer Efficient, Reliable Energy The world of power generation is evolving at lightning speed. GE is focused on staying one step...

  4. GE Energy Management Ancillary Services

    E-Print Network [OSTI]

    GE Energy Management Ancillary Services Definitions and Capability Study Part 2, Tasks 3-4, Final Online Wind Plants & Frequency Responsive Load Reserves

  5. Xergy Ships First Breakthrough Water Heater Compressor to GE...

    Energy Savers [EERE]

    Xergy Ships First Breakthrough Water Heater Compressor to GE Xergy Ships First Breakthrough Water Heater Compressor to GE September 15, 2015 - 3:41pm Addthis Xergy Inc. and GE...

  6. GE Energy Management Ancillary Services

    E-Print Network [OSTI]

    GE Energy Management Ancillary Services Definitions and Capability Study Part 1, Tasks 1-2, FinalRose Michael O'Connor Sundar Venkataraman Revision 1 Date: 12/19/2012 #12;Ancillary Services Definitions.................................................................................................................... 7 3.1 Task 1: Identify and define ancillary services needed for integration of new generation

  7. GE Develops High Water Recovery Technology in China | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane Technology Laboratory at GE's China Technology Center have successfully...

  8. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for the Food &...

  9. Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab May 24, 2012 - 10:54am Addthis...

  10. Water reuse and technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1WaterWater for

  11. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  12. Access to Clean Water | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAbout NewAcceleratorAccepting,Clean Water

  13. Advanced Water Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies |AppliancesWater We're

  14. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    P. Potential Water and Energy Savings from Showerheads,Saving Water Saves Energy James E. McMahon, Camilla Dunhamavailable products. The energy savings associated with water

  15. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    P. Potential Water and Energy Savings from Showerheads,shorter showers). Water- and energy- conserving activitiesstress imposed on limited water (and energy) supplies from

  16. Energy Frontier Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include GE Global Research, Yale University-Crabtree Group, Yale University-Batista Group, Stanford University and Lawrence Berkeley National Laboratory. GE Global...

  17. Measurement of the direct energy gap of coherently strained SnxGe1x Ge,,001... heterostructures

    E-Print Network [OSTI]

    Atwater, Harry

    Measurement of the direct energy gap of coherently strained SnxGe1Àx ÕGe,,001... heterostructures The direct energy gap has been measured for coherently strained SnxGe1 x alloys on Ge 001 substrates with 0 for coherently strained SnxGe1 x alloys indicates a large alloy contribution and a small strain contribution

  18. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    2009. Thirsty Energy: Water and Energy in the 21st Century.Summary Points 1. Water and energy are strongly dependent onof bioenergy increases water and energy interdependence. 3.

  19. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Geothermal . 20 Energy Used for Water Services . 20 Transporting Water 21 Pumping Groundwater. 22 Treating Wastewater 23 Desalination ..

  20. GE Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar JumpNetworkingGAOH Offshore JumpEnergy Jump

  1. Xergy Ships First Breakthrough Water Heater Compressor to GE

    Office of Energy Efficiency and Renewable Energy (EERE)

    New HVAC, water heating, and appliance technologies that work without conventional refrigerants are critical for the U.S. Department of Energy (DOE) to reach its long-term goal of cutting building...

  2. California's Water Energy Relationship

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support The California's Water-Energy Relationship report is the product of contributions by many California Energy, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working

  3. 1 | Building America eere.energy.gov Evaluation of Ducted GE

    E-Print Network [OSTI]

    1 | Building America eere.energy.gov Evaluation of Ducted GE Hybrid Heat Pump Water Heater in PNNL Lab Homes Sarah Widder Building America Program Review April 24-25, 2013 #12;2 | Building America eere Technologies Program ­ DOE, Office of Electricity Project Partners #12;3 | Building America eere

  4. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  5. Tropical cyclone energy dispersion under vertical shears Xuyang Ge,1

    E-Print Network [OSTI]

    Li, Tim

    Tropical cyclone energy dispersion under vertical shears Xuyang Ge,1 Tim Li,1,2 and Xiaqiong Zhou1] Tropical cyclone Rossby wave energy dispersion under easterly and westerly vertical shears is investigated, and X. Zhou (2007), Tropical cyclone energy dispersion under vertical shears, Geophys. Res. Lett., 34, L

  6. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    H. , Groves D. California Water 2030: An Efficient Future,Preemption of California’s Water Conservation Standards for2Epdf Biermayer P. Potential Water and Energy Savings from

  7. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  8. Roles of Oxygen and Water Vapor in the Oxidation of Halogen Terminated Ge(111) Surfaces

    SciTech Connect (OSTI)

    Sun, Shiyu; /Stanford U., Phys. Dept.; Sun, Yun; Liu, Zhi; Lee, Dong-Ick; Pianette, Piero; /SLAC, SSRL

    2006-12-18

    The initial stage of the oxidation of Cl and Br terminated Ge(111) surfaces is studied using photoelectron spectroscopy. The authors perform controlled experiments to differentiate the effects of different factors in oxidation, and find that water vapor and oxygen play different roles. Water vapor effectively replaces the halogen termination layers with the hydroxyl group, but does not oxidize the surfaces further. In contrast, little oxidation is observed for Cl and Br terminated surfaces with dry oxygen alone. However, with the help of water vapor, oxygen oxidizes the surface by breaking the Ge-Ge back bonds instead of changing the termination layer.

  9. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    including delivered hot water and energy losses. Waterand 17% if hot water energy is included. INTRODUCTION Thedrawn, determines the hot water energy output. The current

  10. Demonstration of 2nd Generation Ducted GE "Brillion" Hybrid Water

    E-Print Network [OSTI]

    sharing partners. #12;Project Synopsis Evaluate the performance and demand response (DR) of the Gen II GE/frequency response) in the PNW and nationwide (Lu et al, 2011; Diao et al 2012) The demand response characteristics

  11. Energy, Water Ecosystem Engineering | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy-Water Resource Systems SHARE Energy-Water Resource Systems Examine sustainable energy production and water availability in healthy ecosystems through technology development,...

  12. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  13. Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy The low-lying states of Ge2 and Ge2 are probed using negative ion zero electron kinetic energy ZEKE spectroscopy. The ZEKE spectrum of Ge2 yields an electron affinity of 2.035 0.001 eV for Ge2, as well as term

  14. Saving Water Saves Energy

    SciTech Connect (OSTI)

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  15. Sandia Energy - Energy and Water Data Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Water Data Portal Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas Interconnects...

  16. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  17. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNatureThousand Cubic|New EmployeeEnergyEnergy

  18. Evidence for Dark Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah Evan Racah 1517546Has Evidence of Dark Energy

  19. Green Energy Innovations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3DGreen Energy Innovations

  20. Treating and Reusing Produced Water | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    center, the Oil & Gas Technology Center in Oklahoma City, are working to develop new cost-effective and sustainable methods for treating and reusing produced water. This...

  1. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  2. Energy and Water Act

    Broader source: Energy.gov (indexed) [DOE]

    Letter 2004-02 - FY 2004 Le2islation Provisions (dated March 1.2004) Energy and Water Act AL-2004-02 provides guidance regarding the implementation of Section 30 I. 304....

  3. Making Water Heaters More Efficient | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Water Heaters More Efficient Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

  4. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1Water PowerWater

  5. Sandia Energy - The Energy-Water Nexus, 2012 Edition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy-Water Nexus, 2012 Edition Home Climate Energy Nuclear Energy Water Security News Global Climate & Energy News & Events Global Climate & Energy The Energy-Water Nexus, 2012...

  6. Water | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeatEnergy Solar Training for8 Things YouAboutWater Water Water

  7. Sandia Energy - Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Availability, Cost, and Use Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  8. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  9. Crystal Lake - GE Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm Jump to: navigation, search NameGE

  10. Northern Colorado Wind Energy Center (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| OpenInformationConsortium NAVC JumpGE) Jump to:

  11. Notrees 1B (GE Energy) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork Electric Coop, IncUSA(TXR150000) |B (GE

  12. Potential Water and Energy Savings from Showerheads

    E-Print Network [OSTI]

    Biermayer, Peter J.

    2005-01-01

    This report quantifies water and energy savings of the sixATIONAL L ABORATORY Potential Water and Energy Savings from4 Baseline Water and Energy Consumption …………………………….5

  13. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  14. Sunlight + Water = Tomorrow's Energy

    SciTech Connect (OSTI)

    Jones, Anne Katherine

    2013-07-18

    Representing the Center for Bio-Inspired Solar Fuel Production (BISfuel), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of BISfuel is to construct a complete system for solar-powered production of hydrogen fuel via water splitting; design principles are drawn from the fundamental concepts that underlie photosynthetic energy conversion.

  15. Energy (GeV) dN/dE(ergcm2

    E-Print Network [OSTI]

    Nishikawa, Ken-Ichi

    Energy (GeV) -1 10 1 10 2 10 )-1 s-2 dN/dE(ergcm2 E -12 10 -11 10 -10 10 PSR J0007+7303 Full Band Fit (PLEC1) Energy Band Fits #12;Energy (GeV) -1 10 1 10 2 10 )-1 s-2 dN/dE(ergcm2 E -12 10 PSR J0023+0923 Full Band Fit (PLEC1) Energy Band Fits #12;Energy (GeV) -1 10 1 10 2 10 )-1 s-2 dN/dE(ergcm2 E -12 10

  16. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    Broader source: Energy.gov [DOE]

    Waste-to-value is a promising and comprehensive wastewater processing solution being pursued by GE that recovers valuable energy and purified water from the abundant wastewater generated and...

  17. AVTA: GE Energy WattStation AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy WattStation AC Level 2 Charging System Testing Results AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

  18. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    paper describing produced water from production of crudeEmerging Issues Paper: Mine Water Pollution. Dep. Environ.40. Vine G. 2010. Cooling water issues and opportunities at

  19. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  20. The Relationship between Water and Energy: Optimizing Water and Energy 

    E-Print Network [OSTI]

    Finley, T.; Fennessey, K.; Light, R.

    2007-01-01

    In an effort to conserve water, drought-proof operating plants and control costs, the critical relationship of water and energy is clearly exposed. Five years of effort has transpired into countless studies, more than 100 projects and a clear...

  1. Coordinating Energy Efficiency With Water Conservation Services...

    Energy Savers [EERE]

    Coordinating Energy Efficiency With Water Conservation Services Coordinating Energy Efficiency With Water Conservation Services Better Buildings Residential Network Program...

  2. Capricorn Ridge (GE Energy) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy Resources JumpCanbyCantuaProject

  3. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  4. NETL Research: Energy and Water Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Energy Interface Water and energy are inextricably linked. Because thermoelectric generation and fossil fuel extraction can impact water resources, it is critically...

  5. Water Use Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Water Use Reduction Water Use Reduction The Federal Energy Management Program (FEMP) provides agencies with guidance and...

  6. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Energy Lab. (NREL). 2009. Geothermal Energy Basics. http://from Geothermal Geothermal energy is generated from naturaland 2007, worldwide geothermal energy production increased

  7. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect (OSTI)

    Hudait, Mantu K.; Zhu Yan [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-21

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  8. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  9. Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

    E-Print Network [OSTI]

    1976-01-01

    Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

  10. Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program...

  11. Water & Energy Conservation Plan

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Poornima Group of Colleges, Jaipur, Rajasthan, India #12;Executive Summary This document for Poornima Group's conservation efforts over the next eight years. PGC currently maintains an unsustainable method of water use Environmental Crisis Poornima Group of Colleges Water

  12. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Hydroelectricity for agriculture and hydroelectricity. Large volumes of waterElectricity Production Hydroelectricity The most common type

  13. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    into a water source—thermal pollution—has also led to theimpacts from this thermal pollution, including the

  14. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    39. Int. Energy Agency Nucl. Energy Agency (IEA/NEA). 2010.Roadmap Nuclear Energy. IEA/NEA, Fr. http://www.iea.org/59. Int. Energy Agency (IEA). 2011. Technology Roadmap:

  15. Water Scarcity and Energy: Water and Power Efficiency of

    E-Print Network [OSTI]

    Scott, Christopher

    ) #12;Water Scarcity = Power Scarcity Lower water availability Lower hydro power availabilityWater Scarcity and Energy: Water and Power Efficiency of Recycled Water Arizona Hydrological and Population Growth · Types of Reuse · Water Efficiency of Reuse · Power Efficiency of Reuse #12;Water Scarcity

  16. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect (OSTI)

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  17. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    solar energy to heat fluids that generate electricity usingSolar Photovoltaics 19 4.5 Electricity from Geothermal . 20 EnergyElectricity from Wind and Solar Photovoltaics Both wind energy

  18. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    cost per kWh than current energy efficiency procurement programs in California.Energy Down The Drain: The Hidden Costs of California’sCost of Procurement of Electricity Efficiency (Ratio of respective $/Annual KWh) California Energy

  19. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Nuclear plants use steam turbines, and cooling water asmajority is used for steam-driven turbines, which generatedelectricity using steam engines, gas turbines, or Stirling

  20. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Tips: Water Heating July 17, 2014 - 4:53pm Addthis Keep your energy bills out of hot water. Insulate your water heater to save energy and money, or choose an...

  1. Tips: Water Heating | Department of Energy

    Office of Environmental Management (EM)

    Tips: Water Heating Tips: Water Heating July 17, 2014 - 4:53pm Addthis Keep your energy bills out of hot water. Insulate your water heater to save energy and money, or choose an...

  2. Low-energy enhancement in the \\gamma-ray strength functions of $^{73,74}$Ge

    E-Print Network [OSTI]

    Renstrøm, T; Utsumoniya, H; Schwengner, R; Goriely, S; Larsen, A C; Filipescu, D M; Gheorghe, I; Bernstein, L A; Bleuel, D L; Glodariu, T; Görgen, A; Guttormsen, M; Hagen, T W; Kheswa, B V; Lui, Y -W; Negi, D; Ruud, I E; Shima, T; Siem, S; Takahisa, K; Tesileanu, O; Tornyi, T G; Tveten, G M; Wiedeking, M

    2015-01-01

    The $\\gamma$-ray strength functions and level densities of $^{73,74}$Ge have been extracted up to the neutron separation energy S$_n$ from particle-$\\gamma$ coincidence data using the Oslo method. Moreover, the $\\gamma$-ray strength function of $^{74}$Ge above S$_n$ has been determined from photo-neutron measurements, hence these two experiments cover the range of E$_\\gamma \\approx$ 1-13 MeV for $^{74}$Ge. The obtained data show that both $^{73,74}$Ge display an increase in strength at low $\\gamma$ energies. The experimental $\\gamma$-ray strength functions are compared with $M1$ strength functions deduced from average $B(M1)$ values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in $^{73,74}$Ge are adopted in the calculations of the $^{72,73}$Ge(n,$\\gamma$) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy ...

  3. Low-energy enhancement in the ?-ray strength functions of $^{73,74}$Ge

    E-Print Network [OSTI]

    T. Renstrøm; H. -T. Nyhus; H. Utsumoniya; R. Schwengner; S. Goriely; A. C. Larsen; D. M. Filipescu; I. Gheorghe; L. A. Bernstein; D. L. Bleuel; T. Glodariu; A. Görgen; M. Guttormsen; T. W. Hagen; B. V. Kheswa; Y. -W . Lui; D. Negi; I. E. Ruud; T. Shima; S. Siem; K. Takahisa; O. Tesileanu; T. G. Tornyi; G. M. Tveten; M. Wiedeking

    2015-10-18

    The $\\gamma$-ray strength functions and level densities of $^{73,74}$Ge have been extracted up to the neutron separation energy S$_n$ from particle-$\\gamma$ coincidence data using the Oslo method. Moreover, the $\\gamma$-ray strength function of $^{74}$Ge above S$_n$ has been determined from photo-neutron measurements, hence these two experiments cover the range of E$_\\gamma \\approx$ 1-13 MeV for $^{74}$Ge. The obtained data show that both $^{73,74}$Ge display an increase in strength at low $\\gamma$ energies. The experimental $\\gamma$-ray strength functions are compared with $M1$ strength functions deduced from average $B(M1)$ values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in $^{73,74}$Ge are adopted in the calculations of the $^{72,73}$Ge(n,$\\gamma$) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy enhancement.

  4. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  5. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Oil Production .quality water (2, 32). Oil Production In 2009, oil supplied90% of U.S. onshore oil production uses between 2.1 and 5.4

  6. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    produced water from production of crude oil, natural gas,the production and processing of each gallon of crude oil (production and processing of 1 gallon (3.8 liters) of crude oil

  7. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    water from production of crude oil, natural gas, and coaleach gallon (3.79 liters) of crude oil. When combined withto refine each gallon of crude oil, between 3.6 and 7.0

  8. Water and Energy (18 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water and Energy (18 activities) Water and Energy (18 activities) Below is information about the student activitylesson plan from your search. Grades K-4 Subject Energy Basics,...

  9. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Some renewable energy sources, such as wind turbines andenergy and rare materials required for production for both wind turbines

  10. Testimony Before Senate Energy & Water Development Committee...

    Office of Environmental Management (EM)

    Reports Testimony Testimony Before Senate Energy & Water Development Committee Testimony Before Senate Energy & Water Development Committee March 21, 2012 Fiscal Year 2013...

  11. Landscaping Water Conservation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    if you follow xeriscape principles. < You can design a landscape that conserves water as well as energy. For tips on how to incorporate energy- and water-saving...

  12. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water Resource Recovery Facilities Ed McCormick, President,...

  13. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    CALIFORNIA WATER RESOURCES. Water Demand Energy Suppon future forecasts of of Water energy predicted energy aunder these PHASE II: WATER ENERGY REQUIREMENTS FOR FUTURE

  14. Water Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. TheEnergyEnergyMedia1, inReports4 Featuredenergy

  15. Photoproduction of eta mesons off protons for photon energies from 0.75 GeV to 3 GeV

    E-Print Network [OSTI]

    Volker Crede; Olivia Bartholomy; for the CB-ELSA Collaboration

    2004-10-20

    Total and differential cross sections for the reaction p(gamma, eta)p have been measured for photon energies in the range from 750 MeV to 3 GeV. The low-energy data are dominated by the S11 wave which has two poles in the energy region below 2 GeV. Eleven nucleon resonances are observed in their decay into p eta. At medium energies we find evidence for a new resonance N(2070)D15 with (mass, width) = (2068+-22, 295+-40) MeV. At photon energies above 1.5 GeV, a strong peak in forward direction develops, signalling the exchange of vector mesons in the t channel.

  16. Large grain growth of Ge-rich Ge{sub 1?x}Sn{sub x} (x???0.02) on insulating surfaces using pulsed laser annealing in flowing water

    SciTech Connect (OSTI)

    Kurosawa, Masashi, E-mail: kurosawa@alice.xtal.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2014-02-10

    We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge{sub 1?x}Sn{sub x} (x?water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (?800?nm?) growth of Ge{sub 0.98}Sn{sub 0.02} polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ?0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

  17. Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures | Department ofWater Water

  18. SERA-IO: Integrating Energy Consciousness into Parallel I/O Middleware Rong Ge Xizhou Feng

    E-Print Network [OSTI]

    Sun, Xian-He

    .ge@marquette.edu xizhou.feng@marquette.edu Xian-He Sun Department of Computer Science Illinois Institute of Technology, Chicago, IL sun@iit.edu Abstract--Improving energy efficiency is a primary concern in high performance on modern processors to intelligently schedule the system's power-performance mode for energy savings. We

  19. Energy deposition of 24 GeV/c protons in gravity affected

    E-Print Network [OSTI]

    McDonald, Kirk

    Energy deposition of 24 GeV/c protons in gravity affected mercury jet Sergei Striganov Fermilab Data Analysis(latest update : 07Oct08), including dispersion term. · If there is vacuum only between +- 15 degree 75 +- 15 degree #12;Energy deposition density in round gravity affected jet at 5 Tesla, r=8

  20. CPS Energy Water Use 

    E-Print Network [OSTI]

    Eclarinal, L.

    2013-01-01

    • Facilitates efficient system operations yielding energy savings ESL-KT-13-12-42 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 What are the motivating factors for end users? • LEED points• Reliability (Data Centers... • Renewable energy sources such as photovoltaic (PV) systems • Building envelope: Design reviews and field testing • Indoor Air Quality (IAQ): Ventilation that meets or exceeds ASHRAE 62.1 • Natural lighting & light pollution • System performance...

  1. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Energy Essentials: Hydropower. IEA, Paris, Fr. http://thermoelectric power (and hydropower, not shown in the1990. In 2008, global hydropower plants generated 3,288

  2. Water Works! Water Resources Engineering and Turbine Energy

    E-Print Network [OSTI]

    Barrash, Warren

    Water Works! Water Resources Engineering and Turbine Energy Facilitators: Dr. Jairo Hernandez. This energy can be used to generate electricity (dams and turbines), produce mechanical work (wells), as well

  3. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    2,584–4,359 kWh/million liters) for seawater desalination.energy required for seawater desalination is higher than thethat use seawater for cooling with desalination plants may

  4. Energy Saver 101: Water Heating Infographic

    Broader source: Energy.gov [DOE]

    Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic lays out evergything you need to know about water heating and shares ways to save energy and money.

  5. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWater Monitoring

  6. Energy of Moving Water (11 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Moving Water (11 Activities) Energy of Moving Water (11 Activities) Below is information about the student activitylesson plan from your search. Grades 5-8 Subject Energy...

  7. Sandia Energy - Northrop-Grumman, GE Partnerships Tap a Wide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News & Events Research & Capabilities Systems Analysis Biomass Energy Storage Materials Science Computational Modeling & Simulation Sensors & Optical Diagnostics Systems...

  8. Integrated Planning for Water and Energy Systems

    E-Print Network [OSTI]

    Keller, Arturo A.

    % Agriculture 77% #12;Urban Water UsesUrban Water Uses #12;IrrigationIrrigation Control Benefits #12;IrrigationIntegrated Planning for Water and Energy Systems Integrated Planning for Water and Energy Systems Wilkinson, Ph.D. Director, Water Policy Program Bren School of Environmental Science and Management

  9. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    First Western Forum on Energy & Water Sustainability University of California, Santa Barbara John R/Business Support for Comprehensive Energy/Water Program Objective: Support development of water sustainability ­ boils down to economics. Water drives technology and price of energy." "Looking to move to dry or hybrid

  10. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  11. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  12. Secretary Chu Speaks at GE Solar Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    240 billion was invested globally in clean energy. The worldwide market for solar photovoltaic systems alone is worth more than 80 billion. The solar market is going to explode...

  13. Developments in European Thermal Energy Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to share with you my observations on the ever-changing energy scene in Germany and Europe, and how that impacts technologies my team is developing. Germany550x300-500x272 In...

  14. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWater

  15. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings June 15, 2012 - 5:51pm Addthis Low-flow fixtures and showerheads can achieve water savings of...

  16. Template:EnergyWater | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open EnergyDBpediaValue Jump to:EnergyWater Jump to:

  17. Nationwide water availability data for energy-water modeling.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  18. Heat Pump Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient...

  19. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  20. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    E-Print Network [OSTI]

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  1. Water, energy, and farm production

    SciTech Connect (OSTI)

    Ulibarri, C.A.; Seely, H.S.; Willis, D.B.; Anderson, D.M.

    1996-04-01

    Electric utility rate deregulation can have disproportionate impacts on water-intensive crops, which have historically relied upon pressurized irrigation technologies and surface water resources. Based on a case study of agricultural growers in southern California, the paper models the impacts of utility rates considered in the Western Area Power Administration`s Sierra Nevada Customer Service Region. The study was performed as part of the 2004 Power Marketing Program Draft Environmental Impact Statement. The empirical results reflect linear-programming estimates of the income transfers from growers to energy providers based on county-wide coverage of 13 junior and senior irrigation districts and short-run production possibilities of 11 irrigated crops. Transfers of income from growers to energy suppliers occur through their losses in producer surplus.

  2. Energy Department Announces Federal Energy and Water Management...

    Energy Savers [EERE]

    Award Winners Energy Department Announces Federal Energy and Water Management Award Winners December 9, 2014 - 12:04pm Addthis The Energy Department today recognized 25 winners...

  3. Energy Department Announces Federal Energy and Water Management...

    Energy Savers [EERE]

    Awards Energy Department Announces Federal Energy and Water Management Awards November 6, 2013 - 3:20pm Addthis The Energy Department today recognized 25 winners across the federal...

  4. Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector

    E-Print Network [OSTI]

    Morselli, Aldo

    Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector ARGO-YBJ Collaboration of high energy gamma-ray bursts can be performed by large area air shower arrays operating at very high is the study of gamma-ray bursts of energies E 10 GeV. This can be achieved using the "single particle

  5. Combined Opportunities in Energy & Water Conservation Projects

    E-Print Network [OSTI]

    Keller, Arturo A.

    Combined Opportunities in Energy & Water Conservation Projects A.Keller, S. Hughes, S. Bennett, M Irrigation, Diswashers Composting Toilets Policy Recommendations The Energy-Water Nexus Modeling Co saturation in the water district In the arid western US, securing beneficial and cost-effective energy

  6. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  7. Top of the World (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFR 1201EnergyInformationWind

  8. Inventors in Action: Energy Everywhere | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P. FeynmanInventors in Action: Energy

  9. 2011 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Federal Energy and Water Management Award Winners 2011 Federal Energy and Water Management Award Winners The Federal Energy and Water Management Awards recognize individuals,...

  10. 2008 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Federal Energy and Water Management Award Winners 2008 Federal Energy and Water Management Award Winners The Federal Energy and Water Management Awards recognize individuals,...

  11. Multiscale modeling of spatially variable water and energy balance processes

    E-Print Network [OSTI]

    Famiglietti, J. S; Wood, E. F

    1994-01-01

    MULTISCALE WATER AND ENERGY BALANCE MODELING Wood, E. F. ,spatially variable water and energy balance processes J. S.modeling. Water and energy balance models are developed at

  12. 2002 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Federal Energy and Water Management Award Winners 2002 Federal Energy and Water Management Award Winners The Federal Energy and Water Management Awards recognize individuals,...

  13. 2001 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Federal Energy and Water Management Award Winners 2001 Federal Energy and Water Management Award Winners The Federal Energy and Water Management Awards recognize individuals,...

  14. Multiscale modeling of spatially variable water and energy balance processes

    E-Print Network [OSTI]

    Famiglietti, JS; Wood, EF

    1994-01-01

    MULTISCALE WATER AND ENERGY BALANCE MODELING Wood, E. F. ,MULTISCALE WATER AND ENERGY BALANCE MODELING cess runoff,models of water and energy balance, Ph.D. dissertation,

  15. Multiscale modeling of spatially variable water and energy balance processes

    E-Print Network [OSTI]

    Famiglietti, J. S; Wood, E. F

    1994-01-01

    AND WOOD: MULTISCALE WATER AND ENERGY BALANCE MODELING Wood,of spatially variable water and energy balance processes J.hydrological modeling. Water and energy balance models are

  16. Energy and Water Use in Irrigated Agriculture During Drought Conditions

    E-Print Network [OSTI]

    Ritschard, R.L.

    2011-01-01

    are to: determine water and energy use for agriculturaland potential water and energy conservation strategiessector, conserving water and energy are complexly inter-

  17. AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the GE Energy Wattstation AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  18. Recovery Act Helps GE in-source Manufacturing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery Act Helps GE

  19. Water Cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastes HazardousWater

  20. Azimuthal correlations of transverse energy for Pb on Pb at 158 GeV/nucleon

    SciTech Connect (OSTI)

    Wienold, T. [Lawrence Berkeley National Lab., CA (United States); Huang, I. [California Univ., Davis, CA (United States); The NA49 Collaboration

    1996-02-03

    Azimuthal correlations have been studied in heavy ion reactions over a wide range of beam energies. At low incident energies up to 100 MeV/nucleon where collective effects like the directed sidewards flow are generally small, azimuthal correlations provide a useful tool to determine the reaction plane event by event. In the energy regime of the BEVALAC (up to 1 GeV/nucleon for heavy ions) particular emission patterns, i.e. azimuthal correlations of nucleons and light nuclei with respect to the reaction plane, have been associated with the so called squeeze out and sidesplash effects. These effects are of particular interest because of their sensitivity to the equation of state at the high baryon density which is build up during the collision process. Angular distributions similar to the squeeze out have been observed for pions at the SIS in Darmstadt as well as from the EOS - collaboration. Recently also the sideward flow was measured for pions and kaons. However, the origin of the signal in the case of produced mesons is thought to be of a different nature than that for the nucleon flow. At the AGS, azimuthally anisotropic event shapes have been reported from the E877 collaboration for the highest available heavy ion beam energy (11.4 GeV/nucleon). Using a Fourier analysis of the transverse energy distribution measured in calorimeters, it was concluded that sideward flow is still of significant magnitude. Here we will report a first analysis of azimuthal correlations found in the transverse energy distribution from Pb on Pb collisions at the CERN SPS (158 GeV/nucleon).

  1. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  2. ORNL Partners with GE on New Hybrid | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric storage water heater, positioning GE to be the first company to meet the energy-saving standard. According to DOE, using devices that meet these criteria should save...

  3. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    (1987 - 1998) ...Leads to Subsidence in the Central City #12;Colorado River Water Renewable GroundwaterFirst Western Forum on Energy & Water Sustainability March 22, 2007 WATER PLAN: 2000-2050 CITY Provide Service Which Meets Our Customers' Expectations Maximize Use of Renewable Water Supplies Achieve

  4. Energy & Water:Energy & Water: A Growing and IncreasinglyA Growing and Increasingly

    E-Print Network [OSTI]

    Keller, Arturo A.

    #12;20 Treatment TechnologiesTreatment Technologies #12;21 21 #12;22 Skinner PlantSkinner Plant Solar1 Energy & Water:Energy & Water: A Growing and IncreasinglyA Growing and Increasingly Important of Southern California First Western Forum on Energy & Water Sustainability #12;2 "Water is for life, power

  5. Amplifying Real Estate Value through Energy & Water Management: From ESCO to "Energy Services Partner"

    E-Print Network [OSTI]

    Mills, Evan

    2004-01-01

    can save $160/year in water and energy bills compared towith water or combined water- and-energy ones. Figure 2.Packages for Water and Energy Energy-only Water & Energy

  6. Water and energy studies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation UmpquaEtWater

  7. Water Energy Tech Team | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)ManagementWatching theWater Energy Tech

  8. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    water heating bills. Visit Energy Saver for more ways to save energy at home. To help you save money by saving energy, we launched AskEnergySaver -- an online series that gives...

  9. Using Renewable Energy to Pump Water 

    E-Print Network [OSTI]

    Mecke, Michael; Enciso, Juan

    2007-06-08

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  10. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    B: Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1.no baffle present SCREEN G: WATER SUPPLY AND DRAW PIPEfor EIDs (sec) 0.0 9. Supply Water Temperature (F) 58.00 10.

  11. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    forty gallon residential gas-fired storage water heater wasthat could replace a gas-fired storage water heater with adefined a baseline gas-fired storage water heater that meets

  12. The Water-Energy Nexus: Capturing the Benefits of Integrated...

    Energy Savers [EERE]

    The Water-Energy Nexus: Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners The Water-Energy Nexus: Capturing the Benefits...

  13. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources and water distribution systems are protected from accidental of intentional contamination events and that reliable systems are in place should an event occur. As water...

  14. Developing a Water Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Developing a Water Management Strategy Developing a Water Management Strategy Developing a Water Management Strategy The Federal Energy...

  15. Water Heaters (Storage Electric) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE rulemakings, and enforcement of the federal energy conservation standards. waterheaterstorageelectricv1.0.xlsx More Documents & Publications Water Heaters (Storage...

  16. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    Water Power Program Market Report Highlights the Success of American Hydropower Market Report Highlights the Success of American Hydropower The Energy Department recently released...

  17. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    Water Power Program New Report Highlights the Success of American Hydropower New Report Highlights the Success of American Hydropower The Energy Department recently released the...

  18. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation and Water Use Data Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  19. Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; et al

    2012-05-31

    We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. Themore »polarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.« less

  20. Miniaturized Turbine Offers Desalination Solution | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    salt from ice New solution draws from the GE Store, integrating GE's experience with steam turbine, oil & gas compressors, 3D printing and water processing NISKAYUNA, NY,...

  1. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  2. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  3. Questions & Solutions On Particle Physics Q1. A photon with an energy GeVE 09.2=

    E-Print Network [OSTI]

    Adler, Joan

    Questions & Solutions On Particle Physics Q1. A photon with an energy GeVE 09.2= creates a proton-antiproton pair in which the proton has a kinetic energy of MeV0.95 . What is the kinetic energy of the antiproton particles will have similar kinetic energies . The total energy of each particle is the sum of its rest

  4. The Water-Energy Nexus: Challenges and Opportunities Overview...

    Energy Savers [EERE]

    Present day water and energy systems are interdependent. Water is used in all phases of energy production and electricity generation. Energy is required to extract, convey, and...

  5. Water Heating Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy....

  6. Chapter 23 - Environment, Energy and Water Efficiency, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety, and Drug-free Workplace. Chapter 23 - Environment, Energy and Water Efficiency,...

  7. University of Arizona Geography & Development 696J: Energy-Water Nexus Energy-Water Nexus

    E-Print Network [OSTI]

    Scott, Christopher

    -for-water and water-for-energy. In the context of global change (including climate change, rapid urbanization, and global markets for energy, biofuels, and food), research and decision-making on these coupled resources increasingly focuses on: spatial patterns of water and energy use (source to consumption), mutual influences

  8. A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    Relationship Between Water and Energy Use and Conservation.estimate the total water and energy savings This potentialimportant links between water and energy. California, water

  9. Alternative energy must consider water needs 

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01

    -powered flying cars like the old TV cartoon The Jetsons, research is producing new ways to fuel our cars and to use ?new? water. Even these innovations, however, must consider the energy-water connection. Hybrid and fully electric cars are getting favor... electricity consumes roughly two times more water than gasoline, and more than eight times more water is withdrawn to produce the electricity. The researchers note these concerns do not necessarily mean electric cars are undesirable. ?It just means...

  10. Renewable Energy Desalination: An Emerging Solution to Close MENA's Water Gap 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy

    E-Print Network [OSTI]

    Johnson, Eric E.

    Renewable Energy Desalination: An Emerging Solution to Close MENA's Water Gap 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy 45 Renewable Energy and renewable energy to climate change impacts on water and agriculture sectors. Dr. Debele has published

  11. Neutron energy spectrum from 120 GeV protons on a thick copper target

    E-Print Network [OSTI]

    Nobuhiro Shigyo; Toshiya Sanami; Tsuyoshi Kajimoto; Yosuke Iwamoto; Masayuki Hagiwara; Kiwamu Saito; Kenji Ishibashi; Hiroshi Nakashima; Yukio Sakamoto; Hee-Seock Lee; Erik Ramberg; Aria A. Meyhoefer; Rick Coleman; Doug Jensen; Anthony F. Leveling; David J. Boehnlein; Nikolai V. Mokhov

    2012-02-07

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, proton-induced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30^{\\circ} and 5 m 90^{\\circ} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multi-particle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  12. Water and Energy Savings, and Carbon Emission Reductions From Rain Water

    E-Print Network [OSTI]

    Das, Suman

    Water and Energy Savings, and Carbon Emission Reductions From Rain Water Harvesting, Combined Heat Infrastructure Ecology Decentralized Water Resource Development: Low Impact Development (LID) Decentralized Energy Production: Combined Heat and Power (CHP) Policies for Adoption of Rain Water Harvesting

  13. Sandia Energy - Decision Support for Integrated Energy-Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    versus out of basin production (i.e., tradeoff in energy reliability versus reduced pollution and water use)? The decision support framework will be designed to link a...

  14. Federal Energy and Water Management Awards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FEMP Announces 2015 Winners Find out who received this year's Federal Energy and Water Management Awards. Read more Get Inspired Get Inspired Read the stories behind the...

  15. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  16. Energy Department Announces Federal Energy and Water Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency measures to improve energy, water, and vehicle fleet management that save taxpayer money and reduce greenhouse gas emissions. Through their innovative efforts, winners,...

  17. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  18. Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy

    E-Print Network [OSTI]

    Johnson, Eric E.

    Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy 11 Promotion of Renewable with is ProDes (Promotion of Renewable Energy for Water production through Desalination), which brought

  19. Sandia Energy - Energy and Water in the Western and Texas Interconnect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Water in the Western and Texas Interconnects Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western...

  20. Energy and water in the Great Lakes.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  1. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    PHASE I: SURVEY OF WATER IN CALIFORNIA AND NEVADA:PRODUCTION STATE'S PERSPECTIVE. CALIFORNIA WATER RESOURCES.Water Demand Energy Supp

  2. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating Water

  3. arXiv:hepex/0306028 Coherent pair production by photons in the 20-170 GeV energy range incident on

    E-Print Network [OSTI]

    arXiv:hep­ex/0306028 v2 24 Jun 2004 Coherent pair production by photons in the 20-170 GeV energy: June 24, 2004) The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germa

  4. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  5. Before The Subcommittee on Water and Power - House Energy and...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee...

  6. Guideline for Water and Energy Considerations During Federal...

    Office of Environmental Management (EM)

    Guideline for Water and Energy Considerations During Federal Data Center Consolidations Guideline for Water and Energy Considerations During Federal Data Center Consolidations...

  7. Energy Department Releases Roadmaps on HVAC Technologies, Water...

    Office of Environmental Management (EM)

    Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water...

  8. Energy-Positive Water Resource Recovery Workshop Report Executive...

    Office of Environmental Management (EM)

    Report Executive Summary Energy-Positive Water Resource Recovery Workshop Report Executive Summary Executive summary workshop report for the for the Energy-Positive Water Resource...

  9. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Environmental Management (EM)

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  10. Sandia Energy - Wind and Water Materials and Structures Database...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Materials and Structures Database Download Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Wind and Water Materials...

  11. Flexible Distributed Energy and Water from Waste for the Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage...

  12. Federal Energy and Water Management Award Winners Kate Anderson...

    Energy Savers [EERE]

    Federal Energy and Water Management Award Winners Kate Anderson, Scott Clark, Matthew Ellis, Vincent Guthrie, Mark Hunsickler Federal Energy and Water Management Award Winners Kate...

  13. Federal Energy and Water Management Awards: Frequently Asked...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Water Management Awards: Frequently Asked Questions Federal Energy and Water Management Awards: Frequently Asked Questions Document answers frequently asked questions...

  14. Federal Energy and Water Management Award Winners Charlie Dockham...

    Energy Savers [EERE]

    Federal Energy and Water Management Award Winners Charlie Dockham, Donna Maffeo, Sean Orgel, Patrick Ross, and Sara Wenniger Federal Energy and Water Management Award Winners...

  15. Federal Energy and Water Management Award Guy Lunay, Kevin Myles...

    Energy Savers [EERE]

    Federal Energy and Water Management Award Guy Lunay, Kevin Myles, Cullen Rabel, Elizabeth Taylor, Mark Trimarchi Federal Energy and Water Management Award Guy Lunay, Kevin Myles,...

  16. Federal Energy and Water Management Award Winner 22nd Operations...

    Energy Savers [EERE]

    Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency...

  17. DELAYED GeVTeV PHOTONS FROM GAMMA-RAY BURSTS PRODUCING HIGH-ENERGY COSMIC RAYS

    E-Print Network [OSTI]

    Coppi, Paolo

    DELAYED GeV­TeV PHOTONS FROM GAMMA-RAY BURSTS PRODUCING HIGH-ENERGY COSMIC RAYS ELI WAXMAN A scenario in which cosmic rays (CRs) above 1020 eV are produced by cosmological gamma-ray bursts (GRBs provide information on the IGMF structure. Subject headings: cosmic rays -- gamma rays: bursts -- magnetic

  18. Energy and Water Interactions: Insights from Mathematical Models

    E-Print Network [OSTI]

    Keller, Arturo A.

    1 Energy and Water Interactions: Insights from Mathematical Models Jay R. Lund Kaveh Madani Civil;2 Outline 1. Informational - Energy in water production - Water in energy production 2. Philosophical;3 Energy in Water Production/Use 1. Pumping ­ energy use 2. Maintenance, chemicals - Pumping and treatment

  19. Energy peak: back to the Galactic Center GeV gamma-ray excess

    E-Print Network [OSTI]

    Kim, Doojin

    2015-01-01

    We propose a novel mechanism enabling us to have a continuum bump as a signature of gamma-ray excess in indirect detection experiments of dark matter (DM), postulating a generic dark sector having (at least) two DM candidates. With the assumption of non-zero mass gap between the two DM candidates, the heavier one directly communicates to the partner of the lighter one. Such a partner then decays into a lighter DM particle along with a dark "pion" or "axion-like" particle (ALP), which further decays into a pair of photons, via a more-than-one step cascade decay process. Since the cascade is initiated by the dark partner obtaining a non-trivial fixed boost factor, a continuum gamma-ray energy spectrum naturally arises. We apply the main idea to the energy spectrum of the GeV gamma-rays from around the Galactic Center (GC), and find that the relevant observational data is well-reproduced by the theory expectation predicted by the proposed mechanism. Remarkably, the relevant energy spectrum has a robust peak at h...

  20. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    1985. Residential hot water energy analysis: Instruments andto determine waste of water and energy in residential hot-LBNL-5115E Water and Energy Wasted During Residential Shower

  1. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    SciTech Connect (OSTI)

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  2. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    in electric petitive demand energy generation increasinglyelectric will be energy use and water localized for electrical generation

  3. Save on Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Save on Home Water Heating August 19, 2014 - 10:46am Addthis Purchasing a water heater with the ENERGY STAR label ensures you are buying an energy efficient...

  4. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  5. 2003 Federal Energy and Water Management Award Winners

    Office of Energy Efficiency and Renewable Energy (EERE)

    List of 2003 Federal Energy and Water Management Award winners to individuals, small groups, and organizations.

  6. 2004 Federal Energy and Water Management Award Winners

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lists of 2004 Federal Energy and Water Conservation awards to individuals, organizations, and small groups.

  7. Oasys Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack,Florida:Utah:Oasys Water Jump

  8. Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWaranaWater Power Forum Home

  9. Nestle Waters | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,National MarineUSAID Climate Activities JumpNestle Waters

  10. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect (OSTI)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  11. Using Renewable Energy to Pump Water 

    E-Print Network [OSTI]

    Enciso, J.; Mecke, M.

    2004-01-01

    electricity for small communities. The most comon wind device used is the American farm and ranch windmil (Fig. 1). These windmils are common on the North American Great Plains and acros the Southwest. A windmill consists of: ?A very large fan with 15 to 40... Water Juan Enciso and Michael Mecke* Wind power Wind is often used as an energy source to operate pumps and supply water to livestock. Because of the large amount of water needed for crops, wind power is rarely used for irrigation. As larger and/or more...

  12. Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on

    E-Print Network [OSTI]

    Olden, Julian D.

    Energy, Water and Fish: Biodiversity Impacts of Energy- Sector Water Demand in the United States to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on Efficiency and Policy

  13. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  14. Water Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View New Pages Recent Changes All

  15. Water Quantity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View New Pages Recent Changes

  16. Sandia Energy - Water/Energy Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWater

  17. 2009 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  18. 2010 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  19. 2008 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  20. 2007 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  1. 2005 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  2. Women @ Energy: Katrina Waters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy ThefullAssociateJenniferCarrado GregarKatrina

  3. Water Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of Energy Facilities By E-mail: You can sendofRows ofInfographic:

  4. Energy -Matter Interactions: Water Open water covers about 74% of the

    E-Print Network [OSTI]

    Frank, Thomas D.

    Energy - Matter Interactions: Water #12;Open water covers about 74% of the earth's surface. Oceans this material come from? #12;Energy - Matter Interactions As incident light strikes the water surface, some by energy that is scattered and reflected within the water body itself, known as volume reflection. #12

  5. SweetWater Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95 Jump to:Sweden

  6. EPR investigation of defects in Bi12GeO20:Cr single crystal irradiated by high energy uranium ions

    E-Print Network [OSTI]

    Stefaniuk, I; Rogalska, I; Wróbel, D

    2013-01-01

    The results of investigations of EPR spectra of chromium doped $Bi_{12} GeO_{20} (BGO)$ single crystals are presented. The crystals were studied before and after irradiation by the $^{235}U$ ions with energy 9.47 MeV/u and fluency $5 \\cdot 10^{2} cm^{-2}$. The effect of heating irradiated samples in air on the EPR spectra is also studied.

  7. Water quality issues and energy assessments

    SciTech Connect (OSTI)

    Davis, M.J.; Chiu, S.

    1980-11-01

    This report identifies and evaluates the significant water quality issues related to regional and national energy development. In addition, it recommends improvements in the Office assessment capability. Handbook-style formating, which includes a system of cross-references and prioritization, is designed to help the reader use the material.

  8. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

  9. Rising Above the Water: New Orleans Implements Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet) Rising Above the Water: New Orleans...

  10. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  11. Sandia Energy - Energy/Water History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion

  12. Reclamation Rural Water Act 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy

    E-Print Network [OSTI]

    Johnson, Eric E.

    Desalination and Renewable Energy 71 Reclamation Rural Water Act: Southwestern Navajo Rural Water Supply Index); the energy and water nexus in Arizona; renewable energy for water transmission; and is now researching new techniques for using renewable energy for desalination in an off grid setting. Kevin Black Sr

  13. Separations Technology for Clean Water and Energy

    SciTech Connect (OSTI)

    Jarvinen, Gordon D

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  14. 2011 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities. Winners of the 2011 Federal Energy and Water Management Awards include:

  15. 2002 Federal Energy and Water Management Award Winners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities. Winners of the 2002 Federal Energy and Water Management Awards include the following.

  16. 2001 Federal Energy and Water Management Award Winners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities. Winners of the 2001 Federal Energy and Water Management Awards include the following.

  17. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\\sqrt{s_{NN}}=7.7$ to 200 GeV

    E-Print Network [OSTI]

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Alexander, J; Alfred, M; Al-Jamel, A; Al-Ta'ani, H; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Armendariz, R; Aronson, S H; Asai, J; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Baksay, G; Baksay, L; Baldisseri, A; Bandara, N S; Bannier, B; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Bickley, A A; Bjorndal, M T; Black, D; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bryslawskyj, J; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chai, J -S; Chang, B S; Charvet, J -L; Chen, C -H; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; del Valle, Z Conesa; Connors, M; Constantin, P; Cronin, N; Crossette, N; Csanád, M; Csörg?, T; Dahms, T; Dairaku, S; Danchev, I; Danley, D; Das, K; Datta, A; Daugherity, M S; David, G; Dayananda, M K; Deaton, M B; DeBlasio, K; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Diss, P B; Do, J H; Donadelli, M; D'Orazio, L; Drachenberg, J L; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; Edwards, S; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S -Y; Fusayasu, T; Gadrat, S; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Gastineau, F; Ge, H; Germain, M; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Grim, G; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Guragain, H; Gustafsson, H -Å; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hahn, K I; Hamagaki, H; Hamblen, J; Hamilton, H F; Han, R; Han, S Y; Hanks, J; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Hasegawa, S; Haseler, T O S; Hashimoto, K; Haslum, E; Hasuko, K; Hayano, R; Hayashi, S; He, X; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Hollis, R S; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Hur, M G; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Inoue, Y; Iordanova, A; Isenhower, D; Isenhower, L; Ishihara, M; Isinhue, A; Isobe, T; Issah, M; Isupov, A; Ivanishchev, D; Iwanaga, Y; Jacak, B V; Javani, M; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Jin, J; Jinnouchi, O; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kanda, S; Kaneta, M; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kanou, H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawagishi, T; Kawall, D; Kawashima, M; Kazantsev, A V; Kelly, S; Kempel, T; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, G W; Kim, H J; Kim, K -B; Kim, M; Kim, Y -J; Kim, Y K; Kim, Y -S; Kimelman, B; Kinney, E; Kiss, Á; Kistenev, E; Kitamura, R; Kiyomichi, A; Klatsky, J; Klay, J; Klein-Boesing, C; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kochetkov, V; Kofarago, M; Komatsu, Y; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Krizek, F; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Bornec, Y Le; Leckey, S; Lee, B; Lee, D M; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, M K; Lee, S; Lee, S H; Lee, S R; Lee, T; Leitch, M J; Leite, M A L; Leitgab, M; Lenzi, B; Lewis, B; Li, X; Li, X H; Lichtenwalner, P; Liebing, P; Lim, H; Lim, S H; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Maruyama, T; Mašek, L; Masui, H; Masumoto, S; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Midori, J; Mignerey, A C; Mikeš, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, D K; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M

    2015-01-01

    Measurements of midrapidity charged particle multiplicity distributions, $dN_{\\rm ch}/d\\eta$, and midrapidity transverse-energy distributions, $dE_T/d\\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\\rm part}$, and the number of constituent quark participants, $N_{q{\\rm p}}$. For all $A$$+$$A$ collisions down to $\\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\\rm p}}$ than scalin...

  18. University of Arizona Geography and Development 596J Water Management & Policy: The Water-Energy-Environment Nexus

    E-Print Network [OSTI]

    University of Arizona Geography and Development 596J 1 Water Management & Policy: The Water-Energy participants with a global overview of water management & policy challenges. Emphasis is placed on the water-energy water and energy have moved water-energy nexus analysis beyond straightforward quantification of energy

  19. Sandia Energy - Northrop-Grumman, GE Partnerships Tap a Wide Range of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database ReceivesNewNewsSandia Labs

  20. Water for Energy in the Eagle Ford 

    E-Print Network [OSTI]

    Finch, C.

    2013-01-01

    stream_source_info ESL-KT-13-12-44.pdf.txt stream_content_type text/plain stream_size 3680 Content-Encoding UTF-8 stream_name ESL-KT-13-12-44.pdf.txt Content-Type text/plain; charset=UTF-8 Water and Hydraulic Fracturing... 12/18/2013 CATEE Conference San Antonio, TX Dr. Calvin Finch Texas A&M Water Conservation and Technology Center ESL-KT-13-12-44 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 ESL-KT-13-12-44 CATEE 2013: Clean...

  1. Water Heating Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. |...

  2. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash...

  3. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and it will become hotter. Move it away (demagnetization) and the food cools down. GE researchers predict the cooling refrigerators could reduce energy consumption by 20%, in...

  4. Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

  5. Measurement of the reaction $?p \\TO K^ + ?(1520)$ at photon energies up to 2.65 GeV

    E-Print Network [OSTI]

    F. W. Wieland; J. Barth; K. -H. Glander; J. Hannappel; N. Jöpen; F. Klein; E. Klempt; R. Lawall; D. Menze; M. Ostrick; E. Paul; I. Schulday; W. J. Schwille

    2010-11-03

    The reaction $\\gamma p \\TO K^+\\Lambda(1520)$ was measured in the energy range from threshold to 2.65 GeV with the SAPHIR detector at the electron stretcher facility ELSA in Bonn. The $\\Lambda(1520)$ production cross section was analyzed in the decay modes $pK^-$, $n \\bar{K}^0$, $\\Sigma^{\\pm}\\pi^{\\mp}$, and $\\Lambda\\pi^+\\pi^-$ as a function of the photon energy and the squared four-momentum transfer $t$. While the cross sections for the inclusive reactions rise steadily with energy, the cross section of the process $\\gamma p \\TO K^+\\Lambda(1520)$ peaks at a photon energy of about 2.0 GeV, falls off exponentially with $t$, and shows a slope flattening with increasing photon energy. The angular distributions in the $t$-channel helicity system indicate neither a $K$ nor a $K^\\star$ exchange dominance. The interpretation of the $\\Lambda(1520)$ as a $\\Sigma(1385)\\pi$ molecule is not supported.

  6. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  7. ENERGY STAR Residential Water Heaters to Save Americans Up to...

    Energy Savers [EERE]

    ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the...

  8. 2006 Federal Energy and Water Management Award Winners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable nergy technologies at federal facilities.

  9. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also want to consider some less conventional storage water heaters -- heat pump water heaters and solar water heaters. These water heaters are usually more expensive but they...

  10. Water Heaters (Tankless Electric) | Department of Energy

    Energy Savers [EERE]

    Tankless Electric) Water Heaters (Tankless Electric) Water Heater, Tankless Electric - v1.0.xlsx More Documents & Publications Tankless Gas Water Heaters Water Heaters (Storage...

  11. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  12. Driving Water and Wastewater Utilities to More Sustainable Energy Management 

    E-Print Network [OSTI]

    Ferrel, L.; Liner, B.

    2013-01-01

    The Water Environment Federation (WEF) and industry leaders have identified the need for an energy roadmap to guide utilities of all sizes down the road to sustainable energy management through increased renewable energy production, energy...

  13. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable Energy (EERE)NewslettersWater Heating »

  14. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect (OSTI)

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  15. Criteria and Guidelines for the Federal Energy and Water Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asked Questions Federal Energy and Water Management Awards: Nomination Quick Reference The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence...

  16. The Water-Energy Nexus: Challenges and Opportunities Overview...

    Broader source: Energy.gov (indexed) [DOE]

    The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ......

  17. Second Forum on Energy & Water Sustainability: Increasing Resource Productivity

    E-Print Network [OSTI]

    Keller, Arturo A.

    in resource efficiency, for energy and water? · What are the co-benefits of implementing these technologiesSecond Forum on Energy & Water Sustainability: Increasing Resource Productivity April 10, 2009 of energy and water sustainability, considering the important linkages between these two resources

  18. DESIGN GUIDELINE 3.2 ENERGY AND WATER CONSERVATION

    E-Print Network [OSTI]

    Kamat, Vineet R.

    DESIGN GUIDELINE 3.2 ENERGY AND WATER CONSERVATION Summary This Design Guideline applies to new properties. Consider energy and water conservation in all aspects of project design. Incorporate conservation Design Related Documents: Energy and Water Conservation Report Format-Projects $2M to $10M Construction

  19. Decision Support for IntegratedDecision Support for Integrated WaterWater--Energy PlanningEnergy Planning

    E-Print Network [OSTI]

    Keller, Arturo A.

    /Commercial -Industrial -Agriculture -Environment -Energy Energy Providers -Peak/Base -Generation Type -Location -Capacity Surface Water Ground Water Population Growth Industry Fuels Wind Hydro Solar Thermoelectric #12;System by ­ Fuel type, - Installed c

  20. A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy

    SciTech Connect (OSTI)

    Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

    2014-01-01

    Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

  1. Course Description for Spring 2009 offering: GE 520/ME500: Analysis of Energy Conservation/Supply Alternatives: Boston University case study

    E-Print Network [OSTI]

    Lin, Xi

    /Supply Alternatives: Boston University case study This course will continue the analysis of energy use at BU with a goal of identifying, evaluating, and implementing specific conservation and energy alternativesCourse Description for Spring 2009 offering: GE 520/ME500: Analysis of Energy Conservation

  2. Application of multiscale water and energy balance models on a tallgrass prairie

    E-Print Network [OSTI]

    Famiglietti, J. S; Wood, E. F

    1994-01-01

    Application of multiscale water and energy balance models onAPPLICATION OF MULTISCALE WATER AND ENERGY BALANCE MODELSand macroscale models of water and energy balance, Ph.D.

  3. Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model

    E-Print Network [OSTI]

    Houser, Paul R; Gupta, Hoshin V; Shuttleworth, W. James; Famiglietti, James S

    2001-01-01

    distributed land surface water and energy balance model Pauldistributed land surface water and energy balance model (because models of water and energy balance, Ph.D.

  4. Data and Modeling Conflation IssuesData and Modeling Conflation Issues in Energy and Water Systemsin Energy and Water Systems

    E-Print Network [OSTI]

    Keller, Arturo A.

    Data and Modeling Conflation IssuesData and Modeling Conflation Issues in Energy and Water Systemsin Energy and Water Systems Lawrence Livermore National Laboratory:Lawrence Livermore National Western Forum on Energy & Water Sustainability March 23, 2007 #12;22 #12;33 Integrated planning requires

  5. Energy from Water and Sunlight: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Sun Catalytix is developing wireless energy-storage devices that convert sunlight and water into renewable fuel. Learning from nature, one such device mimics the ability of a tree leaf to convert sunlight into storable energy. It is comprised of a silicon solar cell coated with catalytic materials, which help speed up the energy conversion process. When this cell is placed in a container of water and exposed to sunlight, it splits the water into bubbles of oxygen and hydrogen. The hydrogen and oxygen can later be recombined to create electricity, when the sun goes down for example. The Sun Catalytix device is novel in many ways: it consists primarily of low-cost, earth-abundant materials where other attempts have required more expensive materials like platinum. Its operating conditions also facilitate the use of less costly construction materials, whereas other efforts have required extremely corrosive conditions.

  6. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  7. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    to Determine Waste of Water and Energy in Residential Hot-to Determine Waste of Water and Energy in Residential Hotto Determine Waste of Water and Energy in Residential Hot

  8. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect (OSTI)

    Guo, Yijun [Ames Laboratory; Rowland, Clare E [Argonne National Laboratory; Schaller, Richard D [Argonne National Laboratory; Vela, Javier [Ames Laboratory

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  9. Storage Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About Us Shirley Ann Jackson,Delivery and EnergyStayingContests atStorage Water

  10. Energy Conservation in Process Chilled Water Systems 

    E-Print Network [OSTI]

    Ambs, L. L.; DiBella, R. A.

    1993-01-01

    System," ASHRAE Transactions, Vol. 93, Pt 2, 1987, pp. 1830-1852. 3. D. Murphy, "Cooling Towers Used For Free Cooling," ASHRAE Journal, June, 1991, pp. 16-26. 4. W.L. Jackson, F.C. Chen, and B.C. Hwang, "The Simulation and Perfonnance of a...ON IN PROCESS CHILLED WATER SYSTEMS Robert A. DiBella Lawrence L. Ambs, Ph.D. Projcct Engineer Associate Professor Xenergy Inc. University of MassachuseLts Burlington, MA Amherst, MA ABSTRACT The energy consumption of the chiller and cooling tower in a...

  11. Water Sampling (Healy, 1970) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power

  12. Carderock Circulating Water Channel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy ResourcesRanchCirculating Water Channel Jump

  13. Commercial Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercial Grade Dedication (CGD) isWater Heaters --

  14. Penn Small Water Tunnel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergySmall Water Tunnel Jump

  15. Water Heater Controller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)ManagementWatching theWater Energy

  16. Energy and water balance measurements for water productivity analysis in irrigated mango trees,

    E-Print Network [OSTI]

    Energy and water balance measurements for water productivity analysis in irrigated mango trees of rural communities. Mango is important for export markets. Its fruit has the advantage of being juicy 2008 Accepted 7 May 2008 Keywords: Mango orchard Energy balance Water balance Evapotranspiration

  17. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    rate 1985 and 2000 declined energy export indicating of netand its environment. energy for export Under Nevada law (NRSis in a sense Large exports and energy water could have a

  18. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\\sqrt{s_{NN}}=7.7$ to 200 GeV

    E-Print Network [OSTI]

    A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; H. Al-Bataineh; J. Alexander; M. Alfred; A. Al-Jamel; H. Al-Ta'ani; A. Angerami; K. Aoki; N. Apadula; L. Aphecetche; Y. Aramaki; R. Armendariz; S. H. Aronson; J. Asai; H. Asano; E. C. Aschenauer; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; X. Bai; G. Baksay; L. Baksay; A. Baldisseri; N. S. Bandara; B. Bannier; K. N. Barish; P. D. Barnes; B. Bassalleck; A. T. Basye; S. Bathe; S. Batsouli; V. Baublis; F. Bauer; C. Baumann; S. Baumgart; A. Bazilevsky; M. Beaumier; S. Beckman; S. Belikov; R. Belmont; R. Bennett; A. Berdnikov; Y. Berdnikov; J. H. Bhom; A. A. Bickley; M. T. Bjorndal; D. Black; D. S. Blau; J. G. Boissevain; J. S. Bok; H. Borel; K. Boyle; M. L. Brooks; D. S. Brown; J. Bryslawskyj; D. Bucher; H. Buesching; V. Bumazhnov; G. Bunce; J. M. Burward-Hoy; S. Butsyk; S. Campbell; A. Caringi; P. Castera; J. -S. Chai; B. S. Chang; J. -L. Charvet; C. -H. Chen; S. Chernichenko; C. Y. Chi; J. Chiba; M. Chiu; I. J. Choi; J. B. Choi; S. Choi; R. K. Choudhury; P. Christiansen; T. Chujo; P. Chung; A. Churyn; O. Chvala; V. Cianciolo; Z. Citron; C. R. Cleven; Y. Cobigo; B. A. Cole; M. P. Comets; Z. Conesa del Valle; M. Connors; P. Constantin; N. Cronin; N. Crossette; M. Csanád; T. Csörg?; T. Dahms; S. Dairaku; I. Danchev; D. Danley; K. Das; A. Datta; M. S. Daugherity; G. David; M. K. Dayananda; M. B. Deaton; K. DeBlasio; K. Dehmelt; H. Delagrange; A. Denisov; D. d'Enterria; A. Deshpande; E. J. Desmond; K. V. Dharmawardane; O. Dietzsch; L. Ding; A. Dion; P. B. Diss; J. H. Do; M. Donadelli; L. D'Orazio; J. L. Drachenberg; O. Drapier; A. Drees; K. A. Drees; A. K. Dubey; J. M. Durham; A. Durum; D. Dutta; V. Dzhordzhadze; S. Edwards; Y. V. Efremenko; J. Egdemir; F. Ellinghaus; W. S. Emam; T. Engelmore; A. Enokizono; H. En'yo; B. Espagnon; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. Finger Jr.; F. Fleuret; S. L. Fokin; B. Forestier; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; S. -Y. Fung; T. Fusayasu; S. Gadrat; K. Gainey; C. Gal; P. Gallus; P. Garg; A. Garishvili; I. Garishvili; F. Gastineau; H. Ge; M. Germain; F. Giordano; A. Glenn; H. Gong; X. Gong; M. Gonin; J. Gosset; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; G. Grim; M. Grosse Perdekamp; Y. Gu; T. Gunji; L. Guo; H. Guragain; H. -Å. Gustafsson; T. Hachiya; A. Hadj Henni; C. Haegemann; J. S. Haggerty; M. N. Hagiwara; K. I. Hahn; H. Hamagaki; J. Hamblen; H. F. Hamilton; R. Han; S. Y. Han; J. Hanks; H. Harada; E. P. Hartouni; K. Haruna; M. Harvey; S. Hasegawa; T. O. S. Haseler; K. Hashimoto; E. Haslum; K. Hasuko; R. Hayano; S. Hayashi; X. He; M. Heffner; T. K. Hemmick; T. Hester; J. M. Heuser; H. Hiejima; J. C. Hill; R. Hobbs; M. Hohlmann; R. S. Hollis; M. Holmes; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; Y. Hori; D. Hornback; T. Hoshino; N. Hotvedt; J. Huang; S. Huang; M. G. Hur; T. Ichihara; R. Ichimiya; H. Iinuma; Y. Ikeda; K. Imai; Y. Imazu; J. Imrek; M. Inaba; Y. Inoue; A. Iordanova; D. Isenhower; L. Isenhower; M. Ishihara; A. Isinhue; T. Isobe; M. Issah; A. Isupov; D. Ivanishchev; Y. Iwanaga; B. V. Jacak; M. Javani; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; J. Jin; O. Jinnouchi; B. M. Johnson; T. Jones; K. S. Joo; D. Jouan; D. S. Jumper; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; S. Kanda; M. Kaneta; S. Kaneti; B. H. Kang; J. H. Kang; J. S. Kang; H. Kanou; J. Kapustinsky; K. Karatsu; M. Kasai; T. Kawagishi; D. Kawall; M. Kawashima; A. V. Kazantsev; S. Kelly; T. Kempel; J. A. Key; V. Khachatryan; P. K. Khandai; A. Khanzadeev; K. M. Kijima; J. Kikuchi; A. Kim; B. I. Kim; C. Kim; D. H. Kim; D. J. Kim; E. Kim; E. -J. Kim; G. W. Kim; H. J. Kim; K. -B. Kim; M. Kim; Y. -J. Kim; Y. K. Kim; Y. -S. Kim; B. Kimelman; E. Kinney; Á. Kiss; E. Kistenev; R. Kitamura; A. Kiyomichi; J. Klatsky; J. Klay; C. Klein-Boesing; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; V. Kochetkov; M. Kofarago; Y. Komatsu; B. Komkov; M. Konno; J. Koster; D. Kotchetkov; D. Kotov; A. Kozlov; A. Král; A. Kravitz; F. Krizek; P. J. Kroon; J. Kubart; G. J. Kunde; N. Kurihara; K. Kurita; M. Kurosawa; M. J. Kweon; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; Y. Le Bornec; S. Leckey; B. Lee; D. M. Lee; G. H. Lee; J. Lee; K. B. Lee; K. S. Lee; M. K. Lee; S Lee; S. H. Lee; S. R. Lee; T. Lee; M. J. Leitch; M. A. L. Leite; M. Leitgab; B. Lenzi; B. Lewis; X. Li; X. H. Li; P. Lichtenwalner; P. Liebing; H. Lim; S. H. Lim; L. A. Linden Levy; T. Liška; A. Litvinenko; H. Liu; M. X. Liu; B. Love; D. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; A. Malakhov; M. D. Malik; A. Manion; V. I. Manko; E. Mannel; Y. Mao; T. Maruyama; L. Mašek; H. Masui; S. Masumoto; F. Matathias; M. C. McCain; M. McCumber; P. L. McGaughey; D. McGlinchey; C. McKinney; N. Means; A. Meles; M. Mendoza; B. Meredith; Y. Miake

    2015-09-22

    Measurements of midrapidity charged particle multiplicity distributions, $dN_{\\rm ch}/d\\eta$, and midrapidity transverse-energy distributions, $dE_T/d\\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\\rm part}$, and the number of constituent quark participants, $N_{q{\\rm p}}$. For all $A$$+$$A$ collisions down to $\\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\\rm p}}$ than scaling with $N_{\\rm part}$. Also presented are estimates of the Bjorken energy density, $\\varepsilon_{\\rm BJ}$, and the ratio of $dE_T/d\\eta$ to $dN_{\\rm ch}/d\\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

  19. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for...

  20. Landscaping Water Conservation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Conservation Landscaping Water Conservation April 27, 2015 - 6:39pm Addthis This colorful water-conserving landscape requires only one-quarter the water a bluegrass lawn...

  1. Partnerships for Energy-Water Research Bob Goldstein Mike Hightower

    E-Print Network [OSTI]

    Keller, Arturo A.

    Partnerships for Energy-Water Research Bob Goldstein Mike Hightower Electric Power Research Institute Sandia National Laboratories Partnerships for Energy-Water Research Bob Goldstein Mike Hightower Electric Power Research Institute Sandia National Laboratories #12;Big PictureBig Picture · Water

  2. A 125 GeV scalar improves the low-energy data support for the top-BESS model

    E-Print Network [OSTI]

    Mikulas Gintner; Josef Juran

    2013-09-26

    We investigate how adding a scalar resonance of a mass 125 GeV affects the low-energy data support for the top-BESS model as well as its low-energy free parameter limits. The top-BESS model is an effective Lagrangian, a modification of the well-known BESS model, with an ambition to describe phenomenology of the lowest bound states of strongly-interacting theories beyond the Standard model. In particular, the SU(2)_{L+R} vector resonance triplet of hypothetical bound states is a centerpiece of BESS-like effective models. The top-BESS model assumes that the triplet couples directly to the third quark generation only. This assumption reflects a possible special standing of the third quark generation, and the top quark in particular, in physics of electroweak symmetry breaking. Our findings suggest that the 125 GeV scalar extension of the top-BESS model results in a higher statistical support for the model. The best-fit values of the model's free parameters are consistent with the top quark having a higher degree of compositeness than the bottom quark.

  3. A 125 GeV scalar improves the low-energy data support for the top-BESS model

    E-Print Network [OSTI]

    Gintner, Mikulas

    2013-01-01

    We investigate how adding a scalar resonance of a mass 125 GeV affects the low-energy data support for the top-BESS model as well as its low-energy free parameter limits. The top-BESS model is an effective Lagrangian, a modification of the well-known BESS model, with an ambition to describe phenomenology of the lowest bound states of strongly-interacting theories beyond the Standard model. In particular, the SU(2)_{L+R} vector resonance triplet of hypothetical bound states is a centerpiece of BESS-like effective models. The top-BESS model assumes that the triplet couples directly to the third quark generation only. This assumption reflects a possible special standing of the third quark generation, and the top quark in particular, in physics of electroweak symmetry breaking. Our findings suggest that the 125 GeV scalar extension of the top-BESS model results in a higher statistical support for the model. The best-fit values of the model's free parameters are consistent with the top quark having a higher degree...

  4. Reduced pressure and temperature reclamation of water using the GE Integrated Water-waste Management System for potential space flight application 

    E-Print Network [OSTI]

    Chowdhury, Hasan Imtiaz

    1989-01-01

    hardware and verify the results previously reported by GE, the following series of tests were performed: 1) Disassemble, clean, and reassemble the system. 2) Determine the condensation rate as a function of temperature of the evaporator and the condenser... derivative (PID) feedback control sensor. The cooling system devised has a capacity of 1465 W and is controlled by an on/otf temperature sensor operating through a time delay relay. B. RESULTS AND DISCUSSION The system characterization procedure consisted...

  5. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

  6. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  7. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    2006. Water and Wastewater Energy Best Practice Guidebook.Water and Wastewater Energy Best Practice Guidebook. 2006.Water and Wastewater: Energy Best Practice Guidebook. 2006.

  8. Energy dependence of {phi} meson production in central Pb+Pb collisions at {radical}(s{sub NN})=6 to 17 GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Kollegger, T.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2008-10-15

    {phi} meson production is studied by the NA49 Collaboration in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV beam energy. The data are compared with measurements at lower and higher energies and with microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

  9. Which Water Heater Is Right for You? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Which Water Heater Is Right for You? March 5, 2015 - 11:07am Addthis Investing in a more energy efficient water heater can save you money in the long run. | Photo courtesy of...

  10. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    of 2007 (EISA 2007). Water and energy conservation standardon Water Use and Water Heating Energy Use in the U.S. : Aof U.S. Federal Energy and Water Conservation Standards

  11. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    E-Print Network [OSTI]

    , Stephen Meyers

    2014-01-01

    of 2007 (EISA 2007). Water and energy conservation standardon Water Use and Water Heating Energy Use in the U.S. : Aof U.S. Federal Energy and Water Conservation Standards

  12. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    of 2007 (EISA 2007). Water and energy conservation standardon Water Use and Water Heating Energy Use in the U.S. : Aof U.S. Federal Energy and Water Conservation Standards

  13. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    of 2007 (EISA 2007). Water and energy conservation standardon Water Use and Water Heating Energy Use in the U.S. : Aof U.S. Federal Energy and Water Conservation Standards

  14. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues...

  15. Powering Your Water Heater Using Solar Energy 

    E-Print Network [OSTI]

    Miller, Daniel

    2013-02-13

    This report is a detailed overview of my research on solar water heating. Solar water heaters may be used to either supplement or even replace a standard water heater. In addition to being environmentally friendly, solar ...

  16. Marietta Power & Water- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Marietta Power & Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a...

  17. Centrality dependence of the thermal excitation-energy deposition in 8-15 GeV/c hadron-Au reactions

    E-Print Network [OSTI]

    R. A. Soltz; R. J. Newby; J. L. Klay; M. Heffner; L. Beaulieu; T. Lefort; K. Kwiatkowski; V. E. Viola

    2009-01-09

    The excitation energy per residue nucleon (E*/A) and fast and thermal light particle multiplicities are studied as a function of centrality defined as the number of grey tracks emitted N_grey and by the mean number of primary hadron-nucleon scatterings and mean impact parameter extracted from it. The value of E*/A and the multiplicities show an increase with centrality for all systems, 14.6 GeV p-Au and 8.0 GeV pi-Au and pbar-Au collisions, and the excitation energy per residue nucleon exhibits a uniform dependence on N_grey.

  18. Critical exponents and phase transition in gold nuclei fragmentation at energies 10.6 and 4.0 GeV/nucleon

    E-Print Network [OSTI]

    D. Kudzia; B. Wilczynska; H. Wilczynski

    2002-07-25

    An attempt to extract critical exponents gamma, beta and tau from data on gold nuclei fragmentation due to interactions with nuclear emulsion at energies 4.0 A GeV and 10.6 A GeV is presented. Based on analysis of Campi's 2nd charge moments, two subsets of data at each energy are selected from the inclusive data, corresponding to 'liquid' and 'gas' phases. The extracted values of critical exponents from the selected data sets are in agreement with predictions of 'liquid-gas' model of phase transition.

  19. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Parker, Graham B.

    2012-12-31

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation. In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.

  20. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  1. Decision Support for IntegratedDecision Support for Integrated WaterWater--Energy PlanningEnergy Planning

    E-Print Network [OSTI]

    Keller, Arturo A.

    · Thermoelectric cooling · Hydropower · Extraction and refining · Fuel production (ethanol, hydrogen) Estimated -Cost Regulators -Air Quality -Water Quality -Instream Flows -Water Rights -Energy Reliability development: · Identify metrics and variables, · System conceptualization, and · Model review. ­ Decision

  2. China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy

    E-Print Network [OSTI]

    Qin, Ying; Curmi, Elizabeth; Kopec, Grant M.; Allwood, Julian M.; Richards, Keith S.

    2015-04-02

    Increasing population and economic growth continue to drive China's demand for energy and water resources. The interaction of these resources is particularly important in China, where water resources are unevenly distributed, with limited...

  3. Columbia Water & Light- Solar Energy Loans

    Office of Energy Efficiency and Renewable Energy (EERE)

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  4. Sandia Energy - Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources and water distribution systems are protected from accidental of intentional contamination events and that reliable systems are in place should an event occur. As water...

  5. Water Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    emissions-free, and cost-effective water power open new possibilities for this reliable, renewable resource. Explore EERE's water power success stories below. July 29, 2015 The...

  6. Spin Density Matrix Elements in Exclusive rho^0 Electroproduction on 1H and 2H Targets at 27.5 GeV Beam Energy

    E-Print Network [OSTI]

    HERMES Collaboration; A. Airapetian

    2009-06-13

    Spin Density Matrix Elements (SDMEs) describing the angular distribution of exclusive rho^0 electroproduction and decay are determined in the HERMES experiment with 27.6 GeV beam energy and unpolarized hydrogen and deuterium targets. Eight (fifteen) SDMEs that are related (unrelated) to the longitudinal polarization of the beam are extracted in the kinematic region 1 GeV^2 < Q^2 < 7 GeV^2, 3.0 GeV < W < 6.3 GeV, and -t < 0.4 GeV^2. Within the given experimental uncertainties, a hierarchy of relative sizes of helicity amplitudes is observed. Kinematic dependences of all SDMEs on Q^2 and t are presented, as well as the longitudinal-to-transverse rho^0 electroproduction cross section ratio as a function of Q^2. A small but statistically significant deviation from the hypothesis of s-channel helicity conservation is observed. An indication is seen of a contribution of unnatural-parity-exchange amplitudes; these amplitudes are naturally generated with a quark-exchange mechanism.

  7. 70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies

    E-Print Network [OSTI]

    G. G. Kiss; Gy. Gyurky; Z. Elekes; Zs. Fulop; E. Somorjai; T. Rauscher; M. Wiescher

    2007-11-07

    The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.

  8. Optimization Online - Robust Energy Cost Optimization of Water ...

    E-Print Network [OSTI]

    Alexander Goryashko

    2011-02-21

    Feb 21, 2011 ... Robust Energy Cost Optimization of Water Distribution System with Uncertain Demand. Alexander Goryashko(ale_gory ***at*** rambler.ru)

  9. 2013 Federal Energy and Water Management Award Winners Dale Allard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dale Allard, Steven Benson, John Elliot, Ryan Jeter, and Ron Stertzback 2013 Federal Energy and Water Management Award Winners Dale Allard, Steven Benson, John Elliot, Ryan Jeter,...

  10. Federal Energy and Water Management Award Winners Ronald Allard...

    Energy Savers [EERE]

    Ronald Allard, Joseph Eberly, Amy Hudson, James B. Shaffer Federal Energy and Water Management Award Winners Ronald Allard, Joseph Eberly, Amy Hudson, James B. Shaffer PDF icon...

  11. Feasibility Assessment of the Water Energy Resources of the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A Feasibility...

  12. 2013 Federal Energy and Water Management Award Winner Sandrine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandrine Schultz 2013 Federal Energy and Water Management Award Winner Sandrine Schultz fewm13schultzhighres.pdf fewm13schultz.pdf More Documents & Publications 2013 Federal...

  13. Feasibility Assessment of the Water Energy Resources of the United...

    Broader source: Energy.gov (indexed) [DOE]

    of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A Hydroelectric Webinar...

  14. 2005 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low-flow water fixtures, and an aerobic wastewater treatment system powered by solar energy. Richard Buckman Michael Conrad Curt Iffinger Brian Orrison Wayne Thalasinos...

  15. 2013 Federal Energy and Water Management Award Winner David Morin

    Broader source: Energy.gov [DOE]

    Poster features 2013 Federal Energy and Water Management Award winner David Morin of the U.S. Air Force's Laughlin Air Force Base in Texas.

  16. Sandia Energy - Floating Oscillating Water Column Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The final reference model, an oscillating water column (OWC)...

  17. ,"Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line...

    Broader source: Energy.gov (indexed) [DOE]

    Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" 2003,,,"EMS4","Environmental...

  18. New Water Booster Pump System Reduces Energy Consumption by 80...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFITS A Motor Challeng NEW WATER BOOSTER PUMP SYSTEM REDUCES ENERGY CONSUMPTION BY 80 PERCENT AND INCREASES RELIABILITY Summary Due to major renovations at their Pontiac...

  19. Federal Energy and Water Management Award Winners William Kuster...

    Energy Savers [EERE]

    William Kuster, John McDuffie, Dennis Svalstad, William Turnbull and Steven White Federal Energy and Water Management Award Winners William Kuster, John McDuffie, Dennis Svalstad,...

  20. 2013 Federal Energy and Water Management Award Winners Corrine...

    Energy Savers [EERE]

    Corrine Kegel, Jane A. Kipp, and Dale Reckley 2013 Federal Energy and Water Management Award Winners Corrine Kegel, Jane A. Kipp, and Dale Reckley fewm13usdaregiononemontanahig...

  1. 2013 Federal Energy and Water Management Award Winner Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Corps Recruit San Diego 2013 Federal Energy and Water Management Award Winner Marine Corps Recruit San Diego fewm13usmcmcdepotsandiegohighres.pdf fewm13usmcmcdepotsandi...

  2. Water-storage capacity controls energy partitioning and water use in karst ecosystems on the Edwards Plateau, Texas

    E-Print Network [OSTI]

    Schwinning, Susan - Department of Biology, Texas State University

    Water-storage capacity controls energy partitioning and water use in karst ecosystems of deep water. Copyright © 2012 John Wiley & Sons, Ltd. KEY WORDS evapotranspiration; energy balance of water in fractured limestone to the water available to trees. Water use is controlled by available

  3. Water supply and demand in an energy supply model

    SciTech Connect (OSTI)

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  4. Application of multiscale water and energy balance models on a tallgrass prairie

    E-Print Network [OSTI]

    Famiglietti, J. S; Wood, E. F

    1994-01-01

    models of water and energy balance, Ph.D. dissertation,variable water and energy balance processes, Water Resour.OF MULTISCALE WATER AND ENERGY BALANCE MODELS sented at the

  5. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    E-Print Network [OSTI]

    The SciBooNE Collaboration; G. Cheng; C. Mariani; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; a J. J. Gomez-Cadenas; P. Guzowski; A. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; Y. Kurimoto; W. C. Louis; P. F. Loverre; L. Ludovici; K. B. M. Mahn; S. Masuike; K. Matsuoka; V. T. McGary; W. Metcalf; G. B. Mills; G. Mitsuka; Y. Miyachi; S. Mizugashira; C. D. Moore; Y. Nakajima; T. Nakaya; R. Napora; P. Nienaber; D. Orme; M. Otani; A. D. Russell; F. Sanchez; M. H. Shaevitz; T. -A. Shibata; M. Sorel; R. J. Stefanski; H. Takei; H. -K. Tanaka; M. Tanaka; R. Tayloe; I. J. Taylor; R. J. Tesarek; Y. Uchida; R. Van de Water; J. J. Walding; M. O. Wascko; H. B. White; M. Yokoyama; G. P. Zeller; E. D. Zimmerman

    2011-07-29

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2{\\sigma}/dpd{\\Omega} = (5.34 \\times 0.76) mb/(GeV/c \\times sr) for p + Be -> K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85\\times0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  6. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  7. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G [Columbia U.; Mariani, C [Columbia U.; Alcaraz-Aunion, J L [Barcelona, IFAE; Brice, S J [Fermilab; Bugel, L [MIT; Catala-Perez, J [Valencia U.; Conrad, J M [MIT; Djurcic, Z [Columbia U.; Dore, U [Banca di Roma; INFN, Rome; Finley, D A [Fermilab; Franke, A J [Columbia U.; Banca di Roma; INFN, Rome

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  8. The water consumption of energy production: an international comparison

    E-Print Network [OSTI]

    Marks, David H.

    Producing energy resources requires significant quantities of fresh water. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on ...

  9. Columbia Water & Light- Home Performance with ENERGY STAR Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light, a municipal utility, offers rebates to its residential customers who make certain energy efficient improvements to the home. Under the Home Performance with Energy Star...

  10. Columbia Water & Light- New Home ENERGY STAR Rebate

    Broader source: Energy.gov [DOE]

    Columbia Water and Light offers a $1,000 rebate to customers for the construction of new homes that achieve certification as Energy Star homes. The Energy Star designation is given to homes that...

  11. Theoretical investigation of solar energy conversion and water oxidation catalysis

    E-Print Network [OSTI]

    Wang, Lee-Ping

    2011-01-01

    Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

  12. Reduce Overhead, Implement Energy Efficiency in Water/Wastewater 

    E-Print Network [OSTI]

    Cantwell, J. C.

    2007-01-01

    Through the Focus on Energy program in the State of Wisconsin we have been able to identify savings for industries in their water/wastewater treatment or distribution systems. Modifications required to realize savings resulted in reduced energy...

  13. Two source emission behaviour of alpha fragments of projectile having energy around 1 GeV per nucleon

    E-Print Network [OSTI]

    V. Singh; M. K. Singh; Ramji Pathak

    2010-09-17

    The emission of projectile fragments alpha has been studied in ^{84}Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source. It has been noticed that the temperature of hot and cold regions are dependent on the projectile mass number.

  14. DES J0454$-$4448: Discovery of the First Luminous z $\\ge$ 6 Quasar from the Dark Energy Survey

    E-Print Network [OSTI]

    Reed, S L; Banerji, M; Becker, G D; Gonzalez-Solares, E; Martini, P; Ostrovski, F; Rauch, M; Abbott, T; Abdalla, F B; Allam, S; Benoit-Levy, A; Bertin, E; Buckley-Geer, E; Burke, D; Rosell, A Carnero; da Costa, L N; ?Andrea, C; DePoy, D L; Desai, S; Diehl, H T; Doel, P; Cunha, C E; Estrada, J; Evrard, A E; Neto, A Fausti; Finley, D A; Fosalba, P; Frieman, J; Gruen, D; Honscheid, K; James, D; Kent, S; Kuehn, K; Kuropatkin, N; Lahav, O; Maia, M A G; Makler, M; Marshall, J; Merritt, K; Miquel, R; Mohr, J; Nord, B; Ogando, R; Plazas, A; Romer, K; Roodman, A; Rykoff, E; Sako, M; Sanchez, E; Santiago, B; Schubnell, M; Sevilla, I; Smith, C; Soares-Santos, M; Suchyta, E; Swanson, M E C; Tarle, G; Thomas, D; Tucker, D; Walker, A; Wechsler, R H

    2015-01-01

    We present the first results of a survey for high redshift, z $\\ge$ 6, quasars using izY multi-colour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the $\\rm z_{AB}, Y_{AB}$ = 20.2, 20.2 (M$_{1450}$ = $-$26.5) quasar DES J0454$-$4448 with an emission line redshift of z = 6.10$\\pm$0.03 and a HI near zone size of 4.6 $\\pm$ 1.7 Mpc.The quasar was selected as an i-band drop out with i$-$z = 2.46 and z$_{AB} $ 50-100 new quasars with z $>$ 6 including 3-10 with z $>$ 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies including determination of the neutral HI fraction of the intergalactic medium (IGM) during the epoch of Hydrogen reionization.

  15. Observation of e?e???J/? at center-of-mass energy ?s=4.009 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; et al

    2012-10-01

    Using a 478 pb?¹ data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of s?=4.009 GeV, the production of e?e???J/? is observed for the first time with a statistical significance of greater than 10?. The Born cross section is measured to be (32.1±2.8±1.3) pb, where the first error is statistical and the second systematic. Assuming the ?J/? signal is from a hadronic transition of the ?(4040), the fractional transition rate is determined to be B(?(4040)??J/?)=(5.2±0.5±0.2±0.5)×10?³, where the first, second, and third errors are statistical, systematic, and the uncertainty frommore »the ?(4040) resonant parameters, respectively. The production of e?e???0J/? is searched for, but no significant signal is observed, and B(?(4040)???J/?)« less

  16. Energy and water in the Western and Texas interconnects.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll

    2010-08-01

    The Department of Energy's Office of Electricity has initiated a $60M program to assist the electric industry in interconnection-level analysis and planning. The objective of this effort is to facilitate the development or strengthening of capabilities in each of the three interconnections serving the lower 48 states of the United States, to prepare analyses of transmission requirements under a broad range of alternative futures and develop long-term interconnection-wide transmission expansion plans. The interconnections are the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. One element of this program address the support and development of an integrated energy-water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning (the Eastern Interconnection is not participating in this element). Specific objectives include: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between members of this proposal team and the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Electric Reliability Council of Texas (ERCOT) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and ERCOT. The goals of this project are: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between Western Electricity Coordinating Council, Electric Reliability Council of Texas, Western Governors Association, and Western States Water Council. (3) Exercise the Energy-Water DSS to investigate water transmission planning scenarios.

  17. Energy and Water Scarcity: Impacts on Infrastructure, Growth and

    E-Print Network [OSTI]

    Scott, Christopher

    Techno-economic Evaluation Of A Solar Powered Water Desalination Plant. In L. Rizzuti et al. (edsEnergy and Water Scarcity: Impacts on Infrastructure, Growth and Economic Development in Arizona Demand AZ 2030 * Phoenix 2005; **Tucson 2005; 150=smart growth +66% +53% +45% From 2006 base #12;Water

  18. Optimization of Energy and Water Consumption in Cornbased Ethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and waste water discharge. We consider the corn-based ethanol plant reported in Karuppiah et al. (2008 industrial operation and waste water is no longer discharged. Keywords: Energy, Biofuels, Alternative fuels, including the treatment and recycling of waste water (Petrakis, 2008) as shown later in this paper. The task

  19. Energy and centrality dependence of p and p production and the {lambda}/p ratio in Pb+Pb collisions between 20A GeV and 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2006-04-15

    The transverse mass m{sub t} distributions for antiprotons are measured at midrapidity for minimum bias Pb+Pb collisions at 158A GeV and for central Pb+Pb collisions at 20A, 30A, 40A, and 80A GeV beam energies in the fixed target experiment NA49 at the CERN SPS. The rapidity density dn/dy, inverse slope parameter T, and mean transverse mass derived from the m{sub t} distributions are studied as a function of the incident energy and the collision centrality and compared to the relevant data on proton production. The shapes of the m{sub t} distributions of p and p are very similar. The ratios of the particle yields, p/p and {lambda}/p, are also analyzed. The p/p ratio exhibits an increase with decreasing centrality and a steep rise with increasing beam energy. The {lambda}/p ratio increases beyond unity with decreasing beam energy.

  20. Search for scalar leptons in e+e- collisions at centre-of-mass energies up to 209GeV

    E-Print Network [OSTI]

    ALEPH Collaboration

    2001-12-07

    A search for selectron, smuon and stau pair production is performed with the data collected by the ALEPH detector at LEP at centre-of-mass energies up to 209 GeV. The numbers of candidate events are consistent with the background predicted by the Standard Model. Final mass limits from ALEPH are reported.

  1. Revolutionary ultrasonic nozzle can reduce water and energy used for

    E-Print Network [OSTI]

    Sóbester, András

    Revolutionary ultrasonic nozzle can reduce water and energy used for cleaning by ten times by N O R into the air to then settle and contaminate other surfaces). As it is able to use cold water, energy is saved ultrasonic cleaning baths can easily be scaled up and neither can be used To search, type and hit enter " F i

  2. ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann* , Mariano Martín Center, PA 15213, USA Abstract In this paper we address the topic of energy and water optimization, we propose a strategy based on mathematical programming techniques to model and optimize

  3. Solar Water Heaters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The batch collector is a large box holding a tank and covered with a glaze that faces the sun. Water is heated in this tank, and another pipe takes the heated water from the batch...

  4. Diffusion in SiGe and Ge

    E-Print Network [OSTI]

    Liao, Christopher Yuan Ting

    2010-01-01

    Claeys, et al. , "Si versus Ge for future microelectronics,"in Selectively Doped Si/Si x Ge 1-x Superlattices," PhysicalA. Fitzgerald, et al. , "Relaxed Ge x Si 1-x structures for

  5. Hadron Production Model Developments and Benchmarking in the 0.7 - 12 GeV Energy Region

    E-Print Network [OSTI]

    N. V. Mokhov; K. K. Gudima; S. I. Striganov

    2014-08-29

    Driven by the needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, and their experiments, the event generators of the MARS15 code have been recently improved. After thorough analysis and benchmarking against data, including the newest ones by the HARP collaboration, both the exclusive and inclusive particle production models were further developed in the crucial for the above projects - but difficult from a theoretical standpoint - projectile energy region of 0.7 to 12 GeV. At these energies, modelling of prompt particle production in nucleon-nucleon and pion-nucleon inelastic reactions is now based on a combination of phase-space and isobar models. Other reactions are still modeled in the framework of the Quark-Gluon String Model. Pion, kaon and strange particle production and propagation in nuclear media are improved. For the alternative inclusive mode, experimental data on large-angle (> 20 degrees) pion production in hadron-nucleus interactions are parameterized in a broad energy range using a two-source model. It is mixed-and-matched with the native MARS model that successfully describes low-angle pion production data. Predictions of both new models are - in most cases - in a good agreement with experimental data obtained at CERN, JINR, LANL, BNL and KEK.

  6. The Future of Energy at the ARPA-E Summit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future blogs by email. Subscribe to all future posts Who Todd Wetzel What Energy Aero-Thermal & Mechanical Systems Employee Events Thermal Sciences Why Powering Subscribe...

  7. Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems

    SciTech Connect (OSTI)

    Lutz, James

    2005-02-26

    Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

  8. HIGH-ENERGY OBSERVATIONS OF PSR B1259–63/LS 2883 THROUGH THE 2014 PERIASTRON PASSAGE: CONNECTING X-RAYS TO THE GeV FLARE

    SciTech Connect (OSTI)

    Tam, P. H. T.; Li, K. L.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Takata, J. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Hui, C. Y., E-mail: phtam@phys.nthu.edu.tw [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-01

    The binary system PSR B1259–63/LS 2883 is well sampled in radio, X-rays, and TeV ?-rays, and shows orbital-phase-dependent variability in these frequencies. The first detection of GeV ?-rays from the system was made around the 2010 periastron passage. In this Letter, we present an analysis of X-ray and ?-ray data obtained by the Swift/XRT, NuSTAR/FPM, and Fermi/LAT, through the recent periastron passage which occurred on 2014 May 4. While PSR B1259–63/LS 2883 was not detected by the Large Area Telescope before and during this passage, we show that the GeV flares occurred at a similar orbital phase as in early 2011, thus establishing the repetitive nature of the post-periastron GeV flares. Multiple flares each lasting for a few days have been observed and short-term variability is seen as well. We also found X-ray flux variation contemporaneous with the GeV flare for the first time. Strong evidence of the keV-to-GeV connection came from the broadband high-energy spectra, which we interpret as synchrotron radiation from the shocked pulsar wind.

  9. Scaling Behavior of Transverse Kinetic Energy Distributions in Au+Au Collisions at $\\sqrt{s_{\\rm NN}}=200$ GeV

    E-Print Network [OSTI]

    L. L. Zhu; H. Zheng; C. B. Yang

    2008-01-15

    With the experimental data from STAR on the centrality dependence of transverse momentum $p_T$ spectra of pions and protons in Au+Au collisions at $\\sqrt{s_{NN}}=200 {\\rm GeV}$, we investigate the scaling properties of transverse energy $E_T$ distributions at different centralities. In the framework of cluster formation and decay mechanism for particle production, the universal transverse energy distributions for pion and proton can be described separately but not simultaneously.

  10. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  11. Energy dependence of multiplicity fluctuations in heavy ion collisions at 20A to 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Utvic, M.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.

    2008-09-15

    Multiplicity fluctuations of positively, negatively, and all charged hadrons in the forward hemisphere were studied in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV. The multiplicity distributions and their scaled variances {omega} are presented as functions of their dependence on collision energy as well as on rapidity and transverse momentum. The distributions have bell-like shapes and their scaled variances are in the range from 0.8 to 1.2 without any significant structure in their energy dependence. No indication of the critical point in fluctuations are observed. The string-hadronic ultrarelativistic quantum molecular dynamics (UrQMD) model significantly overpredicts the mean, but it approximately reproduces the scaled variance of the multiplicity distributions. The predictions of the statistical hadron-resonance gas model obtained within the grand-canonical and canonical ensembles disagree with the measured scaled variances. The narrower than Poissonian multiplicity fluctuations measured in numerous cases may be explained by the impact of conservation laws on fluctuations in relativistic systems.

  12. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

  13. VEA-0016 - In the Matter of GE Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode | Department2 16 I N S|5 - In6 -

  14. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region E?=1.1 –2.3 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.

    2015-05-01

    The beam-spin asymmetry, ?, for the reaction ?d???pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, ?c.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at ?c.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than ?c.m.=90°. The angular and energy dependence of ? is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmore »between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  15. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, Nicholas; et. al.,

    2015-05-01

    The beam-spin asymmetry, Sigma, for the reaction ?d-->pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, thetac.m., between 25degrees and 160degrees. These are the first measurements of beam-spin asymmetries at thetac.m.=90degrees for photon-beam energies above 1.6 GeV, and the first measurements for angles other than thetac.m.=90degrees. The angular and energy dependence of Sigma is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmore »between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  16. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_\\gamma=1.1-2.3$ GeV

    E-Print Network [OSTI]

    Zachariou, Nicholas; Ivanov, Nikolay Ya; Sargsian, Misak M; Avakian, Robert; Feldman, Gerald; Nadel-Turonski, Pawel; Adhikari, K P; Adikaram, D; Anderson, M D; Pereira, S Anefalos; Avakian, H; Badui, R A; Baltzell, N A; Battaglieri, M; Baturin, V; Bedlinskiy, I; Biselli, A S; Briscoe, W J; Brooks, W K; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Forest, T A; Fradi, A; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glazier, D I; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Ho, D; Holtrop, M; Hughes, S M; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, F J; Kubarovsky, V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P T; McKinnon, B; Mineeva, T; Mirazita, M; Mokeeev, V I; Montgomery, R A; Moutarde, H; Camacho, C Munoz; Net, L A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Phelps, W; Phillips, J J; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Senderovich, I; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D; Wei, X; Wood, M H; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-01-01

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  17. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    E-Print Network [OSTI]

    Nicholas Zachariou; Yordanka Ilieva; Nikolay Ya. Ivanov; Misak M Sargsian; Robert Avakian; Gerald Feldman; Pawel Nadel-Turonski; K. P. Adhikari; D. Adikaram; M. D. Anderson; S. Anefalos Pereira; H. Avakian; R. A. Badui; N. A. Baltzell; M. Battaglieri; V. Baturin; I. Bedlinskiy; A. S. Biselli; W. J. Briscoe; W. K. Brooks; V. D. Burkert; T. Cao; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; L. Colaneri; P. L. Cole; N. Compton; M. Contalbrigo; O. Cortes; V. Crede; A. D'Angelo; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; A. Filippi; J. A. Fleming; T. A. Forest; A. Fradi; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; D. I. Glazier; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; K. Hafidi; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; S. M. Hughes; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. Jiang; H. S. Jo; K. Joo; D. Keller; G. Khachatryan; M. Khandaker; A. Kim; W. Kim; F. J. Klein; V. Kubarovsky; P. Lenisa; K. Livingston; H. Y. Lu; I . J . D. MacGregor; N. Markov; P. T. Mattione; B. McKinnon; T. Mineeva; M. Mirazita; V. I. Mokeeev; R. A. Montgomery; H. Moutarde; C. Munoz Camacho; L. A. Net; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; W. Phelps; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; Y. Prok; D. Protopopescu; A. J. R. Puckett; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatié; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; I. Senderovich; Y. G. Sharabian; Iu. Skorodumina; G. D. Smith; D. I. Sober; D. Sokhan; N. Sparveris; S. Stepanyan; S. Strauch; V. Sytnik; M. Taiuti; Ye Tian; M. Ungaro; H. Voskanyan; E. Voutier; N. K. Walford; D. Watts; X. Wei; M. H. Wood; L. Zana; J. Zhang; Z. W. Zhao; I. Zonta; for the CLAS collaboration

    2015-03-18

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  18. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_?=1.1-2.3$ GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachariou, Nicholas [University of South Carolina; et. al.,

    2015-05-01

    The beam-spin asymmetry, Sigma, for the reaction ?d-->pn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, thetac.m., between 25degrees and 160degrees. These are the first measurements of beam-spin asymmetries at thetac.m.=90degrees for photon-beam energies above 1.6 GeV, and the first measurements for angles other than thetac.m.=90degrees. The angular and energy dependence of Sigma is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  19. Generation of 500 MeV-1 GeV energy electrons from laser wakefield acceleration via ionization induced injection using CO{sub 2} mixed in He

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Lassonde, P.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)] [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2013-04-01

    Laser wakefield acceleration of 500 MeV to 1 GeV electron bunches has been demonstrated using ionization injection in mixtures of 4% to 10% of CO{sub 2} in He. 80 TW laser pulses were propagated through 5 mm gas jet targets at electron densities of 0.4-1.5 Multiplication-Sign 10{sup 19}cm{sup -3}. Ionization injection led to lower density thresholds, a higher total electron charge, and an increased probability of producing electrons above 500 MeV in energy compared to self-injection in He gas alone. Electrons with GeV energies were also observed on a few shots and indicative of an additional energy enhancement mechanism.

  20. Energy and water sector policy strategies for drought mitigation.

    SciTech Connect (OSTI)

    Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

    2009-03-01

    Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

  1. Application of multiscale water and energy balance models on a tallgrass prairie

    E-Print Network [OSTI]

    Famiglietti, J. S; Wood, E. F

    1994-01-01

    of multiscale water and energy balance models on a tallgrassOF MULTISCALE WATER AND ENERGY BALANCE MODELS I •l I •. [models of water and energy balance, Ph.D. dissertation,

  2. Energy, water, and broad-scale geographic patterns of species richness

    E-Print Network [OSTI]

    2003-01-01

    the interaction between water and energy, either directly orof the variance. Also, both water and energy inputs play aAlter- natively, both water and energy are critical to

  3. Alternative and Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Reduced detergent, water, and energy consumption Blocksaves considerable water and energy compared to systems that2012b. ColorZen Offers Water-, Energy-, Chemical- And Time-

  4. Water and Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1Water PowerWaterWater

  5. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    1985. Residential hot water energy analysis: Instruments andResidential End Uses of Water. Denver: Palmgren, C. , N.California Department of Water Resources through the U.S.

  6. TEE-0077 - In the Matter of GE Appliances & Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department ofSUPPLEMENTSwitzerland|ofSessions |2Energy 71 - In37 -

  7. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    SciTech Connect (OSTI)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  8. El Dorado County Water Systems Energy Generation Project

    E-Print Network [OSTI]

    .energy.ca.gov/research/renewable/ May 2011 The Issue The water supply, conveyance, treatment, and hydroelectricity generation industry #12;CEC-500-2012-FS-014 · Analyzing the recommendations from a recent El Dorado County Hydroelectric

  9. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Photovoltaic Modules. North Carolina Solar Center Heat Your Water with the Sun (PDF). U.S. Department of Energy Addthis Related Articles An example of a solar pool...

  10. US China CERC Energy and Water - Funding Opportunity Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is the Office of International Affairs. The topics solicited in the FOA build on the contents of The Water-Energy Nexus: Challenge and Opportunities, which DOE issued in June...

  11. Conservation of Energy and Water Use in State Buildings

    Broader source: Energy.gov [DOE]

    Senate Bill 668 of 2007 and Senate Bill 1946 of 2008 established several policies which will reduce the amount of energy, water and other resources consumed by the State government in their...

  12. Loveland Water & Power- Home Energy Audit Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power (LWP) is providing an incentive for customers living in single-family detached homes or attached townhouses that wish to upgrade the energy efficiency of eligible homes....

  13. McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

  14. Feasibility Assessment of the Water Energy Resources of the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ID-11263 January 2006 Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants U.S. Department of...

  15. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  16. Federal Energy and Water Management Award Winners Kate Anderson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efforts in FY 2012 that contributed to its net-zero objectives and reduced its energy intensity by 14.7 percent and water intensity by 8 percent from their respective baselines....

  17. Water Efficiency Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater Efficiency Case Studies Water

  18. Water Electrolysis Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater Efficiency CaseWater

  19. Water Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater HeatingWater

  20. Evidences of high energy protons with energies beyond 0.4 GeV in the solar particle spectrum as responsible for the cosmic rays solar diurnal anisotropy

    E-Print Network [OSTI]

    C. E. Navia; C. R. A. Augusto; M. B. Robba; K. H. Tsui

    2007-06-26

    Analysis on the daily variations of cosmic ray muons with $E_{\\mu}\\geq 0.2 GeV$ based on the data of two directional muon telescopes at sea level and with a rigidity of response to cosmic proton spectrum above 0.4 GV is presented. The analysis covers two months of observations and in 60% of days, abrupt transitions between a low to a high muon intensity and vice-verse is observed, the period of high muon intensity is from $\\sim 8.0h$ up to $\\sim 19.0h$ (local time) and coincides with the period when the interplanetary magnetic field (IMF) lines overtake the Earth. This behavior strongly suggest that the high muon intensity is due to a contribution of solar protons (ions) on the muon intensity produced by the galactic cosmic rays, responsible for the low muon intensity. This implies that the solar particle spectrum extends to energies beyond 1 GeV. We show that this picture can explain the solar daily variation origin, and it is a most accurate scenario than the assumption of corotating galactic cosmic ray with the IMF lines, specially in the high rigidity region. Obtained results are consistent with the data reported in others papers. Some aspects on the sensitivity of our muon telescopes are also presented.

  1. Decision support for integrated water-energy planning.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  2. GE-Prolec CCE Meeting October 19,2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | DepartmentJune 3,.PDF&#0;

  3. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding access to science informationArticle) |SciTech Connect Energy

  4. TEE-0074 - In the Matter of GE Appliances & Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department ofSUPPLEMENTSwitzerland|ofSessions |2Energy 71 - In3 -4

  5. Funding Federal Energy and Water Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy savings performance contracts (ESPCs), utility energy service contracts (UESCs), power purchase agreements (PPAs), and energy incentive programs. projectfundingguide.pdf...

  6. Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix

    SciTech Connect (OSTI)

    Talochkin, A. B., E-mail: tal@thermo.isp.nsc.ru; Chistokhin, I. B. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2011-07-15

    Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest 'quantum box' model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.

  7. Transport model study of nuclear stopping in heavy ion collisions over an energy range from 0.09A GeV to 160A GeV

    E-Print Network [OSTI]

    Ying Yuan; Qingfeng Li; Zhuxia Li; Fu-Hu Liu

    2010-02-26

    Nuclear stopping in the heavy ion collisions over a beam energy range from SIS, AGS up to SPS is studied in the framework of the modified UrQMD transport model, in which mean field potentials of both formed and "pre-formed" hadrons (from string fragmentation) and medium modified nucleon-nucleon elastic cross sections are considered. It is found that the nuclear stopping is influenced by both the stiffness of the equation of state and the medium modifications of nucleon-nucleon cross sections at SIS energies. At the high SPS energies, the two-bump structure is shown in the experimental rapidity distribution of free protons, which can be understood with the consideration of the "pre-formed" hadron potentials.

  8. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  9. Detection of Gamma-Ray Bursts in the 1 GeV - 1 TeV energy range by ground based experiments

    E-Print Network [OSTI]

    Silvia Vernetto

    1999-09-29

    Ground based extensive air showers arrays can observe GRBs in the 1-1000 GeV energy range using the "single particle" techique. The sensitivity to detect a GRB as a function of the burst parameters and the detector characteristics are discussed. The rate of possible observations is evaluated, making reasonable assumptions on the high energy emission, the absorbtion of gamma-rays in the intergalactic space, the distribution of the sources in the universe and the bursts luminosity function. We show that a large area detector located at high mountain altitude has good prospects for positive detections, providing useful informations on the high energy components of GRBs.

  10. Reduce Hot Water Use for Energy Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Low-flow fixtures and showerheads can achieve water savings of 25%60%. | Photo courtesy of iStockphotoDaveBolton. Low-flow fixtures and showerheads can achieve water...

  11. Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates

    SciTech Connect (OSTI)

    Rosinski, M.; Wolowski, J.; Badziak, J.; Parys, P.; Boody, F. P.; Gammino, S.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Mezzasalma, A.; Torrisi, L.

    2006-01-15

    The development of implantation techniques requires investigation of laser plasma as a potential source of multiply charged ions. The laser ion source delivers ions with kinetic energy and a charge state dependent on the irradiated target material and the parameters of the laser radiation used. By the focusing the laser beam on the solid target the higher current densities of ions than by using other currently available ion sources can be produced. The crucial issue for efficiency of the ion implantation technology is selection of proper laser beam characteristics. Implantation of different kinds of laser-produced ions into metals and organic materials were performed recently at the PALS Research Center in Prague, in cooperative experiments using 0.4-ns iodine laser pulses having energies up to 750 J at wavelength of 1315 nm or up to 250 J at wavelength of 438 nm. In this contribution we describe the characterization and optimization of laser-produced Ge ion streams as well as analysis of the direct implantation of these ions into Si and SiO2 substrates. The Ge target was irradiated with the use of laser pulses of energy up to 50 J at radiation intensities of {approx}1011 W/cm2 and {approx}2'1013 W/cm2. The implanted samples were placed along the target normal at distances of 17, 31 and 83 cm from the target surface. The ion stream parameters were measured using the time-of-fight method. The depth of ion implantation was determined by the Rutherford backscattering method (RBS). The maximum depth of implantation of Ge ions was {approx}450 nm. These investigations were carried out for optimization of low and medium energy laser-generated Ge ion streams, suitable for specific implantation technique, namely for fabrication of semiconductor nanostructures within the SRAP 'SEMINANO' project.

  12. ADNR Water Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonate as401 WaterADNR Water Forms Jump

  13. Water Project Screening Tool | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water HeatingAbout theWater

  14. CPS Energy- Solar Hot Water Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Customers will be responsible for choosing their own contractor from a list of installers registered with CPS Energy. Customers are also responsible for obtaining all applicable permissions and...

  15. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  16. A Framework for Analysis of Energy-Water Interdependency Problems

    SciTech Connect (OSTI)

    Robert F. Jeffers; Jacob J. Jacobson

    2011-08-01

    The overall objective of this work is to improve the holistic value of energy development strategies by integrating management criteria for water availability, water quality, and ecosystem health into the energy system planning process. The Snake River Basin (SRB) in southern Idaho is used as a case study to show options for improving full economic utilization of aquatic resources given multiple scenarios such as changing climate, additional regulations, and increasing population. Through the incorporation of multiple management criteria, potential crosscutting solutions to energy and water issues in the SRB can be developed. The final result of this work will be a multi-criteria decision support tool - usable by policy makers and researchers alike - that will give insight into the behavior of the management criteria over time and will allow the user to experiment with a range of potential solutions. Because several basins in the arid west are dealing with similar water, energy, and ecosystem issues, the tool and conclusions will be transferable to a wide range of locations and applications. This is a very large, multi-year project to be completed in phases. This paper deals with interactions between the hydrologic system and water use at a basin level. Future work will include the interdependency between energy use and water use in these systems.

  17. A Framework for Analysis of Energy-Water Interdependency Problems

    SciTech Connect (OSTI)

    Robert Jeffers; Jacob J. Jacobson; Kristyn Scott

    2011-07-01

    The overall objective of this work is to improve the holistic value of energy development strategies by integrating management criteria for water availability, water quality, and ecosystem health into the energy system planning process. The Snake River Basin (SRB) in southern Idaho is used as a case study to show options for improving full economic utilization of aquatic resources given multiple scenarios such as changing climate, additional regulations, and increasing population. Through the incorporation of multiple management criteria, potential crosscutting solutions to energy and water issues in the SRB can be developed. The final result of this work will be a multi-criteria decision support tool - usable by policy makers and researchers alike - that will give insight into the behavior of the management criteria over time and will allow the user to experiment with a range of potential solutions. Because several basins in the arid west are dealing with similar water, energy, and ecosystem issues, the tool and conclusions will be transferrable to a wide range of locations and applications. This is a very large project to be completed in phases. This paper deals with interactions between the hydrologic system and water use at a basin level. Future work will include the interdependency between energy use and water use in these systems.

  18. Event-by-event distribution of magnetic field energy over initial fluid energy density in $\\sqrt{s_{\\rm NN}}$= 200 GeV Au-Au collisions

    E-Print Network [OSTI]

    Roy, Victor

    2015-01-01

    We estimate the event-by-event (e-by-e) distribution of the ratio ($\\sigma$) of the magnetic field energy to the fluid energy density in the transverse plane of Au-Au collisions at $\\sqrt{s_{\\rm NN}}$ = 200 GeV. A Monte-Carlo (MC) Glauber model is used to calculate the $\\sigma$ in the transverse plane for impact parameter b=0, 12 fm at time $\\tau_i\\sim$0.5 fm. The fluid energy density is obtained by using Gaussian smoothing with two different smoothing parameter $\\sigma_g$=0.25 , 0.5 fm. For $b=0~\\rm fm$ collisions $\\sigma$ is found to be $\\ll$ 1 in the central region of the fireball and $\\sigma\\gtrsim$ 1 at the periphery. For b=12 fm collisions $\\sigma\\gtrsim$ 1. The e-by-e correlation between $\\sigma$ and the fluid energy density ($\\varepsilon$) is studied. We did not find strong correlation between $\\sigma$ and $\\varepsilon$ at the centre of the fireball, whereas they are mostly anti-correlated at the periphery of the fireball.

  19. Amplifying Real Estate Value through Energy & Water Management: From ESCO to "Energy Services Partner"

    E-Print Network [OSTI]

    Mills, Evan

    2004-01-01

    Service Companies among Real Estate Investment Trusts. ”Investor Returns: The Real Estate Sector. ” InnovestAmplifying Real Estate Value through Energy & Water

  20. Precise parametrizations of muon energy losses in water

    E-Print Network [OSTI]

    S. I. Klimushin; E. V. Bugaev; I. A. Sokalski

    2001-06-01

    The description of muon propagation through large depths of matter, based on a concept of the correction factor, is proposed. The results of Monte-Carlo calculations of this correction factor are presented. The parametrizations for continuous energy loss coefficients, valid in the broad interval of muon energies, and for the correction factor are given. The concrete calculations for pure water are presented.

  1. Subcommittee Markup FY 2016 Energy and Water Appropriations

    E-Print Network [OSTI]

    - $800 million more for renewable energy as an example ­ the request proposed to cut the Corps by $750Subcommittee Markup FY 2016 Energy and Water Appropriations April 15, 2015 Opening Statement and all the hard work that each of you have put into this product. I think that as you look at the bill

  2. Emergy Analysis of Sugarcane (energy crop) Water Management

    E-Print Network [OSTI]

    Ma, Lena

    diagrams Energy & Material Flow Data Emergy computations Analysis 5. Case Study #12;12Annual Southwest and Material Flow data #12;EmergyEvaluationTable 15 Unit Solar Solar Data EMERGY* EMERGY Note Item Unit (unitsEmergy Analysis of Sugarcane (energy crop) Water Management HENDRY COUNTY SUSTAINABLE BIOFUELS

  3. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    E-Print Network [OSTI]

    , Stephen Meyers

    2014-01-01

    D. Lutz. The Effect of Efficiency Standards on Water Useand Water Heating Energy Use in the U.S. : A Detailed End-U.S. Federal Energy and Water Conservation Standards Adopted

  4. The energy-water tug of war: Drought exacerbates the paradox of efficiently producing energy while conserving water 

    E-Print Network [OSTI]

    Kalisek, Danielle

    2011-01-01

    ,? Webber said. ?If it?s drought from a heat wave, we might see rolling blackouts, and we might see power price spikes.? Webber?s and Stillwell?s research focuses on analyzing power plant cooling technologies for mitigating water management challenges... stream_source_info The energy-water tug of war.pdf.txt stream_content_type text/plain stream_size 8445 Content-Encoding windows-1252 stream_name The energy-water tug of war.pdf.txt Content-Type text/plain; charset=windows-1252...

  5. Energy and Water Conservation Measures for Hanford (2013)

    SciTech Connect (OSTI)

    Reid, Douglas J.; Butner, Ryan S.

    2013-04-01

    Pacific Northwest National Laboratory (PNNL) performed an energy and water evaluation of selected buildings on the Hanford Site during the months of May and June 2012. The audit was performed under the direction of the U.S. Department of Energy, Sustainability Performance Office to identify key energy conservation measures (ECMs) and water conservation measures (WCMs). The evaluations consisted of on-site facility walk-throughs conducted by PNNL staff, interviews with building-operating personnel, and an examination of building designs and layouts. Information on 38 buildings was collected to develop a list of energy and water conservation measures. Table ES.1 is a summary of the ECMs, while table ES.2 is a summary of the WCMs.

  6. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartment ofthe

  7. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartment oftheG.

  8. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartment oftheG.Allard,

  9. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartment

  10. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartmentDebbie Beck,

  11. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartmentDebbie

  12. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of EnergyFaultNADepartmentDebbieBuildings

  13. Water Power News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. TheEnergyEnergyMedia1, inReports4

  14. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an open online space for companies to collaborate and transform how they design and manufacture their products in the future NISKAYUNA, NY, June 2, 2015 - GE (NYSE:GE), a leading...

  15. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  16. Water Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating

  17. Westlands Water District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin,Westhaven-Moonstone,

  18. Solar Water Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany Limited SPCSolarVision Jump

  19. NMSLO Water Rights Agreement | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota:EnergyNARI|Forms12State

  20. Quadrennial Energy Review Public Meeting: Water-Energy Nexus

    Broader source: Energy.gov (indexed) [DOE]

    of adequate and reliable potable water supplies also contributes to unemployment, poverty, and mortality rates on reservations that are much higher than those in non-Indian...

  1. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    ICF Consulting. 2008. Water and Energy: Leveraging VoluntaryPrograms to Save Both Water and Energy. Prepared for theEffective Savings of Water and Energy). Funded by the U.S.

  2. Duke Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Duke Energy Florida (DEF) launched the Solar Water Heating with EnergyWise Program in February 2007 to encourage its residential customers to participate in its load control program and install a...

  3. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    E-Print Network [OSTI]

    Xu, Tengfang

    2013-01-01

    they could trim costs by saving energy and water. Journalfor annual energy savings, energy costs savings, waterReport for DOE-Sponsored Energy Savings Assessment Conducted

  4. Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

    E-Print Network [OSTI]

    K. -H. Glander; J. Barth; W. Braun; J. Hannappel; N. Jöpen; F. Klein; E. Klempt; R. Lawall; J. Link; D. Menze; W. Neuerburg; M. Ostrick; E. Paul; I. Schulday; W. J. Schwille; H. v. Pee; F. W. Wieland; J. Wißkirchen; C. Wu

    2003-08-26

    The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.

  5. Modeling of GE Appliances: Final Presentation

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  6. Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

    E-Print Network [OSTI]

    Golan, Amir

    2013-01-01

    VUV) Photoionization of Small Water Clusters. J. Phys. Chem.Energy Transfer between Water Molecules. Nat. Phys. 2010, 6,of Low-Energy Electrons in Water. Nat. Phys. 2010, 6, 78-81.

  7. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater March 2, 2015 - 3:09pm Addthis Solar water...

  8. "Improving access to clean water and energy through the design of advanced

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    "Improving access to clean water and energy through the design of advanced polymer membrane Engineering for Membrane Separations, Clean Water, and Energy Providing sustainable supplies of purified water and clean energy is a critical global challenge for the future. Water and energy are inherently linked since

  9. Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    E-Print Network [OSTI]

    P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

    2007-06-05

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

  10. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure

    SciTech Connect (OSTI)

    Shibayama, Shigehisa [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan) [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)] [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-08-19

    The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.

  11. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    The impacts cover primary energy savings and water savings,with standards: (1) primary energy savings; (2) additionalstandards using the annual primary energy savings and annual

  12. Best Practices for Energy Efficient Cleanrooms: Control of Chilled Water System

    E-Print Network [OSTI]

    : Control of chilled water system Tengfang Xu Contents HVAC WATER SYSTEMSLBNL-58635 Best Practices for Energy Efficient Cleanrooms: Control of Chilled Water System Tengfang.............................................................................................. 2 Control of chilled water system

  13. Tips: Water Heating | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About Us Shirley AnnResources Technical ofTheLaundry Tips: LaundryWater Heating

  14. Sandia Energy - Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWater Monitoring &

  15. ADEQ Water Quality Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonate as401 Water Quality

  16. Alaska Water Quality Standards | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:Elec Coop, Inc Jump to:Water

  17. Category:Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformation Utility RateWater Sampling

  18. Geothermal/Water Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected from PowerWater Use

  19. Houlton Water Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II WindHoulton Water Company

  20. Water-Heating Dehumidifier - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)ManagementWatchingWaterIrrigating

  1. Water Transport Exploratory Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeer ReviewsWaterPower:

  2. Water Power Program Budget | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste IsolationofWatchBudget Water Power

  3. Water Heating Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating Products andHVAC,

  4. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating Products

  5. Water Power Information Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating ProductsInformation

  6. Water Power News | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water Heating

  7. Water Power Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington ,Water HeatingAbout the

  8. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline of Events:Smart Meters and a SmarterWater

  9. Sandia Energy - Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos Home ECRenewableWakeWater

  10. Title 23 CCR Waters | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinox Jump to:,11 Protection of2 California CodeCCR

  11. Tips: Water Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGEDepartment of Energy <Keep your energy bills

  12. NDN Water Summit 2015 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft Word1SustainabilityEnergyTO8:00AM MDT to

  13. NDN Water Summit 2015 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft Word1SustainabilityEnergyTO8:00AM MDT

  14. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,of

  15. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department of Health and Human

  16. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department of Health and

  17. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department of Health andWeapons

  18. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department of Health

  19. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department of HealthNational

  20. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department of

  1. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department ofChip Bulger,

  2. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department ofChip

  3. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department ofChipSpecial

  4. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. Department ofChipSpecialWilliam

  5. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. DepartmentDei, Melissa Kostich,

  6. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. DepartmentDei, Melissa

  7. Federal Energy and Water Management Awards 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer U.S. DepartmentDei, MelissaZimmerman

  8. Glossary of water terminology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma Energy Group JumpEnergyWaste to

  9. Coordinating Energy Efficiency With Water Conservation Services |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeepDecember 2010 |Interface

  10. Alternative Water Sources Map | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiency RebateFederal Energy Management Program

  11. Federal Energy and Water Management Awards 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientificEnergy Efficiency » Federal EnergyCAPT

  12. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    E-Print Network [OSTI]

    , Stephen Meyers

    2014-01-01

    Use and Water Heating Energy Use in the U.S. : A Detailedand Projected Impacts of U.S. Energy and Economic Impacts ofU.S. Federal Energy and Water Conservation Standards Adopted

  13. Redlands Water & Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield Campus Geothermal AreaRedlands Water

  14. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

  15. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWater Power ForumWaterWater

  16. BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

    2005-01-01

    temperature (and thus the best energy efficiency) and lowerindustry called “BEST (Benchmarking and Energy and waterR EPORT BEST WINERY GUIDEBOOK: BENCHMARKING AND ENERGY AND

  17. Water-Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation2003) |

  18. Storage Oil Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE| DepartmentHigh

  19. California Water Rights Issues | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpageProject

  20. Electrolysis of Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2 DOEofENERGYElectrolysis

  1. Federal Energy and Water Management Awards 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientificEnergy Efficiency » Federal

  2. Explore Water Power Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program Management »EricExplorationWind

  3. Landscaping Water Conservation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | InternationalLand and Asset Transfer for

  4. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting State Energy AdvisoryStipend-based InternshipsStorage

  5. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater HeatingWater Power

  6. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne calculations of the electronic energy of the ground state of the water molecule yield energies lower than those for the electronic energy of the ground state of the water molecule. The energy given by a fixed-node quantum Monte

  7. The Development of an Energy Evaluation Tool for Chilled Water Systems 

    E-Print Network [OSTI]

    Stocki, M.; Kosanovic, D.; Ambs, L.

    2001-01-01

    An energy evaluation tool for chilled water systems was developed. This tool quantifies the energy usage of various chilled water systems and typical energy conservation measures that are applied to these systems. It can be used as a screening tool...

  8. Clothes washer standards in China -- The problem of water and energy trade-offs in establishing efficiency standards

    E-Print Network [OSTI]

    Biermayer, Peter J.; Lin, Jiang

    2004-01-01

    the Problem of Water and Energy Trade-offs in Establishingthe Problem of Water and Energy Trade-offs in Establishinga trade-off between water and energy savings Uses more water

  9. Utah Water Rights Flowchart | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRules ofOfficeQualityFee

  10. Vermont Water Quality Standards | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards Jump to: navigation, search OpenEI

  11. Vidler Water Company Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards JumpUSA JumpVideocon Industries Ltd

  12. WSDE Water Resources website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington,FL97-11 SEPAStorage Tank Program

  13. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation UmpquaEt

  14. The Law of Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |Information 5thInformationComparison withLanly

  15. Tahoe Water Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95Symerton,E CTEPTTP PlcTaeanTahoe

  16. Residential Water Heaters Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarchLLC Open

  17. Consolidated Water Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordia Electric Coop,Consolidated Electric Coop

  18. Solar water heaters | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment CoSolar pool heating Jump

  19. Placer County Water Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMaunaPionics Co LtdPlacer

  20. Storage Electric Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE| DepartmentHigh ImpactStopElectric