Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Water-Gas Shift Membrane Reactor  

SciTech Connect

The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

2009-01-07T23:59:59.000Z

2

Development of Novel Water-Gas-Shift Membrane Reactor  

E-Print Network (OSTI)

Development of Novel Water- Gas-Shift Membrane Reactor Addressing Barrier L: H2 Purification-22, 2003 #12;Water-Gas-Shift Membrane Reactor · Relevance/Objectives - Produce Enhanced H2 Product with ppm CO at High Pressure Used for Reforming - Overcome Barrier L: H2 Purification/CO Clean-up - Achieve

3

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network (OSTI)

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review was produced from water in a linked cyanobacterial- hydrogenase hybrid system Isolated mutants and cloned 2

4

Analysis of a duo-selecting membrane reactor for the water-gas shift  

E-Print Network (OSTI)

The water-gas shift reaction is an exothermic and reversible catalytic process that converts carbon monoxide and water (steam) to hydrogen and carbon dioxide. In regard to energy-related issues, the water-gas shift is part ...

Hardy, AliciA Jillian Jackson, 1978-

2004-01-01T23:59:59.000Z

5

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

6

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

7

Comparison of Palladium and Platinum Water Gas Shift Kinetics Using Density Functional Theory Models.  

E-Print Network (OSTI)

??The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at low… (more)

Clay, John

2014-01-01T23:59:59.000Z

8

Comparison of palladium and platinum Water Gas Shift reaction kinetics using density functional theory models.  

E-Print Network (OSTI)

?? The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at… (more)

Clay, John P.

2014-01-01T23:59:59.000Z

9

Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction .  

E-Print Network (OSTI)

??In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic… (more)

Abdollahi, Farhang

2013-01-01T23:59:59.000Z

10

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect

This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

Carl R.F. Lund

2001-08-10T23:59:59.000Z

11

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift  

SciTech Connect

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

2008-03-07T23:59:59.000Z

12

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

13

NETL: Gasification- Water-Gas Shift (WGS) Tests to Reduce Steam Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Water-Gas Shift (WGS) Tests to Reduce Steam Use National Carbon Capture Center at the Power Systems Development Facility Southern Company Services, Inc. Project Number: NT0000749 Project Description The National Carbon Capture Center is testing commercial water-gas shift (WGS) catalysts from multiple vendors in support of developing WGS reactor systems which will reduce the cost of carbon dioxide (CO2) capture from the production of syngas using coal. These tests have revealed that steam-to-carbon monoxide (CO) ratios can be reduced, resulting in a substantial increase in the net power output and significantly reducing the cost of electricity from an integrated gasification combined cycle (IGCC) plant with CO2 capture. Several commercially available WGS catalysts have been tested, and the results are being provided to the manufacturers to aid them in specifying future WGS systems for IGCC plants incorporating CO2 capture.

14

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

15

Kinetic studies of the water gas shift reaction on a sulfided cobalt/molybdena/alumina catalyst  

SciTech Connect

In this study, the applicability of low temperature oxygen chemisorption (LTOC) to measure the specific surface area of several rare-earth oxides (La, Ce, Pr, Nd, Tb) and the kinetics of the water-gas shift reaction over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst are investigated. The LTOC results indicate that oxygen is possibly adsorbed in the molecular form, O/sub 2//sup -/, as observed by others after heat treatment of these oxides in vacuum. Lanthana and ceria were found to have ratios of total surface area to LTOC similar to those of chromia and molybdena respectively, after a comparable pretreatment. Furthermore, ceria is deduced to exist as a monolayer on the alumina support at loadings below 12%. An additional hour of reduction after the 6 hours of reduction shows a significant increase in LTOC on lanthana, neodymia and terbia which may be due to phase changes exhibited by these polymorphic oxides. The kinetics of the water-gas shift reaction has been extensively studied on iron oxide (high temperature shift) and copper oxide (low temperature shift) based catalysts. This investigation establishes the kinetics over a sulfided cobalt-molybdena-alumina (AMOCAT 1A) catalyst in the medium temperature shift range, 250-300/sup 0/C. The catalyst was sulfided in-situ in a high pressure integrated Berty reactor system. Reaction rates were measured for different CO/H/sub 2/O feed ratios in the range 0.3-3.0, with and without CO/sub 2/ in the feed. The reaction was carried out at several pressures in the range 5-27 atm. and GHSV's in the range 4800-2400 hr/sup 1/.

Srivatsa, N.R.

1987-01-01T23:59:59.000Z

16

Hydordesulfurization of dibenzothiophene using hydrogen generated in situ by the water-gas shift reaction in a trickle bed reactor  

E-Print Network (OSTI)

HYDRODESULFURIZATION OF DIBENZOTHIOPHENE USING HYDROGEN GENERATED IN SITU BY THE WATER ? GAS SHIFT REACTION IN A TRICKLE BED REACTOR A Thesis BRUCE DAVID HOOK Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1984 Major Subject: Chemical Engineering HYDRODESULFURIZATION OF DIBENZOTHIOPHENE USING HYDROGEN GENERATED IN SITU BY THE WATER ? GAS SHIFT REACTION IN A TRICKLE BED REACTOR A Thesis by BRUCE...

Hook, Bruce David

2012-06-07T23:59:59.000Z

17

Microsoft Word - Evaluation of Alternate Water Gas Shift for Carbon Capture Final Final Report .doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Alternate Water Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems August 5, 2009 DOE/NETL-401/080509 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

18

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

SciTech Connect

This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

19

Cu/Zn-based catalysts improved by adding magnesium for water–gas shift reaction  

Science Journals Connector (OSTI)

Ternary Cu/MeO/ZnO (Me: alkaline-earth metal, Mg, Ca, Sr and Ba) catalysts were prepared by homogeneous precipitation (hp) using urea hydrolysis. The structure and the activity for the water–gas shift reaction of these catalysts were studied compared with those of the catalysts prepared by coprecipitation (cp). The highest activity was obtained over hp-Cu/MgO/ZnO among the catalysts tested. The catalyst precursors after the precipitation contained mainly aurichalcite, (Cu,Zn)5(CO3)2(OH)16, while the decomposed products after the calcination contained apparently CuO and ZnO as crystalline phases, since the amount of Mg actually included in the catalyst was less than 1.0 at.%. The Cu metal surface area was larger and the particle size of Cu metal was smaller on the hp-catalysts than those on the cp-catalysts; nonetheless the BET surface area was sometimes larger on the latter than on the former. The addition of ?0.1 at.% of Mg was the most effective, resulting in the highest activity as well as the lowest activation energy. A good correlation was observed between the amount of Cu+ species and the activation energy of the shift reaction, suggesting that MgO significantly enhanced the formation of Cu+ species as the active sites. Even after the pre-reduction at the high temperature, 250 °C, hp-Cu/MgO/ZnO catalyst showed no significant decrease in the activity as well as no detectable sintering in the Cu metal particles during 50 h of the reaction. It was supposed that the shift reaction proceeds by a reduction–oxidation mechanism between Cu0 ? Cu+.

Tetsuya Shishido; Manabu Yamamoto; Ikuo Atake; Dalin Li; Yan Tian; Hiroyuki Morioka; Masahide Honda; Tsuneji Sano; Katsuomi Takehira

2006-01-01T23:59:59.000Z

20

Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling  

SciTech Connect

The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We present a microkinetic model as well as experimental data for the low-temperature water gas shift (WGS) reaction catalyzed by Pt at temperatures from 523 to 573 K and for various gas compositions at a pressure of 1 atm. Thermodynamic and kinetic parameters for the model are derived from periodic, self-consistent density functional theory (DFT-GGA) calculations on Pt(111). The destabilizing effect of high CO surface coverage on the binding energies of surface species is quantified through DFT calculations and accounted for in the microkinetic model. Deviations of specific fitted model parameters from DFT calculated parameters on Pt(111) point to the possible role of steps/defects in this reaction. Our model predicts reaction rates and reaction orders in good agreement with our experiments. The calculated and experimental apparent activation energies are 67.8 kJ/mol and 71.4 kJ/mol, respectively. The model shows that the most significant reaction channel proceeds via a carboxyl (COOH) intermediate. Formate (HCOO), which has been experimentally observed and thought to be the key WGS intermediate in the literature, is shown to act only as a spectator species.

Grabow, Lars C.; Gokhale, Amit A.; Evans, Steven T.; Dumesic, James A.; Mavrikakis, Manos

2008-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A mini review on the chemistry and catalysis of the water gas shift reaction  

E-Print Network (OSTI)

Water gas shift (WGS) reaction is a chemical reaction in which carbon monoxide reacts with water vapor to form carbon dioxide and hydrogen. It is an important reaction industrially used in conjunction with steam reforming of hydrocarbons for the production of high purity hydrogen. Grenoble et al examined the roles of both active metals and metal oxide support on the kinetics of the WGS reaction. They found out that the turn over numbers of various Al2O3 supported transition metals decreased in the trend of Cu, Re, Co, Ru, Ni, Pt, Os, Au, Fe, Pd, Rh, and Ir, which corresponds nicely to the observed volcano shaped correlation between catalytic activities and respective CO adsorption heat. This is a strong indication that CO gets activated on the metal surface during the reaction and different metals have different activation energies. The authors also observed that the turn over number of Pt/Al2O3 was one order of magnitude higher than that of Pt/SiO2, indicating a strong support effect, which the authors ascri...

Zhao, Zhun

2014-01-01T23:59:59.000Z

22

Effect of low steam/carbon ratio on water gas shift reaction  

Science Journals Connector (OSTI)

Cu/ZnO/Al2O3 catalysts prepared by reverse co-precipitation and an industrial catalyst were used for the low-temperature water gas shift reaction. The catalysts were characterized by chemical analysis (atomic absorption spectroscopy), BET surface area, nitrous oxide chemisorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and catalytic activity in the target reaction. The catalyst prepared by reverse co-precipitation showed higher BET and copper surface areas, as well as higher catalytic activity. XRD patterns showed that the aurichalcite and hydrozincite precursors were converted into crystalline CuO and ZnO oxides when calcined in air at 623 K. TPR profiles revealed that Cu(I) oxide forms prior to Cu. Binding energies corresponding to several copper states on fresh catalysts were observed by XPS, but copper was in the metallic state during the reaction conditions (reduced catalyst). By varying the catalytic reaction conditions, such as vapor/carbon ratio and the time of contact, it is possible to obtain different conversion rates of carbon monoxide and thus operate under conditions of lower vapor consumption.

Renan Tavares Figueiredo; André Luis Dantas Ramos; Heloysa Martins Carvalho de Andrade; J.L.G. Fierro

2005-01-01T23:59:59.000Z

23

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

SciTech Connect

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

24

Preadsorbed Water-Promoted Mechanism of the Water?Gas Shift Reaction  

Science Journals Connector (OSTI)

Heterogeneous Catalysis Laboratory, Department of Chemistry, University of Cyprus, CY 1678, Nicosia, Cyprus ... (1) Such technologies have gained increasing respect in the light of developments of hydrocarbon steam-reforming technologies for which natural gas and other biomass-derived liquid fuels, such as ethanol, sugars and bio-oil can efficiently be used to produce syngas and hydrogen. ... The authors are able to convert glucose, which makes up the major energy reserves in plants and animals, to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. ...

Constantinos D. Zeinalipour-Yazdi; Angelos M. Efstathiou

2008-11-07T23:59:59.000Z

25

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

26

Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Parametric Gasification of Oak Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Jason Hrdlicka, Calvin Feik, Danny Carpenter, and Marc Pomeroy Technical Report NREL/TP-510-44557 December 2008 Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Jason Hrdlicka, Calvin Feik, Danny Carpenter, and Marc Pomeroy Prepared under Task No. H2713B13 Technical Report NREL/TP-510-44557 December 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

27

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

28

Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite-based material  

SciTech Connect

A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tablets of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.

van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.; Hufton, J.R.; van den Brink, R.W. [Energy research Center of the Netherlands, Petten (Netherlands)

2009-05-15T23:59:59.000Z

29

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

30

Structure Sensitivity of the Low-temperature Water-gas Shift Reaction on Cu–CeO2 catalysts  

SciTech Connect

We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu-CeO{sub 2} catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuO{sub x} structures exist. We show here that only the strongly bound Cu-[O{sub x}]-Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuO{sub x} clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu{sup 2+} ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition-precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition-precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu-CeO{sub 2} catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO{sub 2}, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i.e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 {+-} 10 kJ/mol, in a product-free (2% CO-10% H{sub 2}O) gas mixture.

Si, R.; Zhang, L.; Raitano, J.; Yi, N.; Chan, S.-W.; Flytzani-Stephanopoulos, M.

2012-01-17T23:59:59.000Z

31

Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts  

SciTech Connect

Periodic, self-consistent density functional theory calculations (DFT-GGA-PW91) on Pt(111) and Pt3Re(111) surfaces, reaction kinetics measurements, and microkinetic modeling are employed to study the mechanism of the water–gas shift (WGS) reaction over Pt and Pt–Re catalysts. The values of the reaction rates and reaction orders predicted by the model are in agreement with the ones experimentally determined; the calculated apparent activation energies are matched to within 6% of the experimental values. The primary reaction pathway is predicted to take place through adsorbed carboxyl (COOH) species, whereas formate (HCOO) is predicted to be a spectator species. We conclude that the clean Pt(111) is a good representation of the active site for the WGS reaction on Pt catalysts, whereas the active sites on the Pt–Re alloy catalyst likely contain partially oxidized metal ensembles.

Carrasquillo-Flores, Ronald; Gallo, Jean Marcel R.; Hahn, Konstanze; Dumesic, James A.; Mavrikakis, Manos

2013-12-01T23:59:59.000Z

32

CERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh  

E-Print Network (OSTI)

on pure hydrogen or a hydrogen-rich gas with little or no carbon monoxide. In the near term, fuel cells used in fuel processors. This reaction increases the hydrogen content and reduces the carbon monoxide) to the reactor. The reactor section incorporates a bypass loop, which allows for baseline gas chromatograph

Azad, Abdul-Majeed

33

Water-gas Shift Reaction on oxide/Cu(111): Rational Catalyst Screening from Density Functional Theory  

SciTech Connect

Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO{sub 2}/Cu(111), ZrO{sub 2}/Cu(111) < MoO{sub 3}/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper.

Liu, P.

2010-11-28T23:59:59.000Z

34

Investigation of Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Coal Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts Background Coal-Biomass-to-Liquids (CBTL) processes gasify coal, biomass, and mixtures of coal/ biomass to produce synthesis gas (syngas) that can be converted to liquid hydrocarbon fuels. Positive benefits of these processes include the use of feedstocks from domestic sources and lower greenhouse gas production than can be achieved from using conventional petroleum-based fuels. However, syngas generated by coal and biomass co-gasification contains a myriad of trace contaminants that may poison the water- gas-shift (WGS) and Fischer-Tropsch (FT) catalysts used in the gas-to-liquid processes. While the effect of coal contaminants on FT processes is well studied, more research

35

Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process  

SciTech Connect

Graphical abstract: - Highlights: • Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. • For the first time stability of such oxides were tested for 100 redox cycles. • Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. • Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

Datta, Pradyot, E-mail: pradyot.datta@gmail.com

2013-10-15T23:59:59.000Z

36

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping ... Future chemical plants may be required to have much higher flexibility and agility than existing process facilities in order to be able to handle new hybrid combinations of power and chemical units. ...

Patrick J. Robinson; William L. Luyben

2010-04-26T23:59:59.000Z

37

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

38

Effective MgO surface doping of Cu/Zn/Al oxides as water–gas shift catalysts  

Science Journals Connector (OSTI)

Trace amounts of MgO were doped on Cu/ZnO/Al2O3 catalysts with the Cu/Zn/Al molar ratio of 45/45/10 and tested for the water–gas shift (WGS) reaction. A mixture of Zn(Cu)–Al hydrotalcite (HT) and Cu/Zn aurichalcite was prepared by co-precipitation (cp) of the metal nitrates and calcined at 300 °C to form the catalyst precursor. When the precursor was dispersed in an aqueous solution of Mg(II) nitrate, HT was reconstituted by the “memory effect.” During this procedure, the catalyst particle surface was modified by MgO-doping, leading to a high sustainability. Contrarily, cp-Mg/Cu/Zn/Al prepared by Mg2+, Cu2+, Zn2+ and Al3+ co-precipitation as a control exhibited high activity but low sustainability. Mg2+ ions were enriched in the surface layer of m-Mg–Cu/Zn/Al, whereas Mg2+ ions were homogeneously distributed throughout the particles of cp-Mg/Cu/Zn/Al. CuO particles were significantly sintered on the m-catalyst during the dispersion, whereas CuO particles were highly dispersed on the cp-catalyst. However, the m-catalyst was more sustainable against sintering than the cp-catalyst. Judging from TOF, the surface doping of MgO more efficiently enhanced an intrinsic activity of the m-catalyst than the cp-catalyst. Trace amounts of MgO on the catalyst surface were enough to enhance both activity and sustainability of the m-catalyst by accelerating the reduction–oxidation between Cu0 and Cu+ and by suppressing Cu0 (or Cu+) oxidation to Cu2+.

Kazufumi Nishida; Dalin Li; Yingying Zhan; Tetsuya Shishido; Yasunori Oumi; Tsuneji Sano; Katsuomi Takehira

2009-01-01T23:59:59.000Z

39

In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts Michael Estrella,  

E-Print Network (OSTI)

the performance of the Pt electrode in fuel cell systems. In order to get clean hydrogen for fuel cells and otherIn Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts Michael Estrella, LauraVised Manuscript ReceiVed: June 19, 2009 Mixtures of copper and iron oxides are used as industrial catalysts

Frenkel, Anatoly

40

Probing the Reaction Intermediates for the Water-Gas Shift over Inverse CeOx/Au(111) Catalysts  

SciTech Connect

The water-gas shift (WGS) is an important reaction for the production of molecular H{sub 2} from CO and H{sub 2}O. An inverse CeO{sub x}/Au(1 1 1) catalyst exhibits a very good WGS activity, better than that of copper surfaces or Cu nanoparticles dispersed on a ZnO(0 0 0 {bar 1}) substrate which model current WGS industrial catalysts. In this work we report on intermediates likely to arise during the CO + H{sub 2}O reaction over CeO{sub x}/Au(1 1 1) using soft X-ray photoemission (sXPS) and near-edge X-ray absorption fine structure (NEXAFS). Several potential intermediates including formates (HCOO), carbonates (CO{sub 3}) and carboxylates (HOCO) are considered. Adsorption of HCOOH and CO{sub 2} is used to create both HCOO and CO{sub 3} on the CeO{sub x}/Au(1 1 1) surface, respectively. HCOO appears to have greater stability with desorption temperatures up to 600 K while CO{sub 3} only survives on the surface up to 300 K. On the CeO{sub x}/Au(1 1 1) catalysts, the presence of Ce{sup 3+} leads to the dissociation of H{sub 2}O to give OH groups. We demonstrate experimentally that the OH species are stable on the surface up to 600 K and interact with CO to yield weakly bound intermediates. When there is an abundance of Ce{sup 4+}, the OH concentration is diminished and the likely intermediates are carbonates. As the surface defects are increased and the Ce{sup 3+}/Ce{sup 4+} ratio grows, the OH concentration also grows and both carbonate and formate species are observed on the surface after dosing CO to H{sub 2}O/CeO{sub x}/Au(1 1 1). The addition of ceria nanoparticles to Au(1 1 1) is essential to generate an active WGS catalyst and to increase the production and stability of key reaction intermediates (OH, HCOO and CO{sub 3}).

Rodriguez, J.A.; Senanayake, S.D.; Stacchiola, D.; Evans, J.; Estrella, M.; Barrio-Pliego, L.; Pérez, M.; Hrbek, J.

2010-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Probing the Reaction Intermediates for the Water–gas Shift over Inverse CeOx / Au(1 1 1) Catalysts  

SciTech Connect

The water-gas shift (WGS) is an important reaction for the production of molecular H{sub 2} from CO and H{sub 2}O. An inverse CeO{sub x}/Au(1 1 1) catalyst exhibits a very good WGS activity, better than that of copper surfaces or Cu nanoparticles dispersed on a ZnO(0 0 0 {bar 1}) substrate which model current WGS industrial catalysts. In this work we report on intermediates likely to arise during the CO + H{sub 2}O reaction over CeO{sub x}/Au(1 1 1) using soft X-ray photoemission (sXPS) and near-edge X-ray absorption fine structure (NEXAFS). Several potential intermediates including formates (HCOO), carbonates (CO{sub 3}) and carboxylates (HOCO) are considered. Adsorption of HCOOH and CO{sub 2} is used to create both HCOO and CO{sub 3} on the CeO{sub x}/Au(1 1 1) surface, respectively. HCOO appears to have greater stability with desorption temperatures up to 600 K while CO{sub 3} only survives on the surface up to 300 K. On the CeO{sub x}/Au(1 1 1) catalysts, the presence of Ce{sup 3+} leads to the dissociation of H{sub 2}O to give OH groups. We demonstrate experimentally that the OH species are stable on the surface up to 600 K and interact with CO to yield weakly bound intermediates. When there is an abundance of Ce{sup 4+}, the OH concentration is diminished and the likely intermediates are carbonates. As the surface defects are increased and the Ce{sup 3+}/Ce{sup 4+} ratio grows, the OH concentration also grows and both carbonate and formate species are observed on the surface after dosing CO to H{sub 2}O/CeO{sub x}/Au(1 1 1). The addition of ceria nanoparticles to Au(1 1 1) is essential to generate an active WGS catalyst and to increase the production and stability of key reaction intermediates (OH, HCOO and CO{sub 3}).

Senanayake, S.; Stacchiola, D; Evans, J; Estrella, M; Barrio, L; Perez, M; Hrbek, J; Rodriguez, J

2010-01-01T23:59:59.000Z

42

The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water–gas shift reaction  

Science Journals Connector (OSTI)

The Cu/ZnO/Al2O3 catalysts (Cu/Zn = 1, Al = 4–24 mol%) prepared by co-precipitation were investigated for low-temperature water–gas shift reaction (WGSR) in H2-rich feed gas and characterized by means of XRD, DSC and TPR. The synergistic effect of the structural precursors was detected in catalyst containing Al level of 12 mol%, in which CO conversion reaches to 97.5% at 513 K. It suggests that aurichalcite has been partially intercalated into the hydrotalcite and assimilated the surrounding structure during precipitation, which eventually enhances the interaction between the active centers and supports of the catalyst.

Wei Fu; Zhenghong Bao; Weizhong Ding; Kuochih Chou; Qian Li

2011-01-01T23:59:59.000Z

43

Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation  

Science Journals Connector (OSTI)

Both binary Cu/ZnO and ternary Cu/ZnO/Al2O3 catalysts were prepared by homogeneous precipitation (hp) using urea hydrolysis. The structure and the activity for the water-gas shift reaction of these catalysts were studied compared with those prepared by coprecipitation (cp). The binary precursors contained hydroxycarbonates such as malachite and aurichalcite phases, whereas the ternary precursors were composed of hydrotalcite, malachite and aurichalcite phases depending on the metal composition. After thermal decomposition, both catalysts contained apparently CuO and ZnO as crystalline phase. No phase derived from Al was observed, since the amount of Al was small as 10 at.% in the ternary catalysts. After reduction pretreatment with hydrogen, the catalysts were tested for the shift reaction between 150 and 300 °C. The activity of hp-catalysts was higher than that of cp-catalysts; binary hp-Cu/ZnO showed higher activity than ternary hp-Cu/ZnO/Al2O3 catalysts none the less the surface area was larger for the latter than for the former. The activity apparently depended on the surface area of Cu metal formed on the surface of hp-catalysts and a good correlation was observed between the Cu metal particle size and the activation energy of the shift reaction. However, more precise evaluation of the activity based on turn-over frequency strongly suggested the formation of Cu+ species as the active sites at the boundary between Cu metal particles and ZnO particles. Even after the pre-reduction at the high temperature, 250 °C, hp-Cu/ZnO catalyst showed no significant deactivation as well as no detectable sintering of the Cu metal particles during 50 h of the reaction, indicating that the hp-preparation method afforded the Cu catalysts with high sustainability in the shift reaction.

Tetsuya Shishido; Manabu Yamamoto; Dalin Li; Yan Tian; Hiroyuki Morioka; Masahide Honda; Tsuneji Sano; Katsuomi Takehira

2006-01-01T23:59:59.000Z

44

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, June 30, 1988--September 30, 1988  

SciTech Connect

This report details experiments performed on three different copper-based catalysts: Cu/Cr{sub 2}O{sub 3}, Cu/MnO/Cr{sub 2}O{sub 3} and Cu/ZnO/Al{sub 2}O{sub 3}. Of these three catalysts, the Cu/ZnO/Al{sub 2}O{sub 3} exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H{sub 2}/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-12-31T23:59:59.000Z

45

Kinetics of Oxygen-enhanced Water Gas Shift on Bimetallic Catalysts and the Roles of Metals and Support.  

E-Print Network (OSTI)

??The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However,… (more)

Kugai, Junichiro

2011-01-01T23:59:59.000Z

46

Role of metal components in Pd?Cu bimetallic catalysts supported on CeO2 for the oxygen-enhanced water gas shift  

SciTech Connect

Catalytic hydrogen production and CO removal in a post-reforming process are critical for low-temperature fuel cell applications. The present study aims at clarifying the role of metal components in bimetallic catalysts for oxygen-enhanced water gas shift (OWGS), wherein a small amount of O{sub 2} is added to H{sub 2}-rich reformate gas to enhance CO shift. Among CeO{sub 2}-supported bimetallic catalysts, Pd-Cu and Pt-Cu combinations were found to show strong synergetic promoting effect in OWGS, which leads to much higher CO conversion and higher H{sub 2} yield than WGS at low temperature around 250 C. Temperature programmed reduction (TPR) showed strong interaction between Pd and Cu in Pd-Cu/CeO{sub 2} by a single reduction peak in contrast to multiple peaks on monometallic Cu/CeO{sub 2}. Extended X-ray absorption fine structure (EXAFS) analysis revealed that such bimetallic Pd-Cu and Pt-Cu form alloy nanoparticles, where noble metal is mainly surrounded by Cu atoms. Oxygen storage capacity (OSC) measurements point to higher resistance of Pd-Cu to oxidation indicating that Pd keeps Cu in reduced state in air pulse condition. From kinetic study, Pd in Pd-Cu was found to promote CO shift, rather than CO oxidation by increasing the number of active sites and by suppressing H{sub 2} activation (that is inherent to monometallic Pd), which minimizes both the inhibition effect of H{sub 2} and the loss of H{sub 2} by oxidation in OWGS. Transient response technique revealed that Cu in Pd-Cu enhances desorption of strongly chemisorbed CO{sub 2} on catalyst surface in contrast to very slow CO{sub 2} desorption from surface of monometallic Pd. Thus, the excellent OWGS activity of Pd-Cu catalyst has been attributed to the complementary roles of the two metals for enhancing CO shift, which is realized by its alloy structure and the accompanying strong interaction between metal components.

Kugai, J.; Miller, J. T.; Guo, N.; Song, C. (Chemical Sciences and Engineering Division); ( PSC-USR); (Penn State Univ.)

2011-06-01T23:59:59.000Z

47

Characterization of CeO2-Supported Cu-Pd Bimetallic Catalyst for the Oxygen-Assisted Water-Gas Shift Reaction  

SciTech Connect

This study was focused to investigate the roles of Cu and Pd in CuPd/CeO2 bimetallic catalysts containing 20-30 wt% Cu and 0.5-1 wt% Pd used in the oxygen-assisted water-gas shift (OWGS) reaction employing a combined bulk and surface characterization techniques such as XRD, TPR, CO chemisorption, and in-situ XPS. The catalytic activity for CO conversion and the stability of catalyst during on-stream operation increased by the addition of Cu to Pd/CeO2 or Pd to Cu/CeO2 monometallic catalysts, especially when the OWGS reaction was performed under low temperatures, below 200oC. The bimetallic catalyst after leaching with nitric acid retained about 60% of its original activity. The TPR of monometallic Cu/CeO2 showed reduction of CuO supported on CeO2 in two distinct regions, around 150 and 250oC. The high temperature peak disappeared and reduction occurred in a single step around 150oC upon Pd addition. The Pd dispersion decreased from 38.5% for Pd/CeO2 to below 1% for CuPd/CeO2 bimetallic catalyst. In-situ XPS studies showed a shift in Cu 2p peaks toward lower binding energy (BE) with concommitant shift in the Pd 3d peaks toward higher BE. Addition of Pd decreased the surface Cu concentration while the concentration of Pd remained unaltered. All these observations indicated the formation of Cu-Pd surface alloy. The valence band XP spectra collected below 10 eV corroborated the core level XP spectra and indicated that Cu is mainly involved in the catalytic reaction. The improved catalytic activity and stability of CuPd/CeO2 bimetallic catalyst was attributed to the alloy formation.

Fox, Elise; Velu, Subramani; Engelhard, Mark H.; Chin, Ya-Huei; Miller, Jeffrey T.; Kropf, Jeremy; Song, Chunshan

2008-12-10T23:59:59.000Z

48

Regenerable MgO-based sorbent for high temperature CO2 removal from syngas: 3. CO2 capture and sorbent enhanced water gas shift reaction  

Science Journals Connector (OSTI)

Abstract Regenerable MgO-based sorbent, which was prepared and evaluated in the thermogravimetric analyzer (TGA) in part 1, was also evaluated in high-pressure packed-bed unit in CO2/N2/H2O mixture and simulated pre-combustion syngas environment. In CO2/N2/H2O environment, the CO2 absorption capacity of the sorbent increases with increasing temperatures from 6.7% at 350 °C to 9.5% 450 °C. The sorbent is capable of achieving over 95% CO2 capture and 40% conversion in the water gas shift (WGS) reaction, which should be attributed to positive effect of WGS reaction in producing CO2 during the process. The sorbent reactivity and absorption capacity toward CO2, as well as its WGS catalytic activity decreases with increasing temperature. The maximum pre-breakthrough WGS conversion occurs at 350 °C, which diminishes as the sorbent is carbonated. The variable diffusivity shrinking core reaction model coupled with the two-fluid computational fluid dynamics (CFD) model was shown to accurately predict the break-through gas compositions at different operating conditions.

Emadoddin Abbasi; Armin Hassanzadeh; Shahin Zarghami; Hamid Arastoopour; Javad Abbasian

2014-01-01T23:59:59.000Z

49

Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction  

Science Journals Connector (OSTI)

Ternary Cu/ZnO/Al2O3 catalysts have been prepared by homogeneous precipitation (hp) using urea hydrolysis and tested for the water-gas shift reaction. The Cu/Zn ratio was fixed at 1/1, and the effects of the Al addition on the precipitation procedure, the precursor structure and the catalytic activity have been studied. The precipitation proceeded stepwise; Cu(II) nitrate was first hydrolyzed, followed by the hydrolysis of Zn(II) nitrate, but the final compounds consist mainly of aurichalcite. It is likely that amorophous Cu(OH)2 formed first was converted to aurichalcite via a dissolution-reprecipitation mechanism assisted by Zn(II). A significant leaching of Cu took place with increasing Al content during the precipitation at 90 °C. The Cu leaching was effectively suppressed by lowering the temperature to 80 °C, but resulting in a slight decrease in the catalytic activity. In the hp-catalyst precursors, aurichalcite was always observed as the main component, whereas hydrotalcite and malachite appeared with increasing Al component. The catalytic activity increased by the addition of 5 mol% of Al and decreased with further addition of Al. The activity apparently depended on the Cu metal surface area on the catalyst, but the turn over frequency calculated based on the surface Cu metal significantly varied depending on the Al content. Moreover, the intensity of the reduction peak around 225 °C assigned to Cu2+ ? Cu+ in the TPR well correlated with the catalytic activity. It is suggested that Cu/Zn bimetallic aurichalcite has an important role as the catalyst precursor and the reduction–oxidation between Cu+ and Cu0 plays in the catalytic mechanism of the shift reaction.

Ikuo Atake; Kazufumi Nishida; Dalin Li; Tetsuya Shishido; Yasunori Oumi; Tsuneji Sano; Katsuomi Takehira

2007-01-01T23:59:59.000Z

50

Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in-situ XAFS analysis and water-gas shift reaction.  

SciTech Connect

Platinum atomic layer deposition (ALD) using MeCpPtMe{sub 3} was employed to prepare high loadings of uniform-sized, 1-2 nm Pt nanoparticles on high surface area Al{sub 2}O{sub 3}, TiO{sub 2}, and SrTiO{sub 3} supports. X-ray absorption fine structure was utilized to monitor the changes in the Pt species during each step of the synthesis. The temperature, precursor exposure time, treatment gas, and number of ALD cycles were found to affect the Pt particle size and density. Lower-temperature MeCpPtMe{sub 3} adsorption yielded smaller particles due to reduced thermal decomposition. A 300 C air treatment of the adsorbed MeCpPtMe{sub 3} leads to PtO. In subsequent ALD cycles, the MeCpPtMe{sub 3} reduces the PtO to metallic Pt in the ratio of one precursor molecule per PtO. A 200 C H{sub 2} treatment of the adsorbed MeCpPtMe{sub 3} leads to the formation of 1-2 nm, metallic Pt nanoparticles. During subsequent ALD cycles, MeCpPtMe{sub 3} adsorbs on the support, which, upon reduction, yields additional Pt nanoparticles with a minimal increase in size of the previously formed nanoparticles. The catalysts produced by ALD had identical water-gas shift reaction rates and reaction kinetics to those of Pt catalysts prepared by standard solution methods. ALD synthesis of catalytic nanoparticles is an attractive method for preparing novel model and practical catalysts.

Setthapun, W.; Williams, W.; Kim, S.; Feng, H.; Elam, J.; Rabuffetti, F.; Poeppelmeier, K.; Stair, P.; Stach, E.; Ribeiro, F.; Miller, J.; Marshall, C.; Northwestern Univ.; Purdue Univ.

2010-06-03T23:59:59.000Z

51

Design and preparation of high-surface-area Cu/ZnO/Al2O3 catalysts using a modified co-precipitation method for the water-gas shift reaction  

Science Journals Connector (OSTI)

Abstract Highly dispersed Cu/ZnO/Al2O3 catalysts were prepared by modifying a conventional co-precipitation method. By manipulating the preparation conditions, in this case solvent, precipitating temperature, and pH, a Cu surface area of 45.5 ± 1.7 m2/g was prepared, which was much greater than the surface area of 11.4–31.7 m2/g obtained by the conventional co-precipitation method and seemed to be the largest Cu surface area ever reported in the literature. The preparation of catalysts with a high Cu surface area was attributed to the formation of aurichalcite, a complex containing Cu and Zn. The catalysts prepared by the modified co-precipitation method were used for a water-gas shift reaction, exhibiting higher catalytic activity compared to those prepared by the conventional co-precipitation method.

Adeline Budiman; Muhammad Ridwan; Sung Min Kim; Jae-Wook Choi; Chang Won Yoon; Jeong-Myeong Ha; Dong Jin Suh; Young-Woong Suh

2013-01-01T23:59:59.000Z

52

Isotopic exchange measurements of the rates of adsorption/desorption and interconversion of CO and CO/sub 2/ over chromia-promoted magnetite: implications for water-gas shift  

SciTech Connect

Isotopic exchange measurements were used to investigate the adsorption/desorption and interconversion of CO and CO/sub 2/ on chromia-promoted magnetite at 565 and 627 K. The interconversion between CO and CO/sub 2/ was shown to take place through surface adsorbed species. Furthermore, the rate of interconversion was limited by the rates of adsorption/desorption, indicating either that adsorbed CO and CO/sub 2/ are in equilibrium on the surface or that the adsorption of CO and CO/sub 2/ leads to the same surface species, e.g., a surface carbonate species. A kinetic model for the water-gas shift over magnetite is proposed, and the results of the isotopic exchange measurements and volumetric adsorption data are used to estimate the rate and equilibrium constants for this model.

Tinkle, M.; Dumesic, J.A.

1987-01-01T23:59:59.000Z

53

The water-gas shift (WGS) reaction (CO + H2O = CO2+ H2) is an important reaction for hydrogen upgrading during fuel  

E-Print Network (OSTI)

-treatment units in practical low-temperature PEM fuel cell systems, whereby the deleterious CO should be totally for hydrogen upgrading during fuel gas processing. Emerging applications in fuel cells require active, non-pyrophoric, and cost-effective catalysts. Along with a new group of platinum catalysts with atomically dispersed Pt

Napp, Nils

54

In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu-CeO2 Catalysts: Complex Interaction Between Metallic Copper and Oxygen Vacancies of Ceria  

SciTech Connect

New information about the active sites for the water gas shift (WGS) reaction over Cu-CeO{sub 2} systems was obtained using in-situ, time-resolved X-ray diffraction (TR-XRD), X-ray absorption spectroscopy (TR-XAS, Cu K and Ce L3 edges), and infrared spectroscopy (DRIFTS). Cu-CeO{sub 2} nanoparticles prepared by a novel reversed microemulsion method (doped Ce1-xCuxO2 sample) and an impregnation method (impregnated CuO{sub x}/CeO{sub 2} sample) were studied. The results from all of the samples indicate that both metallic copper and oxygen vacancies in ceria were involved in the generation of active sites for the WGS reaction. Evidence was found for a synergistic Cu-O vacancy interaction. This interaction enhances the chemical activity of Cu, and the presence of Cu facilitates the formation of O vacancies in ceria under reaction conditions. Water dissociation occurred on the O vacancy sites or the Cu-O vacancy interface. No significant amounts of formate were formed on the catalysts during the WGS reaction. The presence of strongly bound carbonates is an important factor for the deactivation of the catalysts at high temperatures. This work identifies for the first time the active sites for the WGS reaction on Cu-CeO{sub 2} catalysts and illustrates the importance of in situ structural studies for heterogeneous catalytic reactions.

Wang,X.; Rodriguez, J.; Hanson, J.; Gamarra, D.; Martinez-Arias, A.; Fernandez-Garcia, M.

2006-01-01T23:59:59.000Z

55

Cu–ZnO and Cu–ZnO/Al2O3 Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts  

Science Journals Connector (OSTI)

Comparison is made between Cu–ZnO and alumina-supported Cu–ZnO as catalysts for the reverse water-gas shift (RWGS) reaction. For both types of catalyst the Cu/Zn ratio has been varied between Cu-rich and Zn-ri...

Frank S. Stone; David Waller

2003-04-01T23:59:59.000Z

56

Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst  

SciTech Connect

An inverse powder system composed of CeO{sub 2} nanoparticles dispersed over a CuO-Cu matrix is proposed as a novel catalyst for the water-gas shift reaction. This inverse CeO{sub 2}/CuO-Cu catalyst exhibits a higher activity than standard Cu/CeO{sub 2} catalysts. In situ synchrotron characterization techniques were employed to follow the structural changes of CeO{sub 2}/CuO-Cu under reaction conditions. Time-resolved X-ray diffraction experiments showed the transformation of CuO to metallic Cu via a Cu{sub 2}O intermediate. Short-order structural changes were followed by pair distribution function analysis and corroborated the results obtained by diffraction. Moreover, X-ray absorption spectroscopy also revealed oxidation state changes from Cu{sup 2+} to Cu{sup 0} and the partial reduction of CeO{sub x} nanoparticles. The activity data obtained by mass spectrometry revealed that hydrogen production starts once the copper has been fully reduced. The strong interaction of ceria and copper boosted the catalytic performance of the sample. The inverse catalyst was active at low temperatures, stable to several reaction runs and to redox cycles. These characteristics are highly valuable for mobile fuel cell applications. The active phases of the inverse CeO{sub 2}/CuO-Cu catalyst are partially reduced ceria nanoparticles strongly interacting with metallic copper. The nature and structure of the ceria nanoparticles are of critical importance because they are involved in processes related to water dissociation over the catalyst surface.

Barrio, L.; Estrella, M; Zhou, G; Wen, W; Hanson, J; Hungria, A; Hornes, A; Fernandez-Garcia, M; Martinez-Arias, A; Rodriguez, J

2010-01-01T23:59:59.000Z

57

Unraveling the Active Site in Copper-ceria Systems for the Water Gas Shift Reaction: In-situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst  

SciTech Connect

An inverse powder system composed of CeO{sub 2} nanoparticles dispersed over a CuO-Cu matrix is proposed as a novel catalyst for the water-gas shift reaction. This inverse CeO{sub 2}/CuO-Cu catalyst exhibits a higher activity than standard Cu/CeO{sub 2} catalysts. In situ synchrotron characterization techniques were employed to follow the structural changes of CeO{sub 2}/CuO-Cu under reaction conditions. Time-resolved X-ray diffraction experiments showed the transformation of CuO to metallic Cu via a Cu{sub 2}O intermediate. Short-order structural changes were followed by pair distribution function analysis and corroborated the results obtained by diffraction. Moreover, X-ray absorption spectroscopy also revealed oxidation state changes from Cu{sup 2+} to Cu{sup 0} and the partial reduction of CeOx nanoparticles. The activity data obtained by mass spectrometry revealed that hydrogen production starts once the copper has been fully reduced. The strong interaction of ceria and copper boosted the catalytic performance of the sample. The inverse catalyst was active at low temperatures, stable to several reaction runs and to redox cycles. These characteristics are highly valuable for mobile fuel cell applications. The active phases of the inverse CeO{sub 2}/CuO-Cu catalyst are partially reduced ceria nanoparticles strongly interacting with metallic copper. The nature and structure of the ceria nanoparticles are of critical importance because they are involved in processes related to water dissociation over the catalyst surface.

Rodriguez, J.A.; Barrio, L.; Estrella, M.; Zhou, G.; Wen, W.; Hanson, J.C.; Hungría, A.B.; Hornés, A.; Fernández-García, M.; Arturo Martínez-Arias, A.

2010-03-04T23:59:59.000Z

58

Water-Gas Shift Membrane Reactor Studies  

E-Print Network (OSTI)

Coal, Petroleum coke, Biomass, Waste, etc. Gasifier Particulate Removal Air Separator Oxygen Air Steam - Transition to the Hydrogen Economy - CO2 capture and sequestration #12;Coal Gasification Technology Options&D Plan · Project falls within the Technical Objective to develop technology to produce pure H2 from coal

59

Carbon Dioxide Hydrate Process for Gas Separation from a Shifted Synthesis Gas Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Sequestration and Gasification Technologies Carbon DioxiDe HyDrate ProCess for Gas seParation from a sHifteD syntHesis Gas stream Background One approach to de-carbonizing coal is to gasify it to form fuel gas consisting predominately of carbon monoxide and hydrogen. This fuel gas is sent to a shift conversion reactor where carbon monoxide reacts with steam to produce carbon dioxide (CO 2 ) and hydrogen. After scrubbing the CO 2 from the fuel, a stream of almost pure hydrogen stream remains, which can be burned in a gas turbine or used to power a fuel cell with essentially zero emissions. However, for this approach to be practical, it will require an economical means of separating CO 2 from mixed gas streams. Since viable options for sequestration or reuse of CO

60

Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction: Catalyst preparation by adopting “memory effect” of hydrotalcite  

Science Journals Connector (OSTI)

Trace amounts of noble metal were doped on Cu/ZnO/Al2O3 catalysts by adopting “memory effect” of hydrotalcite. Ternary Cu/ZnO/Al2O3 (molar ratio Cu/Zn = 1/1, Al content 0–25 mol%) catalysts were prepared by co-precipitation (cp) from metal nitrates; a mixture of hydrotalcite (Cu,Zn)6Al2(OH)16CO3·4H2O, and aurichalcite (Cu,Zn)5(CO3)2(OH)6, was formed at pH 9 with NaOH as the pH controller. Finally the sample, cp-Cu/Zn/Al(45/45/10) containing mainly aurichalcite together with a small amount of hydrotalcite, was selected as the precursor for the noble metal-doping. Noble metal-doping was conducted by dipping the precursor calcined at 300 °C in aqueous solutions of the noble metal nitrates; hydrotalcite was reconstituted by the “memory effect” and simultaneously noble metals were incorporated. The noble metal-doped samples were calcined at 300 °C and tested for the water–gas shift (WGS) reaction. Among the noble metals, Pt was the most effective for stabilizing the catalytic activity although some deactivation due to Cu sintering took place. An intrinsic promoting effect of Pt was clearly observed by evaluating the turnover frequency of the catalyst. Aurichalcite was indispensable for producing active Cu/ZnO sites, whereas a small amount of hydrotalcite was effective for improving the sustainability of the catalyst by the surface modification. It is likely that hydrogen-spillover from trace Pt to active Cu metal not only enhanced the activity via the reduction–oxidation cycle between Cu0 and Cu+ but also stabilized the active Cu metal species against oxidative sintering during the reaction.

Kazufumi Nishida; Ikuo Atake; Dalin Li; Tetsuya Shishido; Yasunori Oumi; Tsuneji Sano; Katsuomi Takehira

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level  

SciTech Connect

At small coverages of ceria on TiO{sub 2}(110), the CeO{sub x} nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce{sub 2}O{sub 3} dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42{sup o} with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO{sub 2}(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO{sub 2}(111) or CeO{sub 2}(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO{sub x}/TiO{sub 2}(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO{sub x}/TiO{sub 2}(110) < Cu/CeO{sub x}/TiO{sub 2}(110) < Pt/CeO{sub x}/TiO{sub 2}(110). For low coverages of Cu and CeO{sub x}, Cu/CeO{sub x}/TiO{sub 2}(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO{sub x}/TiO{sub 2}(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO{sub x}/TiO{sub 2}(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

Park, J.; Graciani, J; Evans, J; Stacchiola, D; Senanayake, S; Barrio, L; Liu, P; Fdez. Sanz, J; Hrbek, J; Rodriguez, J

2010-01-01T23:59:59.000Z

62

Gold, Copper and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level  

SciTech Connect

At small coverages of ceria on TiO{sub 2}(110), the CeO{sub x} nanoparticles have an unusual coordination mode. Scanning tunneling microscopy and density-functional calculations point to the presence of Ce{sub 2}O{sub 3} dimers, which form diagonal arrays that have specific orientations of 0, 24, and 42{sup o} with respect to the [1 -1 0] direction of the titania substrate. At high coverages of ceria on TiO{sub 2}(110), the surface exhibits two types of terraces. In one type, the morphology is not very different from that observed at low ceria coverage. However, in the second type of terrace, there is a compact array of ceria particles with structures that do not match the structures of CeO{sub 2}(111) or CeO{sub 2}(110). The titania substrate imposes on the ceria nanoparticles nontypical coordination modes, enhancing their chemical reactivity. This phenomenon leads to a larger dispersion of supported metal nanoparticles (M = Au, Cu, Pt) and makes possible the direct participation of the oxide in catalytic reactions. The M/CeO{sub x}/TiO{sub 2}(110) surfaces display an extremely high catalytic activity for the water-gas shift reaction that follows the sequence Au/CeO{sub x}/TiO{sub 2}(110) < Cu/CeO{sub x}/TiO{sub 2}(110) < Pt/CeO{sub x}/TiO{sub 2}(110). For low coverages of Cu and CeO{sub x}, Cu/CeO{sub x}/TiO{sub 2}(110) is 8-12 times more active than Cu(111) or Cu/ZnO industrial catalysts. In the M/CeO{sub x}/TiO{sub 2}(110) systems, there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface. The high catalytic activity of the M/CeO{sub x}/TiO{sub 2}(110) surfaces reflects the unique properties of the mixed-metal oxide at the nanometer level.

Rodriguez, J.A.; Park, J.B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S.D.; Barrio, L.; Liu, P.; Sanz, J.F.; Hrbek, J.

2010-01-13T23:59:59.000Z

63

Tankless Gas Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Gas Water Heaters Tankless Gas Water Heaters Standardized Templates for Reporting Test Results tanklessgaswaterheaterv12.xlsx More Documents & Publications Heat Pump...

64

Storage Gas Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance...

65

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

66

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network (OSTI)

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University relevant to the oil and gas industry. You will develop a versatile analytical, computational of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture

Henderson, Gideon

67

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

68

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use  

Science Journals Connector (OSTI)

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use ... Despite the water intensity of hydraulic fracturing, recent life cycle analyses have concluded that increased shale gas development will lead to net decreases in water consumption if the increased natural gas production is used at natural gas combined cycle power plants, shifting electricity generation away from coal-fired steam cycle power plants. ... This work expands on these studies by estimating the spatial and temporal patterns of changes in consumptive water use in Texas river basins during a period of rapid shale gas development and use in electricity generation from August 2008 through December 2009. ...

Adam P. Pacsi; Kelly T. Sanders; Michael E. Webber; David T. Allen

2014-06-24T23:59:59.000Z

69

Shale Gas Development Challenges: Water | Department of Energy  

Office of Environmental Management (EM)

Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Fracture...

70

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers (EERE)

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

71

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

72

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

SciTech Connect

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

73

Covered Product Category: Residential Gas Storage Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

74

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

75

Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests  

SciTech Connect

The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada)

2006-03-15T23:59:59.000Z

76

Covered Product Category: Commercial Gas Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

77

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, Sorption-Enhanced Synthetic Natural Gas (SNG)...

78

Water retention and gas relative permeability of two industrial concretes  

SciTech Connect

This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Davy, C.A., E-mail: catherine.davy@ec-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Bourbon, Xavier; Talandier, Jean [Andra, 1-7 rue Jean Monnet, F-92298 Chatenay-Malabry Cedex (France)

2012-07-15T23:59:59.000Z

79

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

80

Chapter 7 - Test Cell Cooling Water and Exhaust Gas Systems  

Science Journals Connector (OSTI)

Part 1 considers the thermodynamics of water cooling systems, water quality, typical cooling water circuits, and engine coolant control units. Also covered are the commissioning cooling circuits, thermal shock, and chilled water systems. Part 2 covers the design of test cell exhaust systems, exhaust silencers, exhaust gas volume flow, exhaust silencers, and exhaust cowls. Part 3 briefly covers the testing of turbochargers.

A.J. Martyr; M.A. Plint

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Challenge of Producing Oil and Gas in Deep Water  

Science Journals Connector (OSTI)

...institutions (Joides). The oil industry has drilled controlled...major unexplored frontier for oil and gas. The paper emphasizes...engineering geology natural gas offshore petroleum production 1977 06...1981 The challenge of producing oil and gas in deep water van Eek...

1978-01-01T23:59:59.000Z

82

Water's Journey Through the Shale Gas Drilling and  

E-Print Network (OSTI)

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Lee, Dongwon

83

Relative permeabilities of gas and water for different rank coals  

Science Journals Connector (OSTI)

Characteristics of gas–water two-phase flow through coal seams play crucial roles in water depletion and gas production associated with coalbed methane (CBM) recovery. One of the most important characteristic is the relative permeability of gas and water which is largely dependent on gas/water saturations in coal, varying with coal ranks. For better understanding of the seepage mechanism of the gas–water flow in coal, the relative permeabilities of gas and water in different rank coals selected from south Qinshui Basin have been investigated under various gas/water saturations through water replacement with methane using an unsteady-state method. The results have shown that the ratio of effective methane permeability and absolute permeability is obviously increasing with rank, implying that the gas slippage of high rank coal has more significant effect than the low rank coal. A series of relative permeability curves for selected coals have been obtained. All of these curves show that the selected coals are featured by smaller methane permeabilities and narrow spans of two-phase flow regions and lower relative permeability, and have low methane permeabilities under irreducible water condition as well. The experiments also revealed that the selected coals exhibit high residual water saturation with low relative permeabilities of gas and water. With increasing of the maximal vitrinite reflectance, the irreducible water saturation exhibits a U-shaped tendency whereas the methane permeability under the irreducible water condition generally increases. The irreducible water saturation slightly increases with increasing of vitrinite and weakly decreases as inertinite increases, while the methane permeability under irreducible water condition is negatively related with vitrinite and positively related to inertinite to some extent. The experimental data were further parameterized to correlate the relative permeabilities of methane and water to gas saturation, showing that a correlation of power function can fit the experiments well. As a result, a permeability model incorporated with coal rank and maceral compositions with gas saturation was developed to predict the relative permeabilities of gas (methane) and water in coals.

Jian Shen; Yong Qin; Geoff X. Wang; Xuehai Fu; Chongtao Wei; Bo Lei

2011-01-01T23:59:59.000Z

84

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

85

Regulation of Gas, Electric, and Water Companies (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) < Back Eligibility Agricultural Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Safety and Operational Guidelines Siting and Permitting Provider Maryland Public Service Commission The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting considerations for electric

86

Measurement of Gas Concentration by Wavelength Shift Method with an EDFA Fiber Laser Loop  

Science Journals Connector (OSTI)

A novel method for trace gas detection is presented and developed. A fiber laser with a gas cell in the loop is constructed, whose output spectrum is changed with the concentration of...

Zhou, Haojiang; Guo, Kaikai; Yan, Chunsheng

87

Hydrodesulphurization of Light Gas Oil using Hydrogen from the Water Gas Shift Reaction.  

E-Print Network (OSTI)

??The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using… (more)

Alghamdi, Abdulaziz

2009-01-01T23:59:59.000Z

88

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

89

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

90

Covered Product Category: Gas Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Water Heaters Gas Storage Water Heaters Covered Product Category: Gas Storage Water Heaters October 7, 2013 - 10:43am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

91

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

92

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

93

Impact of Shale Gas Development on Regional Water Quality  

Science Journals Connector (OSTI)

...the Oil, Gas and Solution Mining Regulatory...S. J. , Water pollution risk associated...jPlayer( { solution: "flash, html...relatively clean fossil fuel that could potentially...engineering pollutants pollution production risk...

R. D. Vidic; S. L. Brantley; J. M. Vandenbossche; D. Yoxtheimer; J. D. Abad

2013-05-17T23:59:59.000Z

94

Impact of Shale Gas Development on Regional Water Quality  

Science Journals Connector (OSTI)

...human health and environmental impacts associated with the release...inadequately treated wastewater to the environment (66). In addition, spills...assess potential water quality impacts in the northeast (78, 79...shale gas extraction (54). Impacts from casing leakage, well...

R. D. Vidic; S. L. Brantley; J. M. Vandenbossche; D. Yoxtheimer; J. D. Abad

2013-05-17T23:59:59.000Z

95

A study of water driven oil encroachment into gas caps  

E-Print Network (OSTI)

A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS LIBRARY A S I COLLEGE OF TEXAS A Thesis By HARLAN J. RITCH ~ ~ ~ Submitted to the Graduate School oi' the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May, 1958 Major Subject: Petroleum Engineering A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS A Thesis By HARLAN J. RITCH Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

Ritch, Harlan J

1958-01-01T23:59:59.000Z

96

Control of water coning in gas reservoirs by injecting gas into the aquifer  

E-Print Network (OSTI)

3 TOTAL PRODUCTION GAIN VERSUS GAS INJECTED FOR KW/K = 1 Cum. Water Prod. STB 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 Cum. Gas Prod. MMMSCF . 545 715 . 825 . 830 . 979 . 788 . 979 1. 100 1. 100 1. 230 Cum... Production 13. 0 11. 3 12. 0 12. 5 3. 4 0. 22 TABLE 4 TOTAL PRODUCTION GAIN VERSUS GAS INJECTED FOR KW/K = 10 Cum. Water Prod. STB 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 Cum. Gas Prod. MMMSCF 1. 549 1. 814 1. 942...

Haugen, Sigurd Arild

2012-06-07T23:59:59.000Z

97

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

98

Greenhouse Gases (GHG) Emissions from Gas Field Water in Southern Gas Field, Sichuan Basin, China  

Science Journals Connector (OSTI)

In order to assess correctly the gases emissions from oil/gas field water and its contributions to the source of greenhouse gases (GHG) at the atmospheric temperature and pressure, ... first developed to study th...

Guojun Chen; Wei Yang; Xuan Fang; Jiaai Zhong…

2014-03-01T23:59:59.000Z

99

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...2011 ) Natural gas: Should fracking stop? Nature 477 ( 7364...Formation brine to shallow aquifers in Pennsylvania . Proc Natl Acad Sci USA 109 ( 30...hydraulically fractured shale to aquifers . Ground Water 50...constitute the two primary aquifer li- thologies in northeastern...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

100

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NMR studies of water-gas interactions  

Science Journals Connector (OSTI)

Analysis of published data concerning the solubility of different gases in water as dependent on temperature was carried out. ... described by mono-or bi-exponential functions. Solubilities of nitrogen and oxygen...

V. P. Kutyshenko; S. I. Vorob’ev

2013-07-01T23:59:59.000Z

102

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...2011 ) Natural gas: Should fracking stop? Nature 477 ( 7364 ): 271...13 Boyer EW ( 2012 ) The Impact of Marcellus Gas Drilling on Rural Drinking Water Supplies...the Nicholas School of the Environment and Center on Global Change...derived from depositional environments that ranged from proposed...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

103

Methodology for Predicting Water Content in Supercritical Gas Vapor and Gas Solubility in Aqueous Phase for Natural Gas Process  

Science Journals Connector (OSTI)

The streams in the natural gas process contain light hydrocarbons, mainly methane and ethane, associated with non-hydrocarbon supercritical gases (nitrogen, hydrogen, argon, etc.). ... For system that contains supercritical gases, the gas solubility in water can be related to the Henry's law constant. ...

Chorng H. Twu; Suphat Watanasiri; Vince Tassone

2007-09-22T23:59:59.000Z

104

Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling  

Science Journals Connector (OSTI)

A pilot-scale counter current absorption process for upgrading municipal solid waste (MSW) landfill gas to produce vehicle fuel was studied using absorption, desorption and drying units and water as an absorbent. Continuous water recycling was used without adding new water to the system. The process parameters were defined by a previous study made with this pilot system. The effect of pressure (20–25 bar), temperature (10–25 °C) and water flow speed (5.5–11 l/min) on the upgrading performance, trace compounds (siloxanes, halogenated compounds) and water quality were investigated. Raw landfill gas flow was kept constant at 7.41 Nm3/h. Methane (CH4) and carbon dioxide (CO2) contents in the product gas were 86–90% and 4.5–8.0% with all studied pressures and temperatures. The remaining fraction in product gas was nitrogen (N2) (from 1% to 7%). Organic silicon compounds (siloxanes) were reduced by 16.6% and halogenated compounds similarly by 90.1% by water absorption. From studied process parameters, only water flow speed affected the removal of siloxanes and halogen compounds. The absorbent water pH was between 4.4–4.9, sulphide concentration between 0.1–1.0 mg/l and carbonate concentration between 500–1000 mg/l. The product gas drying system reduced the siloxane concentration by 99.1% and halogenated compounds by 99.9% compared to the raw landfill gas. In conclusion, the pilot-scale gas upgrading process studied appears to be able to produce gas with high energy content (approx 86–90% methane) using a closed water circulation system. When using a standard gas drying system, all trace compounds can be removed by over 99% compared to raw landfill gas.

J. Läntelä; S. Rasi; J. Lehtinen; J. Rintala

2012-01-01T23:59:59.000Z

105

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Designated Product Assessment for Commercial Gas Water Heaters FEMP Designated Product Assessment for Commercial Gas Water Heaters Title FEMP Designated Product Assessment for Commercial Gas Water Heaters Publication Type Report LBNL Report Number LBNL-5514E Year of Publication 2010 Authors Lutz, James D. Subsidiary Authors Energy Analysis Department Document Number LBNL-5514E Pagination 8 Date Published April 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-5514E Abstract None Notes This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Attachment Size PDF 240.22 KB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/50317

106

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Water Gas & Light Comm Water Gas & Light Comm Jump to: navigation, search Name Albany Water Gas & Light Comm Place Georgia Utility Id 230 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Commercial Commercial Non-Demand Commercial Large Commercial Demand Commercial Residential Residential Security Lights 1000 Watt Metal Halide Metal Pole Lighting Security Lights 1000 Watt Metal Halide Wooden Pole Lighting Security Lights 150 HPSV Fixtures Metal Pole Lighting Security Lights 150 HPSV Fixtures Wooden Pole Lighting

107

Bath Electric Gas & Water Sys | Open Energy Information  

Open Energy Info (EERE)

Electric Gas & Water Sys Electric Gas & Water Sys Jump to: navigation, search Name Bath Electric Gas & Water Sys Place New York Utility Id 1343 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (20 KW to 75 KW demand) Commercial Industrial (Over 75 KW demand) Industrial Outdoor Lighting (175W MV-150W HPS) Lighting Outdoor Lighting (250W HPS) Lighting Outdoor Lighting (400W MV/HPS) Lighting Residential Residential Small Commercial ( Under 20 KW demand) Commercial

108

Covered Product Category: Residential Gas Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

109

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...Development , (2011) Plan to Study the Potential...Dissolved Solids Standard: A Guide to the...gas and solution mining regulatory program...legacy of coal mining in many Pennsylvania...description, using standard codes for brine...remediation options: A review. Sci Total...water quality standard for chloride in...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

110

Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization  

Science Journals Connector (OSTI)

Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed, which can overcome ... gas production by the combination of warm water flooding and depressurizati...

YuHu Bai; QingPing Li

2010-09-01T23:59:59.000Z

111

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

112

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge Water Management for Discharge Water Management for Horizontal Shale Gas Well Development Final Report Start Date: October 1, 2009 End Date: March 31, 2012 Authors: Paul Ziemkiewicz, PhD Jennifer Hause Raymond Lovett, PhD David Locke Harry Johnson Doug Patchen, PG Report Date Issued: June 2012 DOE Award #: DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV 26506-6064 FilterSure, Inc. PO Box 1277 McLean, VA 22101 ShipShaper, LLP PO Box 2 Morgantown, WV 26507 2 | P a g e Acknowledgment "This material is based upon work supported by the Department of Energy under Award Number DE-FE0001466." Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States

113

Water Use for Shale-Gas Production in Texas, U.S.  

Science Journals Connector (OSTI)

Shale-gas production using hydraulic fracturing of mostly horizontal wells has led to considerable controversy over water-resource and environmental impacts. ... Most studies of water-resource impacts from shale-gas exploration and production have focused on effects of fracking on water quality;(5) however, some studies also emphasize impacts on water quantity. ... (6-10) Few published studies quantify water use for shale-gas production and their environmental impact. ...

Jean-Philippe Nicot; Bridget R. Scanlon

2012-03-02T23:59:59.000Z

114

MathematicalGeology, Vol. 11,No. I,1979 Modeling and Optimizing a Gas-Water Reservoir  

E-Print Network (OSTI)

of gas in psia pressure of gas in psia at time t constant production rate of gas in moles per year production rate at time t in moles per year ideal gas constant constant rate of water injection in cubic feet of the reservoir in cubic feet, below which gas production ceases initial reservoir volume in cubic feet reservoir

Waterman, Michael S.

115

Spin states of para-water and ortho-water molecule in gas and liquid phases  

E-Print Network (OSTI)

Spin degrees of freedom of water molecule in gas and liquid state were investigated in order to provide a reasonable answer about the unsolved problem of a long-term behavior of water spin isomers. The approach used involves an assumption that molecules change their spin state from a pure state to a mixed one when they interact with some sorts of adsorbent surface. Some models and conceptions of the quantum information processing were used.

V. K. Konyukhov

2009-09-23T23:59:59.000Z

116

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Shifting To Sustainable Drinking Water Consumption At UBC: A Social Marketing Plan  

E-Print Network (OSTI)

Drinking Water Consumption At UBC: A Social Marketing Plan Rosalind Sadowski, Angela Willock University; SHIFTING TO SUSTAINABLE DRINKING WATER CONSUMPTION AT UBC: A SOCIAL MARKETING PLAN ROSALIND SADOWSKI....................................................................................................... 5 About Us, the Authors Overall Timeline and Project Context Drinking Water at UBC: Who

117

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

118

Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System  

E-Print Network (OSTI)

Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

Gakhar, Kush

2012-02-14T23:59:59.000Z

119

The construction and use of aquifer influence functions in determining original gas in place for water-drive gas reservoirs  

E-Print Network (OSTI)

THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR WATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH GAJDICA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1986 Major Subject: Petroleum Engineering THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR MATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH...

Gajdica, Ronald Joseph

1986-01-01T23:59:59.000Z

120

In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions  

E-Print Network (OSTI)

water-gas shift (CO + H 2 O of water on surfaces has a significant influence on the mechanisms and kinetics

Yamamoto, S.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

122

Review of technologies for oil and gas produced water treatment  

Science Journals Connector (OSTI)

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

Ahmadun Fakhru’l-Razi; Alireza Pendashteh; Luqman Chuah Abdullah; Dayang Radiah Awang Biak; Sayed Siavash Madaeni; Zurina Zainal Abidin

2009-01-01T23:59:59.000Z

123

Gas-Liquid Coexistence in the Primitive Model for Water  

E-Print Network (OSTI)

We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

F. Romano; P. Tartaglia; F. Sciortino

2007-05-08T23:59:59.000Z

124

A Cu/Pt Near-Surface Alloy for Water-Gas Shift Catalysis. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

of WGS catalysts could therefore lead to a major leap forward in the realization of hydrogen economy. On the basis of a combination of high-resolution scanning tunneling...

125

SPRING 2014 CHEMISTRY COLLOQUIA "Fundamental Studies on the Water-gas Shift Reaction on  

E-Print Network (OSTI)

/Oxide Catalysts: Active Sites and Reaction Mechanism" The high-performance of gold-ceria, copper-ceria and gold

Tsymbal, Evgeny Y.

126

Desulfurization of a coal model compound by in situ hydrogen generation through water-gas shift  

E-Print Network (OSTI)

TECHNIQUE 94 PAGE APPENDIX 5 TEMPERATURE PROGRAM 101 APPENDIX 6 TEMPERATURE PROFILES 104 NOTATION 112 VITA 113 1x LIST OF FIGURES FIGURE PAGE 1 Reaction Scheme or Benzothiophene (from Guin et al. Ind. Eng. Chem. Process. Dev. , 19 (1980)) 2... and Conversion 62 5 Computer Results or Non-Linear Regression Analysis 98 6 Results of Kinetic Parameters Estimation 7 Statistical Analysis Results for Temperature Profile Tl 108 8 Statistical Analysis Results f or Temperature Prof ile T2 109 9...

Kumar, Meyyappan

1982-01-01T23:59:59.000Z

127

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

128

Development of a Market Optimized Condensing Gas Water Heater  

SciTech Connect

This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize the design for manufacturing. This work included the initiation of a large field testing program (over 125 units) and an in-depth reliability program intended to minimize the risks associated with a new product introduction. At the time of this report, A.O. Smith plans to introduce this product to the marketplace in the early 2006 time period.

Peter Pescatore

2006-01-11T23:59:59.000Z

129

Solubility trapping in formation water as dominant CO2 sink in natural gas fields  

E-Print Network (OSTI)

LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

Haszeldine, Stuart

130

Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.  

E-Print Network (OSTI)

3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

Franz, Nico M.

131

Water and Energy Issues in Gas-to-Liquid Processes: Assessment and Integration of Different Gas-Reforming Alternatives  

Science Journals Connector (OSTI)

Energy and water management effects are analyzed for the development of syngas processes under the integration of three gas reforming alternatives ... Gandrick et al.(9) considered the recycling of the light gas from FT synthesis and refining areas to fire gas turbines to produce electricity and the reuse of the gas turbines to produce superheated steam. ... We address in this paper several aspects related to such issues: (a) A comparative analysis is developed for assesing the impact of the use of different reforming technologies on energy and water usage. ...

Diana Yered Martínez; Arturo Jiménez-Gutiérrez; Patrick Linke; Kerron J. Gabriel; Mohamed M. B. Noureldin; Mahmoud M. El-Halwagi

2013-10-24T23:59:59.000Z

132

Impact broadening, shifting, and asymmetry of the D1 and D2 lines of alkali-metal atoms colliding with noble-gas atoms  

Science Journals Connector (OSTI)

The Anderson Talman theory of spectral line broadening is used together with potential energy curves calculated at the spin-orbit multi-reference configuration interaction level to compute broadening, shifting, and asymmetry coefficients of the D1 and D2 lines of alkali-metal atoms M, as they collide with noble gas atoms N, where M=K, Rb, and Cs, and N=He, Ne, and Ar. Our calculated coefficients are compared to experimental results for a variety of temperatures. In all cases general agreement is observed for the broadening coefficients, while significant disagreement is observed for the shifting coefficients. We also compare our K+He broadening and shifting results with fully quantum-mechanical calculations that employ the Baranger theory of collisional line broadening, and we compare our results with other semiclassical calculations. As with the comparison to experiment, closer agreement is observed for the broadening coefficients while the shifting coefficients exhibit significant disagreement. We use the natural variation between the difference potentials of the nine M+N pairs to explore the relationship between potential and line shape as determined by Anderson-Talman theory and develop a picture for the mechanism that underlies the general agreement between theoretical and experimental results on the broadening coefficient and the general disagreement on shifting coefficients.

L Blank and David E. Weeks

2014-08-18T23:59:59.000Z

133

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data  

E-Print Network (OSTI)

Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

Alkouh, Ahmad

2014-04-04T23:59:59.000Z

134

Water-saving liquid-gas conditioning system  

DOE Patents (OSTI)

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

135

Detachment of Liquid-Water Droplets from Gas-Diffusion Layers  

SciTech Connect

A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

2011-07-01T23:59:59.000Z

136

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

137

The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir  

E-Print Network (OSTI)

of the effect of gas production rate and rock and fluid properties on the recovery of gas from strong water drive gas reservoirs will permit gas production optimization and should result in conservation of natural and financial resources. Hence... saturations, gas production rate is not a dominant factor affecting the ultimate gas recovery. Almost all the gas is recovered whether producing the field at 0. 1 or 10 times GRR. In predicting the gas recovery in a strong water drive reser- voir...

Soemarso, Christophorus

2012-06-07T23:59:59.000Z

138

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

139

Water Intensity Assessment of Shale Gas Resources in the Wattenberg Field in Northeastern Colorado  

Science Journals Connector (OSTI)

Water Intensity Assessment of Shale Gas Resources in the Wattenberg Field in Northeastern Colorado ... Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. ...

Stephen Goodwin; Ken Carlson; Ken Knox; Caleb Douglas; Luke Rein

2014-04-21T23:59:59.000Z

140

Water Gas Shift Catalysis Using Iron Aerogels Doped with Palladium by the Gas-Phase Incorporation Method  

Science Journals Connector (OSTI)

The WGS activity of 2% Pd iron aerogel was higher by 50% than that of 1% Pd incorporated iron aerogel. ... (30) The reactors were charged with 100 mg of fresh catalysts held in place with Whatman QMA quartz fiber filters. ...

Sumit Bali; Gregory C. Turpin; Richard D. Ernst; Ronald J. Pugmire; Vivek Singh; Mohindar S. Seehra; Edward M. Eyring

2008-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network (OSTI)

of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford in extracting gas from these low-permeability rocks is hydraulic fracture. This involves injecting large of water and gas during hydraulic fracturing and subsequent gas recovery. This is essential in order

Henderson, Gideon

142

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network (OSTI)

of H2S in septic sewers causing pipe corrosion. 2. CO2 Stripping of some ground waters, industrial1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important wastewaters to the stream. Gas/Liquid Interface Gas Liquid Gas transfer to the liquid is absorption Gas

Stenstrom, Michael K.

143

Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers  

E-Print Network (OSTI)

route from the cathode catalyst layer to the cathode flow channels. Water can be removed from the cellDetermination of effective water vapor diffusion coefficient in pemfc gas diffusion layers Jacob M: Water vapor diffusion PEMFC Water management GDL Diffusivity MPL a b s t r a c t The primary removal

Kandlikar, Satish

144

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network (OSTI)

States, oil and gas wastewater is managed through recycling of the wastewater for shale gas operations of the wastewater.7 However, options for the proper disposal and management of the wastewater that is not recycledImpacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R

Jackson, Robert B.

145

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

146

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

147

Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media  

Science Journals Connector (OSTI)

...conditions. This difference was interface. The sorption appears to...sorption at the gas-water interface increases with in- Fhese...pore throats. (ii) The standard hypothesis with other strains...for the A static gas-water interface sorbs and retains microorganisms...

Jiamin Wan; John L. Wilson; Thomas L. Kieft

1994-02-01T23:59:59.000Z

148

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

149

NETL: News Release - DOE's Oil and Gas Produced-Water Program Logs Key  

NLE Websites -- All DOE Office Websites (Extended Search)

July 20, 2007 July 20, 2007 DOE's Oil and Gas Produced-Water Program Logs Key Milestones Cost-Effectively Treating Coproduced Water Boosts U.S. Energy, Water Supplies MORGANTOWN, WV - A research program funded by the U.S. Department of Energy (DOE) is making significant progress in developing new ways to treat and use water coproduced with oil and natural gas. The ultimate benefit is a two-for-one solution that expects to boost domestic energy supplies while enhancing the Nation's water supply. Coproduced water-some of which occurs naturally in subsurface formations, and some that is recovered following injection of water into an oil or gas reservoir to boost production-accounts for 98 percent of all waste generated by U.S. oil and natural gas operations. Produced-water volumes average nine barrels for each barrel of oil produced. Handling, treating, and safely disposing of this produced water has been a tough, costly challenge for oil and natural gas producers for decades. Much of the produced water has high concentrations of minerals or salts that make it unsuitable for beneficial use or surface discharge. An oilfield operator often must reinject such produced water into deep formations, sometimes resorting to costly trucking of the water to deep-injection well sites specially designated by the U.S. Environmental Protection Agency.

150

Heterogeneity effect on non-wetting phase trapping in strong water drive gas reservoirs  

Science Journals Connector (OSTI)

Abstract In strong water drive gas reservoirs (WDGR), the presence of entrance water in the gas zone has negative effects on the relative permeability; therefore, gas is trapped behind the water front as a non-wetting phase. Understanding WDGR could be complicated and depends on both the petrophysical and operational parameters, such as, reservoir heterogeneity, permeability, production rate and so on. In order to quantify the uncertainty associated with reservoirs, it is critical to create porous media models that incorporate stratigraphic details. In the present study, experimental models were used to simulate WDGR and describe the heterogeneity effect on residual gas saturation and the recovery factor. In models, distinct gas and water (aquifer portion) zones were designed, wherein the ratio of the permeability of the aquifer to the gas zone was varied over three ranges. All tests were conducted in the presence of connate water, and the main WDGR set-up was constructed for high pressure operational conditions. All porous media were characterized by Dykstra–Parsons coefficient as heterogeneity index. The results demonstrate that the residual gas saturation depends on both heterogeneity index and permeability ratio. Results reveal that heterogeneity is not always detrimental to gas recovery. In addition, when the ratio of the aquifer to gas zone permeability is less than one, the amount of trapped gas reduces as the heterogeneity of the porous media increases and consequently, the recovery factor may be improved.

Mohammad Rezaee; Behzad Rostami; Peyman Pourafshary

2013-01-01T23:59:59.000Z

151

The displacement of gas by oil in the presence of connate water  

E-Print Network (OSTI)

mixed stream of oil and gas. The mobile gas phase established within the core was then dis- placed by an oil flood. The assumption was made that the residual gas saturation within the oil bank would be the same as that which would occur within a... water bank resulting from a waterflood. The results indicate that the residual gas saturation within and behind the oil bank increases as the gas saturation prior to the flood increases. The relationship between the initial and residual gas...

Dardaganian, Stephen Garabed

2012-06-07T23:59:59.000Z

152

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...fractured shale aquifers . Ground Water 50 ( 6 ): 826 – 828...2011) Investigation of Ground Water Contamination near Pavillion...poses a threat to surface waters. Front Ecol Environ...Acid mine drainage remediation options: A review...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

153

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

154

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

155

Paradigm Shift: Burning Coal to Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

156

Optimization Models for Shale Gas Water Management Linlin Yang  

E-Print Network (OSTI)

source water acquisition, wastewater production, reuse and recycle, and subsequent transportation, about 19,000-26,000 m3 of water is used to complete each well. A wastewater production forecast . Furthermore, the injected water that remains underground accounts for 0.3% of all water consumption in the US

Grossmann, Ignacio E.

157

Toward a less natural gas dependent energy mix in Spain: Crowding-out effects of shifting to biomass power generation  

Science Journals Connector (OSTI)

Abstract This paper estimates the impact of a hypothetical change in Spain's energy mix on a number of productive sectors. The change would be brought about by substituting power generation from natural gas with generation from biomass. The total amount of electricity supplied has been calculated to remain constant so that a crowding-out effect would be derived from the displacement of one technology with another. An input–output (IO) framework has been used to estimate the overall economic impact on 26 productive sectors included on Spain's 2007 IO Table. Based on the available literature, the consideration of net impact improves the analysis. The results show that the overall net impact across all productive sectors of this change in the energy mix would be positive and equal to about 0.5% for the period. Higher impacts were measured for the ‘Electricity power and Electricity Supply’ sector (15.4%) followed by the ‘Agriculture, Hunting, Forestry’ sector (7.1%). Only the ‘Gas generation and Gas supply’ sector showed a negative impact (–2.5%), which is consistent with the reduced use of natural gas. The overall calculated total impact for Spain's productive sector was equal to € 8074.95 million at the 2007-equivalent value.

María J. Colinet; José M. Cansino; José M. González-Limón; Manuel Ordóñez

2014-01-01T23:59:59.000Z

158

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

159

Thermal decomposition of Cu-based hydroxycarbonate catalytic precursors for the low-temperature co-shift reaction  

Science Journals Connector (OSTI)

The thermal decomposition of Cu-Zn-Al hydroxycarbonate precursors to obtain water-gas shift catalysts was studied by employing a variety of experimental techniques. A set of six samples containing 34 wt% of Cu an...

M. J. L. Ginés; C. R. Apesteguía

1997-12-01T23:59:59.000Z

160

Sea Water MHD : Electrolysis and Gas Production in Flow  

Science Journals Connector (OSTI)

The work presented is principally experimental, it concerns mainly the coupling between sea water electrolysis and hydrodynamics (in both ways). The ... of measurements is much more relevant to sea water MHD prop...

P. Boissonneau; J.-P. Thibault

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields  

E-Print Network (OSTI)

.........................................................76 4.2.3 Water-Gas Ratio Trend in 1976 .........................................................78 4.2.4 Water-Gas Ratio Trend in 1977 .........................................................81 4.2.5 Water-Gas Ratio Trend 1978 ? 2004... .........................................................76 4.2.3 Water-Gas Ratio Trend in 1976 .........................................................78 4.2.4 Water-Gas Ratio Trend in 1977 .........................................................81 4.2.5 Water-Gas Ratio Trend 1978 ? 2004...

Ozobeme, Charles Chinedu

2007-04-25T23:59:59.000Z

162

The deep water gas charged accumulator and its possible replacements  

E-Print Network (OSTI)

not be affected by the increasing hydrostatic pressure of water as a function of water depth. Springs and heavy weights will be discussed as two options to replace nitrogen in accumulators. Efficient deep water accumulators would reduce the number of accumulators...

Mir Rajabi, Mehdi

2006-04-12T23:59:59.000Z

163

The simulation of gas production from oceanic gas hydrate reservoir by the combination of ocean surface warm water flooding with depressurization  

Science Journals Connector (OSTI)

A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of therma...

Hao Yang; Yu-Hu Bai; Qing-Ping Li

2012-10-01T23:59:59.000Z

164

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

165

"Solution plot technique"-Analysis of water influx in gas reservoirs using simulation studies  

E-Print Network (OSTI)

the reservoir-aquifer boundary. The most widely used methods for estimating water- influx which can be applied to water-drive gas reservoirs include: 1. Van Everdingen-Hurst Radial, unsteady statet. 2. Carter and Tracy, unsteady state2. 3, Fetkovich, pseudo... of calculating water- influx, and involves the use of the convolution integral method. Fetkovich proposed a model that utilizes a pseudo-steady state productivity index and the aquifer material balance for estimating the water influx. The Van Everdingen...

Hardikar, Sachin Suresh

1992-01-01T23:59:59.000Z

166

Cost Shifting  

Science Journals Connector (OSTI)

Abstract Cost shifting exists when a provider raises prices for one set of buyers because it has lowered prices for some other buyer. In theory, cost shifting can take place only if providers have unexploited market power. The empirical evidence on the extent of cost shifting is mixed. Taken as a whole, the evidence does not support the claims that cost shifting is a large and pervasive feature of the US health-care markets. At most, one can argue that perhaps one-fifth of Medicare payment reductions have been passed on to private payers. The majority of the rigorous studies, however, have found no evidence of cost shifting.

M.A. Morrisey

2014-01-01T23:59:59.000Z

167

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or  

E-Print Network (OSTI)

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or a generator? NOTIFY the University Police. FOLLOW evacuation procedures. NOTIFY Building Safety personnel

Fernandez, Eduardo

168

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas  

E-Print Network (OSTI)

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas. . What should I do if the if the building does not have emergency lighting or a generator? NOTIFY

Fernandez, Eduardo

169

Mathematical Model for Heavy Oil–Water–Gas Stratified Flow in Horizontal Pipes  

Science Journals Connector (OSTI)

A one-dimensional, isothermal, transient model for the stratified flow of heavy oil, water and gas, in horizontal pipelines, is presented. The two-fluid mathematical model consists of mass, momentum and energy...

C. Centeno-Reyes; O. Cazarez-Candia

2012-01-01T23:59:59.000Z

170

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network (OSTI)

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

171

Gasification of biomass in water/gas-stabilized plasma for syngas production  

Science Journals Connector (OSTI)

The experimental reactor PLASGAS for plasma pyrolysis and vitrification equipped with the hybrid gas-water stabilized torch was used in the experiments. The plasma torch is characterized by low density, high t...

M. Hrabovsky; M. Konrad; V. Kopecky; M. Hlina; T. Kavka…

2006-10-01T23:59:59.000Z

172

New evidence for the origin of natural gas in Ordos Basin from hydrocarbons of oil water  

Science Journals Connector (OSTI)

The chief aim of the present work is to investigate the controversy origin of natural gas in the Ordos Basin by using the hydrocarbons of oil water. New evidence has been found: There is relatively high content o...

Dujie Hou; Xianqing Li; Youjun Tang

2002-05-01T23:59:59.000Z

173

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...accept shale gas waste) upstream...Compliance System and Integrated Compliance Information System, with the...recall that we control for pre-cipitation...model results. Waste Treatment Regulatory...wastewater treatment plants to treat shale...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

175

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network (OSTI)

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

176

Effects of fluid properties and initial gas saturation on oil recovery by water flooding  

E-Print Network (OSTI)

EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

Arnold, Marion Denson

2012-06-07T23:59:59.000Z

177

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

178

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a  

E-Print Network (OSTI)

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed

Paris-Sud XI, Université de

179

Exergoeconomic Evaluation of Desalinated Water Production in Pipeline Gas Station  

Science Journals Connector (OSTI)

Abstract Pipelines transporting gas often are thousands of kilometers long, a number of compressor stations are needed, which consume a significant amount of energy. To improve the efficiency of the compressor stations, the high temperature exhaust gases from the gas turbines which drive the compressors are used for producing steam or other motive fluid in a heat recovery steam generator (HRSG). The steam or other vapor is then used to drive a turbine, which in turn drives other compressors or other applications. This paper is to discuss the techno-economic evaluation of different desalination process using the exhaust of 25 MW gas turbine in gas station. MED, MSF and RO desalination systems have been considered. Nadoshan pipeline gas stations with 25 MW gas turbine drivers in Iran were considered as a case study. In this regard, the simulation has been performed in Thermoflex Software. Moreover, the computer code has been developed for thermodynamic simulation and exergoeconomic analysis. Finally, different scenarios have been evaluated and comprised in view of economic, exergetic and exergoeconomic.

M.H. Khoshgoftar Manesh; S. Khamis Abadi; H. Ghalami; M. Amidpour

2012-01-01T23:59:59.000Z

180

Comparative studies of low-temperature watergas shift reaction over Pt=CeO2, Au=CeO2,  

E-Print Network (OSTI)

and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand b Department of Chemical Engineering on board steam reforming of gas- oline and diesel fuel is the most logical means powering the PEFCs. However, the H2 produced from reformed gas contains $10% CO. In general, water­gas shift (WGS) reaction

Gulari, Erdogan

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

None

2011-01-01T23:59:59.000Z

182

Optimization Models for Optimal Investment, Drilling, and Water Management in Shale Gas Supply Chains  

Science Journals Connector (OSTI)

Abstract This paper provides an overview of recent optimization models for shale gas production. We first describe a new mixed-integer optimization model for the design of shale gas infrastructures. It is aimed at optimizing the number of wells to drill, size and location of new gas processing plants, section and length of pipelines for gathering raw gas, delivering dry gas and natural gas liquids, power of gas compressors, and planning of freshwater consumption for well drilling and fracturing. We also describe a detailed operational mixed-integer linear model to optimize life cycle water use for well pads. The objective of the model is to determine the fracturing schedule that minimizes costs for freshwater consumption, transportation, treatment, storage, and disposal.

Ignacio E. Grossmann; Diego C. Cafaro; Linlin Yang

2014-01-01T23:59:59.000Z

183

Criteria for displacement by gas versus water in oil reservoirs  

E-Print Network (OSTI)

on of a Two-Dimensional Technique for Computing Performance of Gas-Or ive Reservoirs", Soc. Pet. Enq. J. {Mar. 1963), 19-27; Trans. , AINE, 228. 15. Cardwell, W. T. , Jr. and Parsons, R. L. : 0Gravity Drainage Theory", Trans. , AIME (1949) 179, 199... on of a Two-Dimensional Technique for Computing Performance of Gas-Or ive Reservoirs", Soc. Pet. Enq. J. {Mar. 1963), 19-27; Trans. , AINE, 228. 15. Cardwell, W. T. , Jr. and Parsons, R. L. : 0Gravity Drainage Theory", Trans. , AIME (1949) 179, 199...

Piper, Larry Dean

2012-06-07T23:59:59.000Z

184

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

185

The impact of water depth on safety and environmental performance in offshore oil and gas production  

Science Journals Connector (OSTI)

This paper reports on an empirical analysis of company-reported incidents on oil and gas production platforms in the Gulf of Mexico between 1996 and 2010. During these years, there was a dramatic increase in the water depths at which offshore oil and gas is extracted. Controlling for platform characteristics such as age, quantity of oil and gas produced, and number of producing wells, we find that incidents (such as blowouts, injuries, and oil spills) are positively correlated with deeper water. Controlling for these and other characteristics, for an average platform, each 100 feet of added depth increases the probability of a company-reported incident by 8.5%. While further research into the causal connections between water depth and platform risks is warranted, this study highlights the potential value of increased monitoring of deeper water platforms.

Lucija Muehlenbachs; Mark A. Cohen; Todd Gerarden

2013-01-01T23:59:59.000Z

186

Impact of Shale Gas Development on Regional Water Quality  

Science Journals Connector (OSTI)

...hydraulically fractured shale aquifers . Ground Water 50 , 826...Areas Underlain by the Glacial Aquifer System, Northern United States...Hydraulic fracturing, or "fracking," a technology being used...reviews what is known about fracking and makes suggestions for improving...

R. D. Vidic; S. L. Brantley; J. M. Vandenbossche; D. Yoxtheimer; J. D. Abad

2013-05-17T23:59:59.000Z

187

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

188

Poster: Building a test-bed for wireless sensor networking for under-water oil and gas installations  

E-Print Network (OSTI)

. Initially we are building a laboratory in a large water tank. Later we will cooperate with an oil and gasPoster: Building a test-bed for wireless sensor networking for under-water oil and gas@ifi.uio.no 1 Introduction and background When the oil and gas industry moves its production facilities

Zhou, Shengli

189

Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays  

E-Print Network (OSTI)

Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging understanding of the unique regional issues that shale gas development poses. This manuscript highlights the variation in regional water issues associated with shale gas development in the U.S. and the approaches

Alvarez, Pedro J.

190

Method Validation for the Simultaneous Determination of Fecal Sterols in Surface Waters by Gas Chromatography-Mass Spectrometry  

Science Journals Connector (OSTI)

......waters is estimated by gas chromatographic (GC...steroids and endogenous CHL production and metabolism, the sterol...Sterols in Surface Waters by Gas ChromatographyMass Spectrometry...ally quantitated by gas chromatography (GC...characterized. Because cost and time effectiveness......

Sándor Szucs; Attila Sárváry; Terry Cain; Róza Ádány

2006-02-01T23:59:59.000Z

191

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...Pennsylvania, Texas, and North Dakota. In addition to predrilling...Natural gas: Should fracking stop? Nature 477 ( 7364...Middle Devonian of eastern North America . Palaeogeogr Palaeoclimatol...Maryland, New Jersey, North Carolina, Pennsylvania...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

192

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...Kerr RA ( 2010 ) Energy. Natural gas from...1626 . 3 US Energy Information Administration...March 2013 (US Energy Information Administration...Agency, Office of Research and Development, National Risk...isotopes in Icelandic geothermal systems. 1. He-3...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

193

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

194

Einstein Shift and Doppler Shift  

Science Journals Connector (OSTI)

... IN answer to Sir Oliver Lodge's question (NATURE, December 26, p. 938), it depends on our point of view whether the Einstein shift ...

A. S. EDDINGTON

1926-01-16T23:59:59.000Z

195

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

196

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

197

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

198

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

199

Management of produced water in oil and gas operations  

E-Print Network (OSTI)

of adsorption for oil removal from produced water............... 13 2.3 Adsorption terminologies ...................................................................... 17 2.4 Evaluation of new organoclay adsorbent for oil removal...................... 19 2... to the experimental data of percentage of oil adsorbed with time.................................................................................................53 5.4 A straight line fit to the experimental data of oil adsorption vs. oil inflow...

Patel, Chirag V.

2005-02-17T23:59:59.000Z

200

Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas  

Science Journals Connector (OSTI)

The average shale gas well EUR is 100 million cubic meters (3.5 billion cubic feet (BCF)) for bulk gas, which is a mixture containing methane, in addition to other gases such as ethane, propane, carbon dioxide, and nitrogen. ... Overbey, W. K.; Carden, R. S.; Locke, C. D.; Salamy, S. P.; Reeves, T. K.; Johnson, H. R.; Site Selection, Drilling, and Completion of Two Horizontal Wells in the Devonian Shales of West Virginia, DOE/MC/25115–3116; Prepared for U.S. Department of Energy, 1992. ...

Corrie E. Clark; Robert M. Horner; Christopher B. Harto

2013-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Graphite-moderated, gas-cooled, and water-moderated, water-cooled reactors as power units in nuclearelectric power stations  

Science Journals Connector (OSTI)

The present article reviews a number of papers submitted at the Second International Conference on the Peaceful Uses of Atomic Energy bearing on water-cooled, water-moderated, graphite-moderated, and gas-coole...

Yu. I. Koryakin

1960-11-01T23:59:59.000Z

202

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

203

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS  

Open Energy Info (EERE)

ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS ANALYSES Details Activities (1) Areas (1) Regions (0) Abstract: Measurement of organic compounds in Karaha- Telaga Bodas and Coso fluid inclusions shows there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which alkane compounds predominate, type 2 fluids that have ethane and propylene and no

204

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network (OSTI)

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

205

Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.  

E-Print Network (OSTI)

??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic… (more)

Johnson, Brenda

2006-01-01T23:59:59.000Z

206

Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale  

Science Journals Connector (OSTI)

Abstract Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from CBM samples) range from 50 to 100 ?g/L. Total dissolved organic carbon (TOC) in CBM produced water is generally in the 1–4 mg/L range. Excursions from this general pattern in produced waters from individual wells arise from contaminants introduced by production activities (oils, grease, adhesives, etc.). Organic substances in produced and formation water from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of ?g/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

William Orem; Calin Tatu; Matthew Varonka; Harry Lerch; Anne Bates; Mark Engle; Lynn Crosby; Jennifer McIntosh

2014-01-01T23:59:59.000Z

207

Optimizing production from water drive gas reservoirs based on desirability concept  

Science Journals Connector (OSTI)

Abstract There are various factors which determine the optimization and economic production from water drive gas reservoirs. These factors play an important role in designing an effective reservoir development plan. The present study, in the first step, investigates the relation between recovery factor, volumetric sweep efficiency and cumulative water production with six different engineering and geologic factors using design of experiments (DOE) and response surface methodology (RSM). Next, all derived response functions are optimized simultaneously based on the concept of desirability. In this manner, part of water drive gas reservoirs is simulated using Box–Behnken design. Important factors that have been studied include reservoir horizontal permeability (Kh), permeability anisotropy (Kv/Kh), aquifer size (Vaq), gas production rate (Qg), perforated thickness (Hp) and tubing head pressure (THP). The results indicate that by combining various levels of factors and considering relative importance of each response function, optimized conditions could be raised in order to maximizing recovery factor, volumetric sweep efficiency and minimizing cumulative water production. Also high rates of gas production result poor volumetric sweep efficiency and early water breakthrough, hence ultimate recovery factor decreases by 3.2–8.4%.

Meysam Naderi; Behzad Rostami; Maryam Khosravi

2014-01-01T23:59:59.000Z

208

Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests  

SciTech Connect

Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

2011-04-15T23:59:59.000Z

209

Carbon gas fluxes from a brown-water and a clear-water lake in the ...  

Science Journals Connector (OSTI)

48.7 mg m-2) and water color (100 vs. 20 mg Pt L-1) throughout an open-water period when summer precipitation doubled, using both floating chambers and ...

210

Development of a Detailed Simulation Model to Support Evaluation of Water Load Shifting Across a Range of Use Patterns  

E-Print Network (OSTI)

of hybrid domestic hot water storage systems. The example domestic hot water system investigated here comprises an air source heat pump coupled with solar thermal collectors and a storage tank featuring supplementary immersion heating for control... variations of the air in its solution. As a further example the electrical network knows about the state of the heat pump which is controlled from knowlede of space and buffer tank temperature which in turn are calculated during building and plant...

Samuel, A.; Tuohy, P.

2014-01-01T23:59:59.000Z

211

Identification and selection of a stable gel polymer to control or reduce water production in gas condensate fields  

Science Journals Connector (OSTI)

Abstract The existence of water in hydrocarbon reservoirs damages the wells. In many cases, it leads to shut off the wells and decreases the gas production efficiency. For example, one of the problems of fractured gas wells is unwanted water invasion to gas production areas through the existing fracture in the reservoirs. This would increase the water production and decrease the gas production efficiency. As well, increasing of water/gas production ratio will increase the total operational costs due to water separation from the gas flow, corrosion of inside and outside well facilities and hydrate formation. Hence, prevention of water production in gas wells can boost the gas production economy. Generally, some mechanical and chemical methods exist to control unwanted water. One of the most effective methods to control and prevent of water production in hydrocarbon reservoirs is gel polymer method. The gel polymer is a chemical method with high efficiency and low cost. This work is concerned with producing a stable and suitable gel polymer (HPAM–Cr (III) gel system) to control and remove water in the gas condensate fields. The important parameters in the gel construction such as the polymer and cross-linker concentrations, pH of solution and also the effect of different additives have been examined and optimized at four temperatures of 30, 60, 80 and 100 °C. The effect of gel polymer on the absolute and relative permeabilities of two different cores for water and gas condensate fluids has been investigated. The results show that prepared gel polymer results in decreasing the water relative permeability, while increases the gas condensate relative permeability.

Shahram Karimi; Feridun Esmaeilzadeh; Dariush Mowla

2014-01-01T23:59:59.000Z

212

Tracing coalbed natural gas-coproduced water using stable isotopes of carbon  

SciTech Connect

Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

Sharma, S.; Frost, C.D. [University of Wyoming, Laramie, WY (United States). Dept. for Renewable Resources

2008-03-15T23:59:59.000Z

213

Investigation of trace amounts of gas on microvave water-cut measurement  

E-Print Network (OSTI)

In recent years, the upstream oil and gas industry has dealt with some of the most challenging metering applications. One of these is the measurement of water percentage at the point of allocation. It is an essential requirement when test separators...

Liu, Jin

2006-08-16T23:59:59.000Z

214

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture  

Science Journals Connector (OSTI)

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture ... The buffered solution is then sent back to the top of the tower, where it is sprayed into the upflowing oxyfuel gas stream, condensing and cleaning the ash-laden gas. ...

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen Gerdemann; John Clark; Cathy Summers

2011-08-02T23:59:59.000Z

215

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

216

Water for food and nature in drought–prone tropics: vapour shift in rain–fed agriculture  

Science Journals Connector (OSTI)

...9 0.55 oil crops 2 0.73 vegetable oils 2 0.23 vegetables...grazing-based meat production). This indicates...farmer's field is huge...resulting in a cumulative water for...flow based on field measurements...flows, food production, and terrestrial...

2003-01-01T23:59:59.000Z

217

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

218

Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Water-Gas Samples Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lightning Dock, Animas Valley, New Mexico geothermal area was discovered when a rancher found boiling water while drilling a shallow stock tank welt (Elston, Deal, et. al, 1983). There are no surface manifestations of present or past geothermal activity in the Animas Valley. Norman and Bernhart (1982) analyzed the gases in the discovery well and 15 stock tank wells nearby (Figure 1). References David Norman, Nigel Blarney, Lynne Kurilovitch (2002) New

219

Numerical simulation on the influence of water spray in thermal plasma treatment of CF4 gas  

Science Journals Connector (OSTI)

Nitrogen thermal plasma generated by a non-transferred DC arc plasma torch was used to decompose tetrafluoromethane (CF4). In the thermal decomposition process, water was used as a chemical reactant source. Two kinds of water spray methods were compared: water spray directly to the arc plasma flame and indirectly to the reactor tube wall. Although the same operating conditions of input power, waste gas, and sprayed water flow rate were employed for each water spray methods, a relatively higher decomposition rate was achieved in the case of water spray to the reactor wall. In order to investigate the effects of water spraying direction on the thermal decomposition process, a numerical simulation on the thermal plasma flow characteristics was carried out considering water injection in the reactor. The simulation was performed using commercial fluid dynamics software of the FLUENT, which is suitable for calculating a complex flow. From the results, it was revealed that water spray to the reactor wall and use of a relatively small quantity of water are more effective methods for decomposition of CF4, because a sufficiently high temperature area and long reaction time can be maintained over large area.

Tae-Hee Kim; Sooseok Choi; Dong-Wha Park

2012-01-01T23:59:59.000Z

220

Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NOx Trap Catalyst  

Energy.gov (U.S. Department of Energy (DOE))

The Lean NOx Trap catalyst is an aftertreatment technology for abatement of nitrogen-oxide emissions from lean-burn vehicle engines.

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2  

SciTech Connect

CO{sub 2} diffusivity through hydrotalcite materials at 200 to 250 C was determined based upon the weight pick-up vs time. D/r{sup 2} (diffusivity/radius{sup 2}) for CO{sub 2} ranges from 3 x 10{sup -4} to 1 x 10{sup -3} depending upon the temperature. This range of diffusivity is consistent with the diffusivities through nanoporous materials, such as pillard clays and carbon molecular sieve, reported in the literature. Further the activation energy calculated based upon the diffusivity as a function of temperature is {approx}12 kcal/mole CO{sub 2}, indicating activated diffusion for CO{sub 2} transport through the intracrystalline region of hydrotalcite. More importantly nitrogen diffusivity determined based upon the same methodology is negligible. This implies that the hydrotalcite materials have a strong affinity to CO{sub 2}, but not nitrogen although the kinetic diameters for both molecules are similar. This result supports our proposed concept on the use of the hydrotalcite membrane for selective permeation of CO{sub 2}. In the next quarter, we will conduct more calculation to determine the CO{sub 2} permeability of an ideal hydrotalcite membrane. This theoretical analysis will provide a quantitative basis for the design of a hydrotalcite membrane. Further, the theoretical diffusivity thus obtained can be used as a tool to (1) gauge the degree of defects of experimental membranes prepared, and (2) direct the future membrane synthesis and improvement.

Paul K. T. Liu

2003-11-19T23:59:59.000Z

222

State-Scale Perspective on Water Use and Production Associated with Oil and Gas Operations, Oklahoma, U.S.  

Science Journals Connector (OSTI)

The purpose of this paper is to quantify annual volumes of water used for completion of oil and gas wells, coproduced during oil and gas production, injected via underground injection program wells, and used in water flooding operations. ... (12) Many U.S. states (e.g., Colorado, Kansas, New Mexico, Oklahoma, Texas, and Wyoming) that have abundant reserves of oil and gas are also subject to water scarcity due to uneven spatial and temporal distribution of rainfall. ... 3.4 UIC and Water Flood Volumes ...

Kyle E. Murray

2013-03-26T23:59:59.000Z

223

Oil production from thin oil columns subject to water and gas coning  

E-Print Network (OSTI)

OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

Chai, Kwok Kit

2012-06-07T23:59:59.000Z

224

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

225

Investigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell in the Presence of Gas Flow  

E-Print Network (OSTI)

forms of hydrogen powered technologies exist and have been well-researched, fuel cells is considered efficiently in the fuel cells (4). Inefficient water removal results in flooding of the catalyst layerInvestigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell

Kandlikar, Satish

226

Summary of research and development effort on air and water cooling of gas turbine blades  

SciTech Connect

The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

Fraas, A.P.

1980-03-01T23:59:59.000Z

227

Life-Cycle Water and Greenhouse Gas Implications of Alternative Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Water and Greenhouse Gas Implications of Alternative Fuel Life-Cycle Water and Greenhouse Gas Implications of Alternative Fuel Production Speaker(s): Corinne Scown Date: January 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Sohn If the goal of science is to understand the structure and behavior of the physical and natural world, and the goal of engineering is to design, build, and manage systems that serve society's needs, then the study of civil infrastructure systems acts as a link between the two. Understanding the reliance of engineered systems on constrained natural resources, as well as their impact on human well-being and the environment, is key to building and maintaining infrastructure that is sustainable in the broader sense. This talk will explore the important role of life-cycle assessment and optimization in assessing such questions as: a.)

228

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales  

Science Journals Connector (OSTI)

...two previously normal wells that displayed increased...tectonic (e.g., geothermal springs) or microbial...subset of drinking water wells near Marcellus shale...Domestic and Municipal Water Wells for Dissolved Gas Analysis...nitrate flux to the Gulf of Mexico. Ground Water 42...

Thomas H. Darrah; Avner Vengosh; Robert B. Jackson; Nathaniel R. Warner; Robert J. Poreda

2014-01-01T23:59:59.000Z

229

Adaptation of gas tagging for failed fuel identification in light water reactors  

SciTech Connect

This paper discusses experience with noble gas tagging and its adaptation to commercial reactors. It reviews the recent incidence of fuel failures in light water reactors, and methods used to identify failures, and concludes that the on-line technique of gas tagging could significantly augment present flux tilting, sipping and ultrasonic testing of assemblies. The paper describes calculations on tag gas stability in-reactor, and tag injection tests that were carried out collaboratively with Commonwealth Edison Company in the Byron-2 pressurized water reactor (P%a) and with Duke Power Company and Babcock and Wilcox Fuel Company in the Oconee-2 PWM. The tests gave information on: (a) noble gas concentration dynamics as the tag gases were dissolved in and eventually removed from subsystems of the RCS; and (b) the suitability of candidate Ar, Ne, Kr and Xe isotopes for tagging PWR fuel. It was found that the activity of Xe{sup 125} (the activation product of the tag isotope Xe{sup 124}) acted as a ``tag of a tag`` and tracked gas through the reactor; measured activities are being used to model gas movement in the RCS. Several interference molecules (trace contaminants normally present at sub-ppM concentrations in RCS samples) and entrained air in the RCS were found to affect mass spectrometer sensitivity for tag isotopes. In all instances the contaminants could be differentiated from the tag isotopes by operating the mass spectrometer at high resolution (2500). Similarly, it was possible to distinguish all the candidate tag gases against a high background of air. The test results suggested, however, that for routine analysis a high resolution static mass spectrometer will be preferable to the dynamic instrument used for the present analyses.

Lambert, J.D.B.; Gross, K.C.; Depiante, E.V. [Argonne National Lab., IL (United States); Callis, E.L. [Los Alamos National Lab., NM (United States); Egebrecht, P.M. [Commonwealth Edison Company, Downers Grove, IL (United States)

1996-03-01T23:59:59.000Z

230

Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas  

E-Print Network (OSTI)

INVESTIGATION OF THE THERNAL CONDUCTIVITY OF UNCONSOLIDATED SAND PACKS CONTAINING OIL, WATER, AND GAS A Thesis David E. Gore Submitted to the Graduate School of the Agricultural and Nechanical College oi' Texas in Partial fulfillment.... EXPERIMENTAL EQUIPMENT AND PROCEDURE All tests were performed on unconsolidated sand packs containing either one, two, or three saturating fluids, Phys- ical properties of the sand and saturating fluids are shown in Tables I and II in the Appendix...

Gore, David Eugene

2012-06-07T23:59:59.000Z

231

Water-alternating-gas flooding of a hydrocarbon-bearing formation  

SciTech Connect

This patent describes an oil recovery process for recovering a low viscosity crude oil from an oil-bearing zone of a subterranean formation. The process consists of: (a) injecting a gas into the oil-bearing zone of the subterranean formation via an injection well in fluid communication with the oilbearing zone, the gas injected at an injection pressure substantially below the minimum miscibility pressure of the gas in the low-viscosity crude oil; (b) displacing the low-viscosity crude oil away from the injection well toward an oil production well in fluid communication with the oil-bearing formation; (c) continuously recovering the low-viscosity crude oil from the oil production well; (d) thereafter terminating the injection of the gas upon substantial diminution of the continuous crude oil recovery from the production well; (e) injecting water into the oil-bearing zone of the formation via the injection well; (f) displacing the low-viscosity crude oil away from the injection well toward the oil production well; (g) recovering the low-viscosity oil form the oil production well; and (h) terminating the water injection.

Haines, H.K.

1989-07-11T23:59:59.000Z

232

A dynamic prediction model for gas–water effective permeability based on coalbed methane production data  

Science Journals Connector (OSTI)

Abstract An understanding of the relative permeability of gas and water in coal reservoirs is vital for coalbed methane (CBM) development. In this work, a prediction model for gas–water effective permeability is established to describe the permeability variation within coal reservoirs during production. The effective stress and matrix shrinkage effects are taken into account by introducing the Palmer and Mansoori (PM) absolute permeability model. The endpoint relative permeability is calibrated through experimentation instead of through the conventional Corey relative permeability model, which is traditionally employed for the simulation of petroleum reservoirs. In this framework, the absolute permeability model and the relative permeability model are comprehensively coupled under the same reservoir pressure and water saturation conditions through the material balance equation. Using the Qinshui Basin as an example, the differences between the actual curve that is measured with the steady-state method and the simulation curve are compared. The model indicates that the effective permeability is expressed as a function of reservoir pressure and that the curve shape is controlled by the production data. The results illustrate that the PM–Corey dynamic prediction model can accurately reflect the positive and negative effects of coal reservoirs. In particular, the model predicts the matrix shrinkage effect, which is important because it can improve the effective permeability of gas production and render the process more economically feasible.

H. Xu; D.Z. Tang; S.H. Tang; J.L. Zhao; Y.J. Meng; S. Tao

2014-01-01T23:59:59.000Z

233

Flue gas carbon dioxide sequestration during water softening with ion-exchange fibers  

SciTech Connect

This study examines the use of ion-exchange fibers (IX fibers) to permanently sequester carbon dioxide present in flue gas into an aqueous phase as calcium or magnesium alkalinity while concurrently softening hard water. The only process inputs besides carbon dioxide (or flue gas) are snowmelt (or rainwater); no other chemicals are required for the regeneration of the IX fibers. Importantly, the process is not energy intensive and carbon dioxide does not need to be compressed to excessive pressures (>150 psi) for efficient use. Sources of carbon dioxide do not require concentration and, therefore, the use of raw flue gas (similar to 17% CO{sub 2}) is feasible with the rate of sequestration governed only by the partial pressure of carbon dioxide. While valid for flue gas obtained from any combustion process (e.g., coal, oil, natural gas, etc.), emissions from oil or gas combustion may be more appropriate for use in the described process due to the absence of mercury and particulates. It should also be noted that the presence of sulfur dioxide in flue gas would not adversely affect the process and may even enhance regeneration efficiency. The only product of the proposed process is an environmentally benign regenerant stream containing calcium and/or magnesium alkalinity. The unique property of IX fibers that makes the proposed process both environmentally sustainable and economically feasible is amenability to efficient regeneration with carbon dioxide and harvested snowmelt. Low intraparticle diffusional resistance is the underlying reason why IX fibers are amenable to efficient regeneration using snowmelt sparged with carbon dioxide; 95% calcium recovery was attained at a CO{sub 2} partial pressure of 6.8 atm. The energy balance for a typical electric utility shows that up to 1% of carbon dioxide emitted during combustion would be sequestered in the softening process.

Greenleaf, J.E.; SenGupta, A.K. [Lafayette College, Easton, PA (United States). Dept. of Civil & Environmental Engineering

2009-06-15T23:59:59.000Z

234

Pressure, temperature, and dissolved gas dependence of dielectric breakdown in water.  

Science Journals Connector (OSTI)

It has been shown experimentally that the optical breakdown strength of water is a pressure dependent quantity growing with increasing pressure. The dependence of the breakdown strength on temperature and dissolved gas concentration over a larger range of pressures will be observed. Using a custom fabricated pressure vessel and high?power Nd:YAG laser breakdown events will be generated and observed over a range of pressures from 0 to 25 kpsi. Observations of breakdown events will be made using a high?speed photodetector located behind the pressure vessel’s optical windows. Dissolved gas concentration will be controlled and varied using a custom water preparation system over a range from water’s vapor pressure (?20 torr) to atmospheric pressure.Temperature will be monitored using a thermocouple attached to the pressure vessel and the temperature dependence will be measured over a range from 20 to 35 °C. A comparison between current single detector methods and previous imaging methods of using breakdown to determine absolute pressure will then be made. [Work supported by Impulse Devices Inc.

Jonathan Sukovich; R. Glynn Holt

2010-01-01T23:59:59.000Z

235

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

236

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

237

Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale  

E-Print Network (OSTI)

The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

Karapataki, Christina

2012-01-01T23:59:59.000Z

238

Identification and quantification of pesticides and polycyclic aromatic hydrocarbons in water and food by gas chromatography-mass spectrometry  

Science Journals Connector (OSTI)

Chances are examined for the identification and determination of pesticides of different types and polycyclic aromatic hydrocarbons, 46 items, in water and food by means of gas chromatography ... make from 2 to 1...

V. G. Amelin; T. B. Nikeshina; A. V. Tret’yakov

2011-10-01T23:59:59.000Z

239

Evaluating the phase equilibria of liquid water + natural gas mixtures using cubic equations of state with asymmetric mixing rules  

Science Journals Connector (OSTI)

Based on a previously developed liquid–liquid mixing rule we present a modified and robust mixing rule for accurate prediction of water content of natural gas mixtures and the natural gas solubility in liquid water phase. The non-density dependent mixing rule (NDD) and the new mixing rule are incorporated into the Peng–Robinson (PR), Soave–Redlich–Kwong (SRK), and Nasrifar–Bolland (NB) equations of state to investigate their accuracies in estimating the water content of the gas phase as well as the gas solubility in the aqueous phase. For each binary system water + hydrocarbon, water + carbon dioxide, water + hydrogen sulfide, and water + nitrogen, three binary interaction parameters are required to describe the gas–liquid water equilibria. In this work, experimental data from literature were used to tune the parameters. The results are in good agreement with experimental data, demonstrating the reliability of the new mixing rule and the thermodynamic approach used in this work.

P. Reshadi; Kh. Nasrifar; M. Moshfeghian

2011-01-01T23:59:59.000Z

240

Stable isotope geochemistry of coal bed and shale gas and related production waters: A review  

Science Journals Connector (OSTI)

Abstract Coal bed and shale gas can be of thermogenic, microbial or of mixed origin with the distinction made primarily on the basis of the molecular and stable isotope compositions of the gases and production waters. Methane, ethane, carbon dioxide and nitrogen are the main constituents of coal bed and shale gases, with a general lack of C2+ hydrocarbon species in gases produced from shallow levels and more mature coals and shales. Evidence for the presence of microbial gas include ?13C–CH4 values less than ? 50‰, covariation of the isotope compositions of gases and production water, carbon and hydrogen isotope fractionations consistent with microbial processes, and positive ?13C values of dissolved inorganic carbon in production waters. The CO2-reduction pathway is distinguished from acetate/methyl-type fermentation by somewhat lower ?13C–CH4 and higher ?D–CH4, but can also have overlapping values depending on the openness of the microbial system and the extent of substrate depletion. Crossplots of ?13C–CH4 versus ?13C–CO2 and ?D–CH4 versus ?13C–H2O may provide a better indication of the origin of the gases and the dominant metabolic pathway than the absolute carbon and hydrogen isotope compositions of methane. In the majority of cases, microbial coal bed and shale gases have carbon and hydrogen isotope fractionations close to those expected for CO2 reduction. Primary thermogenic gases have ?13C–CH4 values greater than ? 50‰, and ?13C values that systematically increase from C1 to C4 and define a relatively straight line when plotted against reciprocal carbon number. Although coals and disseminated organic matter in shales represent a continuum as hydrocarbon source rocks, current data suggest a divergence between these two rock types at the high maturity end. In deep basin shale gas, reversals or rollovers in molecular and isotopic compositions are increasingly reported in what is effectively a closed shale system as opposed to the relative openness in coal measure environments. Detailed geochemical studies of coal bed and shale gas and related production waters are essential to determine not only gas origins but also the dominant methanogenic pathway in the case of microbial gases.

Suzanne D. Golding; Chris J. Boreham; Joan S. Esterle

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

242

Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes  

SciTech Connect

Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

Robert Lee; Liangxiong Li

2008-03-31T23:59:59.000Z

243

Sustainability and Energy Development: Influences of Greenhouse Gas Emission Reduction Options on Water Use in Energy Production  

Science Journals Connector (OSTI)

Sustainability and Energy Development: Influences of Greenhouse Gas Emission Reduction Options on Water Use in Energy Production ... Water consumption for nuclear energy could be reduced, while also increasing the safety of nuclear plants, by deploying new high temperature gas reactors that potentially allow for internal operating temperatures in excess of 900 °C and combined cycle turbine designs. ... Whittaker, S.; White, D.; Law, D.; Chalatumyk, R. In IEA GHG Weyburn CO2Monitoring and Storage Project Summary Report 2000 - 2004, 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, Wilson, M.; Monea, M., Eds.; Petroleum Technology Research Centre: Vancouver, Canada, 2004. ...

D. Craig Cooper; Gerald Sehlke

2012-01-25T23:59:59.000Z

244

Effect of Channel Materials on the Behavior of Water Droplet Emerging From GDL into PEMFC Gas Channels  

E-Print Network (OSTI)

in PEMFCs to enable proper diffusion of gases into the catalyst layer as both the liquid droplets and air of the liquid water on the cathode side of the PEMFC leads to flooding of the channels and thereby hindersEffect of Channel Materials on the Behavior of Water Droplet Emerging From GDL into PEMFC Gas

Kandlikar, Satish

245

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales  

Science Journals Connector (OSTI)

...environmental costs and benefits of fracking . Annu Rev Environ Resour...SL ( 2014 ) Water resource impacts during unconventional shale gas development: The...the Nicholas School of the Environment. The authors declare no conflict...in marine and fresh-water environments- CO2 reduction vs acetate...

Thomas H. Darrah; Avner Vengosh; Robert B. Jackson; Nathaniel R. Warner; Robert J. Poreda

2014-01-01T23:59:59.000Z

246

Ammonia synthesis gas purification  

SciTech Connect

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

247

TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER  

SciTech Connect

Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

Garrison, S; James Becnel, J

2008-03-18T23:59:59.000Z

248

A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data  

Science Journals Connector (OSTI)

Abstract Effective permeability of gas and water in coalbed methane (CBM) reservoirs is vital during CBM development. However, few studies have investigated it for unsaturated CBM reservoirs rather than saturated CBM reservoirs. In this work, the dynamic prediction model (PM-Corey model) for average gas-water effective permeability in two-phase flow in saturated CBM reservoirs was improved to describe unsaturated CBM reservoirs. In the improved effective permeability model, Palmer et al. absolute permeability model segmented based on critical desorption pressure and Chen et al. relative permeability model segmented based on critical water saturation were introduced and coupled comprehensively under conditions with the identical reservoir pressures and the identical water saturations through production data and the material balance equations (MBEs) in unsaturated CBM reservoirs. Taking the Hancheng CBM field as an example, the differences between the saturated and unsaturated effective permeability curves were compared. The results illustrate that the new dynamic prediction model could characterize not only the stage of two-phase flow but also the stage of single-phase water drainage. Also, the new model can accurately reflect the comprehensive effects of the positive and negative effects (the matrix shrinking effect and the effective stress effect) and the gas Klinkenberg effect of coal reservoirs, especially for the matrix shrinkage effect and the gas Klinkenberg effect, which can improve the effective permeability of gas production and render the process more economically. The new improved model is more realistic and practical than previous models.

Junlong Zhao; Dazhen Tang; Hao Xu; Yanjun Meng; Yumin Lv; Shu Tao

2014-01-01T23:59:59.000Z

249

The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters  

Science Journals Connector (OSTI)

Abstract In this study a computational procedure for the computation of Joule–Thomson coefficient of natural gas has been developed using fundamental thermodynamic equations and AGA-8 equation of state, and then the minimum possible temperature of the natural gas entering to the pressure regulator of city gate stations (CGS) is calculated. As a case study, a CGS located in Bistoon (of Iran's CGSs) with nominal capacity of 20,000 SCMH has been considered. A comparison has been made between the calculated results and corresponding collected data from the station within 10 months. Results of this study help to determine the minimum temperature values of entering gas with different pressures to the regulator in order to avoid hydrate formation of the outlet gas, and can be used to design appropriate temperature control systems for water bath heaters and in turn save consumed energy for gas heating. The results show that heating the gas up to calculated minimum temperatures can save energy consumption of heaters by 43%. Also, it is indicated that by applying a control system, based on the result of this study, in the CGS the payback period would be less than a year.

Esmail Ashouri; Farzad Veysi; Ehsan Shojaeizadeh; Maryam Asadi

2014-01-01T23:59:59.000Z

250

Pt loaded carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas  

Science Journals Connector (OSTI)

We report development and characterization of platinum doped carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas. The carbon aerogel with uniformly dispersed platinum nanoparticles was prepared by adding platinum precursor during the sol-gel process. Thereafter colloidal PTFE was mixed with the platinum doped carbon aerogel powder and coated on Dixon rings to obtain hydrophobic catalyst with required mechanical strength. Detailed studies have been carried out to observe the effect of physical characteristics of the catalyst powder (surface area and pore size of aerogels Pt cluster size and its valence state etc) and the different coating parameters (PTFE to Pt-CA ratio and Pt loading on Dixon ring) on volume transfer rate (Ky.a) for H/D reaction. Ky.a values of ?0.8 m3 (STP).s?1. m?3 were obtained for Pt loading of 7% and Pt cluster size of 3 nm at atmospheric pressure.

P. K. Gupta

2013-01-01T23:59:59.000Z

251

Water and Associated Costs in the Production of Cotton and Grain Sorghum, Texas High Plains, 1955.  

E-Print Network (OSTI)

a very low price for his labor. Water constitutes one of the largest items of expense in preharvest costs, but substantial re- ductions in water cost seem unlikely. One pro- spect is to reduce fuel costs by a shift to natural gas. Natural gas... lines cost about $1,000 per well; consequently, the shift is advisable only if the annual fuel requirements are large. For large wells, a shift to natural gas would reduce annual costs of fuel substantially, and the savings would be sufficient...

Magee, A. C.; Hughes, William F.

1957-01-01T23:59:59.000Z

252

The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate  

E-Print Network (OSTI)

, 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

Dandona, Anil Kumar

2012-06-07T23:59:59.000Z

253

The effect on recovery of the injection of alternating slugs of gas and water at pressures above the bubble point  

E-Print Network (OSTI)

Oil Recovery vs Pore Volumes of Injected Fluid for an Initial Gas Slug. 13 4, Refined Oil Recovery vs Pore Volumes of Injected Fluid for an Initial Water Slug. 14 5. The Effect of Slug Length on Recovery of Refined Oil. 15 6. Recovery of East... Texas Crude Oil vs Pore Volumes of Injected Fluid for an Initial Gas Slug. ig 7. Recovery of East Texas Crude Oil vs Pore Volumes of Injected Fluid for an Initial Water Slug. 19 8. The Effect of Slug Length on Recovery of East Texas Crude Oil. 20...

Givens, James Wilson

2012-06-07T23:59:59.000Z

254

Stability of Cohesive Sediments Subject to Pore Water and Gas Ebullition Fluxes and Effectiveness of Sand and Aquablok Caps in Reducing the Resuspension Rates.  

E-Print Network (OSTI)

??This study investigated resuspension of contaminated cohesive sediments subject to pore water flow and/or microbially generated gas release which may potentially enhance resuspension relative to… (more)

Cakir Kavcar, Pinar

2008-01-01T23:59:59.000Z

255

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas  

Energy.gov (U.S. Department of Energy (DOE))

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

256

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network (OSTI)

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

257

WATER ABSORPTION FROM GAS VERY NEAR THE MASSIVE PROTOSTAR AFGL 2136 IRS 1  

SciTech Connect

We present ground-based observations of the ?{sub 1} and ?{sub 3} fundamental bands of H{sub 2}O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 ?m and 2.561 ?m. Analysis of these features indicates the absorption arises in warm (T = 506 ± 25 K), very dense (n(H{sub 2}) > 5 × 10{sup 9} cm{sup –3}) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H{sub 2}O) = (1.02 ± 0.02) × 10{sup 19} cm{sup –2}, giving a relative abundance of N(H{sub 2}O)/N(H{sub 2}) ? 10{sup –4}. Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters.

Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Seifahrt, A. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Richter, M. J. [Department of Physics, University of California Davis, Davis, CA 95616 (United States)

2013-10-10T23:59:59.000Z

258

Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas  

SciTech Connect

Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

2013-12-01T23:59:59.000Z

259

Rate-transient analysis of 2-phase (gas + water) CBM wells  

Science Journals Connector (OSTI)

In recent work, the authors (Clarkson et al., 2008, 2007; Jordan et al., 2006) demonstrated how modern production data analysis (PDA) methods, such as flowing material balance (FMB) and production type-curves, may be adapted to account for the unique reservoir characteristics of coalbed methane (CBM) reservoirs through the appropriate use of material balance and time transforms. Reservoir characteristics related to storage and fluid flow that were addressed included: adsorbed and free-gas storage; single-phase flow of water above desorption pressure (undersaturated coals); 2-phase flow of gas and water below desorption pressure (saturated coals); non-static absolute permeability during depletion; and multi-layer behavior. Example (field) applications of the new PDA methods were limited to vertical wells that were either openhole completed, or slightly stimulated with hydraulic fracturing methods. In this work, new workflows and analytical approaches are provided for analyzing vertical, hydraulically-fractured and horizontal CBM wells. The analysis and methodology for 2-phase flow reservoirs is complex, requiring modifications to account for desorption and changes in effective permeability. The proposed workflow for 2-phase CBM wells includes the transformation of the well production and flowing pressure data into dimensionless type-curve and straight line (ex. flowing material balance) coordinates using certain outputs (krg, pR) from the simulator used in turn to history-match the production data. Transient straight-line (pressure-transient analysis analog) techniques are applied for the first time to 2-phase CBM well production data. The type-curve and straight-line matches to actual production data are then used to retrieve reservoir properties (e.g. absolute permeability) and stimulation conditions (e.g. skin), which in turn are compared to reservoir simulation input as a consistency check. Both simulated and field cases are analyzed to illustrate the new procedures and analytical techniques. The primary contribution of the current work is the application of modern production analysis methods to 2-phase CBM reservoirs. These methods have been modified for CBM reservoir behavior and combined with analytical (or numerical) modeling to extract quantitative reservoir information from CBM reservoirs which exhibit a wide-range in production characteristics, and are completed in a variety of styles. The modifications proposed in this work to enable the use of single-phase flow techniques must be regarded as practical approximations. The methods rely heavily on late-time data because of the poor quality of water production and flowing pressure data that typically exists. The methods are expected to be used as a pre-cursor to or in parallel with field reservoir simulation, to assist with CBM development decisions.

C.R. Clarkson; C.L. Jordan; D. Ilk; T.A. Blasingame

2012-01-01T23:59:59.000Z

260

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

SciTech Connect

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas Solubility Measurement and Modeling for the Nitrogen + Water System from 274.18 K to 363.02 K  

Science Journals Connector (OSTI)

Gas Solubility Measurement and Modeling for the Nitrogen + Water System from 274.18 K to 363.02 K ... (4)?Frolich, P. K.; Tauch, E. J.; Hogan, J. J.; Peer, A. A. Solubilities of Gases in Liquids at High Pressure. ...

Antonin Chapoy; Amir H. Mohammadi; Bahman Tohidi; Dominique Richon

2004-06-04T23:59:59.000Z

262

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Roberts (Primary Contact), Razima Souleimanova Gas Technology Institute (GTI) 1700 South Mount prospect Rd, Des Plaines, IL 60018 Phone: (847) 768-0518 Email: roberts@gastechnology.org DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-07GO17001 Subcontractors: * National Energy Technology Laboratory (NETL), Pittsburgh, PA * Schott North America, Duryea, PA * ATI Wah Chang, Albany, OR Project Start Date: February 1, 2007 Project End Date: June 30, 2013

263

On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer  

Science Journals Connector (OSTI)

...than in the fresh-water loch, even at smaller...presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles...of turbulence in the water also appears unlikely...and the effects of solubility of the gas within the...

1982-01-01T23:59:59.000Z

264

Water Quality Co-effects of Greenhouse Gas Mitigation in US Agriculture Subhrendu K. Pattanayak, Bruce A. McCarl, Allan J. Sommer, Brian C. Murray, Timothy  

E-Print Network (OSTI)

greenhouse gas (GHG) emission offset strategies in U.S. agriculture by linking a national level agriculturalWater Quality Co-effects of Greenhouse Gas Mitigation in US Agriculture Subhrendu K. Pattanayak sector model (ASMGHG) to a national level water quality model (NWPCAM). The simulated policy scenario

McCarl, Bruce A.

265

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

266

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

267

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

268

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

269

Measurement of gas/water uptake coefficients for trace gases active in the marine environment  

SciTech Connect

Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

Davidovits, P. (Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. (Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics)

1992-02-01T23:59:59.000Z

270

Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production  

SciTech Connect

Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

D. Craig Cooper; Gerald Sehlke

2012-01-01T23:59:59.000Z

271

Sustainable development through beneficial use of produced water for the oil and gas industry  

E-Print Network (OSTI)

using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. Finally an economic analysis, including capital and operational...

Siddiqui, Mustafa Ashique

2012-06-07T23:59:59.000Z

272

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

273

Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine  

SciTech Connect

The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

Barton, G.J.; Burruss, R.C.; Ryder, R.T.

1998-12-31T23:59:59.000Z

274

Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays  

Science Journals Connector (OSTI)

The manuscript also explores opportunities for emerging international shale plays to leverage the diverse experiences of U.S. states in formulating development strategies that minimize water-related impacts within their environmental, cultural, and political ecosystem. ... Despite this enhanced regulatory framework, there is public concern over lackluster enforcement in a country that is in need of new investment and energy resource development. ... Risks and Risk Governance in Unconventional Shale Gas Development ...

Meagan S. Mauter; Pedro J. J. Alvarez; Allen Burton; Diego C. Cafaro; Wei Chen; Kelvin B. Gregory; Guibin Jiang; Qilin Li; Jamie Pittock; Danny Reible; Jerald L. Schnoor

2014-03-31T23:59:59.000Z

275

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network (OSTI)

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our… (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

276

Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process  

SciTech Connect

Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

Kieffer, F.

1994-02-01T23:59:59.000Z

277

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

K.A. Lokhandwala; T. Hofmann; J. Kaschemekat; C. Bailey; M. Jacobs; R. Baker; Membrane Group

2000-04-04T23:59:59.000Z

278

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; J. Kaschemekat; K.A. Lokhandwala; Membrane Group; Module Group; Systems Group

2001-01-11T23:59:59.000Z

279

Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media  

Science Journals Connector (OSTI)

...gray spots on the dark air-bubble surface (Fig. 2b shows a clean gas bubble and glass surface under the...lighting conditions). The ionic strength was 1.0 mM NaNO3 (pH 6...preferentially sorbed onto a trapped gas bubble relative to the nearby glass...

Jiamin Wan; John L. Wilson; Thomas L. Kieft

1994-02-01T23:59:59.000Z

280

Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well  

Science Journals Connector (OSTI)

The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. ...

Mohan Jiang; Chris T. Hendrickson; Jeanne M. VanBriesen

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer  

E-Print Network (OSTI)

PEFCs , owing to their high en- ergy efficiency, low emission, and low noise, are widely considered. In addition, the latent heat effects due to condensation/evaporation of water on the temperature and water ohmic losses. Along with water man- agement, thermal management is also a key to high performance

282

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network (OSTI)

in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi...

You, Kehua

2013-04-19T23:59:59.000Z

283

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

SciTech Connect

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

284

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report  

SciTech Connect

The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-12-01T23:59:59.000Z

285

Deep, water-free gas potential is upside to New Albany shale play  

SciTech Connect

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

286

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the  

E-Print Network (OSTI)

12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have triggered by horizontal drilling or hydraulic fracturing. noble gas geochemistry | groundwater contamination and hydraulic fracturing have substantially increased hydrocarbon recovery from black shales and other

Jackson, Robert B.

287

Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water  

Science Journals Connector (OSTI)

The purpose of this study was to analyze the prevalence of dental erosion among competitive swimmers of the local swimming club in Szczecin, Poland, who train in closely monitored gas-chlorinated swimming pool wa...

J. Buczkowska-Radli?ska; R. ?agocka; W. Kaczmarek…

2013-03-01T23:59:59.000Z

288

Developments of a powder-metallurgy, MZC copper-alloy, water-cooled gas turbine component  

Science Journals Connector (OSTI)

The Department of Energy of the Federal Government has sponsored a technology development and verification testing program. This work is in support of an advanced, watercooled gas turbine firing at 2600 ‡F (1427 ...

L. G. Peterson

1984-06-01T23:59:59.000Z

289

Water and gas coning: two and three phase system correlations for the critical oil production rate and optimum location of the completion interval  

E-Print Network (OSTI)

WATER AND GAS COMING: TWO AND THREE PHASE SYSTEM CORRELATIONS FOR THE CRITICAL OIL PRODUCTION RATE AND OPTIMUM LOCATION OF THE COMPLETION INTERVAL A Thesis by FRANCISCO MANUEL GONZALEZ, JR. Submitted to the Graduate College of Texas A...&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1987 Major Subject: Petroleum Engineering WATER AND GAS CONING: TWO AND THREE PHASE SYSTEM CORRELATIONS FOR THE CRITICAL OIL PRODUCTION RATE AND OPTIMUM...

Gonzalez, Francisco Manuel

2012-06-07T23:59:59.000Z

290

Detachment of Liquid-Water Droplets from Gas-Diffusion Layers  

E-Print Network (OSTI)

PEMFC cathode where liquid-water is produced in the catalystcathode side of the PEMFC, causing less oxygen to reach the active catalyst

Das, Prodip K.

2013-01-01T23:59:59.000Z

291

Shifts & Schedules  

NLE Websites -- All DOE Office Websites (Extended Search)

Shifts & Schedules This page provides links to the various shifts and schedules that are used by the User ESH Support Group. FC Shift Schedule This page lists the current Operational Shift Schedule for the Floor Coordinators. FC DOR Schedule This page lists the current DOR Schedule for the Floor Coordinators. FC Off Shift Pager Schedule This tool lists the current schedule for the Floor Coordinator carring the 0101 during APS Shutdown periods. Long Range Operations Schedule This page lists the schedule of Operations for the current APS fiscal year. Machine Studies Schedule This page lists the current schedule of Operations for the Accelerator Systems during Machine Studies. PSS Validation Schedule This page lists the beamlines currently scheduled to have their Personnel Safety Systems validated.

292

Shifting scintillator neutron detector  

DOE Patents (OSTI)

Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

2014-03-04T23:59:59.000Z

293

Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980  

SciTech Connect

A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

1980-06-01T23:59:59.000Z

294

Using of produced water associated with oil and gas production as a source of hydrogen: solar electrolysis cell application  

E-Print Network (OSTI)

Abstract In frame of the growing global concerns regarding to the high extent of environmental pollution and its serious consequences on the future of the planet. The seek out for a proper source of clean energy is considered to be a top priority. Where a substantial reduction in a present reliance on fossil fuels is achieved. This objective can not be factual without intensive efforts to find out the appropriate alternative, which are the sustainable and environmentally friendly energy alternatives. The use of hydrogen as an alternative fuel is gaining more and more acceptance as the environmental impact of hydrocarbons becomes more evident. The using of enormous amount of a polluted produced water associated oil and gas production activities to generate the hydrogen by solar hydrolysis cell, is considered to be a multi advantages alternative, where the volume of polluted and environmentally risky water been reduced and a significant volume of hydrogen been gained. This work is an attempt to design of a hydrogen generating station by water electrolysis whose energy resources are solar. The electricity supply is done by photovoltaic cells. The novelty of this work is the using of produced water to generate a clean energy (hydrogen), and in the same time reducing the threats caused by the disposal pits of the vast volume of the produced water at oilfields, which is the biggest challenge to the oil industry and the environment. In this work, the produced water has been electrolyzed by using solar energy. Standard chemical analyses methods have followed to determine the pollutants constitutes in this water. A pilot plant of

Maher A. R; Sadiq Al-baghdadi; Hashim R. Abdolhamid B; Omar A. Mkhatresh B

295

Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media  

Science Journals Connector (OSTI)

...Wilson, J. T., L. E. Leach, M. Henson, and J. N. Jones. 1986. In situ biorestoration as a ground water remediation technique. Ground Water Monit. Rev. 6:56-64. 45. Yates, M. V., C. P. Gerba, and L. M. Kelly. 1985. Virus...

Jiamin Wan; John L. Wilson; Thomas L. Kieft

1994-02-01T23:59:59.000Z

296

Effect of connate water on miscible displacement of reservoir oil by flue gas  

E-Print Network (OSTI)

Average Reservoir Fluid Pro erties Before Break- Through Ultimate Economic Re cover Fraction OIP 1(a) (b) (c) 2(a) (b) (c) 3(a) (b) (c) (b) (c) (d) 5(*) (b) (c} 6(a) (b) (c) 3800 4200 4600 3800 4200 4600 3800 4ZOO 4600 3000...-through recovery of 75 per cent. Nitrogen resulted in an 81 per cent break- through recovery, after reaching miscibility at 4160 psi. Although nitrogen gave a higher break-through recovery than flue gas, flue gas 25 0. 80 4600 psi 4200 psi f4 0 0 0 'g 4...

Maxwell, H. D.

2012-06-07T23:59:59.000Z

297

A method for the determination of dissolved organic carbon in sea water by gas chromatography  

E-Print Network (OSTI)

of organic matter was carried out at elevated temperature and pressure after collection of a large number of samples. The resulting carbon dioxide was flushed through a gas chromatograph with helium as the carrier gas and the signal was recorded on a strip... chart recorder. Chromatographic analysis time was approximately eleven minutes per sample with a precision of + Q. 1 mg C/l. The organic carbon content of the sample was determined by measurement of the peak area using an appropriate carbon dioxide...

Fredericks, Alan D

1965-01-01T23:59:59.000Z

298

Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons  

SciTech Connect

Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

Chao, K.C.

1990-01-01T23:59:59.000Z

299

TRIF Water Sustainability Program Fellowship Report Destruction of Gas-Phase VOCs by a Coupled  

E-Print Network (OSTI)

. Advanced oxidation processes (AOPs) are also widely employed for the remediation of sediment for recovered gas treatment was installed at the site as an interim remediation scheme while the Remedial-test this innovative technology perhaps leading to considerable cost savings without sacrificing the broad

Fay, Noah

300

Universal model for water costs of gas exchange by animals and plants  

E-Print Network (OSTI)

terrestrial animals and plants exchange O2 and CO2 with the atmosphere and thereby incur costs in the currency Hemphill Brown, University of New Mexico, Albuquerque, NM, and approved March 30, 2010 (received for review), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Performance of Gas-fired Water Heaters in a 10-home Field Study  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "Are high-efficiency hot water heating systems worth the cost?"

302

Water in Alberta With Special Focus on the Oil and Gas Industry  

E-Print Network (OSTI)

Tom Jack Gregor Wolbring Calgary-Canada May 2011 #12;2 Contents 1. Introduction......................................................................................................25 Wind and Solar Energy...........................................................................................................................25 Water Use for Wind and Solar Energy [73]..........................................

Gieg, Lisa

303

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

304

Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells  

E-Print Network (OSTI)

. In addition, at high current densities, excessive amount of water is generated and condenses, filling as a promising candidate for high-efficiency, low-emission power sources. High-current-density operation of PEFCs, The Pennsylvania State University, University Park, Pennsylvania 16802, USA High-current-density performance

305

Generating Singlet Oxygen Bubbles: A New Mechanism for Gas–Liquid Oxidations in Water  

Science Journals Connector (OSTI)

Our interest in developing a singlet oxygen [1O2 (1?g)]-sparging reactor came from small-scale devices for disinfection of, for example, municipal and well water, but which used filtration, ozone, and/or UV light. ... In front of the A10449 mechanical shutter of the detector was placed either a 25-mm-diameter, 1150 nm long pass filter (FEL1150, Thorlabs Inc.) or one of three 25-mm-diameter NIR bandpass filters centered at 1220, 1270, and 1315 nm (OD4 blocking, fwhm = 15 nm, Omega, Brattleboro, VT). ... (19) Drying of the composite was done at 50 °C for 10 h to avoid destruction of the confined phthalocyanine molecules, producing an aerogel that shrunk ?10% where some, but not all adsorbed water was removed. ...

Dorota Bartusik; David Aebisher; BiBi Ghafari; Alan M. Lyons; Alexander Greer

2012-01-20T23:59:59.000Z

306

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

307

Stopping a water crossflow in a sour-gas producing well  

SciTech Connect

Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

Hello, Y. Le [Elf Aquitaine Production (Norway); Woodruff, J. [John Wight Co. (United States)

1998-09-01T23:59:59.000Z

308

Method for hot gas conditioning  

DOE Patents (OSTI)

A method for cracking and shifting a synthesis gas by the steps of providing a catalyst consisting essentially of alumina in a reaction zone; contacting the catalyst with a substantially oxygen free mixture of gases comprising water vapor and hydrocarbons having one or more carbon atoms, at a temperature between about 530.degree. C. (1000.degree. F.) to about 980.degree. C. (1800.degree. F.); and whereby the hydrocarbons are cracked to form hydrogen, carbon monoxide and/or carbon dioxide and the hydrogen content of the mixture increases with a corresponding decrease in carbon monoxide, and carbon formation is substantially eliminated.

Paisley, Mark A. (Upper Arlington, OH)

1996-02-27T23:59:59.000Z

309

The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors: A preliminary assessment of experiments HRB-17, HFR-B1, HFR-K6 and KORA  

SciTech Connect

The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors has been measured in different laboratories under both irradiation and post irradiation conditions. The data from experiments HRB-17, HFR-B1, HFR-K6, and in the KORA facility are compared to assess their consistency and complimentarily. The experiments are consistent under comparable experimental conditions and reveal two general mechanisms involving exposed fuel kernels embedded in carbonaceous materials. One is manifest as a strong dependence of fission gas release on the partial pressure of water vapor below 1 kPa and the other, as a weak dependence above 1 kPa.

Myers, B.F.

1995-09-01T23:59:59.000Z

310

DSM CONTINUES PORTFOLIO SHIFT  

Science Journals Connector (OSTI)

DSM CONTINUES PORTFOLIO SHIFT ... THE DUTCH specialty chemicals company DSM closed out 2010 with two transactions intended to sharpen its focus on the life and materials sciences. ... The announcements came just days after DSM signed an agreement to sell its elastomers business to Lanxess. ...

MICHAEL MCCOY

2011-01-03T23:59:59.000Z

311

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

312

Improving a Pre-Combustion CCS Concept in Gas Turbine Combined Cycle for CHP Production  

Science Journals Connector (OSTI)

Abstract This paper describes modifications to improve the feasibility of a pre-combustion CCS concept for a gas turbine combined cycle. A natural gas-fired greenfield combined heat and power (CHP) plant equipped with pre-combustion capture was used as a base case, for which various improvement options were identified, assessed and selected. The base case was modified using the selected improvement options, after which the investment costs were re-evaluated. The results showed that the investment cost can be reduced with 8% by excluding the pre-reformer and the low temperature water-gas-shift reactor from the reforming process. The exclusion of the pre-reformer did not affect the performance of the plant, but the exclusion of the low temperature water-gas-shift reactor led to higher CO2 emissions.

Marjut S. Suomalainen; Antti Arasto; Sebastian Teir; Sari Siitonen

2013-01-01T23:59:59.000Z

313

Some Economic Effects of Adjusting to a Changing Water Supply, Texas High Plains.  

E-Print Network (OSTI)

. the following categories. Shifting from butane (L. P. gas) to natural gas Areas not particularly affected by water-lev4 for pump engine fuel is another significant eco- decline include about 194,000 acres, or 5.4 percr:!:: nomic adjustment... the decline in water level and decI:rs- from butane to natural gas for pumping fuel. induced adjustments have seriously depietd ::x Elimination or of transmission losses water supply, sharply increased the investms:: :r pcrrticulcrrly has had a effect...

Hughes, William F.; Magee, A. C.

1960-01-01T23:59:59.000Z

314

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

E-Print Network (OSTI)

A comparison of microseismicity induced by gel-proppant- and water-injected hydraulic fractures induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker

315

Ambiguous Red Shifts  

E-Print Network (OSTI)

A one-parameter conformal invariance of Maxwell's equations allows the wavelengths of electromagnetic waves to change as they propagate, and do so even in otherwise field-free space. This produces an ambiguity in interpretations of stellar red shifts. Experiments that will determine the value of the group parameter, and thereby remove the ambiguity, are proposed. They are based on an analysis of the anomalous frequency shifts uncovered in the Pioneer 10 and 11 spacecraft studies, and physical interpretation of an isomorphism discovered by E. L. Hill. If the group parameter is found to be non-zero, Hubble's relations will have to be reinterpreted and space-time metrics will have to be altered. The cosmological consequences of the transformations are even more extensive because, though they change frequencies, they do not alter the energy and momentum conservations laws of classical and quantum-electrodynamical fields established by Cunningham and by Bialynicki-Birula.

Carl E. Wulfman

2010-10-11T23:59:59.000Z

316

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

317

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

318

Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report  

SciTech Connect

Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

Davidovits, P. [Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

1992-02-01T23:59:59.000Z

319

Process and apparatus for ammonia synthesis gas production  

SciTech Connect

An improved process is described for the production of ammonia synthesis gas which consists of: (a) catalytically reacting a hydrocarbon feed stream with steam in a primary reforming unit to form a primary reformed gas mixture containing hydrogen and carbon monoxide; (b) passing the primary reformed gas mixture to a secondary reforming unit for reaction of unconverted methane present therein with air, the amount of the air introduced to the secondary reforming unit being considerably in excess of that required to furnish the stoichiometric amount of nitrogen required for reaction with hydrogen for the ammonia synthesis; (c) subjecting the secondary reformed gas mixture to water gas shift conversion to convert most of the carbon monoxide present in the reformed gas mixture to hydrogen and carbon dioxide; (d) passing the thus-shifted gas mixture containing hydrogen, carbon dioxide, residual carbon monoxide, methane, argon and the excess nitrogen, without necessary treatment for removal of a major portion of the carbon dioxide content thereof and without methanation to remove carbon oxides to low levels, to a pressure swing adsorption system capable of selectively adsorbing carbon dioxide, carbon monoxide, methane and other impurities from the hydrogen and from a portion of the nitrogen present in the gas passed to the system.

Fuderer, A.

1986-06-03T23:59:59.000Z

320

The Dust Settles on Water Vapor Feedback  

Science Journals Connector (OSTI)

...To understand water vapor feedback...shifts in the atmospheric circulation...caused a positive water vapor feedback...temperature. Condensation, evaporation...shifts in the atmospheric circulation...caused a positive water vapor feedback...temperature. Condensation, evaporation...

Anthony D. Del Genio

2002-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

322

Water Pollution  

Science Journals Connector (OSTI)

Coal bed methane (CBM) gas recovery techniques are unique compared to other production methods. Formation water must be removed, or “dewatered” as it holds the methane gas in the coal seam by hydrostatic pressure...

Alireza Bahadori; Malcolm Clark; Bill Boyd

2013-01-01T23:59:59.000Z

323

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents (OSTI)

A method of removing nitrogen monoxide from a nitrogen monoxide-containing gas, which method comprises: (a) contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate of the formula: ##STR1## wherein the water-soluble organic compound is selected from compounds of the formula: ##STR2## wherein: R is selected from hydrogen or an organic moiety having at least one polar functional group; Z is selected from oxygen, sulfur, or --N--A wherein N is nitrogen and A is hydrogen or lower alkyl having from one to four carbon atoms; and M is selected from hydrogen, sodium or potassium; and n is 1 or 2, in a contacting zone for a time and at a temperature effective to reduce the nitrogen monoxide. These mixtures are useful to provide an unexpensive method of removing NO from gases, thus reducing atmospheric pollution from flue gases.

Liu, David K. (San Pablo, CA); Chang, Shih-Ger (El Cerrito, CA)

1989-01-01T23:59:59.000Z

324

Evaluation of stack criteria pollutant gas absorption in the new generation thermoelectric water condenser fitted with laminar impinger type heat exchangers  

SciTech Connect

Title IV of the Clean Air Act Amendments of 1990 authorized the Environmental Protection Agency to establish an Acid Rain Program to reduce the adverse effects of acidic deposition. The Act specifically stipulated that CEMS (continuous emissions monitoring systems) be used to measure the stack emissions under this program. Along with these rules, comes the task of the Stack Tester (Reference Method) to routinely perform RATA (Relative Accuracy Test Audit) tests on the installed CEMS. This paper presents a laboratory and field test sequence to evaluate the signal attenuation through the gas sample conditioning, water condensation removal process, using laminar flow impinger heat exchangers. This method is compared to the EPA CFR 40, Part 60, Appendix A, Method 6, glass impinger train, commonly used by RATA stack testers. CFR 40, Part 75 revisions as of the CAAA 1990, requires more stringent certification and CEMS performance standards. These standards are summarized and related to gas absorption in both the thermoelectric cooler heat exchanger and the Method 6 glass impinger train system. As an incentive to reduce the frequency of RATA tests required per year, emitters are encouraged to achieve relative accuracies of 7.5% or less compared to the reference method. This incentive requires better reference method test apparatus definition. This paper will explore these alternatives and provide test data for comparison to the currently available apparatus. Also discussed is the theory of Electronic Gas Sample Coolers and their practical application to the removal of water from stack gas.

Baldwin, T. [Baldwin Environmental, Inc., Reno, NV (United States)

1995-12-31T23:59:59.000Z

325

Control of the Lamb shift by a driving field  

E-Print Network (OSTI)

early, through the work of Bethe [2], that most of the Lamb shift can be explained within nonrelativistic quantum electrodynamics. There are a number of approaches to the calculation of the Lamb shift. One such approach is due to Feynman [3..., this problem is motivated by Feynman?s derivation of the Lamb shift. In this interpreta- tion, a dilute gas with N atoms per unit volume in a box of volume V is considered [4]. Since the dimension of the box determines the allowed wavelengths in the box...

Yang, Shuai; Zheng, Hang; Hong, Ran; Zhu, Shi-Yao; Zubairy, M. Suhail

2010-01-01T23:59:59.000Z

326

An Isotropic Chemical Shift-Chemical Shift Anisotropic Correlation...  

NLE Websites -- All DOE Office Websites (Extended Search)

dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D...

327

High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473e673 K  

E-Print Network (OSTI)

. Iron reduction is achieved witha reducing gas (generally,a gas mixture ofH2 and CO produced by coal reserved. http://dx.doi.org/10.1016/j.ijhydene.2013.03.163 #12;agent such as coke, in a blast furnace

Montes-Hernandez, German

328

A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in  

E-Print Network (OSTI)

and Hydraulic Fracturing in the United States Avner Vengosh,*, Robert B. Jackson,, Nathaniel Warner,§ Thomas H: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations

Jackson, Robert B.

329

Civil society research and Marcellus Shale natural gas development: results of a survey of volunteer water monitoring organizations  

Science Journals Connector (OSTI)

This paper reports the results of a survey of civil society organizations that are monitoring surface water for impacts of Marcellus Shale development in Pennsylvania and New York. We ... ” of surface water quali...

Kirk Jalbert; Abby J. Kinchy…

2014-03-01T23:59:59.000Z

330

Raman spectroscopy of solutions and interfaces containing nitrogen dioxide, water, and 1,4 dioxane: Evidence for repulsion of surface water by NO{sub 2} gas  

SciTech Connect

The interaction of water, 1,4 dioxane, and gaseous nitrogen dioxide, has been studied as a function of distance measured through the liquid-vapour interface by Raman spectroscopy with a narrow (<0.1 mm) laser beam directed parallel to the interface. The Raman spectra show that water is present at the surface of a dioxane-water mixture when gaseous NO{sub 2} is absent, but is virtually absent from the surface of a dioxane-water mixture when gaseous NO{sub 2} is present. This is consistent with recent theoretical calculations that show NO{sub 2} to be mildly hydrophobic.

Murdachaew, Garold [Institute of Chemistry and the Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904 (Israel)] [Institute of Chemistry and the Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904 (Israel); Varner, Mychel E.; Veer, Wytze E. van der [Department of Chemistry, University of California, Irvine, California 92697 (United States)] [Department of Chemistry, University of California, Irvine, California 92697 (United States); Gerber, R. Benny [Institute of Chemistry and the Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904 (Israel) [Institute of Chemistry and the Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904 (Israel); Department of Chemistry, University of California, Irvine, California 92697 (United States); Phillips, Leon F., E-mail: leon.phillips@canterbury.ac.nz [Department of Chemistry, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)

2014-05-14T23:59:59.000Z

331

Measurement of Fuel Oxygenates in Tap Water Using Solid-Phase Microextraction Gas Chromatography—Mass Spectrometry  

Science Journals Connector (OSTI)

......States, 1993-2002: U.S. Geological Water-Resources Investigations Report 03-4200...5. J.H. Farrelly. Status of source water protection. Ground Water Monitoring and Remediation 22(3): 5051 (2002). 6. U.S. Environmental......

Frederick L. Cardinali; Benjamin C. Blount; Rachael Schmidt; John Morrow

332

Nature of the Frequency Shift of Hydrogen Valence Vibrations  

E-Print Network (OSTI)

The physical nature of a frequency shift of hydrogen valence vibrations in a water molecule due to its interaction with neighbor molecules has been studied. Electrostatic forces connected with the multipole moments of molecules are supposed to give a dominating contribution to the intermolecular interaction. The frequency shift was calculated in the case where two neighbor molecules form a dimer. The obtained result is in qualitative agreement with the frequency shifts observed for water vapor, hexagonal ice, and liquid water, as well as for aqueous solutions of alcohols. This fact testifies to the electrostatic nature of H-bonds used to describe both the specific features of the intermolecular interaction in water and the macroscopic properties of the latter.

Zhyganiuk, I V

2015-01-01T23:59:59.000Z

333

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network (OSTI)

, including upward shifts in the ver- tical velocities and distributions of cloud water and ice as the seaUpward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations circulation of the atmosphere shift upward in response to warming in simu- lations of climate change with both

O'Gorman, Paul

334

Hydrolyzed Polyacrylamide- Polyethylenimine- Dextran Sulfate Polymer Gel System as a Water Shut-Off Agent in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Technologies such as horizontal wells and multi-stage hydraulic fracturing have made ultra-low permeability shale and tight gas reservoirs productive but the industry is still on the learning curve when it comes to addressing various production...

Jayakumar, Swathika 1986-

2012-07-09T23:59:59.000Z

335

Evaluation of C-14 as a natural tracer for injected fluids at theAidlin sector of The Geysers geothermal system through modeling ofmineral-water-gas Reactions  

SciTech Connect

A reactive-transport model for 14C was developed to test its applicability to the Aidlin geothermal system. Using TOUGHREACT, we developed a 1-D grid to evaluate the effects of water injection and subsequent water-rock-gas interaction on the compositions of the produced fluids. A dual-permeability model of the fracture-matrix system was used to describe reaction-transport processes in which the permeability of the fractures is many orders of magnitude higher than that of the rock matrix. The geochemical system included the principal minerals (K-feldspar, plagioclase, calcite, silica polymorphs) of the metagraywackes that comprise the geothermal reservoir rocks. Initial simulation results predict that the gas-phase CO2 in the reservoir will become more enriched in 14C as air-equilibrated injectate water (with a modern carbon signature) is incorporated into the system, and that these changes will precede accompanying decreases in reservoir temperature. The effects of injection on 14C in the rock matrix will be lessened somewhat because of the dissolution of matrix calcite with ''dead'' carbon.

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-06-01T23:59:59.000Z

336

Research into the Characterization of Brackish Water and Disposal of Desalination Reject Water in Saline Aquifers and Depleted Oil and Gas Reservoirs  

E-Print Network (OSTI)

Brackish groundwater is a valuable “drought-proof” resource that is plentiful in much of Texas. If treated by available desalination technologies, brackish groundwater resources could help many regions of Texas cope with pressing water shortages...

Jensen, R.

337

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

338

Shifts in fisheries management: adapting to regime shifts  

Science Journals Connector (OSTI)

...into fisheries management. regime shifts|precautionary approach|fisheries management|management strategy...years, fisheries science and management...The current approach in fisheries science and management couples risk management...

2015-01-01T23:59:59.000Z

339

Method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents (OSTI)

Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

Willms, R. Scott (Los Alamos, NM)

1996-01-01T23:59:59.000Z

340

Global Water Sustainability:  

Science Journals Connector (OSTI)

...Ground Water and Drinking Water EPA 816-R-04-003...oil and gas produced water treatment. Journal of Hazardous...92-99 Jurenka B (2007) Electrodialysis (ED) and Electrodialysis...usbr.gov/pmts/water/publications/reportpdfs...

Kelvin B. Gregory; Radisav D. Vidic; David A. Dzombak

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

on August 21. For Sale 184, MMS has introduced an incentive that applies to shallow-water deep gas production. A lease in less than 200 meters of water that begins production from...

342

Cluster Phase Chemistry: Gas-Phase Reactions of Anionic Sodium Salts of Dicarboxylic Acid Clusters with Water Molecules  

E-Print Network (OSTI)

reported several studies of atmospheric reactions involving water complex formation,16-19 including with Water Molecules Hugh I. Kim, William A. Goddard III,§ and J. L. Beauchamp*, Noyes Laboratory of Chemical) generated via electrospray ionization (ESI) are investigated using collision- induced dissociation (CID

Goddard III, William A.

343

Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report  

SciTech Connect

Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

Baroni, M. [American Oil Recovery, Inc., Decatur, IL (United States)

1995-09-01T23:59:59.000Z

344

A Two-Phase Pressure Drop Model Incorporating Local Water Balance and Reactant Consumption in PEM Fuel Cell Gas Channels  

E-Print Network (OSTI)

), and directly affects cost and sizing of fuel cell subsystems. Within several regions of PEMFC operating Fuel Cell Gas Channels E. J. See and S. G. Kandlikar Department of Mechanical Engineering, Rochester in proton exchange membrane fuel cells (PEMFCs). The ability to model two-phase flow and pressure drop

Kandlikar, Satish

345

Uncertainty quantification of volumetric and material balance analysis of gas reservoirs with water influx using a Bayesian framework  

E-Print Network (OSTI)

data, such as pressure and production data, are available. In this work, I propose a methodology for using a Bayesian approach to quantify the uncertainty of original gas in place (G), aquifer productivity index (J), and the volume of the aquifer (Wi...

Aprilia, Asti Wulandari

2007-04-25T23:59:59.000Z

346

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales  

Science Journals Connector (OSTI)

...United States . Environ Sci Technol 48 ( 15 ): 8334 – 8348 . 11 Jackson RB ( 2014 ) The environmental costs and benefits of fracking . Annu Rev Environ Resour , 10.1146/annurev-environ-031113-144051 . 12 Brantley SL ( 2014 ) Water resource impacts...

Thomas H. Darrah; Avner Vengosh; Robert B. Jackson; Nathaniel R. Warner; Robert J. Poreda

2014-01-01T23:59:59.000Z

347

Performance Analysis of a Transcritical CO2 Heat Pump Water Heater Incorporating a Brazed-Plate Gas-cooler.  

E-Print Network (OSTI)

??This study focuses on the experimental testing and numerical modeling of a 4.5 kW transcritical CO2 heat pump water heater at Queen’s University in the… (more)

Murray, PORTIA

2015-01-01T23:59:59.000Z

348

Covered Product Category: Residential Whole-Home Gas Tankless...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition...

349

A Convenient Method for Epichlorohydrin Determination in Water Using Headspace-Solid-Phase Microextraction and Gas Chromatography  

Science Journals Connector (OSTI)

......vial was put inside of the vessel. The experimental designs...the vial was put into the vessel con- nected to the thermostat...of water intended for human consumption. Official Journal of the European...Mill n. Determination of fuel dialkyl ethers and BTEX in......

M. Lasa; R. Garcia; E. Millán

2006-08-01T23:59:59.000Z

350

The 6th International Symposium on Gas Transfer at Water Surfaces Kyoto, Japan, May 17-21, 2010  

E-Print Network (OSTI)

interface. In contrast to standard PIV or PTV type measurements, depth positions are inherently measured models have been proposed. Yet, concise measurements of the full three-dimensional subsurface turbulence-based technique for measuring three component, three dimensional velocity elds (3C3D) close to the air- water

Garbe, Christoph S.

351

Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells  

Science Journals Connector (OSTI)

These results provide insight into the temporal trajectory of subsurface microbial communities after “fracking” and have important implications for the enrichment of microbes potentially detrimental to well infrastructure and natural gas fouling during this process. ... Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. ... reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. ...

Maryam A. Cluff; Angela Hartsock; Jean D. MacRae; Kimberly Carter; Paula J. Mouser

2014-05-06T23:59:59.000Z

352

Piedmont Natural Gas- Commercial Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 202-Small General Service Standard...

353

FIELD DEPLOYMENT EVALUATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS TO TREAT OIL AND GAS PRODUCED WATERS. Task 45. Final topical report  

SciTech Connect

TASK 45 FIELD DEPLOYMENT EVALUATION OF THE FREEZE-THAW/ EVAPORATION (FTE ) PROCESS TO TREAT OIL AND GAS PRODUCED WATERS coupling evaporation with freezing. This offers operators a year- round method for treating produced water. Treating water with the FTE process reduces the volume of water to be disposed of as well as purifying the water to a level acceptable for watering livestock and agricultural lands. This process is currently used at two evaporation facilities, one in the San Juan Basin in New Mexico and one in the Green River Basin in Wyoming. the freezing point below that of pure water. When such a solution is cooled below 32EF, relatively pure ice crystals form, along with an unfrozen brine solution that contains elevated concentrations of salts. Because of the brine's high concentration of these constituents, its density is greater than that of the ice, and the purified ice and brine are easily separated. Coupling the natural processes of freezing and evaporation makes the FTE process a more cost- effective and efficient method for the treatment and disposal of produced water and allows for year-round operation of an FTE facility. drops below 32 F, produced water is automatically pumped from a holding pond and sprayed onto a freezing pad. The freezing pad consists of an elevated framework of piping with regularly placed, upright, extendable spray heads similar to those used to irrigate lawns. As the spray freezes, an ice pile forms over the elevated framework of pipes, and the brine, with an elevated constituent concentration, drains from the ice pile. The high-salinity brine, identified by its high electrical conductivity, is separated using automatic valves and pumped to a pond where it can subsequently be disposed of by conventional methods. As the ice pile increases in height, the sprayers are extended. When the ice on the freezing pad melts, the relatively pure water is pumped from the freezing pad and discharged or stored for later use . No new wastes are generated by the FTE process. and the U. S. Department of Energy has been conducted since 1992 to develop a commercial FTE purification process for produced waters. Numeric process and economic modeling, as well as the laboratory-scale process simulation that confirmed the technical and economic feasibility of the process, was performed by B. C. Technologies, Ltd., and the University of North Dakota Energy & Environmental Research Center (EERC) from 1992 to 1995. They then conducted a field evaluation from 1995 to 1997 in New Mexico's San Juan Basin at a conventional evaporation facility operated by Amoco Production Company. The results of this evaluation confirmed that the FTE process has significant commercial economic potential. A new facility was designed in 1998, and its construction is expected to begin in 1999.

Ames A. Grisanti; James A. Sorensen

1999-05-01T23:59:59.000Z

354

Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative  

SciTech Connect

This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

2002-05-31T23:59:59.000Z

355

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents (OSTI)

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

356

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents (OSTI)

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

357

Chemometric optimization of dispersive suspended microextraction followed by gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons in natural waters  

Science Journals Connector (OSTI)

Abstract A dispersive suspended microextraction (DSME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed and validated for the simultaneous determination of ten polycyclic aromatic hydrocarbons in real water samples. The optimization of the method was achieved with a 27–4 Plackett–Burman design, while the significant factors were optimized using a central composite design (CCD). The parameters that were studied included the sample volume, organic solvent volume, extraction time, restoration time and organic solvent. The optimum experimental conditions for the proposed method comprised 4.3 mL of the water sample, 93 ?L of toluene as the extraction solvent, a 104-s extraction time and a 10-min restoration time. The recoveries varied from 70 to 111%. Chrysene was the least recovered compound, while anthracene displayed the highest extraction efficiency. The analytical method (DSME) was shown to be linear (R2 > 0.993) over the studied range of concentrations, exhibiting satisfactory precision (RSD% < 10.6%) and reaching limits of detection between 8 and 46 ng L?1.

Nikolaos P. Petridis; Vasilios A. Sakkas; Triantafyllos A. Albanis

2014-01-01T23:59:59.000Z

358

Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber  

Science Journals Connector (OSTI)

Abstract A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble–bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963–0.9992) and (0.9982–0.9999)] and low detection limits [(9.0–13.0 ng L?1) and (40.0–150.0 ng kg?1)] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs.

Amir Abbas Matin; Pourya Biparva; Mohammad Gheshlaghi

2014-01-01T23:59:59.000Z

359

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

360

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

SciTech Connect

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Charlottesville Gas - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Appliances & Electronics Water Heating Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: up to $100 Natural Gas Water Heater Conversion: $100 Provider City of Charlottesville Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for installing new, energy efficient natural gas water heaters and programmable thermostats. Only customers which previously did not have natural gas water heating are

362

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

363

Produce synthesis gas by steam reforming natural gas  

SciTech Connect

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

364

CO conversion over dual-site catalysts by the Water-Gas Shift Reaction for fuel cell applications : comparative mechanistic and kinetic study of gold and platinum supported catalysts.  

E-Print Network (OSTI)

??Les piles à combustible, alimentée par de l’hydrogène, représentent une solution prometteuse pour limiter la pollution. L’une des alternatives économiques envisagées à court et moyen… (more)

Thinon, Olivier

2009-01-01T23:59:59.000Z

365

On the mechanism of the reverse water gas shift reaction: Dynamic TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst  

E-Print Network (OSTI)

of the oxidizing capability of CO2 on a Au/CeO2 catalyst L.C. Wang, M. Tahvildar Khazaneh, D. Widmann, and R the role of the redox mechanism, was investigated by exploring the activity of CO2 for Au assisted CeO2 that the surface reduced Au/CeO2 catalyst can be (partially) re-oxidized by exposure to CO2 pulses, and the surface

Pfeifer, Holger

366

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Authors: Javad Behseresht, Masa Prodanovic, and Steven Bryant, University of Texas at Austin. Venue: American Geophysical Union fall meeting, San Francisco, CA, December 10-14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: A spectrum of behavior is encountered in ocean sediments bearing methane hydrates, ranging from essentially static accumulations where hydrate and brine co-exist, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Jain and Juanes), the researchers describe methods to test the following hypothesis: The coupling between drainage and fracturing, both induced by pore pressure, determines whether methane gas entering the HSZ is converted completely to hydrate. The researchers will describe a novel implementation of the level set method to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. Predictions of fluid configurations in infinite-acting-model sediments indicate that the brine in drained sediment (after invasion by methane gas) is better connected than previously believed. This increases the availability of water and the rate of counter-diffusion of salinity ions, thus relaxing the limit on hydrate build-up within the gas-invaded grain matrix. Simulated drainage of a fracture in sediment shows that points of contact between fracture faces are crucial. They allow residual water saturation to remain within an otherwise gas-filled fracture. Simulations of imbibition—which can occur, for example, after drainage into surrounding sediment reduces gas phase pressure in the fracture—indicate that the gas/water interfaces at contact points significantly shift the threshold pressures for withdrawal of gas. During both drainage and imbibition, the contact points greatly increase water availability for hydrate formation within the fracture. The researchers will discuss coupling this capillarity-controlled displacement model with a discrete element model for grain-scale mechanics. The coupled model provides a basis for evaluating the macroscopic conditions (thickness of gas accumulation below the hydrate stability zone, average sediment grain size, principal earth stresses) favoring co-existence of methane gas and hydrate in the HSZ. Explaining the range of behavior is useful in assessing resource volumes and evaluating pore-to-core scale flow paths in production strategies

367

Global Warming and Water Management: Water Allocation and Project Evaluation  

Science Journals Connector (OSTI)

This paper explores the sensitivity of the benefits of alternative water allocation schemes and of project evaluation to global warming. If global warming shifts the mean of annual water supplies, ... . Because b...

Robert Mendelsohn; Lynne L. Bennett

1997-09-01T23:59:59.000Z

368

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

369

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

in waters up to 9000 feet deep. Southern Natural Gas Company has scheduled a shut-in test at the Muldon Storage Field in Mississippi for April 5 through April 11. Under the...

370

SVN commits: code Ss-shifted architecture  

E-Print Network (OSTI)

SVN commits: code Ss-shifted architecture ­ hit_filter can run between merger and fitter Most merge Supports SS-1/2 shifted architecture Supports bank extensions *.patt.bz2 etc ­ Used on the grid

371

The oil and gas potential of the South Caspian Sea  

SciTech Connect

For 150 years, the oil fountains of Baku have fueled the imaginations of oilmen around the world. The phrase {open_quotes}another Baku{close_quotes} often has been used to describe major new discoveries. The production of oil and gas from onshore Azerbaijan and from the shallower waters of the Caspian Sea offers tantalizing evidence for the hydrocarbon yet to be discovered. Today, the Azeri, Guneshli, and Chirag oil fields, with over four billion barrels of recoverable reserves, have refocused the attention of the petroleum industry on Baku. The rapid subsidence of the South Caspian Basin and accumulation of over 20 kilometers of Late Mesozoic and Cenozoic sediments have resulted in that rare combination of conditions ideal for the generation and entrapment of numerous giant oil and gas accumulations. Working with existing geological, geophysical, and geochemical data, SOCAR geologists, geophysicists, and geochemists have identified numerous structural and stratigraphic prospects which have yet to be tested by drilling. In the South Caspian Basin, undrilled prospects remain in relatively shallow water, 200-300 meters. As these shallow-water prospects are exhausted, exploration will shift farther offshore into deeper water, 300-1000 meters. The deepwater region of the South Caspian is unquestionably prospective. Exploration and development of oil and gas fields in water depths in excess of 300 meters will require the joint efforts of international companies and the Azerbaijan petroleum enterprises. In the near future, water depth and drilling depth will not be limiting factors in the exploration of the Caspian Sea. Much work remains to be done; and much oil and gas remain to be found.

Jusufzade, K.B.

1995-08-01T23:59:59.000Z

372

Minimization of water consumption under uncertainty for PC process  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology is becoming increasingly important for the development of advanced power generation systems. As an emerging technology different process configurations have been heuristically proposed for IGCC processes. One of these schemes combines water-gas shift reaction and chemical-looping combustion for the CO2 removal prior the fuel gas is fed to the gas turbine reducing its size (improving economic performance) and producing sequestration-ready CO2 (improving its cleanness potential). However, these schemes have not been energetically integrated and process synthesis techniques can be used to obtain optimal flowsheets and designs. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). For the alternative designs, large differences in the performance parameters (for instance, the utility requirements) predictions from AEA and AP were observed, suggesting the necessity of solving the HENS problem within the AP simulation environment and avoiding the AEA simplifications. A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case.

Salazar, J.; Diwekar, U.; Zitney, S.

2009-01-01T23:59:59.000Z

373

Ab initio calculation of the electronic absorption spectrum of liquid water  

SciTech Connect

The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal)] [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal) [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

2014-04-28T23:59:59.000Z

374

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...David Pyle, John Smellie and David Tappin Gas hydrates: past and future geohazard? Mark...University of Bristol, , Bristol, UK Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates...

2010-01-01T23:59:59.000Z

375

REMEDIAT1NG AT MANUFACTURED GAS  

E-Print Network (OSTI)

, comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

Peters, Catherine A.

376

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

377

Natural Gas RD&D Needs*  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy National Energy Technology Laboratory Shailesh D. Vora DOE/NETL CO 2 Capture R&D Program Technology Manager, Carbon Capture 2013 NETL CO 2 Capture Technology Meeting July 8 - 11, 2013, Pittsburgh, PA R&D Areas: CO 2 Capture 2 Pre-Combustion Advanced Compression Advanced Combustion Post-Combustion  Solvents  Sorbents  Membranes  Hybrid processes  Water-gas shift reactor  Solvents  Sorbents  Membranes  Hybrid processes  Atmospheric oxy-combustion  Pressurized oxy-combustion  Oxygen transport membrane  Chemical looping  Intra-stage cooling  Cryogenic pumping  Supersonic shock wave compression Technology Classification 3 Pre-Combustion Research Focus 4 Post-Combustion Research Focus 5 Advanced Combustion Program Overview

378

Study on gas hydrates for the solid transportation of natural gas  

Science Journals Connector (OSTI)

Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I...3 solid hydrate contains up to 200 m3 of natural gas depending on pressure and temperature...

Nam-Jin Kim; Chong-Bo Kim

2004-04-01T23:59:59.000Z

379

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

380

Potential of Wastewater-Treating Anaerobic Granules for Biomethanation of Synthesis Gas  

Science Journals Connector (OSTI)

This includes the water-gas shift (WGS) reaction for increasing the H2/CO ratio followed by nickel-catalyzed methanation of CO and CO2 into methane and water (reactions of Fischer?Tropsch (nCO + (2n+1)H2 ? CnH(2n+2) + nH2O) and Sabatier (CO2 + 4H2 ? CH4 + 2H2O)). ... Such higher specific conversion potential may have allowed for a higher volumetric conversion potential as well, which may have resulted in a faster depletion of the dissolved CO, and in turn improved the gas?liquid mass transfer rate. ... Results are reported of mixed-culture studies employing the photosynthetic bacterium Rhodospirillum rubrum for converting CO to CO2 and H2 by the water gas shift reaction and 2 methanogens, Methanobacterium formicicum and Methanosarcina barkeri, for converting CO2 and H2 to CH4. Results are presented for triculture operation in 2 types of reactors, the packed bubble column and the trickle-bed reactor. ...

Serge R. Guiot; Ruxandra Cimpoia; Gaël Carayon

2011-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

September 2004 Water Sampling  

Office of Legacy Management (LM)

Report Attachment 2-Data Presentation Groundwater Quality Data Surface Water Quality Data Natural Gas Analysis Data Equipment Blank Data Time-Concentration Graphs Attachment...

382

Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate $450 Program Info Start Date 01/01/2013 Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Varies Provider Natural Gas Savings Program The Peoples Gas and North Shore Gas Natural Gas Savings Programs are offering the following bonus rebates (in addition to the joint utilities bonus rebate). For both offers below, installation must occur from February 1 through May 31, 2013. All paperwork must be received on or before May 31,

383

Structure and function of gas vacuoles.  

Science Journals Connector (OSTI)

...overlying gas phase to atmospheric pressure. Volume...film of surrounding water. From the results...to force liquid water in- side the structure...would also prevent water from accumulating inside by condensation (105). FORMATION...

A E Walsby

1972-03-01T23:59:59.000Z

384

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5shifts. In the range of densities 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

385

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

SciTech Connect

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

386

September 2004 Water Sampling  

Office of Legacy Management (LM)

2014 Groundwater, Surface Water, Produced Water, and Natural Gas Sampling at the Gasbuggy, New Mexico, Site October 2014 LMSGSBS00614 Available for sale to the public from: U.S....

387

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

388

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

389

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount New Construction Home Options Builder Option Package 1: $50 (single family), $50 (multifamily) Builder Option Package 2: $100 (single family), $100 (multifamily) Energy Star 3.0: $300 (single family), $200 (multifamily) High Performance Home: $500 (single family), $300 (multifamily)

390

The Upper Santa Cruz River: A Case Study for Shifting Riparian Conditions  

E-Print Network (OSTI)

The Upper Santa Cruz River: A Case Study for Shifting Riparian Conditions Amy McCoy Ph.D. Candidate initially proposed to conduct water quality and tree pathology tests directly on the riparian floodplain. As a result, I was unable to take water quality and tree pathology samples from the affected areas and I

Fay, Noah

391

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling...

392

Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...  

Open Energy Info (EERE)

Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At...

393

Acidic gas capture by diamines  

DOE Patents (OSTI)

Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

2011-05-10T23:59:59.000Z

394

Heat conductivity of a pion gas  

E-Print Network (OSTI)

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

395

Chapter 9 - Natural Gas Dehydration  

Science Journals Connector (OSTI)

Natural, associated, or tail gas usually contains water, in liquid and/or vapor form, at source and/or as a result of sweetening with an aqueous solution. Operating experience and thorough engineering have proved that it is necessary to reduce and control the water content of gas to ensure safe processing and transmission. Pipeline drips installed near wellheads and at strategic locations along gathering and trunk lines will eliminate most of the free water lifted from the wells in the gas stream. Multistage separators can also be deployed to ensure the reduction of free water that may be present. However, the removal of the water vapor that exists in solution in natural gas requires a more complex treatment. This treatment consists of “dehydrating” the natural gas, which is accomplished by lowering the dew point temperature of the gas at which water vapor will condense from the gas. There are several methods of dehydrating natural gas. The most common of these are liquid desiccant (glycol) dehydration, solid desiccant dehydration, and cooling the gas. Any of these methods may be used to dry gas to a specific water content. Usually, the combination of the water content specification, initial water content, process character, operational nature, and economic factors determine the dehydration method to be utilized. However, the choice of dehydration method is usually between glycol and solid desiccants. These are presented in depth in subsequent portions of this chapter. Keywords: absorber, adsorption isotherm, bed loading, chemisorption, dehydration, desiccant, desiccant regeneration, equilibrium zone, flash tank, flow distribution, glycol circulation pump, glycol dehydration, inlet feed contamination, liquid carryover, mass transfer zone, molecular sieve, overcirculation, reboiler, solubility, still, surge tank, undercirculation.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

396

Intermediate Energy NN Phase Shifts. II  

Science Journals Connector (OSTI)

......Progress Letters Intermediate Energy NN Phase Shifts. II Norio...Takatoshi Watanabe Department of Nuclear Engineering, Faculty of Engineering...1019-1024 Intermediate Energy pp Phase Shifts to 1000 MeV...Dakhno et al. Leningrad Nuclear Physics Institute report 692......

Norio Hoshizaki; Takatoshi Watanabe

1991-08-01T23:59:59.000Z

397

Natural gas dehydration by desiccant materials  

Science Journals Connector (OSTI)

Water vapor in a natural gas stream can result in line plugging due to hydrate formation, reduction of line capacity due to collection of free water in the line, and increased risk of damage to the pipeline due to the corrosive effects of water. Therefore, water vapor must be removed from natural gas to prevent hydrate formation and corrosion from condensed water. Gas dehydration is the process of removing water vapor from a gas stream to lower the temperature at which water will condense from the stream; this temperature is called the “dew point” of the gas. Molecular sieves are considered as one of the most important materials that are used as desiccant materials in industrial natural gas dehydration. This work shows a study of natural gas dehydration using 3A molecular sieve as a type of solid desiccant materials, the scope of this work was to build up a pilot scale unit for a natural gas dehydration as simulation of actual existing plant for Egyptian Western Desert Gas Company (WDGC). The effect of different operating conditions (water vapor concentration and gas flow rate) on dehydration of natural gas was studied. The experimental setup consists of cylinder filled with 3A molecular sieve to form a fixed bed, then pass through this bed natural gas with different water vapor concentration, The experimental setup is fitted with facilities to control bed pressure, flow rate, measure water vapor concentration and bed temperature, a gas heater was used to activate molecular sieve bed. Increasing water vapor concentration in inlet feed gas leads to a marked decrease in dehydration efficiency. As expected, a higher inlet flow rate of natural gas decrease dehydration efficiency. Increasing feed pressure leads to higher dehydration efficiency.

Hassan A.A. Farag; Mustafa Mohamed Ezzat; Hoda Amer; Adel William Nashed

2011-01-01T23:59:59.000Z

398

The slightly-enriched spectral shift control reactor  

SciTech Connect

An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

Martin, W.R.; Lee, J.C.; Larsen, E.W. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering); Edlund, M.C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering)

1991-11-01T23:59:59.000Z

399

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

400

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network (OSTI)

bearing sediments in offshore environments, I divided these data into different sections. The data included water depths, pore water salinity, gas compositions, geothermal gradients, and sedimentary properties such as sediment type, sediment mineralogy... .................................................................. 9 2.2 Hydrate patterns in sediments .................................................................... 24 3.1 Water depths and penetration for the Blake Ridge..................................... 31 3.2 Geothermal gradients measured...

Grover, Tarun

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Polarity Programmed Gas-Liquid Chromatography  

Science Journals Connector (OSTI)

......component on the carrier gas, is investigated...component of the carrier gas. Introduction One...strength, i.e., the solubility of the solute in...temperature programming in gas-liquid chromatography...of carrier gas for nitrogen, helium, methane...of other solutes. Water vapor or steam are......

Jon F. Parcher; Theodore N. Westlake

1976-07-01T23:59:59.000Z

402

Oxygen-17 NMR Shifts Caused by Cr{Sup ++} in Aqueous Solutions  

DOE R&D Accomplishments (OSTI)

Cr{sup ++} in solution produces a paramagnetic shift in the NMR absorption of O{sup 17} in ClO{sub 4}{sup -}, as well as the expected paramagnetic shift for O{sup 17} in H{sub 2}O. As the concentration of ClO{sub 4}{sup -} increases, the shift in the H{sub 2}O{sup 17} absorption is diminished, and eventually changes sign. The effects are ascribed to preferential replacement by ClO{sub 4}{sup -} of water molecules from the axial positions in the first coordination sphere about Cr{sup ++}.

Jackson, J. A.; Lemons, J. F.; Taube, H.

1962-00-00T23:59:59.000Z

403

Effects of Osmotic Drought Stress Induced by a Combination of NaCl and Polyethylene Glycol on Leaf Water Status, Photosynthetic Gas Exchange, and Water Use Efficiency of Pistacia khinjuk and P. mutica  

Science Journals Connector (OSTI)

Leaf water potential, leaf osmotic potential, chlorophyll a and b...contents, stomatal conductance, net photosynthetic rate, and water use efficiency were determined in two pistachio species (Pistacia khinjuk L. ...

A. Ranjbarfordoei; R. Samson; R. Lemeur; P. Van Damme

2002-01-01T23:59:59.000Z

404

Shale Gas and Hydrofracturing  

Science Journals Connector (OSTI)

Advances in horizontal drilling technology and hydrofracturing allow natural gas to escape from shale formations following high pressure treatment, i.e. “fracking” with sand, water and chemicals. ... With fracking, natural gas prices have remained low at less than $2.50 per million BTU. ... Fracking chemicals, petrochemicals, and metals and radionuclides from source rock cause major environmental burdens if not properly treated or deep-injected. ...

Jerald L. Schnoor

2012-04-05T23:59:59.000Z

405

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

of natural gas prices, renewable resources in general have aSince the use of renewable resources decreases fuel priceof its electricity from renewable resources under long-term

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

406

A Simple, Rapid and Eco-Friendly Approach for the Analysis of Aromatic Amines in Environmental Water Using Single-Drop Microextraction–Gas Chromatography  

Science Journals Connector (OSTI)

......importantly, the relatively high cost also restricts the popularization...setup, lower operational cost and production of better peak shapes...polarity and improve their gas chromatographic behavior...develop a simple, fast and cost-effective method for......

Jianfeng Yu; Cuiying Zhao; Fayun Chong; Yingying Cao; Fazle Subhan; Bingwen Cui; Shiming Tang; Cunguang Yuan; Jingbin Zeng; Zifeng Yan

2014-05-01T23:59:59.000Z

407

Low complexity multipath and Doppler-shift correction algorithm for reliable underwater Coherent-FSK acoustic modems: short paper  

Science Journals Connector (OSTI)

This paper presents an innovative algorithm for Doppler-shift and multipath correction in a coherent-FSK modem, which is optimized for acoustic communications in shallow water underwater networks. The final modem will be used in the ANDREA project, whose ... Keywords: Doppler-shift, acoustic modem, multipath correction, underwater networks, wireless sensor networks

A. Sanchez; S. Climent; P. Yuste; A. Perles-Ivars; J. J. Serrano

2012-11-01T23:59:59.000Z

408

Scalar Field Theories with Polynomial Shift Symmetries  

E-Print Network (OSTI)

We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree $P$ in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree $P$, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree $P$? To answer this (essen...

Griffin, Tom; Horava, Petr; Yan, Ziqi

2014-01-01T23:59:59.000Z

409

Chapter six - Dehydration of natural gas  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes the dehydration process of natural gas. Dehydration is the process by which water is removed from natural gas. This is a common method used for preventing hydrate formation. If there is no water present, it is impossible for a hydrate to form. If there is only a small amount of water present, the formation of hydrate is less likely. There are other reasons for dehydrating natural gas. The removal of water vapor reduces the risk of corrosion in transmission lines. Furthermore, dehydration improves the efficiency of pipelines by reducing the amount of liquid accumulating in the lines—or even eliminates it completely. There are several methods of dehydrating natural gas. The most common are: glycol dehydration (liquid desiccant), molecular sieves (solid adsorbent), and refrigeration. In glycol dehydration process, the wet gas is contacted with a lean solvent (containing only a small amount of water). The water in the gas is absorbed by the lean solvent, producing a rich solvent stream (one containing more water) and a dry gas. In mole sieves, water in the gas adheres to the solid phase, the solid being the mole sieve, and thus is removed from the natural gas. The usual purpose of a refrigeration plant is to remove heavy hydrocarbons from a natural gas stream—to make hydrocarbon dew point specification. However, this process also removes water.

John J. Carroll

2009-01-01T23:59:59.000Z

410

Feasibility of Using Measurements of Internal Components of Tankless Water Heaters for Field Monitoring of Energy and Water Use  

E-Print Network (OSTI)

speed motor that modulates the blower speed, this watermotor amps Energy Efficiency versus gas input for both waterWater flow versus gas input At this site we also compared gas consumption to blower motor

Lutz, Jim

2008-01-01T23:59:59.000Z

411

Search for Higgs shifts in white dwarfs  

E-Print Network (OSTI)

We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

Roberto Onofrio; Gary A. Wegner

2014-09-30T23:59:59.000Z

412

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

413

Piedmont Natural Gas- Commercial Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 102-Small General Service and 152...

414

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...storage, and even geothermal energy (16–20...Expect a lot more research on this topic to...Impact of shale gas development on regional water...Alberta, Canada . Energy Procedia 1 : 3531...unconventional shale gas development and hydraulic fracturing...

Robert B. Jackson

2014-01-01T23:59:59.000Z

415

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

416

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

417

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

418

Applications for Certificates for Electric, Gas, or Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric, Gas, or Natural Gas Electric, Gas, or Natural Gas Transmission Facilities (Ohio) Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio) < Back Eligibility Commercial Developer Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Ohio Program Type Siting and Permitting Provider The Ohio Power Siting Board An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a reference for state and local governments and for the public. The applicant shall provide a statement explaining the need for the

419

SCE&G (Gas)- Residential EnergyWise Program  

Energy.gov (U.S. Department of Energy (DOE))

South Carolina Electric and Gas (SCE&G) provides energy efficiency incentives to home owners in its service territory. Natural gas customers are eligible for rebates on water heaters, gas logs,...

420

Federal Energy Management Program: Covered Product Category: Gas Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Storage Water Heaters to someone by E-mail Gas Storage Water Heaters to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Google Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Delicious Rank Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Landfill Gas Generation and Transport In Bioreactor Landfill  

Science Journals Connector (OSTI)

The activation gas and water flow each other in Bioreactor Landfill. Based on the porous media seepage and ... of water and waste components decomposition for describing landfill gas flow have been developed, and...

Qi-Lin Feng; Lei Liu; Qiang Xue; Ying Zhao

2010-01-01T23:59:59.000Z

422

Cascade Natural Gas - Conservation Incentives for New Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount High Efficiency Natural Gas Furnace: $150 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Condensing Tankless Water Heater: $200 Combined Domestic Water/Hydronic Space Heating System (usingTankless Water Heater): $800 Energy Star Certified Home: $350 Energy Star Certified Plus Home: $750

423

Muon Knight Shift Studies in Metals  

Science Journals Connector (OSTI)

The Knight shift K? of the positive muon implanted as a proton substitute in various ... has been measured by means of a stroboscopic muon spin rotation method 1). The stroboscopic ... + SR technique bases on a p...

F. N. Gygax; A. Hintermann; W. Rüegg…

1980-01-01T23:59:59.000Z

424

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Pilot-Scale Condensing Heat Exchanger Tubing Pilot-Scale Condensing Heat Exchanger Tubing Lehigh University will conduct pilot-scale testing of a condensing heat exchanger to recover water from coal-fired power plant flue gas. Testing will include using a slipstream of flue gas from a natural gas-fired boiler with sulfur trioxide injection and slipstreams of flue gas from two coal-fired boilers. The project continues the development of condensing heat exchanger technology for coal-fired boilers initially started under the U.S. Department of Energy's Project DE-FC26-06NT42727 (Recovery of Water from Boiler Flue Gas). In particular, Lehigh researchers will: (1) expand the database on water

425

Competition between stimulated Raman and Brillouin scattering processes in CF4 gas  

Science Journals Connector (OSTI)

CF4 gas has a relatively high Raman cross section and a relatively small Raman shift and is an excellent candidate for a gas-filled hollow-core photonic bandgap (HC-PBG)...

Yehud, Lior Ben; Belker, Daniel; Ravnitzki, Gad; Ishaaya, Amiel A

2014-01-01T23:59:59.000Z

426

Green Systems Solar Hot Water  

E-Print Network (OSTI)

,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency heated water before it is circulated through the building Two gas boilers (GWB-1,2; basement) can be used

Schladow, S. Geoffrey

427

Water vapour, sonoluminescence and sonochemistry  

Science Journals Connector (OSTI)

...air bubble, the nitrogen reacts with water vapour, producing...is soon devoid of nitrogen due to the ease...present results on water-vapour chemistry...than a monatomic gas and water. Finally...drastically change the gas solubility. The change in...

2000-01-01T23:59:59.000Z

428

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

429

Water Management in A PEMFC: Water Transport Mechanism and Material  

E-Print Network (OSTI)

Water Management in A PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion on the water management of the PEMFC, namely the transport of product water (both liquid and vapor its water management performance and func- tion as indicators of the degradation of GDL material

Kandlikar, Satish

430

Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

431

Absorption Heat Pump Water Heater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

432

Researching power plant water recovery  

SciTech Connect

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

433

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

434

Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97  

SciTech Connect

>From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay (USGS)

2000-05-30T23:59:59.000Z

435

Xcel Energy (Gas)- Residential Conservation Programs  

Energy.gov (U.S. Department of Energy (DOE))

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

436

DESIGNER WATER Dr. Torleiv Bilstad  

E-Print Network (OSTI)

DESIGNER WATER Dr. Torleiv Bilstad Professor of Environmental Engineering, University of Stavanger #12;Pictures #12;OIL ­ GAS - WATER - SOLIDS MANAGEMENT #12;Job done All produced water discharge Reservoir wettability determines the flow of oil and water in the reservoir #12;DESIGNER WATER Designer

437

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

438

Ionization-induced blue shift of KrF laser pulses in an underdense plasma  

Science Journals Connector (OSTI)

The ionization-induced blue-shifted spectra for helium, neon, and nitrogen have been measured at various gas densities up to 5×1020 cm-3 at a vacuum intensity of 8×1016 W/cm2 for picosecond KrF laser pulses at 248 nm. A 1-mm diameter gas jet target was used in the experiment to minimize the refraction of the laser beam and thus higher laser intensities were obtained in the gas than in previously reported experiments. For helium, a distinct shifted peak was observed at intermediate densities which was not seen before. For helium and nitrogen, spectra were also measured of the light scattered outside of the original focal cone angle. In this region there was little signal for electron densities below 2×1020 cm-3 consistent with limited refraction at lower densities and at higher densities the spectra were predominantly blue shifted. These results indicate the importance of refraction in the correct interpretation of ionization blue-shifted spectra. © 1996 The American Physical Society.

Y. M. Li and R. Fedosejevs

1996-08-01T23:59:59.000Z

439

Coal Beneficiation by Gas Agglomeration  

SciTech Connect

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Thomas D. Wheelock; Meiyu Shen

2000-03-15T23:59:59.000Z

440

I/I ratios and halogen concentrations in pore waters of the Hydrate Ridge: Relevance for the origin of gas hydrates in ODP Leg 204  

E-Print Network (OSTI)

in fluids associated with hydrocarbons, such as oil field brines (Moran et al., 1995) or coal-bed methane association of iodine with methane allows the identification of the organic source material responsible for iodine and methane in gas hydrates. In all cores, iodine concentrations were found to increase strongly

Fehn, Udo

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Competing 1,3-and 1,2-Hydrogen Shifts in Gaseous Fluoropropyl Thomas A. Shaler, Dan Borchardt, and Thomas Hellman Morton*  

E-Print Network (OSTI)

bombardment flow (EBFlow) reactor. Under these conditions ion-neutral complexes greatly predominate over free in the gas phase, an unbiased comparison between a 1,3-deuterium shift and a 1,2-hydrogen shift. Over capacity to stabilize positive charge when directly attached to a primary, positively charged carbon) have

Morton, Thomas Hellman

442

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

443

Metal contamination of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River and environmental impact due to Utapete gas flare station, Nigeria  

Science Journals Connector (OSTI)

Inter-seasonal studies on the trace metal load of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River were conducted between 2003 and 2004. The impact of anthropogenic activities especially...

Nsikak U. Benson; Usoro M. Etesin

2008-09-01T23:59:59.000Z

444

Chapter 6 - Dehydration of Natural Gas  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews several methods used for dehydrating natural gas. Dehydration is the process by which water is removed from natural gas. This is a common method used for preventing hydrate formation. There are other reasons for dehydrating natural gas. Removing water vapor reduces the risk of corrosion in transmission lines. Furthermore, dehydration improves the efficiency of pipelines by reducing the amount of liquid accumulating in the lines—or even eliminates it completely. There are several methods of dehydrating natural gas. The most common of these are: glycol dehydration (liquid desiccant), molecular sieves (solid adsorbent), and refrigeration. The most common method for dehydration in the natural gas industry is the use of a liquid desiccant contactor-regeneration process. In this process, the wet gas is contacted with a lean solvent. The lean solvent, producing a rich solvent stream and a dry gas, absorbs the water in the gas. Unlike glycol dehydration, which is an absorption process, dehydration with molecular sieves is an adsorption process. Water in the gas adheres to the solid phase (the solid being the mole sieve), and thus is removed from the natural gas. Molecular sieves are usually used when very dry gas is required. The usual purpose of a refrigeration plant is to remove heavy hydrocarbons from a natural gas stream—to make hydrocarbon dewpoint specification—but this process also removes water.

John J. Carroll

2003-01-01T23:59:59.000Z

445

Can fracking contaminate drinking water?  

Science Journals Connector (OSTI)

Tiny cracks link deep shale gas reservoirs to shallow aquifers, but they may not be to blame for reports of contaminated drinking water

2012-01-01T23:59:59.000Z

446

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

447

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

448

Smart Companies "Wake up" Night Shift Workers Make More Mistakes...  

Office of Environmental Management (EM)

Smart Companies "Wake up" Night Shift Workers Make More Mistakes & More Prone to Accidents Smart Companies "Wake up" Night Shift Workers Make More Mistakes & More Prone to...

449

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

450

Gas Chromatographic Determination of Aviation Gasoline and JP-4 Jet Fuel in Subsurface Core Samples  

Science Journals Connector (OSTI)

......capillary column gas chromatography...subsurface material. Water samples from...have a higher water solubility than the other...aroma- tics in water and solid wastes...jars inside a nitrogen atmosphere glovebox...subsequent analysis. Gas chromatography......

Steve A. Vandegrift; Don H. Kampbell

1988-11-01T23:59:59.000Z

451

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

452

GreenShift Corporation | Open Energy Information  

Open Energy Info (EERE)

GreenShift Corporation GreenShift Corporation Jump to: navigation, search Name GreenShift Corporation Address 1 Penn Plaza, Suite 1612 Place New York, New York Zip 10119 Sector Biofuels Product Produce biomass-derived oils and fuels Stock Symbol GERS.OB Website http://www.greenshift.com/ Coordinates 40.7495594°, -73.9916617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7495594,"lon":-73.9916617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Proton Mass Shift in Muonic Hydrogen Atom  

E-Print Network (OSTI)

We show that the value of the proton mass depends on each bound state of muonic or electronic hydrogen atom. The charged particle bound to the proton produces magnetic field inside the proton. This makes a change to the amount of chiral condensate inside the proton. The change gives rise to the shift in the value of the proton mass. Numerically, the shift in the $2S$ state of the muonic hydrogen atom can be of the order of $0.1$ meV. The effect may solve the puzzle of the proton radius.

Aiichi Iwazaki

2014-08-11T23:59:59.000Z

454

Columbia Gas of Virginia - Home Savings Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Energy Star Gas Storage Water Heater: $50 Energy Star Gas Tankless Water Heater: $300 High Efficiency Gas Furnace: $300 High Efficiency Windows (Replacement): $1/sq. ft. Attic and Floor Insulation (Replacement): $0.30/sq. ft. Duct Insulation (Replacement): $200 - $250/site Provider Columbia Gas of Virginia

455

Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances  

Science Journals Connector (OSTI)

Effects of multiple types of water use efficiency appliances on long term water savings and water use trend shifts were analyzed. The study ... in the study group experienced continuous and significant water savi...

Mengshan Lee; Berrin Tansel; Maribel Balbin

2013-05-01T23:59:59.000Z

456

TITLE: Shifting Agrarian Landscapes: Climate Change and Adaptation in Bangladesh HOSTS: Jason Cons and Shelley Feldman  

E-Print Network (OSTI)

and water resources are rapidly reorganizing village-life and changing Bangladesh's agrarian landscapes. FarTITLE: Shifting Agrarian Landscapes: Climate Change and Adaptation in Bangladesh HOSTS: Jason Cons fragile lowland areas of the Ganges Delta, in which the vast majority of Bangladesh is situated. For rural

Angenent, Lars T.

457

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

458

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

459

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

460

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "water gas shift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

462