Powered by Deep Web Technologies
Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the Electric Power Research Institute (EPRI) reports Boiler Water Deposition Model for Fossil Fuel Plants, Part 1: Feasibility Study (1004931), published in 2004; Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization (1012207) published in 2007; and Boiler Water Deposition ...

2009-03-12T23:59:59.000Z

2

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the following Electric Power Research Institute (EPRI) reports: 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004; 1012207, Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization, published in 2007; 1014128, Boiler Water Deposition Model fo...

2010-01-27T23:59:59.000Z

3

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility of modeling the various processes governing deposition in fossil boilers was assessed in EPRI report 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004. This report presents findings of follow-up activities directed toward the ultimate goal of developing an aggregate model that is applicable to the important deposition phenomena in fossil drum-type boilers.

2007-03-26T23:59:59.000Z

4

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

5

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

6

Fossil Fuels News  

Science Conference Proceedings (OSTI)

NIST Home > Fossil Fuels News. Fossil Fuels News. (showing 1 - 5 of 5). In Natural Gas Pipelines, NIST Goes with the Flow ...

2010-10-26T23:59:59.000Z

7

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

8

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

9

Crop production without fossil fuel.  

E-Print Network (OSTI)

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this… (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

10

Innovative Fresh Water Production Process for Fossil Fuel Plants  

Science Conference Proceedings (OSTI)

This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

2005-09-01T23:59:59.000Z

11

INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS  

Science Conference Proceedings (OSTI)

This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

2003-09-01T23:59:59.000Z

12

INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS  

Science Conference Proceedings (OSTI)

An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

2004-09-01T23:59:59.000Z

13

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

14

Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler  

Science Conference Proceedings (OSTI)

This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

2007-12-15T23:59:59.000Z

15

Fossil-Fuel CO2 Emissions - Niue  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Niue Graphics Fossil-Fuel CO2 Emissions from Niue Data graphic Data Total Fossil-Fuel CO2 Emissions from Niue image Per Capita...

16

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

17

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited)...

18

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

19

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

20

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these fossil-fuel CO2 emissions have occurred...

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Liquid fossil fuel technology  

Science Conference Proceedings (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

22

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

23

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

24

HS_FossilFuels_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

25

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

26

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

27

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

India Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

29

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No....

30

Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global, Regional, and National Annual Time Series (1751-2010) Latest Published Global Estimates (1751-2010) Preliminary 2011 Global & National Estimates...

31

OpenEI Community - fossil fuels  

Open Energy Info (EERE)

communityblogfour-new-publications-help-advance-renewable-energy-developmentcomments energy scenarios fossil fuels OECD OpenEI policy Renewable Energy Tue, 16 Jul 2013...

32

Fossil Fuels Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Study Guide - High School Fossil Fuels Study Guide - High School Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School...

33

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

34

FE annual Report Bioprocessing of Fossil Fuels  

E-Print Network (OSTI)

FE annual Report July 2004 Bioprocessing of Fossil Fuels Abhijeet Borole, Life Sciences Division The overall objective of this research program is to develop novel technologies for processing fossil fuels energy-efficient. Processes based on oxidative as well as reductive reactions are being investigated

35

Fossil-Fuel CO2 Emissions - American Samoa  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania American Samoa Graphics Fossil-Fuel CO2 Emissions from American Samoa Data graphic Data Total Fossil-Fuel CO2 Emissions from...

36

Fossil-Fuel CO2 Emissions - Marshall Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Marshall Islands Graphics Fossil-Fuel CO2 Emissions from the Marshall Islands Data graphic Data Fossil-Fuel CO2 Emissions from...

37

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

38

High resolution fossil fuel combustion CO2 emission fluxes for...  

NLE Websites -- All DOE Office Websites (Extended Search)

High resolution fossil fuel combustion CO2 emission fluxes for the United States Title High resolution fossil fuel combustion CO2 emission fluxes for the United States Publication...

39

Office of Fossil Energy Fuel Cell Program 2012 Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

O ce of Fossil Energy Fuel Cell Program Portfolio 2012 Solid State Energy Conversion Alliance Office of Fossil Energy Fuel Cell Program 2012 Portfolio October 2012 DOE...

40

SECA Fuel Processing Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

fossil fuels | OpenEI Community  

Open Energy Info (EERE)

fossil fuels Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 16 July, 2013 - 14:37 Four new publications help advance renewable energy development energy...

42

Chemical Characterization of Fossil Fuel Combustion Wastes  

Science Conference Proceedings (OSTI)

Fossil fuel combustion wastes differ considerably in total composition and in the key chemical characteristics of their extracts, making leachate composition difficult to predict. A new mechanistic approach, however, shows promise for more-accurate prediction.

1987-08-26T23:59:59.000Z

43

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

44

Poland Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

45

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

46

Japan Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

47

Thermal dissolution of solid fossil fuels  

Science Conference Proceedings (OSTI)

The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

E.G. Gorlov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

48

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

E-Print Network (OSTI)

interannual variations in fossil fuel emissions. J. Geophys.Treat CO 2 from fossil fuel burning: global distribution ofdioxide emissions from fossil fuel consumption and cement

Gurney, Kevin R.

2010-01-01T23:59:59.000Z

49

Fossil-Fuel CO2 Emissions from Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Fossil-Fuel CO2 Emissions from Africa Graph graphic Graphics Data graphic Data What countries constitute Africa? Map of Africa Trends Africa's fossil-fuel CO2 emissions are...

50

Sales of Fossil Fuels Produced from Federal and Indian Lands...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This...

51

Chapter 2. Consumption of Fossil Fuels - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

48 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 2. Consumption of Fossil Fuels

52

Fossil Fuel Prices to Electric Utilities - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Fossil Fuel Prices to Electric Utilities. Sources: History: EIA; Projections: Short-Term Energy Outlook, July 2000.

53

Fossil Energy-Developed Fuel Cell Technology Being Adapted by...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2013 Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Solid Oxide Fuel Cell Technology Supported by Research Funding...

54

Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Historical Global Estimates Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860-1982 (NDP-006) DOI: 10.3334CDIACffe.ndp006 image Data image...

55

Fossil-Fuel CO2 Emissions from Oceania  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Fossil-Fuel CO2 Emissions from Oceania Graph graphic Graphics Data graphic Data What countries constitute Oceania? Oceania map Trends Oceania consists of approximately...

56

Fossil-Fuel CO2 Emissions from North America  

NLE Websites -- All DOE Office Websites (Extended Search)

North America Fossil-Fuel CO2 Emissions from North America Graph graphic Graphics Data graphic Data What countries constitute North America? North America map Trends North America,...

57

Chapter 4. Receipts and Cost of Fossil Fuels  

U.S. Energy Information Administration (EIA)

74 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 4. Receipts and Cost of Fossil Fuels

58

Chapter 3. Fossil-Fuel Stocks for Electricity Generation  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 69 Chapter 3. Fossil-Fuel Stocks for Electricity Generation

59

April 2013 Most Viewed Documents for Fossil Fuels | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 208 Fluid...

60

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Brazil-NETL Advanced Fossil Fuels Partnerships Jump to: navigation, search Logo: Brazil-NETL...

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reference Materials and Standards for Fossil Fuels, Electric ...  

Science Conference Proceedings (OSTI)

... of the energy consumed by the US Along with ... from the specification of fossil fuel raw materials ... relevant reference materials to support the emerging ...

2012-10-01T23:59:59.000Z

62

Fossil fuel decarbonization technology for mitigating global warming  

SciTech Connect

It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

Steinberg, M.

1998-09-01T23:59:59.000Z

63

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network (OSTI)

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating… (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

64

People's Republic of China Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

65

Production of CO{sub 2} from fossil fuel burning by fuel type, 1860-1982  

SciTech Connect

Carbon dioxide emission calculations resulting from fossil fuel useage for the years 1860-1982 are presented.

Rotty, R.M.; Marland, G. [Oak Ridge Associated Universities, TN (United States). Institute for Energy Analysis

1984-09-01T23:59:59.000Z

66

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Can the envisaged reductions of fossil fuel CO2 emissions beGoulden. 2008. Where do Fossil Fuel Carbon Dioxide Emissionsof season-averaged fossil fuel CO 2 emissions (Riley et

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

67

Fossil fuel-fired peak heating for geothermal greenhouses  

SciTech Connect

This report examines the capital and operating costs for fossil fuel-fired peak heating systems in geothermally (direct use) heated greenhouses. Issues covered include equipment capital costs, fuel requirements, maintenance and operating costs, system control and integration into conventional hot water greenhouse heating systems. Annual costs per square foot of greenhouse floor area are developed for three climates: Helena, MT; Klamath Falls, OR and San Bernardino, CA, for both boiler and individual unit heater peaking systems. In most applications, peaking systems sized for 60% of the peak load are able to satisfy over 95% of the annual heating requirements and cost less than $0.15 per square foot per year to operate. The propane-fired boiler system has the least cost of operation in all but Helena, MT climate.

Rafferty, K.

1996-12-01T23:59:59.000Z

68

Sensors and Controls Research Combustion of fossil fuels currently  

E-Print Network (OSTI)

, aggressive environments and high temperatures. Sponsor: Department of Energy Fossil Energy Program. FeaturesSensors and Controls Research Combustion of fossil fuels currently generates most of the nation's energy, and 2008 forecasts by the Energy Information Agency predict this will continue to be the case

69

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

70

North Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

71

South Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

72

Fossil-Fuel CO2 Emissions by Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Fossil-Fuel CO2 Emissions by Region Map of the World Africa (1884-2008) Developing America (Central America, South America, and the Caribbean) (1884-2008) Centrally...

73

Production of fossil fuel from federal and Indian lands fell ...  

U.S. Energy Information Administration (EIA)

Sales of fossil fuels from production on federal and Indian lands in fiscal year (FY) 2012 dropped 4% from FY 2011, according to data from the Department of the ...

74

Optimization of fossil fuel sources: An exergy approach  

SciTech Connect

We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

Camdali, U. [Development Bank of Turkey, Ankara (Turkey)

2007-02-15T23:59:59.000Z

75

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

76

Fossil Fuel Emission Verification Modeling at LLNL  

SciTech Connect

We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and Gaussianity of errors, or one of several statistical sampling techniques, which are computationally slower but do not require either linearity or Gaussianity (Chow, et al., 2008; Delle Monache, et al., 2008). The emission regions we are using are based on the air-basins defined by the California Air Resources Board (CARB), see Figure 3. The only difference is that we have joined some of the smaller air basins together. The results of a test using 4 days of simulated observations using our ensemble retrieval system are shown in Figure 3 (right). The main source of the variation between the different model configurations arises from the uncertainty in the atmospheric boundary layer parameterization in the WRF model. We are currently developing a capability to constrain the boundary layer height in our carbon-14 work either by weighting the ensemble member results by the accuracy of their boundary layer height (using commercial aircraft observations), or as part of the retrieval process using an ensemble Kalman filter (EnKF) capability.

Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

2009-08-06T23:59:59.000Z

77

Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

2001-11-06T23:59:59.000Z

78

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

79

Possible future environmental issues for fossil fuel technologies. Final report  

SciTech Connect

The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

Attaway, L.D.

1979-07-01T23:59:59.000Z

80

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars) Year: Coal: Coal Coke: Natural Gas: Crude Oil 1: Petroleum ... Office of Fossil Energy.

82

US fossil fuel technologies for Thailand  

SciTech Connect

The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

1990-10-01T23:59:59.000Z

83

Disclosure of Permitted Communication Concerning Fossil Fuel Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 This memo provides an overview of communications made to DOE staff on the subject of the rulemaking referenced above. The communications occurred at a meeting held on February 13, 2013. DOE 433 ex parte memo.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077

84

The dilemma of fossil fuel use and global climate change  

SciTech Connect

The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

Judkins, R.R.; Fulkerson, W. (Oak Ridge National Lab., TN (USA)); Sanghvi, M.K. (Amoco Corp., Chicago, IL (USA))

1991-01-01T23:59:59.000Z

85

Fossil Fuel Prices to Electric Utilities  

U.S. Energy Information Administration (EIA)

Natural gas for power generation is projected to yield its apparent average price advantage over residual fuel oil by the fourth quarter of this year.

86

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

DOE Green Energy (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

87

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

Science Conference Proceedings (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in carbon dioxide (CO2) emissions. We examine the break-even value for CCS adoptions, that ... Keywords: accounting, cost--benefit analysis, energy, energy policies, environment, government, natural resources, pollution

Özge ??legen; Stefan Reichelstein

2011-01-01T23:59:59.000Z

88

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

89

Beef production options and requirements for fossil fuel  

SciTech Connect

A large percentage of the feed resources used in beef production cannot be used by man or most other animals. These noncompetitive feeds could be used in different ways to increase beef production, but fossil fuel consumption by the beef industry would not be greatly reduced.

Ward, G.M.; Knox, P.L.; Hobson, B.W.

1977-10-21T23:59:59.000Z

90

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

2001-01-30T23:59:59.000Z

91

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of...

92

Figure 3.1 Fossil Fuel Production Prices - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.1 Fossil Fuel Production Prices Prices, 1949-2011 Fossil Fuel Composite Price,˛ Change From Previous Year, 1950-2011 68 U.S. Energy Information ...

93

Fossil fuel combined cycle power generation method  

SciTech Connect

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D. (Knoxville, TN); Armstrong, Timothy R. (Clinton, TN); Judkins, Roddie R. (Knoxville, TN)

2008-10-21T23:59:59.000Z

94

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

95

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-07-31T23:59:59.000Z

96

Modules for estimating solid waste from fossil-fuel technologies  

SciTech Connect

Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

1980-10-01T23:59:59.000Z

97

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

98

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-04-30T23:59:59.000Z

99

Russia Federation Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

100

Justification of Simulators for Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

A cost benefit analysis of simulator use at fossil fuel power plants identifies benefits in four categories: availability savings, thermal performance savings, component life savings, and environmental compliance savings. The study shows that a 500 MW plant, over 15 years, can realize a total present value saving of over $24 million, easily justifying the purchase of a simulator that typically costs about $600,000.

1993-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Decommissioning Process for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

This report describes a staged process for the decommissioning and possible demolition of fossil-fueled power generating facilities. Drawn from experience with power and major industrial facilities, the report provides the owner/operator of a plant that is approaching the end of its useful life with an overview of the key elements necessary to successfully implement decommissioning. The process is applicable to full decommissioning, demolition, and closure; to partial scenarios (that is, partial dismantl...

2010-01-22T23:59:59.000Z

102

DOE Hydrogen and Fuel Cells Program: Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Fossil Energy Printable Version Fossil...

103

Addressing the Critical Link between Fossil Energy and Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2005 Department of EnergyOffice of Fossil Energy's Power Plant Water Management R&D Program Thomas J. Feeley, III 1 , Lindsay Green 2 , James T. Murphy 2 , Jeffrey Hoffmann 1...

104

Addressing the Critical Link between Fossil Energy and Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2006 Update Department of EnergyOffice of Fossil Energy's Water-Energy Interface Research Program Thomas J. Feeley, III 1 , Lindsay Green 2 , Andrea McNemar 2 , Barbara A....

105

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

106

Figure 3.8 Value of Fossil Fuel Exports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.8 Value of Fossil Fuel Exports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 82 U.S. Energy Information Administration / Annual Energy Review 2011

107

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

108

Synthetic fossil fuel technologies: health problems and intersociety cooperation  

DOE Green Energy (OSTI)

The potential health impacts of synthetic fossil fuel products are considered mainly in terms of complex and potentially carcinogenic mixtures of polynuclear aromatic (PNA) compounds. These components of oils and tars present an especially perplexing range of problems to those concerned with health protection. The nature of these problems, such as multifactorial exposure, are discussed within a framework of current and future standards to regulate human exposure. Some activities of government agencies, national laboratories, and professional societies are described. A case can be made for pooling the resources of these groups to achieve better solutions for assessing the acceptability of the various technologies and safeguarding human health.

Gammage, R B; Turner, J E

1979-01-01T23:59:59.000Z

109

Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual ... excluding freight or shipping and insurance costs. ... 4 Derived by multiplying the price per Btu of each fossil fuel by the ...

110

June 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 78 EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER...

111

Japan is the second largest net importer of fossil fuels in ...  

U.S. Energy Information Administration (EIA)

Japan ranked as the second largest net importer of fossil fuels in the world in 2012, trailing only China. This follows the Fukushima nuclear disaster in 2011, after ...

112

Table 1.14 Sales of Fossil Fuels Produced on Federal and ...  

U.S. Energy Information Administration (EIA)

Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011: Fiscal Year 7: Crude Oil and Lease Condensate

113

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam ...  

U.S. Energy Information Administration (EIA)

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

114

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest… (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

115

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

116

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-10-30T23:59:59.000Z

117

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

118

ENHANCING CARBON SEQUESTRATION AND RECLAMATION OF DEGRADED LANDS WITH FOSSIL-FUEL COMBUSTION BYPRODUCTS  

E-Print Network (OSTI)

represents an opportunity to couple carbon sequestration with the utilization of fossil fuel #12;and energy of fossil energy byproducts to stimulate carbon sequestration in those terrestrial ecosystems. GOALS C sequestration through optimal utilization of fossil energy byproducts and management of degraded

119

Fossil fuel derivatives with reduced carbon. Phase I final report  

Science Conference Proceedings (OSTI)

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

1999-06-30T23:59:59.000Z

120

Viscosity virtual sensor to control combustion in fossil fuel power plants  

Science Conference Proceedings (OSTI)

Thermo-electrical power plants utilize fossil fuel oil to transform the calorific power of fuel into electric power. An optimal combustion in the boiler requires the fuel oil to be in its best conditions. One of fuel's most important properties to consider ... Keywords: Automatic learning, Bayesian networks, Fuel oil, Power plants, Virtual sensors

Pablo H. Ibargüengoytia, Miguel Angel Delgadillo, Uriel A. García, Alberto Reyes

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over...

122

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

Science Conference Proceedings (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

123

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

124

Tracking the Origins of Fossil Fuels | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures X-ray Holograms Expose Secret Magnetism How Dissolved Metal Ions Interact in Solution One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Tracking the Origins of Fossil Fuels MAY 29, 2007 Bookmark and Share S-XANES absorbance and third derivative absorbance edge spectra of Duvernay (A) Type II kerogen and the results of curve fits using spectra from model compounds. Notice that sharp features appear in the thrid derivative spectrum that are easily associated with FeS2, aliphatic sulfur and

125

Reducing CO2 Emissions from Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

126

Formulating Energy Policies Related to Fossil Fuel Use:  

NLE Websites -- All DOE Office Websites (Extended Search)

CONF-9 O O 255 --I CONF-9 O O 255 --I DE90 008741 Formulating Energy Policies Related to Fossil Fuel Use: i Critical Uncertainties in the Global Carbon Cycle. W. M. Post, V. H. Dale, D. L. DeAngelis, L. K. Mann, P. J. Mulholland, R. V. O'Neill, T. -H. Peng, M. P. Farrell Environmental Sciences Division Oak Ridge National Laboratory Post Office Box 2008 Oak Ridge, Tennessee 37831 The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Understanding the global carbon cycle requires knowledge of the carbon exchanges between major carbon reservoirs by various chemical, physical, geological, and biological processes (Bolin et al., 1979; Rosenberg, 1981; and Solomon et al., 1985). Four reservoirs can be identified, including the atmosphere, terrestrial biosphere (usually

127

Aromatic nitrogen compounds in fossil fuels: a potential hazard  

DOE Green Energy (OSTI)

To achieve energy independence in the United States, converting coal to oil or extracting oil from shale will be required. Before commercial scale fossil fuel conversion facilities become a reality, chemical and biological studies of currently available synfuel samples derived from coal or shale are urgently needed in order to determine what the potential health problems, such as from occupational exposure, might be. Aromatic nitrogen compounds such as basic aza-arenes, neutral aza-arenes, and aromatic amines are considered environmentally important and several members of these classes of compounds possess biological activity. For example, dibenz(a,h)acridine, 7 H-dibenzo(c,g)carbazole, and 2-naphthylamine, are well known as carcinogens. The methods used to isolate the basic aromatic nitrogen compounds and neutral aza-arenes from one shale oil and one coal-derived oil are discussed. The mutagenic activities of these fractions, based on the Ames Salmonella typhimurium test, are compared.

Ho, C H; Clark, B R; Guerin, M R; Ma, C Y; Rao, T K

1979-01-01T23:59:59.000Z

128

New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications  

DOE Green Energy (OSTI)

Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

2006-09-30T23:59:59.000Z

129

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network (OSTI)

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels biofuels, such as wood, manure, dung, and other solid biomass used for home heating and cooking in many

130

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and Indian lands in the United States. It provides EIA's current best estimates of fossil fuels sales from production on federal and Indian lands for fiscal year 2003 through 2011. eia-federallandsales.pdf More Documents & Publications Testimony Before the House Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Committee Before the Energy and Power Subcommittee - House Energy and Commerce

131

Effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic systems  

SciTech Connect

Progress is reported for the second year of this project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. The project objectives for Year 2 were pursued through five tasks: literature reviews on process water constituents, possible environmental impacts and potential control technologies; toxicity bioassays on the effects of coal gasification and oil shale retorting process waters and six process water constituents on aquatic biota; biodegradation studies on process water constituents; bioaccumulation factor estimation for the compounds tested in the toxicity bioassays; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Results in each of the five areas of research are reported.

Bergman, H.L.

1978-12-01T23:59:59.000Z

132

Refractory failure in IGCC fossil fuel power systems  

DOE Green Energy (OSTI)

Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

2001-01-01T23:59:59.000Z

133

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983  

DOE Green Energy (OSTI)

Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

134

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

of radiocarbon and fossil fuel-derived CO2 in surface air2004), Estimates of annual fossil-fuel CO 2 emitted for eachindependent budgeting of fossil fuel CO2 over Europe by (

Riley, W.J.

2008-01-01T23:59:59.000Z

135

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

independent budgeting of fossil fuel CO 2 over Europe by (COcontributions from fossil fuels, oceans, the stratosphere,15 of 16 G04002 RILEY ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN

2008-01-01T23:59:59.000Z

136

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

137

Structural changes between models of fossil-fuel demand by steam-electric power plants  

SciTech Connect

A consumption function for multi-fuel steam-electric power plants is used to investigate fossil-fuel demand behavior. The input consumption equations for a plant's primary and alternate fossil fuels are derived by Shepard's lemma from a generalized Cobb-Douglas cost function reflecting average variable cost minimization constrained by technology and the demand for electricity. These equations are estimated by primary and alternate fuel subsets with ordinary least squares and seemingly unrelated regression techniques for 1974, 1977, and 1980. The results of the regression analysis show the importance of consumer demand in the fossil fuel consumption decision; it has the only significant parameter in all of the estimated equations. The estimated own- and cross-price elasticities are small, when they are statistically significant. The results for the primary fuel equations are better than those for the alternate fuel equations in all of the fuel pair subsets.

Gerring, L.F.

1984-01-01T23:59:59.000Z

138

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

139

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

140

Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Developed Fuel Cell Technology Being Adapted by Navy Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs. U.S. Navy photo by Mr. John F. Williams/Released. An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

142

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

143

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Wind and Solar on Fossil-Fueled Generators Preprint D. Lew and G. Brinkman National Renewable Energy Laboratory N. Kumar, P. Besuner, D. Agan, and S. Lefton Intertek...

144

Japan’s fossil-fueled generation remains high because of ...  

U.S. Energy Information Administration (EIA)

Japan's use of fossil-fueled generation—the combined amount of electricity generated from natural gas, oil, and coal—was up 21% in 2012, compared to the level in ...

145

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

Science Conference Proceedings (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

146

Generic Guidelines for the Life Extension of Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

An increasing number of utilities are deciding to keep aging fossil fuel plants operating beyond their original economic lives. These guidelines provide a systematic approach to planning and implementing a life-extension program for such plants.

1986-12-04T23:59:59.000Z

147

Fossil Fuel and Biomass Burning Effect on Climate—Heating or Cooling?  

Science Conference Proceedings (OSTI)

Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while ...

Yoram J. Kaufman; Robert S. Fraser; Robert L. Mahoney

1991-06-01T23:59:59.000Z

148

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

Science Conference Proceedings (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

149

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

Science Conference Proceedings (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

150

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

151

Operator Certification Standards for Fossil Fuel Fired Plants: Survey of State and Regional Requirements  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency has only started addressing the issue of certification for fossil fuel power plant operators within the last two years. This report, which includes data collected from research of state and local authorities that currently require power plant operators to be certified or licensed, is the first phase of a certification program for Fossil Fuel Fired Power Plants. The report also addresses the possible future shortage of skilled workers needed by the power plants and the ...

1999-12-16T23:59:59.000Z

152

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

Nero, A.V.

2010-01-01T23:59:59.000Z

153

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

154

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

155

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

DOE Green Energy (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

156

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

157

55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED  

E-Print Network (OSTI)

be handled by the same devices that regulate natural gas and it will work in burners or as a fuel is a simple hydrocarbon gas which occurs in natural gas and can also be obtained from anaerobic bacterial replacement for fossil fuel gases (natural gas or liquified petroleum gases such as propane or butane). It can

158

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

Science Conference Proceedings (OSTI)

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

159

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

160

Fossil fuel gasification technical evaluation services. Topical report 1978-80  

SciTech Connect

The Exxon, Mountain Fuel, Cities Service/Rockwell, Westinghouse, BGC slagging Lurgi and Peatgas processes for fossil fuel gasification were evaluated. The Lurgi and HYGAS processes had been evaluated in earlier studies. For producing SNG from coal, only the Westinghouse conceptual design appeared competitive with HYGAS on eastern coal. All coal gasification processes were competitive with or better than Lurgi on eastern coal. The Mountain Fuel process was more costly than Lurgi or HYGAS on a western coal.

Detman, R.F.

1982-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

162

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

163

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

164

renewable sources of power. Demand for fossil fuels surely will overrun supply s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be forced to embrace energy efficiencies - those that are within our reach today, and those that will be developed tomorrow. Precisely when they come lo grips with that reality - this year, 10 years from now, or 20 years from now - will determine bow smooth the transition will be for consumers and industry alike.

165

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

166

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

167

Microbial Fuel Cells Offer Innovative Technology for Oil, Gas ...  

Microbial Fuel Cells Offer Innovative Technology ... where organics and salt contaminate water in significant amounts during fossil fuels production.

168

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

2001-03-07T23:59:59.000Z

169

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

170

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

171

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

172

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

173

High resolution fossil fuel combustion CO{sub 2} emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of about 100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. 39 refs., 5 figs., 1 tab.

Kevin R. Gurney; Daniel L. Mendoza; Yuyu Zhou; Marc L. Fischer; Chris C. Miller; Sarath Geethakumar; Stephane de la Rue du Can [Purdue University, West Lafayette, IN (United States). Department of Earth and Atmospheric Sciences/Department of Agronomy

2009-07-15T23:59:59.000Z

174

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

175

Western fossil fuels R and D public meeting: Summary proceedings  

SciTech Connect

A public meeting was convened by the Department of Energy (DOE) in Denver, Colorado, on Wednesday, July 26, 1989, at The Registry Hotel, in order to obtain public views and comments on the development of techniques which could offer the potential to improve the economic competitiveness and increased utilization of Western Fossil Energy Resources. In the sections that follow, brief descriptions are provided of background issues and how the meeting was conducted. Subsequent chapters of this report present the discussions that ensued at the meeting, and the views, recommendations, and concerns that were expressed by attendees. Finally, the report includes a summary of the written comments that were received, and an appendix which contains a list of the organizations that were represented at the public meeting.

1989-10-01T23:59:59.000Z

176

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

177

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

Science Conference Proceedings (OSTI)

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

178

Drum type fossil fueled power plant control based on fuzzy inverse MIMO model  

Science Conference Proceedings (OSTI)

In this paper, a new fuzzy controller is proposed based on inverse model of boiler-turbine system. Gain scheduling scheme is used to keep feedback rule as close as possible to optimal condition while generating plant Input/Output data. Interaction between ... Keywords: ANFIS, drum type fossil fueled power plant (FFPP), interaction, inverse model control, nonlinear model, robustness

Ali Ghaffari; Mansour Nikkhah Bahrami; Hesam Parsa

2006-06-01T23:59:59.000Z

179

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence  

E-Print Network (OSTI)

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence by Vaclav Smil September share of their primary energies from renewable sources. Steel & Coal-Derived Coke Here is another important: steel's fundamental dependence on coal-derived coke with no practical substitutes on any rational

Smil, Vaclav

180

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network (OSTI)

Carbon capture technology: future fossil fuel use and mitigating climate change DR N FloRiN aND DR P FeNNell executive summary What is carbon capture and storage? Carbon Capture and Storage (CCS) refers to the set of technologies devel- oped to capture carbon dioxide (CO2) gas from the exhausts

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New improved standard for electron probe determination of organic sulfur in fossil fuels  

Science Conference Proceedings (OSTI)

This paper reports on petroleum coke that is stable under an electron beam and contains a uniform sulfur content. Hence, it is a suitable standard for analysis of organic sulfur content of coal. It should be as applicable for analysis of organic sulfur in other fossil fuels. This standard is available for distribution.

Harris, L.A.; Raymond, R. Jr.; Gooley, R.

1980-01-01T23:59:59.000Z

182

2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel  

E-Print Network (OSTI)

2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy nations. In sub-Saharan Africa (SSA), biomass provides more than 90% of household energy needs in many nations. The combustion of biomass emits pollutants that currently cause over 1.6 million annual deaths

Kammen, Daniel M.

183

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

DOE Green Energy (OSTI)

High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

2012-08-01T23:59:59.000Z

184

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

185

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

186

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

187

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

188

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

Science Conference Proceedings (OSTI)

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

189

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

Science Conference Proceedings (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

190

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

191

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-and RelatedStandards for Fossil-Fuel and Geothermal Power

Nero, jA.V.

2010-01-01T23:59:59.000Z

192

Technical considerations in repowering a nuclear plant for fossil fueled operation  

SciTech Connect

Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

Patti, F.J.

1996-03-01T23:59:59.000Z

193

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

194

Timing is everything : along the fossil fuel transition pathway.  

Science Conference Proceedings (OSTI)

People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

2013-10-01T23:59:59.000Z

195

Timing is everything : along the fossil fuel transition pathway.  

SciTech Connect

People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

2013-10-01T23:59:59.000Z

196

A Multi-Pollutant Framework for Evaluating CO2 Control Options for Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Pollutant Framework for Evaluating CO Multi-Pollutant Framework for Evaluating CO 2 Control Options for Fossil Fuel Power Plants Edward S. Rubin (rubin@cmu.edu; 412-268-5897) Anand B. Rao (abr@andrew.cmu.edu; 412-268-5605) Michael B. Berkenpas (mikeb@cmu.edu; 412-268-1088) Carnegie Mellon University EPP Department, Baker Hall 128A Pittsburgh, PA 15213 Abstract As part of DOE/NETL's Carbon Sequestration Program, we are developing an integrated, multi-pollutant modeling framework to evaluate the costs and performance of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The model calculates emissions, costs, and efficiency on a systematic basis at the level of an individual plant or facility. Both new and existing facilities can be modeled, including coal-based or natural gas-based combustion or gasification systems using air or oxygen.

197

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. May 2013 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 1

198

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. March 2012 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 1

199

Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 US DoE-NETL Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO 2 Peter G. Brewer (brpe@mbari.org; 831-626-6618) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing CA 95039 Introduction. My laboratory has now been engaged in carrying out small scale controlled field experiments on the ocean sequestration of fossil fuel CO 2 for about five years, and the field has changed enormously in that time. We have gone from theoretical assessments to experimental results, and from cartoon sketches of imagined outcomes to high-resolution video images of experiments on the ocean floor shared around the world. It seems appropriate therefore to give a brief review, albeit one very much from a

200

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi (Sidqi Abu-Khamsin) - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Al-Khattaf, Sulaiman (Sulaiman Al-Khattaf) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Al-Majed, Abdulaziz Abdullah (Abdulaziz Abdullah Al-Majed) - Center for Petroleum and Minerals at the Research Institute & Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Ali, Mohammed (Mohammed Ali) - Petroleum Institute (Abu Dhabi) Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

September 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 42 Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. (1996) 36 Fluid Dynamics in Sucker Rod Pumps Cutler, R.P.; Mansure, A.J. (1999) 35 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 35 Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Michael S. Bruno (2005) 35 Autothermal Reforming of Natural Gas to Synthesis Gas Steven F. Rice; David P. Mann (2007) 34 Evaluation of Wax Deposition and Its Control During Production of

202

Cycling Operation of Fossil-Fueled Plants: Volume 6: Evaluation and Strategy  

Science Conference Proceedings (OSTI)

This report, the sixth volume in a series (GS-7219), describes tools to help utilities define and evaluate strategies for cycling fossil-fueled power plants. To assist companies in their cycling decisions, the report describes far-reaching guidelines on cycling units, including economics, the effects on equipment life, and operations and maintenance. In developing a stepwise plant to cycling operation, EPRI investigators reviewed an extensive database of worldwide and U.S. experience with cycling. The re...

1993-10-01T23:59:59.000Z

203

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

204

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

205

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

206

3. Fossil-Fuel Subsidy Data from Other Sources Often Conflicts  

E-Print Network (OSTI)

A review of current gaps and needed changes to achieve success By Doug Koplow with contributions from Steve KretzmannAcknowledgments Thanks to Ronald Steenblik (Organisation for Economic Cooperation and Development) and Patricia Lerner (Greenpeace International) for their valuable suggestions and input on earlier drafts of this document. All remaining errors and omissions are the responsibility of the authors. © 2010, Earth Track, Inc., and Oil Change International For more information on fossil fuel subsidies please visit:

G Fossil-fuel

2010-01-01T23:59:59.000Z

207

Preliminary Guidelines for Integrated Controls and Monitoring for Fossil Fuel Plants  

Science Conference Proceedings (OSTI)

Modern digital distributed control systems offer a large number of advantages to operators of fossil fuel plants, and many utilities will be replacing their existing control systems with them. This report, consisting of the preliminary guidelines developed by the Southern California Edison Company during the first phase of its El Segundo power plant, units 3 and 4, retrofit project, offers advice applicable to other phased upgrades, complete changeouts, or new installations.

1990-07-09T23:59:59.000Z

208

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Science Conference Proceedings (OSTI)

This interim report presents initial results of an ongoing study of the potential cost of electricity (COE) produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO2) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO2 removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion ...

2000-12-07T23:59:59.000Z

209

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

Science Conference Proceedings (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

210

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

211

Recent world fossil-fuel and primary energy production and consumption trends  

SciTech Connect

Worldwide fossil fuel and primary electric power production figures since 1973 show a recent drop in oil production similar to the 1975 decline after recession. Crude oil consumption has declined since 1978, while production has increased. Natural gas production and consumption continue to increase as does power generation from all energy sources. Differences are noted between data sources and comparisons made of the validity of the data. 13 references, 7 figures, 12 tables. (DCK)

Parent, J.D.

1982-08-02T23:59:59.000Z

212

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: • Design of cogeneration systems with solar and fossil systems • Design and integration of solar-biofuel-fossil cogeneration systems • Design of solar-assisted absorption refrigeration systems and integration with the processing facility • Development of thermally-coupled dual absorption refrigeration systems, and • Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

213

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

214

General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol  

Science Conference Proceedings (OSTI)

A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different ...

J. M. Haywood; D. L. Roberts; A. Slingo; J. M. Edwards; K. P. Shine

1997-07-01T23:59:59.000Z

215

EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings” and 10 CFR Part 435, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings”.

216

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

217

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

218

Long-term tradeoffs between nuclear- and fossil-fuel burning  

SciTech Connect

A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

Krakowski, R.A.

1996-12-31T23:59:59.000Z

219

Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment  

SciTech Connect

The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

Sayer, J.H.

1995-06-01T23:59:59.000Z

220

Key Technologies for the Development of Fossil Fuels in the 21st Century  

SciTech Connect

As the world faces growing economic and environmental challenges, the energy mix that fuels the global economy is undergoing rapid change. Yet how this change will evolve in the future is uncertain. What will be the sources of primary energy in twenty years? In fifty years? In different regions of the globe? How will this energy be utilized? Fossil energy currently supplies about ninety percent of the world's primary energy. In Japan this number is closer to eighty percent. It is clear that fossil energy will be a major supplier of global energy for some time to come, but what is not clear is the types of fossil energy and how it will be utilized. The degree to which the abundant supplies of fossil energy, especially coal, will continue to play a major role will depend on whether technology will provide safe, clean and affordable fuel for electricity and transportation. Technology will not only assist in finding more fossil energy in varying regions of the globe but, most importantly, will play a strong role in efficient utilization and in determining the cost of delivering that energy. Several important questions will have to be answered: (1) Will cost effective technologies be found to burn coal more cleanly? Can this be done with drastically reduced or no emitted carbon? (2) Can enough oil be found outside the Middle East to ensure more adequate and secure supplies to fuel the transportation and industrial needs? (3) Will the transportation sector, so heavily dependent on oil, be fueled on another source? (4) Can enough natural gas be assured from enough secure places to ensure investment in the utilization of this lowest-carbon fossil fuel? (5) What will these options cost in research and in the price of energy? The answers to these and other questions challenge leaders and researchers in the fossil energy industry. A World Energy Council (WEC) study of those technologies that might be key sheds some light on what might happen in terms of a wide range of possible scenarios. Also on what might be necessary in expenditure, time, and policies to help bring these technologies to market. This study should be helpful to energy executives in planning for future technologies, either as new ventures or as competition for existing technologies. The emphasis in this ongoing study is on what is possible from today's vantage, not what will happen--actual developments are unpredictable and it is, of course, impossible to foresee the course of actual technology development or economic growth. Nevertheless, it is possible to look at what could happen in a number of scenarios using (1) knowledge about current technologies and (2) their projected development, investment costs, and likely time to commercialization based on historical energy technology development. A comprehensive set of possible technologies was available from the WEC in conjunction with the International Institute for Applied Systems Analysis (IIASA) and studies as part of the Intergovernmental Panel on Climate Change (IPCC).

Schock, R

2002-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

A Review of Light-Water Reactor Safety Studies," by A.V.due to a break in the reactor cooling cooling water the therecirculation - Failure of the reactor protection system.

Nero, A.V.

2010-01-01T23:59:59.000Z

222

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

223

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

224

Geophysical consequences of carbon dioxide generation by fossil fuels. [Melting of polar icecaps  

SciTech Connect

The recent National Academy of Sciences Report ''Energy and Climate'' asserts that the greenhouse effect of CO/sub 2/ generated by the burning of fossil fuels would increase the temperature of the earth by 11/sup 0/F. It is argued and calculations have been carried out to show that the principal effect is the complete melting of the polar icecaps in a few centuries; the resulting inundation of the populated land areas and the coastal cities of the world is even more disastrous. The calculated increase of temperature is only 1.4/sup 0/C.

Fong, P.

1978-01-01T23:59:59.000Z

225

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

226

Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels  

SciTech Connect

Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

Koomey, J.

1990-07-01T23:59:59.000Z

227

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

Science Conference Proceedings (OSTI)

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

228

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fuel and Geo­ thermal Power Plants," by G.D. Case, T.A.produces thermal energy, from the nuclear power plant, whichthermal, or the study "large" plants about one about 1000 sixth MW size of current The large nuclear power plants (

Nero, A.V.

2010-01-01T23:59:59.000Z

229

A plot study of the potential for Navy utilization of solid waste derived fuels to offset fossil fuels consumption. Final report  

SciTech Connect

A brief study was made to define problems that would be encountered in estimating potential Navy markets for various forms of waste derived fuels. Fossil fuel consumption estimates for boiler plants at several Navy activities were converted to waste derived fuel (WDF) estimates using a set of assumed rules judged technically feasible regarding boiler conversions and confirming fossil fuels and WDF. The results of this first study are presented indicating Navy boilers might represent a significant market for all the WDF a region could produce if the WDF were available in liquid as well as solid forms. The economic feasibility of conversions and WDF production are not addressed in this brief paper.

Capps, A.G.; Duffey-Armstrong, M.; Freeman, R.E.

1978-06-01T23:59:59.000Z

230

Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Below are resources for Tribes on fossil energy. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper...

231

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

232

Optimal design and integration of solar systems and fossil fuels for process cogeneration  

E-Print Network (OSTI)

Because of the fluctuations in incident solar power, outlet power also changes over time (e.g., on an hourly basis or seasonally). If there is a need for a stable power outlet, there are options towards a steady state output of the system. This work is aimed at the development of systematic design procedures for two solar-based power generation strategies. The first is integration of fossil-fuel with the solar system to provide a compensation effect (power backup to supplement the power main source from solar energy). The second is the use of thermal energy storage (TES) systems to save solar energy in a thermal form and use it when solar input decreases. A common TES configuration is the two-tank system which allows the use of the collector heat transfer fluid (HTF) as a storing medium. For the two tanks, one tank has the hot medium (e.g., a molten salt) and the second has the cold storage media. Specifically, the following design challenges are addressed: 1. What is the optimal mix of energy forms to be supplied to the process? 2. What are the optimal scenario and integration mode to deliver the selected energy forms? How should they be integrated among themselves and with the process? 3. What is the optimal design of the energy systems? 4. What is the optimal dynamic strategy for operating the various energy systems? 5. What is the feasibility of using thermal energy storage to this optimum fossil fuel system? The developed procedure includes gathering and generation of relevant solar and climatic data, modeling of the various components of the solar, fossil, and power generation systems, and optimization of several aspects of the hybrid system. A case study is solved to demonstrate the effectiveness and applicability of the devised procedure.

Tora, Eman Abdel-Hakim Aly Mohamed

2008-08-01T23:59:59.000Z

233

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

which steam is raised. nuclear fuel generates heat that isattention to nuclear and fossil-fuel plants, and these areFor all the fossil-fuel and nuclear (However, categories,

Nero, A.V.

2010-01-01T23:59:59.000Z

234

Turing Water into Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Turning Water into Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin, Materials Science NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 PNNL Contacts: Loel Kathmann, Loel.Kathmann@pnnl.gov, +1 509 371 6068 Artwork from this catalysis research graced the cover of Physical Chemistry Chemical Physics. Image reproduced by permission of Dr Igor Lyubinetsky and the PCCP Owner Societies from Phys. Chem. Chem. Phys. 2012. Build a surface of titanium and oxygen atoms arranged just so, coat with water, and add sunshine. What do you get? In theory, energy-rich hydrogen produced by photolysis-a process by which water molecules placed on a catalytic surface and exposed to sunlight (electromagnetic radiation) are

235

Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California  

DOE Green Energy (OSTI)

This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

1977-01-01T23:59:59.000Z

236

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

Energy (EERE) and the Office of Fossil Energy (FE) have beenEERE) and the Office of Fossil Energy (FE) have been jointly

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

237

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network (OSTI)

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

238

Water reactor fuel cladding  

Science Conference Proceedings (OSTI)

This patent describes a nuclear reactor fuel element cladding tube. It comprises: an outer cylindrical layer of a first zirconium alloy selected from the group consisting of Zircaloy-2 and Zircaloy-4; an inner cylindrical layer of a second zirconium alloy consisting essentially of about 0.19 to 0.6 wt.% tin, about 0.19 to less than 0.5 wt.% iron, about 100 to 700 ppm oxygen, less than 2000 ppm total impurities, and the remainder essentially zirconium; the inner layer characterized by aqueous corrosion resistance substantially the same as the first zirconium alloy; the inner layer characterized by improved resistance to PCI crack propagation under reactor operating conditions compared to the first zirconium alloy and substantially the same PCI crack propagation resistance compared to unalloyed zirconium; and the inner cylindrical layer is metallurgically bonded to the outer layer.

Foster, J.P.; McDonald, S.G.

1990-06-12T23:59:59.000Z

239

Fuel Reliability Project: Boiling Water Fuel Performance at Kernkraftwerk Leibstadt  

Science Conference Proceedings (OSTI)

The Kernkraftwerk Leibstadt (KKL) boiling water reactor (BWR), a General Electric BWR/6, performed a lead use assembly (LUA) program with fuel from three fuel suppliers. This program presented a unique opportunity to evaluate fuel performance on advanced 10x10 designs of AREVA, Global Nuclear Fuel (GNF), and Westinghouse Electric Company (Westinghouse). Fuel assemblies from each supplier (vendor) were loaded into the KKL core in 1997 and 1998. A number of fuel inspections have been performed during annua...

2007-05-16T23:59:59.000Z

240

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels  

SciTech Connect

Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled â??Small Scale SOFC Demonstration using Bio-based and Fossil Fuels.â?ť Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

Michael Petrik; Robert Ruhl

2012-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Device for separating CO2 from fossil-fueled power plant emissions  

DOE Patents (OSTI)

A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.

Burchell, Timothy D [Oak Ridge, TN; Judkins, Roddie R [Knoxville, TN; Wilson, Kirk A [Knoxville, TN

2002-04-23T23:59:59.000Z

242

Applicability of Nanotechnology to Fossil Plant Water-Steam Cycles: Literature Review  

Science Conference Proceedings (OSTI)

The control of water purity, even to part per billion (ppb) levels, is vital to the energy efficiency and economic performance of fossil power stations. Failure to control levels of potentially aggressive impurities in the water-steam cycle can cause corrosion and even catastrophic failures. There is also a need to find and explore filtration technologies for power plants to improve reduction in metal oxides transport to vulnerable components. This report presents the findings of an investigation of the ...

2009-04-30T23:59:59.000Z

243

Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03  

Science Conference Proceedings (OSTI)

This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

Not Available

1980-06-01T23:59:59.000Z

244

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

245

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

246

An overview of alternative fossil fuel price and carbon regulation scenarios  

SciTech Connect

The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices, (3) externally generated oil price forecasts, and (4) the historical difficulty in accurately forecasting oil prices. Overall, a spread between the FE-EERE High Oil Price and Reference scenarios of well over $8/bbl is supported by the literature. We conclude that a wide range of carbon regulation scenarios are possible, especially within the time frame considered by EERE and FE (through 2050). The Working Group's Carbon Cap-and-Trade Scenario is found to be less aggressive than many Kyoto-style targets that have been analyzed, and similar in magnitude to the proposed Climate Stewardship Act. The proposed scenario is more aggressive than some other scenarios found in the literature, however, and ignores carbon banking and offsets and does not allow nuclear power to expand. We are therefore somewhat concerned that the stringency of the proposed carbon regulation scenario in the 2010 to 2025 period will lead to a particularly high estimated cost of carbon reduction. As described in more detail later, we encourage some flexibility in the Working Group's ultimate implementation of the Carbon Cap-and-Trade Scenario. We conclude by identifying additional scenarios that might be considered in future analyses, describing a concern with the proposed specification of the High Fuel Price Scenario, and highlighting the possible difficulty of implementing extreme scenarios with current energy modeling tools.

Wiser, Ryan; Bolinger, Mark

2004-10-01T23:59:59.000Z

247

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fossil-Fuel-Fired Steam Generators," U.S. Environmentalbasin Boiler or PWR Steam Generator Blowdown Transmissionreactor coolant pumps, steam generators, piping, main stream

Nero, A.V.

2010-01-01T23:59:59.000Z

248

Essays on Efficiency of the Farm Credit System and Dynamic Correlations in Fossil Fuel Markets  

E-Print Network (OSTI)

Markets have always changed in response to either exogenous or endogenous shocks. Many large events have occurred in financial and energy markets the last ten years. This dissertation examines market behavior and volatility in agricultural credit and fossil fuel markets under exogenous and endogenous changes in the last ten years. The efficiency of elements within the United States Farm Credit System, a major agricultural lender in the United States, and the dynamic correlation between coal, oil and natural gas prices, the three major fossil fuels, are examined. The Farm Credit system is a key lender in the U.S. agricultural sector, and its performance can influence the performance of the agricultural sector. However, its efficiency in providing credit to the agricultural sector has not been recently examined. The first essay of the dissertation provides assessments on the performance of elements within the Farm Credit System by measuring their relative efficiency using a stochastic frontier model. The second essay addresses the changes in relationship in coal, oil, and natural gas markets with respect to changes and turbulence in the last decade, which has also not been fully addressed in literature. The updated assessment on the relative performance of entities within the Farm Credit System provides information that the Farm Credit Administration and U.S. policy makers can use in their management of and policy toward the Farm Credit System. The measurement of the changes in fossil fuel markets’ relationships provides implications for energy investment, energy portfolio anagement, energy risk management, and energy security. It can also be used as a foundation for structuring forecasting models and other models related to energy markets. The dynamic correlations between coal, oil, and natural gas prices are examined using a dynamic conditional correlation multivariate autoregressive conditional heteroskedasticity (MGARCH DCC) model. The estimated results show that the FCS’s five banks and associations with large assets have more efficiently produced credit to the U.S. agricultural sector than smaller sized associations. Management compensation is found to be positively associated with the system’s efficiency. More capital investment and monitoring along with possible consolidation are implied for smaller sized associations to enhance efficiency. On average, the results show that the efficiency of the associations is increasing over time while the average efficiency of the five large banks is more stable. Overall, the associations exhibit a higher variation of efficiency than the five banks. In terms of energy markets the estimates from the MGARCH DCC model indicate significant and changing dynamic correlations and related volatility between the coal, oil, and natural gas prices. The coal price was found to experience more volatility and become more closely related to oil and natural gas prices in recent periods. The natural gas price was found to become more stable and drift away from its historical relationship with oil.

Dang, Trang Phuong Th 1977-

2012-12-01T23:59:59.000Z

249

Microbial Fuel Cells Generate Energy While Clearing Biowaste ...  

Microbial Fuel Cells Generate Energy While Clearing Biowaste from Water Technology Summary ... from fossil fuels is both expensive and environmentally harmful.

250

The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector  

DOE Green Energy (OSTI)

Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hydrocarb Corp., New York, NY (United States); Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1993-10-01T23:59:59.000Z

251

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

252

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

253

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

Science Conference Proceedings (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

254

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1981  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following major areas of investigation: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum and synthetic crude, thermodynamics; process technology); utilization; project integration and technology transfer. Highlights for this period in research studies are listed as those in extraction research and processing and thermodynamics research. Searches for microorganisms that will be useful in enhanced oil recovery have produced two promising leads. At Oklahoma State University, bacteria of the genus Clostridia have been found which can live in a brine solution as found in most petroleum reservoirs. These bacteria produce carbon dioxide, acetic acid, alcohols, and ketones as metabolic products. At the University of Georgia, a culture of bacteria has been found which will reduce the viscosity of a 10/sup 0/ API gravity oil by 95 percent. The analysis of heavy oils requires differentiation of sulfur, nitrogen, and oxygen-containing compounds from hydrocarbons. The most effective way to do this is with a high-resolution mass spectrometer that can distinguish between compounds having molecular weights only a fractional unit apart. These molecular weights are calculated from the computer acquired time-moments of the various ions in a mass spectrum. Thus, the accuracy of results reflects, in part, the numerical methods used in data processing. Consequently, the effect of the mathematical functions on the accuracy of mass measurement is being determined.

Not Available

1981-01-01T23:59:59.000Z

255

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

256

Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not readily apparent in publicly reported CCS cost estimates. As a consequence, there is a significant degree of misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance ...

2013-03-18T23:59:59.000Z

257

Emissions of CO/sub 2/ to the atmosphere due to U. S. A. fossil fuel consumption  

SciTech Connect

Analysis and projection of carbon dioxide emitted to the atmosphere are estimated based on the Brookhaven reference energy system. Some new results are given on carbon dioxide contribution to the atmosphere from US fossil fuel consumption by different sectors including residential, commercial, industrial and transportation. The total weight of carbon as carbon dioxide emitted to the atmosphere and the additional CO/sub 2/ concentration over background by different subsectors in the years 1977, 1980, 1985, 1990, 2000 and 2020 are presented.

Dang, V.D.; Steinberg, M.

1980-06-01T23:59:59.000Z

258

Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus 36B  

E-Print Network (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (C02) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: 1) updating the 1950 to present time series of C02 emissions from fossil fuel consumption and cement manufacture, 2) extending this time series back to 1751, 3) gridding the data at 1 ' by 1 ' resolution, and 4) estimating the isotopic signature of these emissions. In 1991, global emissions of C02 from fossil fuel and cement increased 1.5 % over 1990 levels to 6188 x lo6 metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement wit % two other, but shorter, energy time series. A latitudinal distriiution of carbon emissions is being completed. A southward shift in the major mass of C02 emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population

Robert J. Andres; Gregg Marl; Tom Boden; Steve Bischof

1984-01-01T23:59:59.000Z

259

Accident Tolerant Fuels for Light Water Reactors  

Science Conference Proceedings (OSTI)

Presentation Title, Accident Tolerant Fuels for Light Water Reactors. Author(s), Steven J. Zinkle, Kurt A. Terrani, Lance L. Snead. On-Site Speaker (Planned) ...

260

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

with the more-polluting fossil fuels being consumed abroaddomestic fuel consumers and fossil fuel suppliers. Numericalequivalent quantity of fossil fuel but may replace more or

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is… (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

262

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

263

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

264

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

265

Coal-water mixture fuel burner  

DOE Patents (OSTI)

The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

Brown, T.D.; Reehl, D.P.; Walbert, G.F.

1985-04-29T23:59:59.000Z

266

Table 3.8 Value of Fossil Fuel Exports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Energy, Office of Fossil Energy. Crude Oil and Petroleum Products: - 1949-1988-Bureau of the Census, U.S. Exports, FT410. - 1989 forward-Bureau of the Census, Foreign ...

267

Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity  

DOE Green Energy (OSTI)

The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate electrodes. One carbon materials was identified which delivered anode current densities of 1 kA/m{sup 2} at 0.8 V (i.e., 80% efficiency, based on the standard enthalpy of carbon/oxygen reaction, and assuming full conversion), which we believe to be sufficiently great to allow practical application in fuel cell arrays. Since the hydrocarbon starting materials are ''ash free,'' entrainment of ash into the melt is not limiting. Finally, the use of fine carbon particulates in slurries avoids cost and logistics of carbon electrode manufacture and distribution.

Cooper, J F; Cherepy, N; Krueger, R

2000-08-10T23:59:59.000Z

268

Summary of research on hydrogen production from fossil fuels conducted at NETL  

DOE Green Energy (OSTI)

In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100şC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

Shamsi, Abolghasem

2008-03-30T23:59:59.000Z

269

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

reaction of energy markets to higher fuel prices. Combinedreaction of energy markets to higher fuel prices. Other Highin spot market prices (note California Energy Commission.

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

270

Microsoft Word - Emerging Issues for Fossil Energy and Water--062706 FINAL NO Tracked Changes.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

06 06 Emerging Issues for Fossil Energy and Water DOE/NETL-2006/1233 Investigation of Water Issues Related to Coal Mining, Coal to Liquids, Oil Shale, and Carbon Capture and Sequestration Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not

271

Energy Saving Absorption Heat Pump Water Heater  

energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs are limited to using toxic ammonia water ...

272

What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions  

SciTech Connect

Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

Kane, R.L. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (USA)); South, D.W. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

273

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

NLE Websites -- All DOE Office Websites (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

274

Water injected fuel cell system compressor  

DOE Patents (OSTI)

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

275

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Fuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generatingFuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generating

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

276

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

277

Fuel Cell Technologies Office: Water Electrolysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Electrolysis Water Electrolysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Water Electrolysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Water Electrolysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Google Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Delicious Rank Fuel Cell Technologies Office: Water Electrolysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Water Electrolysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

278

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network (OSTI)

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquirá Associate Professor Electricity Heat Water #12;Second Forum on Energy & Water Sustainability April 10th /09 6 PEM Fuel Cells for research 2. Fuel-cell fundamentals 3. Implications of using water from fuel cells in a society

Keller, Arturo A.

279

Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Billion ...  

U.S. Energy Information Administration (EIA)

1 Includes petroleum preparations, liquefied propane and butane, and, beginning in 1997, other mineral fuels. R=Revised. P=Preliminary. E=Estimate.

280

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

3) inclusion of high coal prices within the High Fuel Pricegas prices (as well as coal prices, as substitutes for both

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

SciTech Connect

This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project â??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.â?ť This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

2011-12-31T23:59:59.000Z

282

Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California  

DOE Green Energy (OSTI)

This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities.

Nero, A.V. Jr.

1977-01-01T23:59:59.000Z

283

Metal-Oxo Catalysts for Generating Hydrogen from Water ...  

Clean and sustainable alternative to fossil fuels; Can be used with sea water and other abundant, untreated water sources; Applications and Industries.

284

Plasma Nanocrystalline Doped Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Advanced Research contacts Robert R. Romanosky Technology Manager Advanced Research National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov susan M. Maley Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1321 susan.maley@netl.doe.gov Hai Xiao University of Missouri-Rolla Electrical and Computer Engineering Department Rolla, MO 65409 573-341-6887 xiaoha@umr.edu Novel seNsors for high temperature iN-situ moNitoriNg of fossil fuel gases Description Novel types of sensors are needed to withstand the harsh environments characteristic of advanced power generation systems, particularly gasification-based systems.

285

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

1A5) Nat Gas Petroleum Coal Source: CARB, 2007a Note: CodePetroleum and Coal Products Manufac. Refinery Fuel Sourceand total petroleum products. Data Sources In the CALEB

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

286

Fossil-Fuel CO2 Emissions from Central America, South America...  

NLE Websites -- All DOE Office Websites (Extended Search)

Venezuela (46.2), Chile (19.9), Columbia (18.5), Trinidad and Tobago (13.6), and Peru (11.1). This is a region of great diversity. Liquid fuels account for 60.8% of the 2008...

287

Cofiring: technological option in Romania for promoting cleaner fossil fuels usage.  

E-Print Network (OSTI)

??Co-firing refers to the simultaneous or alternative utilisation of two or more fuels in a combustion unit for the purpose of heat/power generation and it… (more)

Marin, Bogdan

2008-01-01T23:59:59.000Z

288

Water Outlet Control Mechanism for Fuel Cell System Operation ...  

Self-Regulating Water Separation System for Fuel Cells Innovators at NASA’s Johnson Space ... Solar Thermal; Startup ... The system uses the flow energy of the fuel ...

289

STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION  

E-Print Network (OSTI)

Aqueous from Fossil Fuel Conversion Processes", ~l:;_ŁJ. _and Pollution Control in Coal Conversion Processes", U. s.By-Product Waters from Coal Conversion Processes", American

Hill, Joel David

2013-01-01T23:59:59.000Z

290

Average effluent releases from U. S. nuclear power reactors, compared with those from fossil-fueled plants, in terms of currently applicable environmental standards  

SciTech Connect

From 3rd international congress of the International Radiation Protection Association meeting; Washington, District of Columbia, USA(9 Sep 1973). Between 1967 and 1972, eighteen second generation'' lightwater-cooled nuclear power plants, with capacities in the range of 500 to 800 MW(e) have been put into operation in the United States. These were in addition to ten smaller demonstration plants and one high-temperature gas-cooled nuclear power plant in operation at the start of this period. The reported yearly air effluent releases of radioactive gases, halogens and particulates, and liquid effluent fission and activation products and of tritium from these plants are evaluated on a Ci/10/sup 3/ MW(e) basis, and the overall yearly averages for the various types of reactors (boiling water (BWR), pressurized water (PWR) and high temperature gas-cooled (HTGR)! are compared. These and the amounts of effluents released from reference 1,000 MW(e) fossil-fueled plants are compared in terms of relative environmental concentrations and their relationship to the applicable U. S. environmental standards for the principal constituents in their respective plant air-effluent streams. 21 references. (auth)

Hull, A.P.

1973-09-19T23:59:59.000Z

291

Fossil Energy FY 2014 Appropriations Hearing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Appropriations Hearing FY 2014 Appropriations Hearing Fossil Energy FY 2014 Appropriations Hearing March 14, 2013 - 1:36pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations, Subcommittee on Energy and Water Development. Mr. Chairman, Madam Ranking Member, and Members of the Committee, it is my pleasure to appear before you today to discuss the Department of Energy's (DOE) Office of Fossil Energy's (FE) programs. Our fossil fuel resources are essential to the Nation's security and economic prosperity. The Office of Fossil Energy's primary mission is to ensure that the U.S. can continue to utilize those traditional fuel sources for clean, affordable, reliable energy. Technology development is critical to this mission. FE's Research and Development (FER&D) program

292

Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Budget Request Fiscal Year 2012 Budget Request Fossil Energy Fiscal Year 2012 Budget Request March 30, 2011 - 2:40pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Committee on Appropriations Subcommittee on Energy and Water Development. Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2012. The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels currently provide 83 percent of U.S. energy consumption and are expected to continue to play a critical role in meeting our Nation's energy needs for the foreseeable future. Making use of these

293

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report  

SciTech Connect

The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

William L. ROberts

2012-10-31T23:59:59.000Z

294

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

295

Water Uptake of Fuel-Cell Catalyst Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Uptake of Fuel-Cell Catalyst Layers Title Water Uptake of Fuel-Cell Catalyst Layers Publication Type Journal Article Year of Publication 2012 Authors Kusoglu, Ahmet, Anthony...

296

DOE Hydrogen Analysis Repository: Fuel Cell Water Transport Mechanism  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Transport Mechanism Project Summary Full Title: Neutron Imaging Study of the Water Transport Mechanism in a Working Fuel Cell Project ID: 183 Principal Investigator: Muhammad...

297

www.fossil.energy.gov  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Fossil Energy (FE) programs are focused on The Office of Fossil Energy (FE) programs are focused on activities related to the reliable, efficient, affordable and en- vironmentally sound use of fossil fuels which are essential to our Nation's security and economic prosperity. FE manages DOE's Fossil Energy Research and Development Program, which includes the CCS Dem- onstration Programs; Carbon Capture and Storage and Power Systems Program; and

298

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

299

Comparative analysis of structural concrete quality assurance practices on three fossil fuel power plant construction projects. Final report  

SciTech Connect

The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to criteria similar to those which apply on nuclear power plant projects. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

1978-06-01T23:59:59.000Z

300

TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS  

DOE Green Energy (OSTI)

With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similar

Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

302

Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Topical report February 1994--February 1995  

DOE Green Energy (OSTI)

Experiments were made on use of H and CH plasmas for converting waste materials and heavy oils to H-rich transportation fuels. Batch and continuous experiments were conducted with an industrial microwave generator and a commercial microwave oven. A continuously circulating reactor was constructed for conducting experiments on flowing oils. Experiments on decomposition of scrap tires showed that microwave plasmas can be used to decompose scrap tires into potentially useful liquid products. In a batch experiment using a commercial microwave oven, about 20% of the tire was converted to liquid products in about 9 minutes. Methane was decomposed in a microwave plasma to yield a liquid products composed of various compound types; GC/MS analyses identified unsaturated compounds including benzene, toluene, ethyl benzene, methyl and ethyl naphthalene, small amounts of larger aromatic rings, and olefinic compounds. Experiments on a crude oil in a continuously flowing reactor showed that distillate materials are produced using H and CH plasmas. Also, the recycle oils had an overall carbon aromaticity lower than that of starting feed material, indicating that some hydrogenation and methanation had taken place in the recycle oils.

NONE

1995-02-01T23:59:59.000Z

303

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

304

Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants  

DOE Green Energy (OSTI)

Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

Rosen, L.C.

1977-01-01T23:59:59.000Z

305

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

306

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

307

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died and were gradually buried by layers of rock. Over millions of years, different types of fossil fuels formed -- depending on what combination of organic matter was present, how long it was buried and what temperature and pressure conditions existed as time passed.

308

An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel  

DOE Green Energy (OSTI)

The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

Zhicheng Wang

2007-03-15T23:59:59.000Z

309

for Fossil Fuel Reduction and Other Benefits—Status of North American Facilities in 2010  

E-Print Network (OSTI)

U The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write

Forest Service; Cofiring Biomass; David Nicholls; John Zerbe

2012-01-01T23:59:59.000Z

310

Energy Saving Absorption Heat Pump Water Heater - Energy ...  

ORNL’s new absorption heat pump and water heater technology offers substantial energy savings and can reduce the use of fossil fuels by buildings. While ...

311

Combustion and fuel characterization of coal-water fuels  

Science Conference Proceedings (OSTI)

Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal-water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. Discussions on transport, rheology, combustion properties, and ash characterization are included. 11 refs., 9 figs., 7 tabs.

Chow, O.K.; Patel, R.L.; Levasseur, A.A.

1987-07-01T23:59:59.000Z

312

Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems  

SciTech Connect

Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

Bailey, W.J.; Berting, F.M.

1990-12-01T23:59:59.000Z

313

Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect  

SciTech Connect

In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

1978-09-25T23:59:59.000Z

314

Optimization of hydride fueled pressurized water reactor cores  

E-Print Network (OSTI)

This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

Shuffler, Carter Alexander

2004-01-01T23:59:59.000Z

315

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

SciTech Connect

Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

2008-05-01T23:59:59.000Z

316

Monthly 2008 Utility and Nonutility Fuel Receipts and Fuel Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags fossil fuel receipts, coal receipts, oil receipts, gas receipts, fossil fuel consumption, electricity generating fuel Dataset Ratings Overall 0 No votes yet Data...

317

Fossil Fuels Portal  

Science Conference Proceedings (OSTI)

... Latest Publications. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. ...

2012-12-26T23:59:59.000Z

318

Taxes on fossil fuels.  

E-Print Network (OSTI)

?? Efterfrĺgan pĺ biobränslen har ökat de 30 senaste ĺren och under samma tidsperiod har oljepriset stigit. I den här uppsatsen har vi undersökt i… (more)

Östman, Beata

2006-01-01T23:59:59.000Z

319

Fuel traps: mapping stability via water association.  

DOE Green Energy (OSTI)

Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer; Sabo, Dubravko; Martin, Marcus Gary; Cygan, Randall Timothy

2007-03-01T23:59:59.000Z

320

Water Transport in PEM Fuel Cells: Advanced Modeling, Material...  

NLE Websites -- All DOE Office Websites (Extended Search)

against * steady state and transient operational cell data. Complete fuel cell water transport model improvements * and code package development to include two phase flow....

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Neutron Imaging Study of the Water Transport in Operating Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Durability (B) Cost (C) Performance This project is conducting fundamental studies of water transport in the fuel cell. Insights gained from these studies will be applied toward...

322

Liquid Fuels from CO2, Water, and Solar Energy  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title, Liquid Fuels from CO2, Water, and Solar Energy. Author(s), Aldo ...

323

Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, R.K.; Hirschfeld, T.B.

1981-03-26T23:59:59.000Z

324

Los Alamos Lab: Fossil Energy & Environment, Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Jutta Kayser 505-663-5649 Program Manager Melissa Fox 505-663-5538 A New Era for Fossil Fuels The Office of Fossil Energy and Environment (FE) is the focal point for Los...

325

Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report  

SciTech Connect

A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

1978-12-01T23:59:59.000Z

326

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network (OSTI)

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production… (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

327

INVESTIGATION OF DEEP-WATER CIRCULATION MODES IN THE EARLY CENOZOIC USING NEODYMIUM ISOTOPES FROM FOSSIL FISH DEBRIS  

E-Print Network (OSTI)

The ocean’s deep-water circulation plays a large role in heat transport across the globe. Circulation in the modern begins where cold, dense surface waters of the North Atlantic and Southern oceans sink to form Atlantic Bottom water. However, this mode did not operate in the geologic past. A growing body of Nd isotope data from fossil fish debris is being used to reconstruct the ancient mode of deep-water circulation throughout the early Cenozoic greenhouse interval. Recent data from previous Ocean Drilling Program (ODP) sites suggest that a bipolar mode of meridional overturning circulation may have existed in the Pacific during the early Cenozoic, beginning ~65 million years ago and lasting until ~40 million years ago. Here I present new data from Deep Sea Drilling Project (DSDP) Site 464, Northern Hess Rise, to enhance the reconstruction of deep water mass composition as well as determine if a reductive cleaning step (“clean”) method is necessary during sample preparation. Site 464 ?Nd(t) values range from -.30 to less radiogenic values of -4.42 from ~56.0 to 32.3 million years ago, showing a shift from a North Pacific deep-water influence to a Southern Ocean influence. The comparison of “clean” versus “unclean” analyses indicates that both record the same seawater composition.

Jones, Landon 1989-

2011-05-01T23:59:59.000Z

328

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

329

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

330

pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly ...  

The discovery represents a cost-effective way to utilize materials indigenous to fossil fuel burning power platns to control mineral precipitation is cooling water.

331

Pressurized Water Reactor Fuel Cleaning Using Advanced Ultrasonics  

Science Conference Proceedings (OSTI)

EPRI Ultrasonic Fuel Cleaning Technology (patent pending) was successfully qualified and demonstrated in the field at AmerenUE Callaway Plant under joint sponsorship of the EPRI Robust Fuel Program, Working Group 1 Fuel/Water Chemistry, and an AmerenUE Tailored Collaboration. In October 1999, the project team cleaned sixteen reload assemblies, which are currently undergoing re-irradiation in Cycle 11 at Callaway Plant. The assemblies show no evidence to date of any adverse fuel performance as a consequen...

2000-11-17T23:59:59.000Z

332

The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles  

E-Print Network (OSTI)

may be rapidly approaching what is often referred to as peak oil , i.e. the absolute peak in global of fossil carbon, such as petroleum oil, natural gas and various grades of coal (Cleveland et al., 1984; Hall et al., 2008; Murphy and Hall, 2011). Conventional oil and gas reserves are being depleted

333

Rethinking the light water reactor fuel cycle  

E-Print Network (OSTI)

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

334

Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2  

Science Conference Proceedings (OSTI)

The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

2002-09-01T23:59:59.000Z

335

Reconstruction of Early Paleogene North Pacific Deep-Water Circulation using the Neodymium Isotopic Composition of Fossil Fish Debris  

E-Print Network (OSTI)

To better understand the operating mode of the deep oceans during fundamentally warm climate intervals, we present new Nd isotope data from Deep Sea Drilling Project and Ocean Drilling Program sites in the North Pacific to expand the reconstruction of water mass composition and structure during the early Cenozoic. Fossil fish debris from Sites 192, 464, 465, 883, 884 and 1208 (paleowater depths spanning 900 to 4000 m) were used to reconstruct the water mass composition from ~85 to 30 Ma. The fish debris is shown to not be overprinted as there was no systematic offset between the detrital silicate and the fish debris composition. Cleaned and uncleaned fish debris were both included in the reconstruction of water mass composition as they were found to record the same Nd isotope composition. North Pacific deep water convection occurred from ~67 to 45 Ma, the peak in production is recorded by broadly coincident trends at Sites 192, 464 and 883. Further support for North Pacific deep-water convection during the early Paleogene are the geographic trends in detrital silicate versus fish debris composition, greater separation at the more northerly Emperor Seamount sites, and the location of the most radiogenic detrital values at the Emperor Seamount sites. The Emperor Seamount chain likely played a major role in the flow of the North Pacific deep-water mass as it acted as a physical barrier to flow at deep-water sites compared to shallow depths (albeit still deep-water). ?Nd values indicate the timing of the cessation of major, deep convection in the North Pacific occurred much earlier, ~52 Ma than the timing obtained from shallower Shatsky Rise sites, ~45 Ma. Convection in the North Pacific likely produced a dense water mass that influenced the deeper sites in this study more than the shallower sites until ~52 Ma when convection was not as intense or the waters were not sufficiently dense to impact the deeper sites. Deep water convection was most intense during the relatively “cool” portion of the Late Cretaceous and Early Paleocene.

Hague, Ashley Melissa

2011-08-01T23:59:59.000Z

336

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

337

Fossil Energy Budget Request for Fiscal Year 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Budget Request for Fiscal Year 2013 Budget Request for Fiscal Year 2013 Fossil Energy Budget Request for Fiscal Year 2013 March 27, 2012 - 1:12pm Addthis Statement of Mr. Chuck McConnell, Assistant Secretary for Fossil Energy (nominated), before the House Committee on Appropriations, Subcommittee on Energy and Water Development on FE's FY2013 Budget Request. Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2013. The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels, which provide 83 percent of U.S. energy consumption, are expected to continue to play a critical role in meeting

338

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification. CR-2418, CR-2688,CR-2981

339

Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell  

Science Conference Proceedings (OSTI)

Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuel—making them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once they’re pumped out of the tank.

None

2010-07-01T23:59:59.000Z

340

Table WH10. Consumption Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (physical units/number of household members) Electricity Table WH10. Consumption Intensity by Main Water Heating Fuel Used, 2005

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

342

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel May 5, 2011 - 1:27pm Addthis Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D.

343

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel May 5, 2011 - 1:27pm Addthis Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D.

344

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

345

Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle  

Science Conference Proceedings (OSTI)

Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-12-15T23:59:59.000Z

346

Guidelines for Makeup Water Treatment  

Science Conference Proceedings (OSTI)

The quality of boiler and heat recovery steam generator HRSG cycle makeup water is central to ensuring the necessary purity of boiler or HRSG water, feedwater, and steam. It plays an important role in ensuring component availability and reliability in fossil and combined cycle plants. This report presents up-to-date guidelines based on proven approaches for producing makeup water from various raw water supplies. Major losses of availability in fossil fuel plants are attributable to water and steam contam...

2010-12-23T23:59:59.000Z

347

Assessment of innovative fuel designs for high performance light water reactors  

E-Print Network (OSTI)

To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

Carpenter, David Michael

2006-01-01T23:59:59.000Z

348

CHEMICAL ASPECTS OF PELLET-CLADDING INTERACTION IN LIGHT WATER REACTOR FUEL ELEMENTS  

E-Print Network (OSTI)

ANS/ENS Topical Meeting on Reactor Safety Aspects of FuelINTERACTION IN LiaiT-WATER-REACTOR FUEL ELEMENTS by D. R.PCI) in light water reactor fuel elements, the chemical

Olander, D.R.

2010-01-01T23:59:59.000Z

349

Water Resource Impacts of Alternative Fuels  

E-Print Network (OSTI)

Energy Commission also has produced large number of reports on California's water ­ energy relationship. NRDC and other NGOs also have produced reports on similar issues #12;8 Modeling Water Resources within per unit (gallon or mmBtu) of ethanol produced NAS (07), Fingerman (08): Net water changes from

California at Davis, University of

350

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

351

The Monitor Blue Skies A future for fossil fuels http://www.epolitix.com/EN/Publications/Blue+Skies+Monitor/132... 1 of 2 30/10/05 11:40 pm  

E-Print Network (OSTI)

' production of carbon dioxide produced by all European power stations ­ some estimates state 500 years (CCS) hovers around two percent of the adult population. Yet many key players in the fossil fuel energy to miss its reduction targets in 2010 by 34 million tons per year. The rise of renewables is more than

Haszeldine, Stuart

352

Char-water slurry fuel and method of making  

DOE Patents (OSTI)

A method of producing a slurry usable as a fuel source is provided which comprises combining the char obtained from the pyrolysis of coal or other feedstocks under mild temperatures with water to produce a char-water slurry. The char-water slurry fuel source can be utilized by combustion or gasification with a high efficiency, and can be prepared using previously underutilized low-rank coals which have a high moisture content. The present invention maximizes efficiency in the overall processing of coal and other feedstocks and provides an alternative method of utilizing indigenous coal resources in the United States and other countries. 2 figs., 2 tabs.

Khan, M.R.

1990-01-29T23:59:59.000Z

353

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB)...

354

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities. 3 figs.

Becker, F.E.; Smolensky, L.S.; Balsavich, J.

1989-11-01T23:59:59.000Z

355

A Future for Fossil Fuel By JOHN DEUTCH and ERNEST MONIZ March 15, 2007; Page A17  

E-Print Network (OSTI)

of heat energy from coal is $1-$2 per million BTUs, compared to $6-$8 for natural gas and $8-$12 for oil of choice for new, electricity-generating power plants at today's fuel prices. What about coal: This involves capturing the gas produced by coal combustion and burying it in deep geological formations

Deutch, John

356

Fossil Energy RSS Feeds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

357

Stable slurries of solid carbonaceous fuel and water  

Science Conference Proceedings (OSTI)

This patent describes a pumpable slurry of solid carbonaceous fuel and water with reduced viscosity and sedimentation rate for use as feed to a partial oxidation gas generator for the production of raw synthesis gas, reducing gas, or fuel gas by reacting in the gas generator with a free-oxygen containing gas. The slurry comprises about 50 to 75 weight percent of high rank comminuted solid carbonaceous fuel having 5.0 weight percent or below of organically combined oxygen wherein the solid carbonaceous fuel is selected from the group consisting of anthracite coal, petroleum coke, coal liquefaction solid residue, asphaltic bitumen, and mixtures thereof; and about 0.001 to 0.100 parts by weight of a surfactant for each part by weight of the solid carbonaceous fuel.

Yaghmaie, F.; McKeon, R.J.

1988-06-07T23:59:59.000Z

358

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

359

Program on Technology Innovation: Programmatic Risk Assessment Future Fossil- and Biomass-Fueled Power Generation System Configurations  

Science Conference Proceedings (OSTI)

Recent and upcoming regulatory activities will have a major impact on power plant design over the next few decades. To address various environmental concerns, including climate change, emissions of specific air toxics and waste-to-energy goals, a number of different power plant configurations have been proposed involving differences in fuel type, boiler designs and emissions control technology. The Electric Power Research Institute (EPRI) commissioned Gradient to evaluate risks associated with ...

2012-12-20T23:59:59.000Z

360

Water transport properties of fuel cell ionomers  

DOE Green Energy (OSTI)

We will report transport parameters measured for several available perfluorosulfonate membranes. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and conductivity will be compared for these materials. The intrinsic properties of the membranes will be the basis of our comparison. An objective look at transport parameters should enable us to compare membranes without the skewing effects of extensive features such as membrane thickness. 8 refs., 4 figs., 2 tabs.

Zawodzinski, T.A. Jr.; Springer, T.E.; Davey, J.; Valerio, J.; Gottesfeld, S.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table WH3. Total Consumption for Water Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Table WH3. Total Consumption for Water Heating by Major Fuels Used, 2005 Physical Units Electricity (billion kWh) Natural Gas (billion cf) Fuel Oil

362

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

363

NETL: News Release - Office of Fossil Energy Develops Educational...  

NLE Websites -- All DOE Office Websites (Extended Search)

them, and the current research and technologies being developed to allow us to use the fossil fuels in a more efficient and environmentally-sound manner. The Office of Fossil...

364

An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuels  

E-Print Network (OSTI)

Biomass conversion into forms of energy is receiving current attention because of environmental, energy and agricultural concerns. The purpose of this thesis is to analyze the environmental, energy, economic, and technological aspects of using a form of biomass, switchgrass (panicum virgatum), as a partial or complete replacement for coal in power generation and cogeneration systems. To examine the effects of such a substitution, an environmental biocomplexity approach is used, wherein the agricultural, technological, economic, and environmental factors are addressed. In particular, lifecycle analysis (LCA) and a three-dimensional integrated economic, energy and environmental analysis is employed. The effectiveness of alternate technologies for switchgrass preparation, harvest and use in terms of greenhouse gas impact, cost and environmental implications is examined. Also, different scenarios of cofiring and biomass preparation pathways are investigated. Optimization of the total biomass power generation cost with minimum greenhouse gas effect is undertaken using mathematical programming for various alternate competitive biomass processing pathways. As a byproduct of this work a generic tool to optimize the cost and greenhouse gas emissions for allocation of fuel sources to the power generating sinks is developed. Further, this work discusses the sensitivity of the findings to varied cofiring ratios, coal prices, hauling distances, per acre yields, etc. Besides electricity generation in power plants, another viable alternative for reducing greenhouse gases (GHGs) is the utilization of biomass in conjunction with combined heat and power (CHP) in the process industries. This work addresses the utilization of biowaste or biomass source in a processing facility for CHP. A systematic algebraic procedure for targeting cogeneration potential ahead of detailed power generation network design is presented. The approach presented here effectively utilizes the biomass and biowaste sources as external fuel, and matches it with the use and dispatch of fuel sources within the process, heating and non-heating steam demands, and power generation. The concept of extractable energy coupled with flow balance via cascade diagram has been used as a basis to construct this approach. The work also discusses important economic factors and environmental policies required for the cost-effective utilization of biomass for electricity generation and CHP.

Mohan, Tanya

2005-12-01T23:59:59.000Z

365

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

Science Conference Proceedings (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

366

Feasibility of breeding in hard spectrum boiling water reactors with oxide and nitride fuels  

E-Print Network (OSTI)

This study assesses the neutronic, thermal-hydraulic, and fuel performance aspects of using nitride fuel in place of oxides in Pu-based high conversion light water reactor designs. Using the higher density nitride fuel ...

Feng, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

367

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

368

Distribution of characteristics of LWR [light water reactor] spent fuel  

SciTech Connect

The purpose of this report is to develop a collective description of the entire spent fuel inventory in terms of various fuel properties relevant to Approved Testing Materials (ATMs) using information available from the Characteristics Data Base (CBD), which is sponsored by the US Department of Energy`s (DOE`s) Office of Civilian Radioactive Waste Management. A number of light-water reactor (LWR) characteristics were analyzed including assembly class representation, fuel burnup, enrichment, fuel fabrication data, defective fuel quantities, and, at PNL`s specific request, linear heat generation rate (LHGR) and the utilization of burnable poisons. A quantitative relationships was developed between burnup and enrichment for BWRs and PWRs. The relationship shows that the existing BWR ATM is near the center of the burnup-enrichment distribution, while the four PWR ATMs bracket the center of the burnup range but are on the low side of the enrichment range. Fuel fabrication data are based on vendor specifications for new fuel. Defective fuel distributions were analyzed in terms of assembly class and vendor design. LHGR values were calculated from utility data on burnup and effective full-power days; these calculations incorporate some unavoidable assumptions which may compromise the value of the results. Only a limited amount of data are available on burnable poisons at this time. Based on this distribution study, suggestions for additional ATMs are made. These are based on the class and design concepts and include BWR/2,3 barrier fuel, and the WE 17 {times} 17 class with integral burnable poison. Both should be at relatively high burnups. 16 refs., 5 figs., 15 tabs.

Reich, W.J.; Notz, K.J. [Oak Ridge National Lab., TN (USA); Moore, R.S. [Automated Sciences Group, Inc., Oak Ridge, TN (USA)

1991-01-01T23:59:59.000Z

369

Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap„Precision Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Water-Neutral Diesel Fuel Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap-Precision Combustion Background Solid-Oxide Fuel Cell (SOFC) technology for auxiliary power units (APUs) offers the potential for major contributions toward Department of Energy (DOE) objectives such as clean energy deployment and improved efficiency. Reforming of conventional liquid fuels to produce synthesis gas (syngas) fuel for SOFC stacks is a practical approach for operating fuel cell APUs

370

A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy  

SciTech Connect

For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

Rozon, Daniel; Shen Wei [Institut de Genie Nucleaire (Canada)

2001-05-15T23:59:59.000Z

371

Rail transportation of coal-water slurry fuels  

Science Conference Proceedings (OSTI)

In view of the anticipated near-term appearance of commercial coal-water slurry (CWS) fuels, least-cost modes of their transportation should be considered now. Unlike dilute pipeline transport slurries (typically 50 percent solids) a CWS fuel is a stable, highly-loaded (typically 70 percent or more solids) with vastly different rheological properties. The high solids loading and stabilization against settling produce effective viscosities one or more orders of magnitude greater than those of dilute slurries. Pipeline transportation of such fuels for more than a few miles thus becomes economically unattractive. In the future, further physical refinement or slight dilution of CWS fuels may permit long-range transmission by slurry pipeline once they become available. In the meantime, distribution of these fuels to serve widely dispersed industrial users will be accomplished by barge or rail. In the latter case the high flow-friction characteristics will preclude use of the unit ''Tank Train'' system designed for loading and unloading via a single connection at high rates of flow. This limitation does not rule out assembly of unit trains of individually-loaded tank cars if desired. The optimum location of CWS fuel plants relative to mine-mouth coal preparation plants and/or pipeline terminals will require modeling of multi-mode transportation networks in order to determine the least-cost combination for serving the needs of industrial as well as utility CWS users.

Green, L.

1982-12-01T23:59:59.000Z

372

Drum Screen Filtration of Cooling Water in Fossil-Fired and Nuclear Power Plants: The Electricite de France (EDF) Experience  

Science Conference Proceedings (OSTI)

This document presents a summary of the lessons learned from operating the drum screen filtration systems used for the last three decades in Člectricité de France’s (EDF’s) nuclear and fossil-fired power plants, both in terms of the technological aspects of filtration and with regard to the prevention of clogging risks and the prevention of damage to the living organisms impinged on the drum screens and entrained into the cooling ...

2012-11-21T23:59:59.000Z

373

Table WH6. Average Consumption for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Major Fuels Used 5 (physical units of consumption per household using the fuel as a water heating source) Electricity (kWh) Table WH6. Average Consumption for Water ...

374

Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report  

DOE Green Energy (OSTI)

The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

1981-09-01T23:59:59.000Z

375

EIA Short-Term Energy and Winter Fuels OutlookWinter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels OutlookWinter Fuels Outlook ... for all fossil f elsMarch 31) for all fossil fuels Percent changg()e in fuel bills from last winter (forecast) Fuel bill ...

376

Combustion characterization of coal-water slurry fuel  

SciTech Connect

As a result of coal cleaning operations, a substantial amount of coal is disposed as waste into the ponds, effecting and endangering the environment. This study includes a technique to recover and utilize the waste coal fines from the preparation plant effluent streams and tailing ponds. Due to the large moisture content of the recovered coal fines, this investigation is focused on the utilization of coal fines in the coal-water slurry fuel. It is our belief that a blend of plant coal and waste coal fines can be used to produce a coal-water slurry fuel with the desired combustion characteristics required by the industry. The coal blend is composed of 85% clean coal and 15% recovered coal fines. The coal-water slurry is prepared at 60% solids with a viscosity less than 500 centipose and 80-90% of solid particles passing through 200 mesh. This paper contains analysis of clean coal, recovered coal fines, and coal-water slurry fuel as well as combustion characteristics.

Masudi, Houshang; Samudrala, S.

1996-12-31T23:59:59.000Z

377

pH Adjustment of Power Plant Cooling Water with Flue Gas/Fly Ash  

to fossil fuel burning power plants to control mineral precipitation in cooling water. Flue gas, which is 10% CO2, could be diverted into a plant’s cooling water

378

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy Reduction of Regulated Emissions in Coal and Refuse-Derived Fuel Operations. Related Patents: 7,384,615. Contact: David R. Anderson . Phone: (208) 526-0837

379

Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat.  

E-Print Network (OSTI)

, combined heat and power, materials handling, and backup power. Power Generation & Electric Grid support· Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat The demand for multi-megawatt (MW) fuel cell systems for power generation and utility grid support applica

380

Office of Fossil Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

Fossil Energy Fossil Energy Search Search form Search Office of Fossil Energy Office of Fossil Energy Services Services Home Petroleum Reserves Petroleum Reserves Home Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory Committees Science & Innovation Science & Innovation Home Clean Coal Clean Coal Home Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and Storage Carbon Capture and Storage Home Capture Storage Utilization MVA Regional Partnerships Oil & Gas Oil & Gas Home Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Mission About Us About Us Home News & Blog News & Blog Home FE Today Press Releases & Techlines

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chromium Alloys for More Efficient Fossil Energy Conversion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to improve efficiency and reduce environmental emissions in fossil energy conversion systems, new technologies such as oxy- fuel gas ...

382

Cost and Performance Comparison Baseline for Fossil Energy Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

for coal. Advances in technology are making it possible to generate power from fossil fuels with great improvements in the efficiency of energy use while at the same...

383

Cost and Performance Baseline for Fossil Energy Plants; Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

for coal. Advances in technology are making it possible to generate power from fossil fuels with great improvements in the efficiency of energy use while at the same...

384

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification Lawrence Berkeley National Laboratory. Contact LBL About This Technology

385

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

2000. Total fuel mix is 11% MOX + 89% U0 fuel with PuRadionuclide H U0 Fuel U0 + MOX Fuel 14C Kr I llO Other

Nero, A.V.

2010-01-01T23:59:59.000Z

386

Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B  

Science Conference Proceedings (OSTI)

Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

1985-12-01T23:59:59.000Z

387

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

388

Investments in fossil energy technology: How the government's fossil energy R&D program has made a difference  

Science Conference Proceedings (OSTI)

America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

None

1997-03-01T23:59:59.000Z

389

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

390

DOE - Fossil Energy:  

NLE Websites -- All DOE Office Websites (Extended Search)

and Trends Button National Security Button Safety and Health Button DOE Office of Fossil Energy Web Site Fossil Energy - Clean Coal Technologies - Carbon Capture,...

391

MIXED-OXIDE FUEL USE IN COMMERCIAL LIGHT WATER REACTORS  

E-Print Network (OSTI)

In a Commission briefing on high-bumup fuel on March 25, 1997, the staff said that they would prepare a white paper on mixed-oxide (MOX) fuel in anticipation of a DOE program to bum excess weapons plutonium in commercial reactors. This memorandum and its attachment comprise that paper and are provided to inform the Commissioners of technical issues associated with such a program. More recently, on February 5, 1999, I was contacted by the Nuclear Control Institute regarding a paper they have written on this subject. They presented that paper to the staff in a public meeting on April 7, 1999. The Nuclear Control Institute's written paper had been provided to the staff earlier, and we have taken the paper into consideration in preparing this memorandum. Back-ground In January 1997, the U.S. Department of Energy released a record of decision for the storage and disposition of weapons-usable fissile materials. In this record, DOE recommended that excess weapons-grade plutonium be disposed of by two methods: (1) reconstituting the plutonium into mixed-oxide (MOX) fuel rods and burning it in current light water reactors, and (2) immobilizing the plutonium in glass logs with appropriate radioactive isotopes to deter theft prior to geologic disposal. Based on current information, it now appears that, if the MOX fuel method is utilized, fuel fabrication will take place at the Savannah River site in South Carolina with burning in nearby Westinghouse-type PWRs. Although DOE will probably not receive funding in FY 2000 for developing a license application, Congress has already given its approval for NRC licensing authority over a MOX fuel fabrication facility operated under

United States; William D. Travers

1999-01-01T23:59:59.000Z

392

A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors  

SciTech Connect

Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main design criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)

Martinez-Frances, N.; Timm, W.; Rossbach, D. [AREVA, AREVA NP, Erlangen (Germany)

2012-07-01T23:59:59.000Z

393

The Fuel Situation  

Science Conference Proceedings (OSTI)

The United States has an abundance of energy resources; fossil fuels (mostly coal and oil shale) adequate for centuries

J. C. Fisher

1974-01-01T23:59:59.000Z

394

Advanced water-cooled phosphoric acid fuel cell development  

DOE Green Energy (OSTI)

The Advanced Water Cooled Phosphoric Acid Fuel Cell Development program is being conducted by International Fuel Cells Corporation (IFC) to improve the performance and minimize the cost of water-cooled, electric utility phosphoric acid fuel cell stacks. The program adapts the existing on-site Configuration B cell design to electric utility operating conditions and introduces additional new design features. Task 1 consists of the conceptual design of a full-scale electric utility cell stack that meets program objectives. Tasks 2 and 3 develop the materials and processes required to fabricate the components that meet the program objective. The design of the small area and two 10-ft[sup 2] short stacks is conducted in Task 4. The conceptual design also is updated to incorporate the results of material and process developments, as well as results of stack tests conducted in Task 6. Fabrication and assembly of the short stacks are conducted in Task 5 and subsequent tests are conducted in Task 6. The Contractor expects to enter into a contract with the Electric Power Research Institute (EPRI) to assemble and endurance test the second 10-ft[sup 2] short stack. The management and reporting functions of Task 7 provide DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that is being conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-07-01T23:59:59.000Z

395

Fossil Fuel Standard Reference Materials  

Science Conference Proceedings (OSTI)

... of greenhouse gases on climate change, there will be more focus in the future on the carbon budget and its role in the energy production cycle. ...

2012-10-01T23:59:59.000Z

396

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

experience in the nuclear fuels field. I am also extremelyreactor core components, nuclear fuel-element design hasreactors, commercial nuclear fuel still consists of uranium

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

397

Effect of High Reactor Water Zinc on Fuel Performance in Quad Cities 2  

Science Conference Proceedings (OSTI)

Due to reduction in feedwater Fe, reactor water Zn concentrations have been increasing in U.S. boiling water reactors (BWRs). The fuel performance experience base is limited to 8 to 10 ppb, and no fuel surveillance was performed in a plant operated with greater than 12 ppb reactor water Zn. The impact of high reactor water Zn on fuel performance is unknown. However, the change in the trends is large enough to raise a concern, and it requires a confirmation of the fuel performance with fuel ...

2013-07-02T23:59:59.000Z

398

Modeling Water Management in Polymer-Electrolyte Fuel Cells  

DOE Green Energy (OSTI)

Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential on the cathode) and the resulting effects of the kinetic reactions. Next, at low currents, the behavior of a PEFC is dominated by kinetic losses. These losses mainly stem from the high overpotential of the oxygen-reduction reaction (ORR). As the current is increased, ohmic losses become a factor in lowering the overall cell potential. These ohmic losses are mainly from ionic losses in the electrodes and separator. At high currents, mass-transport limitations become increasingly important. These losses are due to reactants not being able to reach the electrocatalytic sites. Key among the issues facing PEFCs today is water management. Due to their low operating temperature (< 100 C), water exists in both liquid and vapor phases. Furthermore, state-of-the-art membranes require the use of water to provide high conductivity and fast proton transport. Thus, there is a tradeoff between having enough water for proton conduction (ohmic losses), but not too much or else the buildup of liquid water will cause a situation in which the reactant-gas-transport pathways are flooded (mass-transfer limitations). Figure 3 displays experimental evidence of the effects of water management on performance. In Figure 3(a), a neutron image of water content displays flooding near the outlet of the cell due to accumulation of liquid water and a decrease in the gas flowrates. The serpentine flow field is clearly visible with the water mainly underneath the ribs. Figure 3(b) shows polarization performance at 0.4 and 0.8 V and high-frequency resistance at 0.8 V as a function of cathode humidification temperature. At low current densities, as the inlet air becomes more humid, the membrane resistance decreases, and the performance increases. At higher current densities, the same effect occurs; however, the higher temperatures and more humid air also results in a lower inlet oxygen partial pressure.

Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

2007-09-07T23:59:59.000Z

399

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

refabrication. through which nuclear fuel passes. Fusion.with the experience at the Nuclear Fuel Services Plant (seecommitment from the nuclear fuel cycle; see Section 3.2.3. )

Nero, A.V.

2010-01-01T23:59:59.000Z

400

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

of plutonium attainable with MOX fuel [24, 23]. In theof recycles feasible with MOX fuel is limited because the

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Interim Standard for Plutonium in Soils", Los Alamoson the Use of Recycle Plutonium in Mixed Oxide Fuel in LightCharacterization of Particulate Plutonium Released in Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

402

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

403

Conceptual design of an annular-fueled superheat boiling water reactor  

E-Print Network (OSTI)

The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

404

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents (OSTI)

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

405

Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak  

E-Print Network (OSTI)

Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

Victoria, University of

406

Modeling Water Management in Polymer-Electrolyte Fuel Cells  

Science Conference Proceedings (OSTI)

Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential on the cathode) and the resulting effects of the kinetic reactions. Next, at low currents, the behavior of a PEFC is dominated by kinetic losses. These losses mainly stem from the high overpotential of the oxygen-reduction reaction (ORR). As the current is increased, ohmic losses become a factor in lowering the overall cell potential. These ohmic losses are mainly from ionic losses in the electrodes and separator. At high currents, mass-transport limitations become increasingly important. These losses are due to reactants not being able to reach the electrocatalytic sites. Key among the issues facing PEFCs today is water management. Due to their low operating temperature (transfer limitations). Figure 3 displays experimental evidence of the effects of water management on performance. In Figure 3(a), a neutron image of water content displays flooding near the outlet of the cell due to accumulation of liquid water and a decrease in the gas flowrates. The serpentine flow field is clearly visible with the water mainly underneath the ribs. Figure 3(b) shows polarization performance at 0.4 and 0.8 V and high-frequency resistance at 0.8 V as a function of cathode humidification temperature. At low current densities, as the inlet air becomes more humid, the membrane resistance decreases, and the performance increases. At higher current densities, the same effect occurs; however, the higher temperatures and more humid air also results in a lower inlet oxygen partial pressure.

Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

2007-09-07T23:59:59.000Z

407

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil December 12, 2013 Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects The Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases December 12, 2013 The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory.

408

Hotcell Postirradiation Examination of Dresden-2 Fuel and Water Rods After Four Cycles of Hydrogen Water Chemistry  

Science Conference Proceedings (OSTI)

The use of hydrogen water chemistry (HWC) has been monitored to evaluate its impact on the performance of Zircaloy fuel cladding and components. This report presents the results of poolside and hotcell postirradiation examinations of several Dresden-2 fuel and water rods after four cycles of HWC injection. The results indicate that the corrosion and hydriding characteristics of the fuel rods were within the expected ranges, and HWC did not adversely affect cladding material properties.

1997-11-26T23:59:59.000Z

409

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

410

Number 158 June 1, 2002 Development of technically and economically viable processes for the conversion and utilization of fossil fuels is a major objective of both the DOE Fossil  

E-Print Network (OSTI)

ODS Alloy Heat Exchangers for Solid-Fuel Thermal Systems A high-efficiency coal-fired power plant and liquefaction, improved power generation and advanced combustion. As these processes evolve to the pilot plant. The power plant was commissioned during the springof1998andhasbeeninoperationsincethen.Allthree headers were

411

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

412

Benthic Microbial Fuel Cell Persistent power supply for in-water ...  

Benthic Microbial Fuel Cell Persistent power supply for in-water sensors ... and high-density sensor arrays where the cost of battery replacement is high.

413

Fuel Summary Report: Shippingport Light Water Breeder Reactor  

SciTech Connect

The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

Illum, D.B.; Olson, G.L.; McCardell, R.K.

1999-01-01T23:59:59.000Z

414

www.biosciencemag.org November 2006 / Vol. 56 No. 11 BioScience 875 Green Plants, Fossil Fuels, and Now Biofuels  

E-Print Network (OSTI)

, and coal. As the human population increases, so too does the consumption of soil and fossil energy use, the largest per capita consumption of any country. Between 1850 and 2000, 90 percent of the US hundred years. By 1850, when wood accounted for 91 percent of US energy consumption and the US population

Patzek, Tadeusz W.

415

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1, 2011 March 1, 2011 Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn National Parks Clean Up with Alternative Fuels Many National Parks are adopting clean alternative fuel vehicles, advanced vehicles technologies and other fuel saving measures to maintain their air quality and keep the parks pristine. February 16, 2011 At left, highly turbulent behavior as water flows into (clear) oil. At right, all turbulence is suppressed by using cornstarch. | Department of Energy Photo | Courtesy of Lawrence Livermore National Laboratory | Public Domain Forceful Fluid: Scientists Discover a Starchy Substance with Oily Applications Researchers at the Energy Department's Lawrence Livermore National

416

Fossil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel...

417

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

418

Fossil energy: From laboratory to marketplace  

SciTech Connect

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation`s abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

419

Fossil energy: From laboratory to marketplace  

DOE Green Energy (OSTI)

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation's abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

420

Fossil energy biotechnology: A research needs assessment. Final report  

SciTech Connect

The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

Not Available

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network (OSTI)

is ?open. ? An open air intake water heater is assigned theof air intake, physical size and load profile of the waterwater heater does not consume a fossil fuel, the air-intake

Lutz, Jim

2012-01-01T23:59:59.000Z

422

Prospects for increased low-grade bio-fuels use in home and commercial heating applications  

E-Print Network (OSTI)

Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

Pendray, John Robert

2007-01-01T23:59:59.000Z

423

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network (OSTI)

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

424

Core Designs and Economic Analyses of Homogeneous Thoria-Urania Fuel in Light Water Reactors  

SciTech Connect

The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO{sub 2}-UO{sub 2}) fuel and compare those designs with more conventional UO{sub 2} designs.The fuel cycle analyses indicate that ThO{sub 2}-UO{sub 2} fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO{sub 2} fuel cycles, and the burnable poison requirements are less.However, the additional costs associated with the use of homogeneous ThO{sub 2}-UO{sub 2} fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO{sub 2} fuel used in light water reactors.

Saglam, Mehmet; Sapyta, Joe J.; Spetz, Stewart W.; Hassler, Lawrence A. [Framatome ANP, Inc. (France)

2004-07-15T23:59:59.000Z

425

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

Science Conference Proceedings (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

426

EIA Short-Term Energy and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels Outlook ... (October 1– March 31) for all fossil fuels Percent change in fuel bills from last winter (forecast) Fuel bill . Base case . forecast :

427

EIA Short-Term and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

EIA Short-Term and Winter Fuels Outlook ... March 31) for fossil fuels but not electricity . Percent change in fuel bills from last winter (forecast) Fuel .

428

A Combined Passive Water Vapor Exchanger and Exhaust Gas Diffusion Barrier for Fuel Cell Applications  

Science Conference Proceedings (OSTI)

Fuel cells operating on hydrocarbon fuels require water vapor injection into the fuel stream for fuel reforming and the prevention of carbon fouling. Compared to active water recovery systems, a passive approach would eliminate the need for a separate water source, pumps, and actuators, and thus reduce parasitic thermal losses. The passive approach developed in this paper employs a capillary pump that recovers the water vapor from the exhaust, while providing a diffusion barrier that prevents exhaust gases from entering the fuel stream. Benchtop proof tests have proven the feasibility of the passive fuel humidifier concept, and have provided a calibration factor for a computational design tool that can be used for industrial applications

Williford, Rick E. (BATTELLE (PACIFIC NW LAB)); Hatchell, Brian K. (BATTELLE (PACIFIC NW LAB)); Singh, Prabhakar (BATTELLE (PACIFIC NW LAB))

2002-11-14T23:59:59.000Z

429

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

430

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

431

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

432

An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration  

SciTech Connect

As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

Simon, A J

2009-08-21T23:59:59.000Z

433

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

434

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

435

Illinois Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; ... from fossil fuels, non-biogenic ...

436

Department of Energy - Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 en Department of Energy Releases $8 61 en Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects http://energy.gov/articles/department-energy-releases-8-billion-solicitation-advanced-fossil-energy-projects fossil-energy-projects" class="title-link">Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects

437

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govfe Important Fossil Links Managing the Strategic Petroleum Reserve Enhanced Oil Recovery R&D National Petroleum Council Energy in Brief How Dependent Are We on...

438

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

439

Advanced water-cooled phosphoric acid fuel cell development  

DOE Green Energy (OSTI)

This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-09-01T23:59:59.000Z

440

Behavior of Spent Nuclear Fuel in Water Pool Storage  

Office of Scientific and Technical Information (OSTI)

Behavior of Spent Nuclear Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared Cor the Energy Research and Development Administration under Contract EY-76-C-06-1830 ---- Pat t i ~ < N ~ ~ r ~ t b w t ~ - ! I , ~ I ~ ~ ~ I . I I ~ ) ~ I I ~ ~ N O T I C E T€& - was prepad pnpn4. m w n t of w k spon-d by the Unitd S t . & ) C a u n m ~ (*WU ij*. M t e d $tam w the Wqy R e s e w & a d Ohrsropmcnt ~dmhirmlion, nor m y d thair ewhew,,nq Pny @fw a n t r ~ ~ t 0 ~ 1 , s ~ k m r i t r i l t t q r , ~ , m r tWf ernpfQw, r(tLltm any wartany, s x p r e s or kWld,= w w aAql -9 . o r r w p a m l ~ ~ t y for e~ o r uodruincvr of any infomutim, 9 F p d + d - , or repratants that -would nat 1 d - e privately owned rfghas. ,i PAQFIC NORTHWEST UBORATORY operated b ;"' SArnLLE ' fw the E M R m RESEARCH AND DEVELOPMENT ADMINISTRAT1QN Wk.Cwfraa rv-76c-ts-is38

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Water-Cooled Phosphoric Acid Fuel Cell Development  

DOE Green Energy (OSTI)

This program is being conducted to improve the performance and minimize the cost of water cooled, electric utility phosphoric acid fuel cell stacks. The program adapts the existing on-site Configuration B cell design to electric utility operating conditions and introduces additional new design features. Task 1 consists of the conceptual design of a full-scale electric utility cell stack that meets program objectives. Tasks 2 and 3 develop the materials and processes requested to fabricate the components that meet the program objective. The design of the small area and two 10-ft[sup 2] short stacks is conducted in Task 4. The conceptual design also is updated to incorporate the results of material and process developments, as well as results of stack tests conducted in Task 6. Fabrication and assembly of the short stacks are conducted in Task 5 and subsequent tests are conducted in Task 6. The Contractor expects to enter into a contract with the Electric Power Research Institute (EPRI) to assemble and endurance test the second 10-ft[sup 2] short stack. The management and reporting functions of Task 7 provide DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that is being conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

Not Available

1992-05-01T23:59:59.000Z

442

Fossil Energy Fiscal Year 2011 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Fiscal Year 2011 Budget Request Energy Fiscal Year 2011 Budget Request Fossil Energy Fiscal Year 2011 Budget Request March 17, 2010 - 1:12pm Addthis Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2011 (FY 2011). The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels are anticipated to play a critical role in meeting our Nation's future energy needs. Making use of the Nation's fossil fuel assets in an environmentally responsible manner will help the United States to meet its energy requirements, minimize detrimental environmental impacts, positively contribute to energy security and compete

443

Fossil-energy program. Progress report for June 1981  

SciTech Connect

This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

Not Available

1981-08-01T23:59:59.000Z

444

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??xviii, 119 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2006 Hung Fossil fuels, such as natural gas, petroleum, and coal are… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

445

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network (OSTI)

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz windows. High speed movies, detailed data for fuel line pressures and needle lift signals were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base case conditions (50% by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m'), the break-up time was 0.30 msec. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the base case conditions, the spray tip penetration and initial jet velocity were 15% greater for coal water slurry than for diesel fuel or water. Results of this research and the correlation are specific to the tested coal-water slurry.

Payne, Stephen Ellis

1993-01-01T23:59:59.000Z

446

Effects of Recent Fossil Energy Market Developments on  

E-Print Network (OSTI)

, fossil fuel prices decreased substantially in August and September of 2006 (figures 1 and 2). · Crude oil major storms threatening Gulf of Mexico oil production. The price of crude oil to be deliveredEffects of Recent Fossil Energy Market Developments on US Ethanol AFPC Briefing Paper 06

447

Pressurized Water Reactor Chemically Enhanced Ultrasonic Fuel Cleaning: Feasibility Study  

Science Conference Proceedings (OSTI)

Corrosion product deposition on fuel is undesirable because it may lead to crud induced power shift (CIPS), contribute to crud induced localized corrosion (CILC), and lead to larger corrosion product releases during shutdown. Ultrasonic fuel cleaning (UFC) has provided utilities with a method to remove corrosion products from the fuel after shutdown; however, visual inspections of cleaned assemblies indicate that activity removal is not 100% efficient. Researchers have proposed several methods to improve...

2009-08-10T23:59:59.000Z

448

Water-retaining Polymer Membranes for Fuel Cell ...  

PEM fuel cells for transportation and portable electronic devices (e.g., laptop, mp3 players, cell phones) Clothing that protects from dehydration;

449

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

450

MECHANISMS AND KINETICS OF URANIUM CORROSION AND URANIUM CORE FUEL ELEMENT RUPTURES IN WATER AND STEAM  

DOE Green Energy (OSTI)

The mechanisms and kinetics of uranium corrosion and fuel element ruptures were investigated in water and steam at 170 to 500 deg C and at 100 to 2800 psig. The fuel element samples were coextruded Zircaloy-clad uranium-core rods and tubes which were defected prior to exposure. Uranium corrosion was found to be the sum of two processes; direct oxidation by water, and oxidation of uranium hydride intermediate. Fuel element ruptures occur in two stages; an initial induction period followed by an accelerating corrosion of the core causing the cladding to blister, swell, and fracture. Uranium corrosion and fuel element ruptures were examined with respect to temperature, pressure, steam versus liquid water, heat treatment, carbon content of uranium, zirconium content of uranium, cladding thickness, fuel geometry, annular spacings, defect geometry and size, coolant flow, hydriding of Zircaloy components, and irradiation effects. (auth)

Troutner, V.H.

1960-07-21T23:59:59.000Z

451

Core design study of a supercritical light water reactor with double row fuel rods  

SciTech Connect

An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

Zhao, C.; Wu, H.; Cao, L.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China); Yang, J.; Zhang, Y. [China Nuclear Power Technology Research Inst., Yitian Road, ShenZhen, GuangDong, 518026 (China)

2012-07-01T23:59:59.000Z

452

Fuel assembly for the production of tritium in light water reactors  

DOE Patents (OSTI)

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, W.E.; Trapp, T.J.

1983-06-10T23:59:59.000Z

453

Fuel assembly for the production of tritium in light water reactors  

DOE Patents (OSTI)

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, William E. (Richland, WA); Trapp, Turner J. (Richland, WA)

1985-01-01T23:59:59.000Z

454

A Potential Path to Emissions-Free Fossil Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may not be a household term just yet, it represents one promising path forward for using fossil fuels as part of a clean energy future. At most coal fired power plants, the coal...

455

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

DOE Green Energy (OSTI)

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01T23:59:59.000Z

456

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld  

E-Print Network (OSTI)

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld Department of Mechanical and Process fuels make use of concentrated solar radiation as the energy source of high-temperature process heat Engineering, ETH Zurich, Switzerland and Solar Technology Laboratory, Paul Scherrer Institute, Switzerland

Ponce, V. Miguel

457

Improving the technology of creating water-coal fuel from lignites  

Science Conference Proceedings (OSTI)

This paper describes the preparation of coal-water fuel slurries from lignite. The heat of combustion as related to the preparation of the lignite was investigated. The hydrobarothermal processing of suspensions of lignites was studied in autoclaves.

Gorlov, E.G.; Golovin, G.S.; Zotova, O.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

458

Design strategies for optimizing high burnup fuel in pressurized water reactors  

E-Print Network (OSTI)

This work is focused on the strategy for utilizing high-burnup fuel in pressurized water reactors (PWR) with special emphasis on the full array of neutronic considerations. The historical increase in batch-averaged discharge ...

Xu, Zhiwen, 1975-

2003-01-01T23:59:59.000Z

459

Office of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy Office of Fossil Energy Fossil Energy Office of Fossil Energy More Documents & Publications DOE-Idaho Operations Office Delaware DNRECEnergy Office Bechtel...

460

Coal-water slurry spray characteristics of a positive displacement fuel injection system  

DOE Green Energy (OSTI)

Experiments have been completed to characterized coal-water slurry sprays from a modified positive displacement fuel injection system of a diesel engine. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and instantaneous fuel line pressures were obtained. For injection pressures of order 30 MPa or higher, the sprays were similar for coal-water slurry, diesel fuel and water. The time until the center core of the spray broke-up (break-up time) was determined from both the movies and from a model using the fuel line pressures. Results from these two independent procedures were in good agreement. For the base conditions, the break-up time was 0.58 and 0.50 ms for coal-water slurry and diesel fuel, respectively. The break-up times increased with increasing nozzle orifice size and with decreasing chamber density. The break-up time was not a function of coal loading for coal loadings up to 53%. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as on the time and location of the measurement. For one set of cases studied, the time-averaged cone angle was 15.9{degree} and 16.3{degree} for coal-water slurry and diesel fuel, respectively.

Seshadri, A.K.; Caton, J.A.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "water fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)  

Science Conference Proceedings (OSTI)

A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle costs are included in the analysis, with the fast reactors having a higher $/kw(e) capital cost than the LWRs, the overall busbar generation cost ($/MWh) for the closed cycles is approximately 12% higher than for the all-LWR once-through fuel cycle case, again based on the expected values from an uncertainty analysis. It should be noted that such a percentage increase in the cost of nuclear power is much smaller than that expected for fossil fuel electricity generation if CO2 is costed via a carbon tax, cap and trade regimes, or carbon capture and sequestration (CCS).

Williams, Kent Alan [ORNL; Shropshire, David E. [Idaho National Laboratory (INL)

2009-01-01T23:59:59.000Z

462

Microbial Fuel Cells for Recycle of Process Water from ...  

Large amounts of water are used in the processing of cellulosic biomass materials, so it is highly desirable