Sample records for water focus area

  1. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  2. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  3. Plutonium focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  4. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354Strategic Focus Areas Lockheed

  5. Focus Area Tax Credits (Maryland)

    Broader source: Energy.gov [DOE]

    Focus Area Tax Credits for businesses in Baltimore City or Prince George’s County enterprise zones include: (1) Ten-year, 80% credit against local real property taxes on a portion of real property...

  6. Plutonium focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  7. Focus Areas | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOE O 413.2B Admin ChgFocus Areas Focus

  8. Tanks focus area. Annual report

    SciTech Connect (OSTI)

    Frey, J.

    1997-12-31T23:59:59.000Z

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

  9. Plutonium focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  10. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1 FlightFlynn selected forFocus

  11. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  12. Surface Water Management Areas (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation establishes surface water management areas, geographically defined surface water areas in which the State Water Control Board has deemed the levels or supply of surface water to be...

  13. FY 2000 Deactivation and Decommissioning Focus Area Annual Report

    SciTech Connect (OSTI)

    None

    2001-03-01T23:59:59.000Z

    This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

  14. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  15. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  16. Mixed waste focus area alternative technologies workshop

    SciTech Connect (OSTI)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

    1995-05-24T23:59:59.000Z

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  17. The Business Role Focus Area From a business

    E-Print Network [OSTI]

    Coopers, Sony, Teijin, Umicore and Weyerhaeuser. The Business Role Focus Area aims to engage, equip and mobilize

  18. Boundary Waters Canoe Area (Minnesota)

    Broader source: Energy.gov [DOE]

    The Boundary Waters Canoe Area occupies a large section of northern Minnesota, and is preserved as a primitive wilderness area. Construction and new development is prohibited. A map of the...

  19. Protected Water Area System (Iowa)

    Broader source: Energy.gov [DOE]

    The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

  20. Focus Research Areas 1. Fundamental Accelerator Physics: Theory

    E-Print Network [OSTI]

    Kemner, Ken

    Focus Research Areas 1. Fundamental Accelerator Physics: Theory Importance Accelerator physics aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying

  1. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    SciTech Connect (OSTI)

    Morrison, M.I. [Midwest Technical Inc., Oak Ridge, Tennessee (United States); McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D. [Oak Ridge National Lab., TN (United States)

    1995-02-01T23:59:59.000Z

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections.

  2. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01T23:59:59.000Z

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  3. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26T23:59:59.000Z

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  4. Tanks Focus Area Site Needs Assessment FY 2000

    SciTech Connect (OSTI)

    Allen, Robert W.

    2000-03-10T23:59:59.000Z

    This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

  5. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  6. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01T23:59:59.000Z

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  7. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30T23:59:59.000Z

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  8. Tanks Focus Area site needs assessment FY 2000

    SciTech Connect (OSTI)

    RW Allen

    2000-04-11T23:59:59.000Z

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance.

  9. Mixed Waste Focus Area: Department of Energy complex needs report

    SciTech Connect (OSTI)

    Roach, J.A.

    1995-11-16T23:59:59.000Z

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  10. Tanks focus area multiyear program plan FY97-FY99

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.

  11. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  12. Tanks Focus Area (TFA) Site Needs Assessment FY 1999

    SciTech Connect (OSTI)

    RW Allen

    1999-05-03T23:59:59.000Z

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). This is the fifth edition of the TFA site needs assessment. As with previous editions, this edition serves to provide the basis for accurately defining the TFA program for the upcoming fiscal year (FY), and adds definition to the program for up to 4 additional outyears. Therefore, this version distinctly defines the FY 2000 progrti and adds further definition to the FY 2001- FY 2004 program. Each year, the TFA reviews and amends its program in response to site users' science and technology needs.

  13. Tanks Focus Area FY98 midyear technical review

    SciTech Connect (OSTI)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01T23:59:59.000Z

    The Tanks Focus Area (TFA) serves as the DOE`s Office of Environmental Management`s national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report.

  14. An overview of the Nuclear Materials Focus Area research program

    SciTech Connect (OSTI)

    ROBERSON,GARY D.; POLANSKY,GARY F.; OSBORNE,KEN K.; RANDALL,VIRGINIA

    2000-02-25T23:59:59.000Z

    The Nuclear Material Focus Area (NMFA) is responsible for providing comprehensive needs identification, integration of technology research and development activities, and technology deployment for stabilization, packaging, and interim storage of surplus nuclear materials within the DOE complex. The NMFA was chartered in April 1999 by the Office of Science and Technology (OST), an organizational component of the US Department of Energy's (DOE) Office of Environmental Management (EM). OST manages a national program to conduct basic and applied research, and technology development, demonstration, and deployment assistance that is essential to completing a timely and cost-effective cleanup of the DOE nuclear weapons complex. DOE/EM provides environmental research results, as well as cleanup technologies and systems, to meet high-priority end-user needs, reduce EM's major cost centers and technological risks, and accelerate technology deployments. The NMFA represents the segment of EM that focuses on technological solutions for re-using, transforming, and disposing excess nuclear materials and is jointly managed by the DOE Albuquerque Operations Office and the DOE Idaho Operations Office.

  15. Tanks focus area site needs assessment FY 1997

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Tanks Focus Area`s (TFA`s) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the U.S. Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites - Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). The process is iterative and involves six steps: (1) Site needs identification and documentation, (2) Site communication of priority needs, (3) Technical response development, (4) Review technical responses, (5) Develop program planning documents, and (6) Review planning documents. This document describes the outcomes of the first two steps: site needs identification and documentation, and site communication of priority needs. It also describes the initial phases of the third and fourth steps: technical response development and review technical responses. Each site`s Site Technology Coordination Group (STCG) was responsible for developing and delivering priority tank waste needs. This was accomplished using a standardized needs template developed by the National STCG. The standard template helped improve the needs submission process this year. The TFA received the site needs during December 1996 and January 1997.

  16. Tanks Focus Area FY 1996 Site Needs Assessment

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The Tanks Focus Area`s (TFA`s) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the US Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites--Hanford, Idaho, Oak Ridge, and Savannah River Sites. The process is iterative and involves four steps: (1) identify and validate tank technology needs at these four sites, (2) define a technical program that responds to these needs, (3) select specific tasks and schedules that accomplish program objectives, and (4) develop integrated teams to carry out selected tasks. This document describes the first of these four steps: identification of sites` tank technology needs. This step concentrates solely on needs identification, collection, and validation. Funding requirements and specific scope of responsive technical activities are not considered until later steps in program definition. This year, the collection and validation of site needs were accomplished through written input from the Site Technology Coordination Groups (STCGs). The TFA recognizes the importance of a continuing solid partnership with the sites through the STCG and DOE as well as contractor users and, therefore, ensured site participation and close coordination throughout the process.

  17. Tanks Focus Area site needs assessment FY 1998

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four major DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.

  18. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  19. NOAA Selects Muskegon Lake as Habitat Focus Area

    E-Print Network [OSTI]

    , foundries, a coal-fired power plant, and a paper mill. Muskegon Lake has suffered water quality concerns on the fishery, aquatic organisms and vegetation in Muskegon Lake; · monitoring the socio-economic impacts Fisheries, and the Great Lakes Environmental Research Laboratory have implemented numerous projects

  20. Hanford Immobilized LAW Product Acceptance Testing: Tanks Focus Area Results

    SciTech Connect (OSTI)

    Vienna, John D.; Hrma, Pavel R.; Jiricka, Antonin; Smith, Donald E.; Lorier, Troy H.; Reamer, Irene A.; Schulz, Rebecca L.

    2001-12-31T23:59:59.000Z

    Immobilizing low-activity waste (LAW) stored at Hanford site will result in approximately 200 000 m3 of waste glass. It must be demonstrated that this glass can adequately retain radionuclides and prevent contamination of the surrounding environment. A study is being performed to determine the effect of glass composition on its capability to withstand the conditions in the Hanford site burial scenario. To predict the long-term corrosion behavior of waste glass, it is necessary to study the composition and properties of alteration products. The vapor hydration test (VHT) and product consistency test (PCT) were selected as the methods to accelerate the corrosion process and to form alteration products. VHT and PCT was performed on 75 glasses, of which 45 were designed to systematically vary the composition. VHTs were conducted at temperatures ranging from 90?C to 300?C. Alteration rates for most glasses are being determined at 200?C. Selected glasses were tested at different temperatures to determine the effect of temperature on the assemblage of alteration products and the apparent alteration rates. PCTs were performed at a glass surface area to solution volume ratio (S/V) of 2000 m-1 for 7 d and at a S/V of 20 000 m-1 for 10, 100, 1000, 5000, and 10000 h all at 90?C.

  1. MFR PAPER 1170 Water Surface Area Within

    E-Print Network [OSTI]

    in hectares for each subsubarea within each subarea. Conversion factor Central latllude Stallstlcal hectares the Gulf coa t. especiall y tho e concerning im- pact of energy-related development. METHODS Water surface.-Converslon factors (hectares per planimeter unit) used to convert average planimeter units to area

  2. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23T23:59:59.000Z

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  3. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration...

  4. Water in Alberta With Special Focus on the Oil and Gas Industry

    E-Print Network [OSTI]

    Gieg, Lisa

    1 Water in Alberta With Special Focus on the Oil and Gas Industry (Education Paper) Seyyed Ghaderi ................................................................................................................................18 Shale Gas ................................................................................................................................................19 How much water is used in deep shale gas development

  5. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect (OSTI)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14T23:59:59.000Z

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  6. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Water Sampling Activity Date - 1982 Usefulness useful DOE-funding Unknown Notes Field,...

  7. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  8. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  9. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

  10. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    E-Print Network [OSTI]

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01T23:59:59.000Z

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  11. A stakeholder involvement approach to evaluate and enhance technology acceptance: U.S. Department of Energy Office of Technology Development`s Plume Focus Area

    SciTech Connect (OSTI)

    McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Stein, S.L. [Battelle Pacific Northwest Division, Richland, WA (United States); Serie, P.J. [Environmental Issues Management, Inc., Seattle, WA (United States)

    1995-12-31T23:59:59.000Z

    The US Department of Energy (DOE) faces a major challenge in cleaning up its contaminated sites throughout the United States. One major area of concern is the plumes in soil and ground water which are contaminated with a myriad of different pollutants. DOE recently organized its plume-related problems into the Plume Focus Area. The mission of the Plume Focus Area is to enhance the deployment of innovative technologies for containing and cleaning up contaminant plumes in ground water and soil at all DOE sites. Environmental cleanup priorities for soil and ground water plumes are being defined and technology users have the challenge of matching current and innovative technologies to those priorities. By involving a range of stakeholders in the selection, demonstration, and evaluation of new technologies, the deployment of these technologies can be enhanced. If new plume cleanup technologies are to be deployable, they must improve on today`s baseline technologies. The Sites` Coordination Team (SCT) of the Plume Focus Area develops and supports the implementation of methods for stakeholder involvement throughout the multiple steps that define focus area activities. Site-specific teams are being formed to carry out the strategy at each site, and the teams will work through Site Technology Coordination Groups (STCGs) at each location. The SCT is responsible for identifying the site-specific stakeholder involvement teams, training the team members, preparing needed national-level guidance and strategies, helping the teams tailor a strategy for their particular site that meets the overall needs of the focus area, and facilitating inter-site coordination. The results will be used to develop national technology acceptance reports on the innovative technologies being funded and evaluated under the Plume Focus Area.

  12. A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area

    SciTech Connect (OSTI)

    B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

    1999-03-01T23:59:59.000Z

    This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

  13. Historical Perspective on Subsurface Contaminants Focus Area (SCFA) Success: Counting the Things That Really Count

    SciTech Connect (OSTI)

    Wright, J. A. Jr.; Middleman, L. I.

    2002-02-27T23:59:59.000Z

    The Subsurface Contaminants Focus Area, (SCFA) is committed to, and has been accountable for, identifying and providing solutions for the most pressing subsurface contamination problems in the DOE Complex. The SCFA program is a DOE end user focused and problem driven organization that provides the best technical solutions for the highest priority problems. This paper will discuss in some detail specific examples of the most successful, innovative technical solutions and the DOE sites where they were deployed or demonstrated. These solutions exhibited outstanding performance in FY 2000/2001 and appear poised to achieve significant success in saving end users money and time. They also provide a reduction in risk to the environment, workers, and the public while expediting environmental clean up of the sites.

  14. Tanks Focus Area retrieval process development and enhancements FY96 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A.; Hatchell, B.K. [and others

    1996-09-01T23:59:59.000Z

    The Retrieval Process Development and Enhancements (RPD&E) activities are part of the Retrieval and Closure Program of the U.S. Department of Energy (DOE) EM-50 Tanks Focus Area. The purposes of RPD&E are to understand retrieval processes, including emerging and existing technologies, and to gather data on those processes, so that end users have the requisite technical basis to make retrieval decisions. Work has been initiated to support the need for multiple retrieval technologies across the DOE complex. Technologies addressed during FY96 focused on enhancements to sluicing, borehole mining, confined sluicing retrieval end effectors, the lightweight scarifier, and pulsed air mixing. Furthermore, a decision tool and database have been initiated to link retrieval processes with tank closure to assist end users in making retrieval decisions.

  15. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    SciTech Connect (OSTI)

    Kirwan-Taylor, H.; McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Lesperance, A. [Pacific Northwest National Lab., Richland, WA (United States); Kauffman, J.; Serie, P.; Dressen, L. [EnvironIssues (United States)

    1996-09-01T23:59:59.000Z

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.

  16. Water Conservation and Technology Center, director to focus on statewide water issues 

    E-Print Network [OSTI]

    Wythe, Kathy

    2012-01-01T23:59:59.000Z

    WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future 28 tx H2O Summer 2012 Story by Kathy Wythe Dr. Calvin Finch, new director of the Water Conservation and Technology Center. #31;e newly established Water Conservation... and Technology Center (WCTC) in San Antonio will accelerate development, testing and adopting of new and innovative technologies to help solve water problems and meet water supply needs for Texas. Dr. Calvin Finch, formerly with the San Antonio Water System...

  17. Water Conservation and Technology Center, director to focus on statewide water issues

    E-Print Network [OSTI]

    Wythe, Kathy

    2012-01-01T23:59:59.000Z

    WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future 28 tx H2O Summer 2012 Story by Kathy Wythe Dr. Calvin Finch, new director of the Water Conservation and Technology Center. #31;e newly established Water Conservation... and Technology Center (WCTC) in San Antonio will accelerate development, testing and adopting of new and innovative technologies to help solve water problems and meet water supply needs for Texas. Dr. Calvin Finch, formerly with the San Antonio Water System...

  18. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  19. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30T23:59:59.000Z

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  20. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15T23:59:59.000Z

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  1. area water supply: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area water supply First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relationships between water supply,...

  2. Conference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources

    E-Print Network [OSTI]

    Barthelat, Francois

    of compartmentalized data, lack of central storage, and limited access to data for decision-making in water managementConference Topic: Integrated Water Resources and Coastal Areas Management National Water Information Systems: A Tool to Support Integrated Water Resources Management in the Caribbean Marie-Claire St

  3. US Department of Energy mixed waste characterization, treatment, and disposal focus area technical baseline development process

    SciTech Connect (OSTI)

    Roach, J.A.; Gombert, D. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)

    1996-12-31T23:59:59.000Z

    The US Department of Energy (DOE) created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Mixed wastes include both mixed low-level waste (MLLW) and mixed transuranic (MTRU) waste. The goal of the MWFA is to develop mixed waste treatment systems to the point of implementation by the Environmental Management (EM) customer. To accomplish this goal, the MWFA is utilizing a three step process. First, the treatment system technology deficiencies were identified and categorized. Second, these identified needs were prioritized. This resulted in a list of technical deficiencies that will be used to develop a technical baseline. The third step, the Technical Baseline Development Process, is currently ongoing. When finalized, the technical baseline will integrate the requirements associated with the identified needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. Completion of this three-step process will result in a comprehensive technology development program that addresses customer identified and prioritized needs. The MWFA technical baseline will be a cost-effective, technically-defensible tool for addressing and resolving DOE`s mixed waste problems.

  4. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A. [Pacific Northwest National Lab., Richland, WA (United States); Alberts, D.G. [Waterjet Technology, Inc., Kent, WA (United States)] [and others

    1997-09-01T23:59:59.000Z

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

  5. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

  6. TFA Tank Focus Area - multiyear program plan FY98-FY00

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

  7. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    SciTech Connect (OSTI)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-10-12T23:59:59.000Z

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

  8. Abstract--The integration of variable renewable generation sources continues to be a significant area of focus for power

    E-Print Network [OSTI]

    by this variability, wind generation often requires additional balancing resources to compensate for the variability of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required area of focus for power system planning. Renewable portfolio standards and initiatives to reduce

  9. Hanford Immobilized LAW Product Acceptance: Initial Tanks Focus Area Testing Data Package

    SciTech Connect (OSTI)

    Vienna, John D.; Jiricka, Antonin; McGrail, B. Peter; Jorgensen, Benaiah M.; Smith, Donald E.; Allen, Benjamin R.; Marra, James C.; Peeler, David K.; Brown, Kevin G.; Reamer, I. A.; Ebert, W. L.

    2000-02-08T23:59:59.000Z

    A matrix of 55 glasses was developed and tested with the aim to identify the impact of glass composition on the long-term corrosion behavior and to develop an acceptable low-activity waste glass composition region. Of the 55 glasses, 45 were designed to systematically vary the glass composition and 10 were selected because large and growing databases on their corrosion characteristics had accumulated. The performance of these 55 glasses in the vapor-phase hydration test (VHT) and product consistency test (PCT) were characterized. VHT's were performed at temperatures between 150?C and 300?C for times up to 280 days; preliminary corrosion rates and type of alteration products were identified. PCTs were performed at 90?C with glass surface area's to solution volumes (S/V) of 2000 m-1 for 7 days and S/V of 20 000 m-1 for 10 h, 100 h, and 1000 h. The corrosion extents by PCT were determined as functions of time from solution composition analyses.

  10. From Petascale to Exascale: Eight Focus Areas of R&D Challenges for HPC Simulation Environments

    SciTech Connect (OSTI)

    Springmeyer, R; Still, C; Schulz, M; Ahrens, J; Hemmert, S; Minnich, R; McCormick, P; Ward, L; Knoll, D

    2011-03-17T23:59:59.000Z

    Programming models bridge the gap between the underlying hardware architecture and the supporting layers of software available to applications. Programming models are different from both programming languages and application programming interfaces (APIs). Specifically, a programming model is an abstraction of the underlying computer system that allows for the expression of both algorithms and data structures. In comparison, languages and APIs provide implementations of these abstractions and allow the algorithms and data structures to be put into practice - a programming model exists independently of the choice of both the programming language and the supporting APIs. Programming models are typically focused on achieving increased developer productivity, performance, and portability to other system designs. The rapidly changing nature of processor architectures and the complexity of designing an exascale platform provide significant challenges for these goals. Several other factors are likely to impact the design of future programming models. In particular, the representation and management of increasing levels of parallelism, concurrency and memory hierarchies, combined with the ability to maintain a progressive level of interoperability with today's applications are of significant concern. Overall the design of a programming model is inherently tied not only to the underlying hardware architecture, but also to the requirements of applications and libraries including data analysis, visualization, and uncertainty quantification. Furthermore, the successful implementation of a programming model is dependent on exposed features of the runtime software layers and features of the operating system. Successful use of a programming model also requires effective presentation to the software developer within the context of traditional and new software development tools. Consideration must also be given to the impact of programming models on both languages and the associated compiler infrastructure. Exascale programming models must reflect several, often competing, design goals. These design goals include desirable features such as abstraction and separation of concerns. However, some aspects are unique to large-scale computing. For example, interoperability and composability with existing implementations will prove critical. In particular, performance is the essential underlying goal for large-scale systems. A key evaluation metric for exascale models will be the extent to which they support these goals rather than merely enable them.

  11. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26T23:59:59.000Z

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  12. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

    2013-07-15T23:59:59.000Z

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  13. areas water year: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of water, the legal toxicology and chemistry, the detection and control of environmental pollution, the biotechnology, the diagnosis and follow Groisman, Pablo 369 Water Current...

  14. CEES - Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactivity. These approaches, enabled by the Center's deep cross-cutting capabilities of characterization, theory and materials synthesis, will lead to new approaches to control...

  15. Focus Area 2 Deliverables

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE Acquisition GuideEnergyFluorescent2 -

  16. Focus Area 3 Deliverables

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE Acquisition GuideEnergyFluorescent2 -3

  17. Focus Area 5 Deliverables

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE Acquisition GuideEnergyFluorescent2 -35

  18. Focus Area Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE Acquisition GuideEnergyFluorescent2

  19. A focused liquid jet formed by a water hammer in a test tube

    E-Print Network [OSTI]

    Kiyama, Akihito; Ando, Keita; Kameda, Masaharu

    2015-01-01T23:59:59.000Z

    We investigate motion of a gas-liquid interface in a test tube induced by a large acceleration via impulsive force. We conduct simple experiments in which the tube partially filled with a liquid falls under gravity and impacts a rigid floor. A curved gas-liquid interface inside the tube reverses and eventually forms an elongated jet (i.e. the so-called a focused jet). In our experiments, there arises either vibration of the interface or increment in the velocity of a liquid jet accompanied by the onset of cavitation in the liquid column. These phenomena cannot be explained by considering pressure impulse in a classical potential flow analysis, which does not account for finite speeds of sound as well as phase change. Here we model such water-hammer events as a result of one-dimensional pressure wave propagation and its interaction with boundaries through acoustic impedance mismatching. The method of characteristics is applied to describe pressure wave interactions and the subsequent cavitation. The proposed m...

  20. The battle of bacteria: Agencies, stakeholders focusing on restoring water quality

    E-Print Network [OSTI]

    Foust, Margaret

    2011-01-01T23:59:59.000Z

    txH2O | pg. 20 Story by Margaret Foust Bacteria is the No. 1 pollutant of water in Texas, causing many of the state?s water bodies to be placed on the Texas Water Quality Inventory and 303(d) List for failing to meet contact recreation use... standards. Across the state, agencies and local stakeholders are identifying the sources of pollution in bacteria-impaired water bodies and are developing management strategies to restore water quality and remove these water bodies from the impaired...

  1. The battle of bacteria: Agencies, stakeholders focusing on restoring water quality 

    E-Print Network [OSTI]

    Foust, Margaret

    2010-01-01T23:59:59.000Z

    txH2O | pg. 20 Story by Margaret Foust Bacteria is the No. 1 pollutant of water in Texas, causing many of the state?s water bodies to be placed on the Texas Water Quality Inventory and 303(d) List for failing to meet contact recreation use... standards. Across the state, agencies and local stakeholders are identifying the sources of pollution in bacteria-impaired water bodies and are developing management strategies to restore water quality and remove these water bodies from the impaired...

  2. The battle of bacteria: Agencies, stakeholders focusing on restoring water quality 

    E-Print Network [OSTI]

    Foust, Margaret

    2011-01-01T23:59:59.000Z

    txH2O | pg. 20 Story by Margaret Foust Bacteria is the No. 1 pollutant of water in Texas, causing many of the state?s water bodies to be placed on the Texas Water Quality Inventory and 303(d) List for failing to meet contact recreation use... standards. Across the state, agencies and local stakeholders are identifying the sources of pollution in bacteria-impaired water bodies and are developing management strategies to restore water quality and remove these water bodies from the impaired...

  3. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Water Sampling Activity Date 1976 - 1976 Usefulness useful DOE-funding Unknown Exploration...

  4. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  5. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling Activity Date - 2002 Usefulness useful DOE-funding Unknown Notes "Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide...

  6. area modulate water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photon sensors whose sensitive area for Cherenkov photons one wants to maximise. Low dark noise rates and dense module spacing will thereby allow to substantially decrease the...

  7. Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-02-01T23:59:59.000Z

    This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

  8. Impervious Areas: Examining the Undermining Effects on Surface Water Quality

    E-Print Network [OSTI]

    Young, De'Etra Jenra

    2012-02-14T23:59:59.000Z

    of the classification. The overall accuracy was 85%, and the kappa coefficient was 0.80. Additionally, field sampling and chemical analysis techniques were used to examine the relationship between impervious surfaces and water quality in a rainfall simulation parking...

  9. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas

    E-Print Network [OSTI]

    Zhan, Hongbin

    for sustainable water resources management in shallow water table areas. The hydrologic processes are highly in MODFLOW are derived from a combination of topology, soil type, land use, water management practices using and evapotranspiration is signifi- cant for sustainable groundwater management. However, the groundwater recharge

  10. The battle of bacteria: Agencies, stakeholders focusing on restoring water quality

    E-Print Network [OSTI]

    Foust, Margaret

    2010-01-01T23:59:59.000Z

    to watershed stakeholders, who will determine the next steps in managing water quality in the tributaries. The TMDL task force was also charged with developing a roadmap for scientific research on how bacteria behave under different conditions. Tailored...

  11. TSUNAMI SIMULATION IN INDONESIA'S AREAS BASED ON SHALLOW WATER EQUATIONS AND

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    TSUNAMI SIMULATION IN INDONESIA'S AREAS BASED ON SHALLOW WATER EQUATIONS AND VARIATIONAL BOUSSINESQ Studi Matematika INSTITUT TEKNOLOGI BANDUNG 2008 #12;ABSTRACT TSUNAMI SIMULATION IN INDONESIA'S AREAS of the bathymetry of Indonesia which is incorporated into our FEM schemes. The tsunami simulation in the two areas

  12. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect (OSTI)

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01T23:59:59.000Z

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  13. Engineers, are focused on advanced water quality modeling on the Cumberland River in Kentucky and

    E-Print Network [OSTI]

    hydropower dams in the Columbia River Basin to protect aquatic life. ORNL is providing an assessment of the effects of climate change on water availability for federal hydropower and on marketing of hydropower by increased understanding the role of climate variability and change. Collaborating with the Hydropower

  14. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions

    E-Print Network [OSTI]

    Belzile, Nelson

    , Analytical and Applied Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4 (typically less than 1 g/L) except in geothermal waters (can be in excess of 1 g/L) and antimony years on the presence and behaviour of antimony in environmental systems reflects the scientific

  15. FOCUS: HARSH ENVIRONMENT MASS SPECTROMETRY Field Testing of Lake Water Chemistry with a

    E-Print Network [OSTI]

    Entekhabi, Dara

    ) are tested for the measurement of volatile substances, such as hydrocarbons and metabolic gases, in natural compared to that of conventional analysis. The AUV-mounted NEREUS additionally provided rapid spatial and obtaining the requested data. However, conventional water sampling and labo- ratory analysis often involve

  16. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation, search Name:Waste2EnergyandWaterOpen

  17. Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump to: navigation,Open

  18. Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump to:

  19. Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump to:EnergyEnergy

  20. Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002)Information(Trainer,

  1. Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood,

  2. Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area (Thomas, 1986)

  3. Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area (Thomas,Energy

  4. Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area| Open

  5. Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area|Information

  6. Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay

    E-Print Network [OSTI]

    Park, Junesoo

    1995-01-01T23:59:59.000Z

    facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster...

  7. Final Focus Area Selection Report 255 Fuller Road, Suite 274, Albany, NY 12203 USA (518) 437-8661 / Fax: (518) 437-8659

    E-Print Network [OSTI]

    existing facilities. Wind plant capacity factors were calculated by matching wind map-derived resource statistics with a generic turbine power curve reflecting current megawatt-scale wind technologies. 2 for Task 2 (Selection of Focus Areas) of the Energy Commission project "Wind Energy Resource Modeling

  8. Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling

    E-Print Network [OSTI]

    Manning, Sturt

    Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

  9. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01T23:59:59.000Z

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for model parameterization, deconvolution of well-bore flow effects, system understanding, and publication. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, and have now implemented a new strategy for this activity to bypass an approach that was found unworkable. An important focus of CY 2010 activities has been infrastructure modification to the IFRC site to eliminate vertical well bore flows in the fully screened wells. The mitigation procedure was carefully evaluated and is now being implementated. A new experimental campaign is planned for early spring 2011 that will utilize the modified well-field for a U reactive transport experiment in the upper aquifer zone. Preliminary geophysical monitoring experiments of rainwater recharge in the vadose zone have been initiated with promising results, and a controlled infiltration experiment to evaluate U mobilization from the vadose zone is now under planning for the September 2011. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes.

  10. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2010-02-01T23:59:59.000Z

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  11. Feasibility study 100 K East Area water purification pools fish-rearing program

    SciTech Connect (OSTI)

    Betsch, M.D., Westinghouse Hanford

    1996-07-03T23:59:59.000Z

    As part of the feasibility study, a design analysis was conducted to determine the usefulness of the existing sand filters and associated media for reuse. The sand filters which were studied for potential reuse are located on the northern end of the 100-K East Area water filtration plant on the Hanford Site. This plant is located about one- half mile from the Columbia River. The sand filters were originally part of a system which was used to provide cooling water to the nearby plutonium production K Reactors. This Cold War operation took place until 1971, at which time the K Reactors were closed for eventual decontamination and decommissioning. Recently, it was decided to study the concept of putting the sand filter structures back into use for fish-rearing purposes. Because the water that circulated through the water purification pools (K Pools) and associated sand filters was clean river water, there is little chance of the structures being radioactively contaminated. To date, separate K Pools have been used for raising a variety of cold water fish species, including white sturgeon and fall chinook salmon, as well as for providing potable water to the 100 K Area of the Hanford Site for fire and service water purposes.

  12. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    SciTech Connect (OSTI)

    Stone, Mark Lee

    2002-04-01T23:59:59.000Z

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  13. Results of ground-water monitoring for radionuclides in the Separations Area, 1987

    SciTech Connect (OSTI)

    Serkowski, J.A.; Law, A.G.; Ammerman, J.J.; Schatz, A.L.

    1988-04-01T23:59:59.000Z

    The purpose of this report is to present a summary of the results for calendar year 1987 of the Westinghouse Hanford Company (Westinghouse Hanford) ground-water monitoring program for radiological constituents in the Separations Area of the Hanford Site. This monitoring program is implemented to partially fulfill the US Department of Energy (DOE) requirement that radioactivity in the environment be monitored. The program is also used to monitor operating disposal facilities for compliance with DOE requirements. The Separations Area radionuclide ground-water monitoring program is coordinated with other ground-water monitoring activities on the Hanford Site conducted by Westinghouse Hanford and Pacific Northwest Laboratory (PNL). The PNL program includes sampling for both radioactive and nonradioactive chemicals throughout the Site (including 100 and 300 Areas) and is responsible for estimating and evaluating the impact on ground water to the general public from all operations at the Hanford Site. Ground water characterization and monitoring for compliance with Resource Conservation and Recovery Act (RCRA) is also being conducted at facilities on the Hanford Site.

  14. Identification of Water Resources Planning Problems in the Metropolitan Area of Greater San Antonio and its Associated Counties

    E-Print Network [OSTI]

    Garner, J. K.; Shih, C. S.

    1973-01-01T23:59:59.000Z

    agencies, river authorities and interest groups in water resources management have evolved into a complicated system in this area. Thus, it was realized that an overview embedded with the systems approach for the current water resources problems is needed...

  15. Analysis of water-level data in the Yucca Mountain area, Nevada, 1985--95

    SciTech Connect (OSTI)

    Graves, R.P.; Tucci, P.; O`Brien, G.M.

    1997-12-31T23:59:59.000Z

    From 1985 through 1995, a water-level network that consists of 28 wells for monitoring 36 depth intervals has been maintained in the Yucca Mountain area. The network includes wells that were measured manually, approximately monthly, and/or measured hourly with a transducer/data logger system. Manual water-level measurements were made with either calibrated steel tapes or single or multiconductor-cable units. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Annual mean water-level altitudes for all wells for the period 1985-95 ranged from 727.93 to 1,034.60 meters. The maximum range in water-level change between monthly measurements and/or monthly mean values was 12.22 meters in well USW H-3 lower interval, and the minimum range was 0.31 meter in wells UE-25 b-1 upper interval, and J-11. In 31 of the 36 depth intervals monitored, the range of water-level change was less than 1 meter. The range of standard deviation of all depth interval measurements for all wells that were monitored was 0.053 to 3.098 meters. No seasonal water-level trends were detected in any of the wells, and regional ground-water withdrawals did not appear to cause water-level changes. Most annual water-level fluctuations can be attributed to barometric and Earth-tide changes. Regional earthquakes, which occurred on June 28--29, 1992, might have simultaneously affected the water level in seven wells. Periods of rising and declining water levels were observed in most wells. However, 11 years of record were not sufficient to determine if these periods were cyclic. Because a goal of monitoring water levels at Yucca Mountain is to determine if there are water-level trends that could affect the potential repository, observed water-level changes over the period of this report may not be representative of the overall long-term trends in water levels.

  16. Water for Texas: Applicant Capacity Assessment Tool for the Economically Distressed Areas Program

    E-Print Network [OSTI]

    Bennett, Jason; Dascaliuc, Svetlana; Grossman, Nick; Hunt, Michael; Kenesson, Laura; Madden, Tara; McWilliams, Austin; Scott, Whitney; Stubbs, Megan

    2005-01-01T23:59:59.000Z

    distressed areas This project was a partnership between the George Bush School of Government and Public Service at Texas A&M University and the Texas Water Development Board II Executive Summary Since 1989, the Texas Water Development Board (TWDB... and over budget. To help address this problem, TWDB asked a team of graduate students at the George Bush School of Government and Public Service at Texas A&M University to develop an evaluation tool to assess the capacity of applicants to complete...

  17. Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas

    E-Print Network [OSTI]

    Gibson, John Lawrence

    1983-01-01T23:59:59.000Z

    -made discharge in the Panther Junction area is 52 acre-ft/yr. The possible ground-water deficit from total discharge is calculated at nine acre-ft/ yr. Therefore, recharge and discharge may be in balance. Transmissivity coefficients for six wells penetrating... the Aguja aquifer are 600 gpd/ft or less. The transmissi- vity at well 47-201, which also penetrates the Aguja aqui- fer, is 30, 000 gpd/ft. The transmissivity is 5500 gpd/ft at one of two production wells penetrating the Chisos aquifer in the K-Bar area...

  18. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-09-01T23:59:59.000Z

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  19. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

  20. RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD IN GUJARAT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD for complementarities between the present system of water supply and the alternative system of rainwater harvesting IN GUJARAT (Akil AMIRALY1 , Nathalie PRIME2 , Joginder P. SINGH3 ) ABSTRACT Water scarcity

  1. RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD IN GUJARAT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RAINWATER HARVESTING, ALTERNATIVE TO THE WATER SUPPLY IN INDIAN URBAN AREAS: THE CASE OF AHMEDABAD their water requirements. Rainwater harvesting is one of them. It was functioning in the Old city of Ahmedabad and the alternative system of rainwater harvesting, in a context of water scarcity. The objective of the research

  2. Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation

    SciTech Connect (OSTI)

    Kalkhoff, S.J.

    1993-12-31T23:59:59.000Z

    The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

  3. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01T23:59:59.000Z

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  4. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood,Wall Turbine Jump to:Water

  5. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood,Wall Turbine Jump to:Water2003)

  6. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01T23:59:59.000Z

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical resistivity surveys and borehole pore water data sets were obtained when focusing on areal extent of the salt plume. Lateral resolution of the geophysical field data is best conducted by comparing an aggregated set of geophysical data on all boreholes together. When assembling the pore-water data for all four boreholes in an aerial view, the field ERC data produce a reasonable aerial picture of where high salt plumes exist below the BC Cribs and Trenches area. Future work that relies on more laboratory soil resistivity and incorporation of other field data (spectral gamma, neutron moisture and soil density logs) and physical and hydraulic measurements on samples obtained from the boreholes will used develop a more detailed petrophysical model of the sediments below BC Cribs and Trenches. This more detailed model can be used as a more realistic “earth model” in the inversion process to better manipulate the raw field survey data. It is also recommended that one more borehole be drilled after a thorough vetting of the current data with geophysics experts and other Hanford stakeholder to optimize where to place the borehole, what electrical and other geophysical surveys should be conducted , where to take sediment samples and what parameters should be measured on the sediments to attempt one more “ground truthing” exercise.

  7. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect (OSTI)

    Tew, B.H.; Mancini, E.A. (Univ. of Alabama, Tuscaloosa, AL (United States)); Mink R.M.; Mann, S.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States)); Mancini, E.A.

    1993-09-01T23:59:59.000Z

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  8. METAMATERIALS: Large-area printed 3D negative-index metamaterial is flexible -Laser Focus World http://www.laserfocusworld.com/articles/print/volume-47/issue-8/world-news/metamaterials-large-area-printed-3d-negative-index-metamaterial-is-flexible.html[8/1

    E-Print Network [OSTI]

    Rogers, John A.

    METAMATERIALS: Large-area printed 3D negative-index metamaterial is flexible - Laser Focus World-area printed 3D negative-index metamaterial is flexible METAMATERIALS: Large-area printed 3D negative, with the advent of a printing process that produces large-area 3D multilayer optical NIMs --8.7 × 8.7 cm square

  9. Identification of Management and Planning Problems of Urban Water Resources in the Metropolitan Area of Greater San Antonio

    E-Print Network [OSTI]

    Garner, K.; Shih, C. S.

    including the inventory and planning control for both surface and ground Water Resource Management of the San Antonio area are presented. Emphasis has been placed upon the identification of the probabilistic nature of various decision-making parameters...

  10. A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restricti

    E-Print Network [OSTI]

    Lin, Zhiqun

    A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restrictions or loss of the water supply is not likely

  11. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    E-Print Network [OSTI]

    Martin, Timothy

    using Advanced Very High Res- olution Radiometer Lai data, Climate Research Unit climate dataGlobal estimation of evapotranspiration using a leaf area index-based surface energy and water-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance

  12. Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays; Synthetic smectite; Water; Adsorption; Surface area; Swelling clay; Interlayer space #12;1. Introduction Synthetic clays are very interesting materials, both for scientific research and for industrial applications

  13. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  14. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect (OSTI)

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01T23:59:59.000Z

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  15. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2011 to January 2012

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

    2012-03-05T23:59:59.000Z

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

  16. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect (OSTI)

    Klauk, R.H.; Budding, K.E.

    1984-07-01T23:59:59.000Z

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  17. Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas

    E-Print Network [OSTI]

    Pacsi, Adam P

    The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion ...

  18. Wave–current interaction in the presence of a three-dimensional bathymetry: Deep water wave focusing in opposing current conditions

    SciTech Connect (OSTI)

    Rey, V., E-mail: rey@univ-tln.fr; Charland, J., E-mail: jenna.charland@univ-tln.fr; Touboul, J., E-mail: julien.touboul@univ-tln.fr [Université de Toulon, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, F-83957 La Garde (France); Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, Cedex (France)

    2014-09-15T23:59:59.000Z

    Large scale experiments were carried out in the Ocean Engineering Basin FIRST, France. A tri-dimensional bathymetry consisting of two symmetrical submerged mounds was displayed on the flat bed on both sides of the basin. Regular waves of frequency corresponding to deep water conditions above the bathymetry were generated in opposing current conditions. A strong tri-dimensional behaviour is observed for the wave amplitude, leading to a strong focusing (up to twice the incident amplitude) of the wave energy towards the central deeper zone. This amplification cannot be ascribed to the increase of the current intensity in the main wave direction, nor to a current gradient normally to the wave direction. A wave phase gradient, normal to its main direction, is observed up-wave (or downstream) the mounds. This phase lag depends on the wave amplitude, it is the higher for the moderate amplitude case. The experimental data are compared with calculations of a refraction-diffraction model assuming a depth-averaged current. If the model qualitatively predicts the wave amplification in the centerline of the basin, discrepancies are observed in the vicinity of the depth changes. The observed mean current vertical profile shape is then supposed to play a significant role in the wave focusing, especially near the steep slopes down-stream the mounds. In addition, the waves are found to modify substantially both horizontal and vertical current fields.

  19. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas

    E-Print Network [OSTI]

    Zhan, Hongbin

    a combination of topology, soil type, land use, water management practices using geographic information systems for sustainable groundwater management. However, the groundwater recharge and evapotranspiration are influenced by a range of factors such as topography, soil type, land use, and water management practices (Petheram et al

  20. IMPROVED UNDERSTANDING OF SUBSURFACE HYDROLOGY IN VARIABLE SOURCE AREAS AND ITS IMPLICATIONS FOR WATER

    E-Print Network [OSTI]

    Walter, M.Todd

    and nutrient transport from a greater distance has to be considered in water management during events with wet and subsurface runoff generation and chemical transport and how these processes can be captured in ungaged basins was instrumented (trenched) in the southern tier of New York, U.S. Water flux from different soil layers

  1. A Comparison of Domestic Water Heating Options in the Austin Electric Service Area

    E-Print Network [OSTI]

    Vliet, G. C.; Hood, D. B.

    1985-01-01T23:59:59.000Z

    , M., and F. C. Fontana, "Heat-Pump Desuperheaters for Supplying Domestic Not Water - Estimation of Energy Savings and Economic Viability For Residential Applications," ORNLICON-114. Oak Ridge National Laboratory, Oak Ridge, TN, May 1983. 11...

  2. Water Quality Modeling and Monitoring in the California North Delta Area Raffi Jirair Moughamian

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    hydraulic model of the northern part of the Sacramento-San Joaquin Delta (the North Delta). It was produced A water quality model, including salinity and temperature, has been linked to a one-dimensional, MIKE 11 Description.................................................................................20 Hydrodynamics

  3. A Comparison of Domestic Water Heating Options in the Austin Electric Service Area 

    E-Print Network [OSTI]

    Vliet, G. C.; Hood, D. B.

    1985-01-01T23:59:59.000Z

    This report examines the energy, demand, and economic effects of three alternative electric water heating systems from the perspective of both the City of Austin Electric Utility and its ratepayers. An hourly computer simulation was used to model...

  4. Models of the atmospheric water vapor budget for the Texas HIPLEX area: by Steven Francis Williams.

    E-Print Network [OSTI]

    Williams, Steven Francis

    1979-01-01T23:59:59.000Z

    co:erage cf. convective activ' ty, Thus, the em&unt of convection seems to be more important than the type oz pr"se. . ce of convective activi!y. An increased tran:port of water vapor near ti e surface is -hown to be an important factor... of watc-. z vapor tnrough each later, l boundary shown in Fig. 1 can be comput d by substituting Eqs. (16) ? (19), reaper tively, into Eq. (14) . Th ' net transport of water vapor 'nt the volume through la+eral oouccdaries or t?:e net horizontal tran:;port...

  5. Field test of hydrophobic soil clod mulch for soil water conservation in a semiarid area

    E-Print Network [OSTI]

    Horton, Robert

    1977-01-01T23:59:59.000Z

    for mulched and unmulched profiles? 0. 0 m ? 2. 25 m, over the dry period, February 28 - April 4, 1977 . 7' TABLF Page 14. Yieasured vs. calculated weekly water balances for profiles of 0. 15 m ? 2. 25 m, for mulched and unmulched pro files dur Ing... the wet period, October 4? November 1, 1976 . 73 15. M asured vs. calculated weekly water balances ;-or profiles of 0. 15 m ? 2. 25 m, for mulched ano unmulched profiles during the dry period, February 28? April 4, 1977 75 16. Simulated i. emperature...

  6. Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump|Salton Sea Area

  7. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002)Information Area

  8. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002)Information Area1982)

  9. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28T23:59:59.000Z

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  10. Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas 

    E-Print Network [OSTI]

    Gibson, John Lawrence

    1983-01-01T23:59:59.000Z

    . Hydrogeologic investigation of the study area included eval- uation of precipitation, recharge, discharge, aquifer geometry, storage reserve, and hydraulic properties of the aquifer. Accumulated departure from mean annual orecipitation at. the Panther... the surface. The effective uniform depth of precipitation on the mountain slopes is 15. 86 in/yr. Green Gulch is believed to be the primary recharge zone for the Aguja aquifer, and the eastern slope of the Chisos Mountains is the major recharge zone...

  11. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater PowerInformation

  12. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater

  13. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformation Beowawe

  14. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformation

  15. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformationEnergy

  16. Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen Energy Information Water

  17. Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al., 1996) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen Energy Information WaterOpen

  18. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump to: navigation,

  19. Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump to:Energy

  20. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump

  1. Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump| Open Energy

  2. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump| Open

  3. Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump|

  4. Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump|Salton Sea

  5. Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump|Salton

  6. Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002)

  7. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002)Information

  8. Water Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area (Thomas,

  9. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area

  10. Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area| Open Energy

  11. Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area| Open Energy|

  12. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauai Area|

  13. Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMt Ranier Area (Frank,

  14. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMt Ranier Area

  15. Shallow water flow is a serious drilling hazard encoun-tered across several areas of the Gulf of Mexico (GoM).

    E-Print Network [OSTI]

    Texas at Austin, University of

    of Mexico (GoM). Numerous incidents have occurred in which intense shallow water flows have disrupted question: "How does fresh- water come to be near the seafloor in deepwater areas of the Gulf of Mexico extending from onshore to offshore. This option is not generally accepted by experienced Gulf of Mexico

  16. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  17. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE Acquisition GuideEnergyFluorescent21 -

  18. Property:Focus Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property NameFirstWellDepthProperty Edit withBuilding

  19. Summary of Weldon Spring Site Focus Area

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV ProjectDear Mr.o fof

  20. Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site

    SciTech Connect (OSTI)

    Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

    2011-03-07T23:59:59.000Z

    The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

  1. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01T23:59:59.000Z

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  2. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE

    E-Print Network [OSTI]

    Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J. S

    2012-01-01T23:59:59.000Z

    or no change in ground water storage. Therefore, we con-ground- water table from 2002 through 2010 would be required to account for the subsurface water storageground water level over the same period repre- sents 1.9 cm of potential additional soil water storage

  3. The significance of organic carbon and sediment surface area to the benthic biogeochemistry of the slope and deep water environments of the northern Gulf of Mexico

    E-Print Network [OSTI]

    Beazley, Melanie J.

    2004-09-30T23:59:59.000Z

    of sediment wt % <63 µm to surface area?????.... 19 4 5 Grain size tertiary diagram????????????????... Map of Gulf of Mexico wt % organic carbon???..?????? 19 22 6 Map of Gulf of Mexico organic carbon-to-surface area (OC/SA)?... 23 7 Map of Gulf... abundance.?????????... 35 14 Linear regression analysis of OC/SA and water depth for the GOM sample set????????????????.??????? 37 15 Linear regression analysis of OC/SA with an east/west gradient...

  4. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect (OSTI)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01T23:59:59.000Z

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

  5. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24T23:59:59.000Z

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

  6. Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area

    SciTech Connect (OSTI)

    Newcomer, Darrell R.

    2014-07-01T23:59:59.000Z

    During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

  7. Water Levels, Barrow, Alaska, NGEE Areas A, B, C and D for 2012, 2013, 2014, Final Version, 20150324

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  8. Water Resources Research Institute of the University of North Carolina

    E-Print Network [OSTI]

    Water Resources Research Institute of the University of North Carolina Annual Technical Report FY 2000 Introduction SUMMARY The North Carolina Water Resources Research Institute program for 2000-2001 (Federal Fiscal Year 2000) continued to focus on three broad areas of concern: surface waters, groundwater

  9. Movement out of focus

    E-Print Network [OSTI]

    Erlewine, Michael Yoshitaka

    2014-01-01T23:59:59.000Z

    This dissertation investigates the consequences of overt and covert movement on association with focus. The interpretation of focus-sensitive operators such as only and even depends on the presence of a focused constituent ...

  10. amplified genomic areas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to usually as "Solutions") offers 18 focus areas covering a wealth of genetics and genomics areas, Biotechnology Websites Summary: ") offers 18 focus areas covering a wealth of...

  11. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    used in area like smart buildings, street light controls andbuilding. This section focuses on HAN design to address two smart

  12. Focus Sensitive Coordination

    E-Print Network [OSTI]

    Hulsey, Sarah McNearney

    2008-01-01T23:59:59.000Z

    This thesis investigates the role of the Focus Sensitive Operators (FSOs) even and also when found inside of a coordination. Coordinations of this form are called Focus Sensitive Coordinations (FSC) and include or even, ...

  13. Ground Water Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

  14. Alternating phase focused linacs

    DOE Patents [OSTI]

    Swenson, Donald A. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  15. Hydrologically Sensitive Areas: Variable Source Area Hydrology

    E-Print Network [OSTI]

    Walter, M.Todd

    Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk hydrology was developed and applied to the New York City (NYC) water supply watersheds. According and are therefore hydrologically sensitive with respect to their potential to transport contaminants to perennial

  16. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01T23:59:59.000Z

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  17. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    SciTech Connect (OSTI)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01T23:59:59.000Z

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399) downstream to the upper end of Lower Granite Reservoir near rkm 240. We randomly selected 14 fall Chinook salmon spawning locations as study sites, which represents 25% of the most used spawning areas throughout the HCR. Interactions between river water and pore water within the riverbed (i.e., hyporheic zone) at each site were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. Surrounding the piezometer cluster at each site were 3 artificial egg pockets. In mid-November 2002, early-eyed stage fall Chinook salmon eggs were placed inside of perforated polyvinyl chloride (PVC) tubes, along with a temperature data logger, and buried within the egg pockets. Fall Chinook salmon eggs were also incubated in the laboratory for the purpose of developing growth curves that could be used as indicators of emergence timing. The effects of discharge on vertical hydrologic exchange between the river and riverbed were inferred from measured temperature gradients between the river and riverbed, and the application of a numerical model. The hydrologic regime during the 2002-2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only 2 of 14 sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude

  18. The geology, ground water, and surface subsidence of the Baytown-La Porte area, Harris County, Texas

    E-Print Network [OSTI]

    Gray, Eddie Vaughn

    1958-01-01T23:59:59.000Z

    , SVHSXQEK'GE QF THE RAXTQMN Ik PQRTE AREA~ HARRXS QQQHTYp TEXAS A Thesis Approved ae to stFXe and oontent bFt Ghairnan of Connect e / Head of Department August~ 1958 Ab tra t 4 Xn't 1c4'action ~ ~ ~ i"", c. , e;. nd . co. . 4 o? inrc'cti, ";at... subsidence contoured on differenoe in olevation from 1943-19/3 inclusive, . . . . . . . . , Pocket Displacaments in %Q'ket Street at Avenue F and Avenue Rs ~ w ~ + e ~ ~ ~ ~ ~ e ~ ~ ~ o ~ s i ~ ~ 36 Settiemont under house at co?. ncr oi' Abbott...

  19. Solar energt focusing means

    SciTech Connect (OSTI)

    Tsubota, J.

    1981-11-10T23:59:59.000Z

    A highly efficient solar focusing means being hollow and in semi-cylindrical or arcuate shape, the surface has such fine menisci as to act like convex lenses to focus solar rays towards the center of the focusing body, irrespective of the position of the sun, where a solar energy conversion device is located and further acts to disperse light reflected thereonto from the solar energy conversion device. The focusing body can assume several shapes and thus can be used for roofing of a building, such as a house, or the like, and still be aesthetically pleasing.

  20. Groundwater Management Areas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

  1. Application of conservative residual distribution schemes to the solution of the shallow water equations on

    E-Print Network [OSTI]

    Abgrall, RĂ©mi

    Application of conservative residual distribution schemes to the solution of the shallow water. Keywords: Conservative schemes; Residual distribution; Shallow water equations; Lake at rest solution solution of the shallow water equations on unstructured grids. We focus on flows over wet areas

  2. Groundwater Management and the Cost of Reduced Surface Water Deliveries to Urban Areas: The Case of the Central and West Coast Basins of Southern California

    E-Print Network [OSTI]

    Sunding, David L.; Hamilton, Stephen F; Ajami, Newsha K

    2009-01-01T23:59:59.000Z

    Direct Use Desalter Water Residual Demand Source: Datathe basins. Residual demand for imported water, which is thefrom MWD. Residual demand for imported water represents the

  3. Groundwater Management and the Cost of Reduced Surface Water Deliveries to Urban Areas: The Case of the Central and West Coast Basins of Southern California

    E-Print Network [OSTI]

    Sunding, David L.; Hamilton, Stephen F; Ajami, Newsha K

    2009-01-01T23:59:59.000Z

    represents the annual water shortage that cannot be met fromservice associated with water shortage events. Total Costscost to consumers of a water shortage. 11 LCPSIM optimizes

  4. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    SciTech Connect (OSTI)

    PETERSEN SW

    2009-07-02T23:59:59.000Z

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  5. Final focus test beam

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  6. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07T23:59:59.000Z

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  7. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  8. Dislocation focus construction in Chinese

    E-Print Network [OSTI]

    Cheung, Lawrence Yam-Leung

    2009-01-01T23:59:59.000Z

    of dislocation focus construction in Cantonese. MA thesis,London. Dislocation focus construction in Chinese Leung,SP Dislocation focus construction in Chinese (a) (b) (c) (

  9. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31T23:59:59.000Z

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  10. Focus in Ecuadorian Quechua

    E-Print Network [OSTI]

    Shireman, Joshua

    2012-12-11T23:59:59.000Z

    ), the adverb utkata, “quickly,” is unfocused. In (4), it is focused. (3) njuka utkata at?ku-ta kati-rka-ni. 1sg quickly dog-ACC chase-PAST-1sg “I quickly chased the dog.” (4) njuka utkata-mi at?ku-ta kati-rka-ni. 1sg quickly-FOC dog...-ACC chase-PAST-1sg “I quickly chased the dog.” 1 I would like to acknowledge our Quechua consultant Rosa-Maria Masaquiza along with Dr. Harold Torrence and our Field Methods class in the spring...

  11. Dielectrophoretic columnar focusing device

    DOE Patents [OSTI]

    James, Conrad D. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Derzon, Mark S. (Tijeras, NM)

    2010-05-11T23:59:59.000Z

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  12. Strategic Focus Points

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteam Systems SteamR.Strategic Focus Points

  13. WORKSHOP THEMES The workshop will focus on the following areas

    E-Print Network [OSTI]

    , policy makers and engineers from India and USA over the past 20 years and explore how these lessons can the Transportation Sector ­ Issues and Challenges b) Planning and Policy Solutions for Reducing Transportation Hall Central Road Research Institute New Delhi, 110020, India Registration Deadline: 7th January, 2011

  14. Tanks Focus Area Site Needs Assessment - FY 2001

    SciTech Connect (OSTI)

    Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

    2001-04-30T23:59:59.000Z

    The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

  15. TFA Tanks Focus Area midyear review report FY 2000

    SciTech Connect (OSTI)

    LR Roeder-Smith

    2000-05-02T23:59:59.000Z

    In accordance with EM's office of Science and Technology (OST), the TFA is committed to assessing the maturity of technology development projects and ensuring their readiness for implementation and subsequent deployment. The TFA conducts an annual Midyear Review to document the status of ongoing projects, reaffirm and document user commitment to selected projects, and to improve the effective deployment of technology by determining and documenting the readiness of selected projects to move ahead. Since 1995, OST has used a linear technology maturation model that spans through seven defined stages of maturity, from basic research to implementation. Application of this Stage/Gate model to technology development resulted in prescriptive and somewhat cumbersome review procedures, resulting in limited and inconsistent use. Subsequently, in February 2000, OST issued revised guidance in an effort to streamline the technology tracking and review process. While the new OST guidance reinforces peer review requirements and the use of the American Society of Mechanical Engineers (ASME) for independent reviews, it also implements a simplified Gate model. The TFA is now responsible for providing auditable documentation for passing only three stages of technology maturity: ready for research (Gate 0); ready for development (Gate 2); ready for demonstration (Gate 5). The TFA Midyear Review is a key element in the overall review procedure, as the tracking evidence for all active projects is required to be available at this time. While the Midyear Report contains an overview of the status of all TFA reviews and projects, not all the reviews were conducted during the Midyear Review. The TFA used a phased approach to accomplish the Midyear Review requirements.

  16. wumrc.engin.umich.edu Research Focus Area

    E-Print Network [OSTI]

    Daly, Samantha

    ) 3D printing of custom orthoses and prostheses, (3) assistive and rehabilitation devices and others many with simulator, do one, teach one" with the goal to improve patient safety · Use 3D printing

  17. SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV2/01/12 Linac CoherentSLAC

  18. UNL WATER CENTER WATER CURRENT

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    ................ Sidney Area Deals with Drought 6................ Water and Electricity Are Inseparable 10's East Campus. "Consolidating administration,faculty and staff and facilities is costeffectiveandper or commercial products constitute endorsement by the U.S. Government. WATER CURRENT Water Center University

  19. Evaluation of Ships' Ballast Water as a Vector for Transfer of Pathogenic Bacteria to Marine Protected Areas in the Gulf of Mexico

    E-Print Network [OSTI]

    Morris, Theresa L

    2013-05-10T23:59:59.000Z

    and unloading cargo as well as during transit. As a ship unloads it’s cargo at a port, it takes on ballast water and then when it loads cargo at the next port, it discharges the ballast water, thus transferring water from port to port. Aquatic organisms...

  20. Evaluation of Ships' Ballast Water as a Vector for Transfer of Pathogenic Bacteria to Marine Protected Areas in the Gulf of Mexico 

    E-Print Network [OSTI]

    Morris, Theresa L

    2013-05-10T23:59:59.000Z

    An average of three to five billion tons of ballast water (BW) is transported globally per year; 79 million tons of which is released into U. S. waters. Ballast water is necessary for large ships to maintain balance and stability while loading...

  1. Estimating business and residential water supply interruption losses from catastrophic events

    E-Print Network [OSTI]

    Sunding, David

    . In particular, studies have focused on water supply, electric power, and transportation infrastructure [Chang and spatial extent, water supply infrastructure in many urban areas is particularly vulnerable to interruption and residential lifeline users. As a result, the total economic losses caused by infrastructure damage may be much

  2. Groundwater Management and the Cost of Reduced Surface Water Deliveries to Urban Areas: The Case of the Central and West Coast Basins of Southern California

    E-Print Network [OSTI]

    Sunding, David L.; Hamilton, Stephen F; Ajami, Newsha K

    2009-01-01T23:59:59.000Z

    Optimal Management of Groundwater over Space and Time. ”Optimal Control in Groundwater Pumping,” Water ResourcesYear ???? Paper ???? Groundwater Management and the Cost of

  3. Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling

    E-Print Network [OSTI]

    Lund, Jay R.

    -i- Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling In Urban Areas........................................................................................................................................... 4 BENEFICIAL USES OF RECYCLED WATER................................................................................................ 5 MOTIVATIONS FOR RECYCLED WATER USE

  4. 16 au Spring 2012 esri.com Areas of concern defined by ZIP Code Water quality monitoring station and hydro buffers

    E-Print Network [OSTI]

    Short, Daniel

    on implementing best management practices on livestock farms and mitigating failing septic systems. [Nonpoint landowners whose land-use practices might be contributing to the impair- ment of water bodies in the Catawba and are generally carried off the land by storm water. According to the EPA, a TMDL "is the amount of a single

  5. This article has been published in: Urban Water Journal, Vol. 9(1), 2012 Rainwater harvesting to control stormwater runoff in suburban areas.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to store and/or to infiltrate it. These devices, widely known as Best Management Practices (BMP;2 storm events, they fill up and store part of the rainfall. This water is definitely abstracted from1 This article has been published in: Urban Water Journal, Vol. 9(1), 2012 Rainwater harvesting

  6. Groundwater Management and the Cost of Reduced Surface Water Deliveries to Urban Areas: The Case of the Central and West Coast Basins of Southern California

    E-Print Network [OSTI]

    Sunding, David L.; Hamilton, Stephen F; Ajami, Newsha K

    2009-01-01T23:59:59.000Z

    basin to recover the economic incentives for water trading.Economic incentives for inter-basin transfers arise when thein which the economic incentive to trade implies a movement

  7. Comparison of Soil Phosphorus Storage in the Ridge and Slough Landscape in Water Conservation Area 3A (WCA3A) of the Everglades

    E-Print Network [OSTI]

    Ma, Lena

    landscape (Ogden 2005; Bruland et al., 2007; Richardson 2010). Prior to drainage, the water input are found (Bruland et al., 2007). Ridges are generally monotonically covered in Cladium and are oriented

  8. Abstract. Harvesting condensed atmospheric vapour as dew water can be an alternative or complementary potable water resource in specific arid or insular areas. Such radiation-cooled condensing devices use

    E-Print Network [OSTI]

    BUILDING - A USTAR INNOVATION CENTER Estimated New Space: USTAR - 200,000 NSF Estimated Completion Date, and coordination of site design with North Chilled Water Plant design. The 5,940 NSF Chilled Water Plant processes across all of campus. The existing distribution system is over 30 years old. Corrosion from ground

  9. Editorial Focus Editorial Focus: Going with the Wnt? Focus on "Hyperaldosteronism,

    E-Print Network [OSTI]

    Just, Armin

    Editorial Focus Editorial Focus: Going with the Wnt? Focus on "Hyperaldosteronism, hypervolemia in mice and humans. Upon binding of these lipid-modified glycopeptides to their plasma membrane receptors complex to the plasma membrane, which leads to degradation of the complex and release of Ă?

  10. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C. (ed.)

    1981-12-01T23:59:59.000Z

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  11. Ultrasonic inspection apparatus and method using a focused wave device

    DOE Patents [OSTI]

    Gieske, John H. (Albuquerque, NM); Roach, Dennis P. (Albuquerque, NM); Walkington, Phillip D. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  12. Mississippi Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    include: water quality, surface and groundwater management, water quality management and water resources Category: Water Quality Focus Category: Wetlands, Water Quality, Management and Planning Descriptors; to assist state agencies in the development and maintenance of a state water management plan

  13. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01T23:59:59.000Z

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

  14. Process Intensification - Chemical Sector Focus

    Broader source: Energy.gov (indexed) [DOE]

    cost and risk in chemical manufacturing facilities. 24 25 At the core of PI is the optimization of process performance by focusing on molecular level kinetics, 26...

  15. Shielding analysis for the 300 area light water reactor spent nuclear fuel within a modified multi-canister overpack canister in a modified multi-canister overpack cask

    SciTech Connect (OSTI)

    Gedeon, S.R.

    1997-04-11T23:59:59.000Z

    Spent light water reactor fuel is to be moved out of the 324 Building. It is anticipated that intact fuel assemblies will be loaded in a modified Multi-Canister Overpack Canister, which in turn will be placed in an Overpack Transportation Cask. An estimate of gamma ray dose rates from a transportation cask is desired.

  16. 2010 Water & Aqueous Solutions

    SciTech Connect (OSTI)

    Dor Ben-Amotz

    2010-08-13T23:59:59.000Z

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  17. Synthesis of focusing-and-deflection columns

    SciTech Connect (OSTI)

    Szilagyi, M.; Mui, P.H. [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)

    1995-03-01T23:59:59.000Z

    Szilagyi and Szep have demonstrated that focusing lenses of high performances can be constructed from a column of circular plate electrodes. Later, Szilagyi modified that system to include dipole, quadrupole, and octupole components by partitioning each plate into eight equal sectors. It has already been shown that the additional quadrupole components can indeed bring about substantial improvements in the focusing of charged particle beams. In this article, that design procedure is expanded to construct columns capable of both focusing and deflecting particle beams by just introducing additional dipole components. In this new design, the geometry of the system remains unchanged. The only extra complication is the demand for more individual controls of the sector voltages. Two sample designs, one for negative ions and one for electrons, are presented showing that in both cases a {plus_minus}2.3 mrad diverging beam can be focused down to a spot of less than 50 nm in radius over a scanning circular area of radius 0.25 mm. The details of the two systems are given in Sec. IV along with the source conditions. The performance of the negative ion system is found to be comparable to the published data. For the relativistic electron system, the interaction of individual components to reduce various aberrations is investigated. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  18. Determination of leaf area index of loblolly pine (Pinus taeda L.) and its relationship to site water balance across a large precipitation gradient in East Texas

    E-Print Network [OSTI]

    Hebert, Mark Thomas

    1996-01-01T23:59:59.000Z

    zones and the four soil groups. 4 Relationship between PCA LAI (summer 1994 and 1995) and allometric LAI Page . 12 . 18 . 19 5 Relationship between LAI (littertrap) and PCA LAI (summer 1994 and 1995) and allornetric LAI . . 20 6 Relationship... increase of only 2' C for the months of June through September significantly reduced canopy biomass production. This was attributed to increased potential evapotraspiration (PET, from the higher temperature) and decreased soil water storage which together...

  19. UNL WATER CENTER WATER CURRENT

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    ........SPECIAL BUREAU OF RECLAMATION CENTENNIAL COVERAGE 14..............Water News Briefs 15 Keyes, Commissioner of Reclamation, U.S. Bureau of Reclamation. Several con- vention topics will focus afternoon NWRA board of director's meeting. Plains farmers survey their land in western Nebraska, probably

  20. FINDYOUR FOCUS. 184 degree programs

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ) forensic and investigative science psychology environmental protection sport management physics public has 350+ student organizations, including the Fashion Business Association, Society of Women EngineersFINDYOUR FOCUS. #12;184 degree programs Including: mechanical engineering (Travis's choice

  1. All Over the Map: The Diversity of Western Water Plans

    E-Print Network [OSTI]

    Casado-Pérez, Vanessa; Cain, Bruce E.; Hui, Iris; Abbott, Coral; Doson, Kaley; Lebow, Shane

    2015-01-01T23:59:59.000Z

    local jurisdictions, effective water planning and managementfragmentation. State water plans are the main focus of thisStates have power over water rights (i.e. , the quantitative

  2. Domestic Water Conservation Technologies: Federal Energy Management Program (FEMP) Federal Technology Alert (Booklet)

    SciTech Connect (OSTI)

    Not Available

    2002-10-01T23:59:59.000Z

    Executive Order 13123 calls for the Federal government to conserve water as well as energy in its 500,000 facilities. To help set priorities among water-saving measures, the Federal Energy Management Program conducted a study of Federal water use in 1997. The study indicated that the government consumes more than 50% of its water in just three types of Federal facilities: housing, hospitals, and office buildings. These facilities have enough kitchens, rest rooms, and laundry areas to provide facility managers with many opportunities to begin reducing their water use (and utility costs) with appropriate water-saving fixtures and products. Therefore, this Federal Technology Alert focuses on domestic technologies, products, and appliances such as water-efficient faucets, showerheads, toilets, urinals, washing machines, and dishwashers. Conserving water also saves the energy needed to treat, pump, and heat that water in homes, businesses, and other buildings.

  3. U.S. Department of Energy Theorty Focus Session on Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Theorty Focus Session on Hydrogen Storage Materials An agenda for a four-part, theory-focus session on hydrogen storage materials to identify critical areas, key barriers,...

  4. Produced Water Management and Beneficial Use

    SciTech Connect (OSTI)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31T23:59:59.000Z

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  5. New charm results from FOCUS

    SciTech Connect (OSTI)

    Bianco, Stefano; /Frascati

    2004-12-01T23:59:59.000Z

    New results from the photoproduction experiment FOCUS are reported: Dalitz plot analysis, semileptonic form factor ratios and excited meson spectroscopy. The author reports on three new results from the photoproduction experiment FOCUS: the first Dalitz plot analysis of charm meson decays using the K-matrix approach[ 1], new measurements of the D{sub s}{sup +} {yields} {delta}(1020) {mu}{sup +}{nu} form factor ratios [2], and new measurements on L=1 excited meson spectroscopy [3], i.e., precise measurements of the masses and widths of the D*{sub 2}{sup +} and D*{sub 2}{sup 0} mesons, and evidence for broad states decaying to D{sup +}{pi}{sup -}, D{sup 0}{pi}{sup +} (the first such evidence in D{sup 0}{pi}{sup +}). The data for this paper were collected in the Wideband photoproduction experiment FOCUS during the Fermilab 1996-1997 fixed-target run.

  6. Finding beam focus errors automatically

    SciTech Connect (OSTI)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.

    1987-01-01T23:59:59.000Z

    An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors. (LEW)

  7. The Development of a Coordinated Database for Water Resources and Flow Model in the Paso Del Norte Watershed (Phase III) Part II Availability of Flow and Water Quality Data for the Rio Grande Project Area

    E-Print Network [OSTI]

    Tillery, Sue; Sheng, Zhuping; King, J. Phillip; Creel, Bobby; Brown, Christopher; Michelsen, Ari; Srinivasan, Raghavan; Granados, Alfredo

    2009-01-01T23:59:59.000Z

    Cruces, NM 88003 (575) 646-4337 i i Acknowledgement This document and the underlying pr oject activities detailed in this report reflect the joint efforts of many people working with the Paso del Norte Watershed Council (PdNWC). The authors... wish to acknowledge and extend our grat itude to the U.S. Army Corps of Engineers for the generous financial support extende d to the PdNWC for development of the Coordinated Water Resources Database and Model Developm ent Project (called Project...

  8. Cost-Effective, Customer-Focused, and Contractor-Focused Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Better Buildings...

  9. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  10. Charge-Focusing Readout of Time Projection Chambers

    E-Print Network [OSTI]

    S. J. Ross; M. T. Hedges; I. Jaegle; M. D. Rosen; I. S. Seong; T. N. Thorpe; S. E. Vahsen; J. Yamaoka

    2013-04-02T23:59:59.000Z

    Time projection chambers (TPCs) have found a wide range of applications in particle physics, nuclear physics, and homeland security. For TPCs with high-resolution readout, the readout electronics often dominate the price of the final detector. We have developed a novel method which could be used to build large-scale detectors while limiting the necessary readout area. By focusing the drift charge with static electric fields, we would allow a small area of electronics to be sensitive to particle detection for a much larger detector volume. The resulting cost reduction could be important in areas of research which demand large-scale detectors, including dark matter searches and detection of special nuclear material. We present simulations made using the software package Garfield of a focusing structure to be used with a prototype TPC with pixel readout. This design should enable significant focusing while retaining directional sensitivity to incoming particles. We also present first experimental results and compare them with simulation.

  11. Points of Focus 2009 2013

    E-Print Network [OSTI]

    Meyers, Steven D.

    and research capability, and sincere interest in the welfare of their students. The challenge to identify its spending priorities and focus its efforts carefully. The importance of integrated planning has and long-range goals related to the development of new programs, the building of new facilities

  12. Creating Wave-Focusing Materials

    E-Print Network [OSTI]

    A. G. Ramm

    2008-05-16T23:59:59.000Z

    Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

  13. Focus Article MATLAB library LIBRA

    E-Print Network [OSTI]

    Focus Article MATLAB library LIBRA Sabine Verboven1 and Mia Hubert2 LIBRA stands for `library), principal component regression (RPCR), partial least squares regression (RSIMPLS), classification (RDA Comp Stat 2010 2 509­515 The library for robust analysis, LIBRA, contains robust statistical methods

  14. focusing on research still growing

    E-Print Network [OSTI]

    Cesare, Bernardo

    Dical sciences anD international stuDies MATHEMATICS, PHYSICAL SCIENCES, INFORMATION AND COMMUNICATION of pharmaceutical anD pharmacological sciences PSYCHOLOGY Department of philosophy, sociology, eDucation anD applieD49 focusing on research still growing SOCIAL SCIENCES AND HUMANITIES ECONOMICS AND STATISTICS

  15. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21T23:59:59.000Z

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  16. Antimony in the environment: a review focused on natural waters

    E-Print Network [OSTI]

    Short, Daniel

    Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland b Department published more than 100 years ago. General principles are outlined and main unknowns highlighted. Existing). Antimony concentrations are much higher in natural geothermal systems where they can range from 500 mg/l up

  17. A study of the relationship between recreational user-day visits and the physical and economic characteristics of Texas water impoundment areas

    E-Print Network [OSTI]

    Jones, Ronnie D

    1966-01-01T23:59:59.000Z

    ILTsy ~ QLLkeC %ltd'708 XW$@~p4. Che . ccQKSPgetds Gx KBBQp' @?oee ~ +~ 3. sx'gN ~S the RgK'9. ~ EtQS t ~ e&G, %@GC G BtM e VBAhLXX P, QQ'O~~~V~s dNXV A@ NQ 84 )J? p I& Fig. 1. --Location of Standard Metropolitan Statistical Areas of' Texas. 6 g UO...EigoX'iG~44 QQE9pSZ'2, Bono 9 'C&MQ 8'RSCG VMS ZMW$. C4'G8, 3. n@Q 8& Z QX'8@8 y Zn QQ88. ggfn CLn~~ '5hn ~&on& pnztl. e+3e~ . @Ments. on +@8 gLvav. 'ao eneh Zeeitme ea t@W'8'Q~l' y MS' ~~i@f'@3. 3?e @ho 64kkn '@8K'5 +G3. 38$'58d; Ltp' CRS sGLL Gonso...

  18. Design report on the test system used to assess treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kent, T.E.; Taylor, P.A.

    1992-09-01T23:59:59.000Z

    New liquid waste streams will be generated as a consequence of closure activities at Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). It is proposed that these waste streams be treated for removal of contaminants by adding them to the ORNL wastewater treatment facilities. Previous bench-scale treatability studies indicate that ORNL treatment operations will adequately remove the contaminants, although additional study is required to characterize the secondary waste materials produced as a result of the treatment. A larger scale treatment system was constructed to produce secondary wastes in the quantities necessary for characterization and US Environmental protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system is designed to simulate the operation of the ORNL process waste treatment facilities and to treat a mixture of ORNL process wastewater and WAG 6 wastewater at a combined flow rate of 0.5 L/min. The system is designed to produce the necessary quantities of waste sludges and spent carbon for characterization studies and TCLP testing.

  19. Water Scarcity, Climate Change, and Water Quality: Three Economic Essays 

    E-Print Network [OSTI]

    Cai, Yongxia

    2010-07-14T23:59:59.000Z

    This dissertation is composed of three essays investigating three aspects of future water issues. The first essay focuses on an examination of water scarcity issues caused by rapid population growth and economic development ...

  20. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory [NSTec

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  1. Be Water Smart 

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01T23:59:59.000Z

    W aterSmart, a water conservation program, uses a unique approach to protect and conserve water quality and quantity in upper Texas Gulf Coast urban landscapes. Part of the Texas Coastal Watershed Program (TCWP), WaterSmart is creating rain... gardens as just one method of demonstrating how water conservation can function in an attractive landscape. In December of 2005, the first demonstration WaterSmart rain garden was established at the Bay Area Courthouse Annex in Clear Lake City...

  2. Be Water Smart

    E-Print Network [OSTI]

    Swyden, Courtney

    2006-01-01T23:59:59.000Z

    W aterSmart, a water conservation program, uses a unique approach to protect and conserve water quality and quantity in upper Texas Gulf Coast urban landscapes. Part of the Texas Coastal Watershed Program (TCWP), WaterSmart is creating rain... gardens as just one method of demonstrating how water conservation can function in an attractive landscape. In December of 2005, the first demonstration WaterSmart rain garden was established at the Bay Area Courthouse Annex in Clear Lake City...

  3. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  4. Line-focus sun trackers

    SciTech Connect (OSTI)

    Gee, R.

    1980-05-01T23:59:59.000Z

    Sun trackers have been a troublesome component for line-focus concentrating collector systems. The problems have included poor accuracy, component failures, false locks on clouds, and restricted tracker operating ranges. In response to these tracking difficulties, a variety of improved sun trackers have been developed. A testing program is underway at SERI to determine the tracking accuracy of this new generation of sun trackers. The three major types of trackers are defined, some recent sun tracker developments are described, and the testing that is underway is outlined.

  5. Focus Series | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43and StatementNovember 17,Date:Focus

  6. OPERATING PROCEDURES FOR THE ANIMAL GENOMICS FOCUS GROUP (as of Sept 12 2008)

    E-Print Network [OSTI]

    Ernest, Holly

    OPERATING PROCEDURES FOR THE ANIMAL GENOMICS FOCUS GROUP (as of Sept 12 2008) OBJECTIVES The Animal Genomics (AG) focus group within the Genetics Graduate Group (GGG) will bring together faculty who are active in this area of research to enhance the training opportunities in this area. Animal Genomics

  7. Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    : Ground-water Flow and Transport Focus Category: Non Point Pollution, Surface Water, Toxic Substances Descriptors: Benthos, Bioindicators, Biomonitoring, Ecosystems, Heavy metals, Insects, Land use, PollutantsWater Research Institute Annual Technical Report FY 2001 Introduction Introduction - Research

  8. Iowa Water Center Annual Technical Report

    E-Print Network [OSTI]

    Iowa Water Center Annual Technical Report FY 2010 Iowa Water Center Annual Technical Report FY 2010 1 #12;Introduction The Iowa Water Center is a multi-campus and multi-organizational center focusing-institutional water research that can improve Iowa's water quality and provide adequate water supplies to meet both

  9. Iowa Water Center Annual Technical Report

    E-Print Network [OSTI]

    Iowa Water Center Annual Technical Report FY 2011 Iowa Water Center Annual Technical Report FY 2011 1 #12;Introduction The Iowa Water Center is a multi-campus and multi-organizational center focusing-institutional water research that can improve Iowa's water quality and provide adequate water supplies to meet both

  10. Iowa Water Center Annual Technical Report

    E-Print Network [OSTI]

    Iowa Water Center Annual Technical Report FY 2012 Iowa Water Center Annual Technical Report FY 2012 1 #12;Introduction The Iowa Water Center is a multi-campus and multi-organizational center focusing-institutional water research that can improve Iowa's water quality and provide adequate water supplies to meet both

  11. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  12. Independent Oversight Focused Program Review, Argonne National...

    Energy Savers [EERE]

    Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001 Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001...

  13. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  14. Priority Groundwater Management Areas: Overview and Frequently Asked Questions

    E-Print Network [OSTI]

    Silvy, Valeen; Lesikar, Bruce J.; Persyn, Russell A.

    2008-11-07T23:59:59.000Z

    Water shortages and water quality problems in Texas are prompting the state to address the security of its water supplies. One approach being taken is to create priority groundwater management areas (PGMAs) in critical regions. This publication...

  15. Bursting at the Seams: Water Access and Housing in Luanda

    E-Print Network [OSTI]

    Bulfin, Michael Patrick

    2009-01-01T23:59:59.000Z

    constructed areas. The lack of water access and properand how the lack of access to clean water, coupled withmost slum residents lack knowledge about the basics of water

  16. Non-focusing active warhead

    DOE Patents [OSTI]

    Hornig, H.C.

    1998-12-22T23:59:59.000Z

    A non-nuclear, non-focusing, active warhead that comprises a high explosive charge contained within a casing of reactive metal is disclosed. When the high explosive is detonated, the reactive metal is dispersed and reacts with the air, which significantly increases the explosive yield of the warhead. The active warhead produces therefore much higher blast effects with significantly reduced weight compared to conventional munitions. The warhead is highly effective against such targets as aircraft which typically have thin fuselages, for example. The explosiveness of this warhead can be enhanced further by elevating the temperature and therefore the reactivity of the reactive metal before or during the explosion. New methods of enhancing the reactivity of the metal are also taught. 4 figs.

  17. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to find linkages between water power grid services and water availability. All balancing areas have the same basic needs for responsive resources (generation and sometimes...

  18. Water in the 21st Century

    SciTech Connect (OSTI)

    Piechota, Thomas C

    2013-02-08T23:59:59.000Z

    This research project focused on sustainability issues in the southwest U.S. with an emphasis on water and energy. The efforts were directed through the UNLV Urban Sustainability Office with the funding used to develop a sustainability strategic plan; conduct extensive community outreach in the greater metropolitan area; provide seed money for multidisciplinary research teams to conduct studies in the areas of ecological, socio-cultural, and economic sustainability leading to community-based solutions; and to provide service-learning opportunities for UNLV graduate and undergraduate students. The research advanced understanding of urban and regional water issues with a particular focus on climate change and climate variability in the southwest. In addition, various events were held to promote discussion on energy, water, and sustainability discussions in the community. The impact of this research was broad dissemination of research through 13 peer-reviewed publications, learning opportunities for countless students as a result of class room equipment upgrades (see report for upgrade details), and new research funding for further advancement of these research efforts.

  19. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by WebsitehomeResearch Areas

  20. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  1. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25T23:59:59.000Z

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  2. Land and Water Developments (Newfoundland and Labrador)

    Broader source: Energy.gov [DOE]

    This policy applies to public water supply areas designated by the province of Newfoundland and Labrador. The policy limits development in public water supply areas unless they meet specific...

  3. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01T23:59:59.000Z

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  4. The Protection of Riparian Areas: New Approaches for New Times?

    E-Print Network [OSTI]

    of the nation. There is no lack of water here, unless you try to establish a city where no city should be. (1The Protection of Riparian Areas: New Approaches for New Times? Denise D. Fort "Water, water, water....There is no shortage of water in the desert but exactly the right amount, a perfect ratio

  5. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Water Resources Research Center Annual Technical Report FY 2003 Introduction The Florida Water for Wetlands and Water Resources Research in 1995. Historically, since 1964, the WRRC as a separate or combined center has been a university-wide focus for water-resources research and has served as the Water

  6. Improved focusing-and-deflection columns

    SciTech Connect (OSTI)

    Mui, P.H.; Szilagyi, M. [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)

    1995-07-01T23:59:59.000Z

    Our earlier design procedures for constructing quadrupole columns are further expanded to include octupole corrector units and ``octupole`` deflectors with no third-order harmonics. The additional complications are finer partitioning of the plates and increased number of voltage controllers. Two sample designs, one having only the additional octupole deflectors and one having both the deflectors and the correctors, are presented and compared to our previous quadrupole system. The additional octupole components are shown to be capable of increasing the current density from 30% to more than 300% for a four-plate system, designed to focus and scan the electron beam over a circular area of 0.25 mm radius. The electron beam is assumed to have an initial divergence of {plus_minus}2.3 mrad, an initial energy of 6 kV, a total energy spread of 1 eV, and a final acceleration of 30 keV. These systems are then slightly reoptimized for a superficial comparison with the commercially available column by Micrion Corporation. The numerical results indicate a potential for substantial improvements, demonstrating the power of this design procedure. Finally, a discussion is presented on how the individual components can interact with each other to reduce the various aberrations. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  7. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Water Resources Research Center Annual Technical Report FY 1999 Introduction WATER PROBLEMS AND ISSUES OF MISSOURI The water problems and issues in the State of Missouri can be separated into three general areas: 1) water quality, 2) water quantity, and 3) water policy. Each of Missouri's specific

  8. OPTIMAL LOCATION OF ISOLATION VALVES IN WATER

    E-Print Network [OSTI]

    Mays, Larry W.

    areas has translated into a high proportion of unaccounted-for water due to leakage, which is not only

  9. Addressing Nitrate in California's Drinking Water

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley #12;Addressing Nitrate in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas Lake Basin and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report

  10. area protein patterning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reifenberger, Ronald G. 64 STUDY: SHIFTS IN SETTLEMENT PATTERNS IN THE KYZIL AREA, CHELYABINSK DISTRICT. by CiteSeer Summary: The following paper focuses on the transitional...

  11. Profile of the Department of Design Engineering and the Focus on New Research Areas May 2014 Department of Design Engineering: Profile and Focus on New Research Areas

    E-Print Network [OSTI]

    Langendoen, Koen

    areincreasingly becoming producers (or `prosumers' or `co- designers'). They are now involved in the development

  12. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    SciTech Connect (OSTI)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18T23:59:59.000Z

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  13. Do You Have a Solar Water Heater?

    Broader source: Energy.gov [DOE]

    Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

  14. Water Conservation with Urban Landscape Plants

    E-Print Network [OSTI]

    Hip, B. W.; Giordano, C.; Simpson, B.

    Water shortages are a common problem in much of the southwest. Increasing urbanization and increasing population places greater demands on dwindling water supplies. Over half of the water used in urban areas of the southwest is used...

  15. The Lower Mississippi Valley as a Language Area

    E-Print Network [OSTI]

    Kaufman, David Vincent

    2014-08-31T23:59:59.000Z

    It has been hypothesized that the Southeastern U.S. is a language area, or Sprachbund. However, there has been little systematic examination of the supposed features of this area. The current analysis focuses on a smaller ...

  16. Large spectral tuning of a waterglycerol microdroplet by a focused laser: characterization and modeling

    E-Print Network [OSTI]

    Muradoglu, Metin

    heating induced by the absorption of a focused infrared laser. Under constant infrared laser illumina of a water­glycerol microdroplet standing on a superhydrophobic surface by local heating with a focused infrared laser is studied both experimentally by optical spectroscopy and computationally using a lumped

  17. First Western Forum on Energy & Water Sustainability

    E-Print Network [OSTI]

    Keller, Arturo A.

    First Western Forum on Energy & Water Sustainability March 22, 2007 WATER PLAN: 2000-2050 CITY;Tucson Active Management Area Tucson Active Management Area City of Tucson Tucson Active Management Area-2000 Tucson Active Management Area #12;City of Tucson 1940 #12;City of Tucson 1945 #12;City of Tucson 1950 #12

  18. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  19. Watering the Sun Corridor

    E-Print Network [OSTI]

    Hall, Sharon J.

    Watering the Sun Corridor Managing Choices in Arizona's Megapolitan Area #12;#12;Managing ChoicesSored by Printing generously provided by SRP. Watering the Sun Corridor Tom Buschatzke, City of Phoenix Peter Culp i C y | 5 Introduction............................................7 I. The Sun Corridor

  20. Arkansas Water Resources Center

    E-Print Network [OSTI]

    Soerens, Thomas

    Arkan- sas in order to determine the effect of local manganese, phosphate, pyrite, lead-zinc and uranium manganese district. Hydrogeochemical exploration for these types of manganese deposits appears possible .,.:;, Water Quality. 18 Comparison of Water Chemistry. 27 Geochemical Exploration. 30 Four Minera 1i zed Areas

  1. Managing Imported Fire Ants in Urban Areas

    E-Print Network [OSTI]

    Drees, Bastiaan M.

    2006-08-17T23:59:59.000Z

    individual colonies may occur that require individual mound treatment. Properties that border untreated areas such as agricultural lands, water edges, flood plains and wilderness will likely have a continuous reinfes- tation of ant colonies unless...

  2. Numerical modeling of extreme rogue waves generated by directional energy focusing

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    of an overturning rogue wave, and analyze the sensitivity of its geometry and kinematics to water depth and maximum. Keywords: Water waves; Numerical wave tank; Extreme wave kinematics; Rogue waves 1. Introduction finely resolved 3D focused overturning waves and analyze their geometry and kinematics. In this paper, we

  3. Needs of Non Energy-Focused Contractors

    SciTech Connect (OSTI)

    Liaukus, C.

    2012-12-01T23:59:59.000Z

    To better understand the informational needs of non energy-focused contractors, including what information they need to motivate them to become energy-focused, the BARA team studied the type of information provided by the national programs, trade associations, and manufacturers that were researched for the related technical report: Effective Communication of Energy Efficiency. While that report focused on the delivery method, format, and strategy of the information, this study examines the content being put forward.

  4. Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    . National Mine Land Reclamation Center which focuses on watershed restoration to correct the effects of mine Descriptors: post mining land use, waste water,water quality, site selection, waste reduction, parameter

  5. Water in the Half Shell: Structure of Water, Focusing on Angular Structure and Solvation

    E-Print Network [OSTI]

    Sharp, Kim

    and in the heat capacity of the solution provide a measure of the changes in the strength and distribution hydration heat capacity (Cp) of, respectively, apolar and polar sol- utes or protein groups. Experimentally density in the solid phase compared with the liquid phase. Its ability to serve as both a hydrogen bond

  6. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  7. Wildlife Management Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

  8. Addressing Nitrate in California's Drinking Water Report for the State Water Resources Control Board Report to the Legislature

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report for the State Water X2 1 Tulare Lake Basin and Salinas Valley Pilot Studies Prepared for: California State Water

  9. Addressing Nitrate in California's Drinking Water Report for the State Water Resources Control Board Report to the Legislature

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley's Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report for the State Water and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature

  10. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    : Fifth Research Category: Ground-water Flow and Transport Focus Category: Non Point Pollution, Water Quality, Hydrogeochemistry Descriptors: Non-point pollutants, lindane, triallate, pesticides, water agricultural mass discharges using enviro

  11. Arkansas Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    wastewater disposal systems, ground water modeling and land use mapping, erosion and pollution, water quality focused on helping local, state and federal agencies understand, manage and protect water resources within Arkansas. AWRC has contributed substantially to the understanding and management of water resources through

  12. FOCUS July 2000 1 The Departments

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    , professor of civil engineering, gives a lesson on bedrock bioremediation at a haz- ardous waste site) was spilled at the site years ago when Pease was an Air Force Base. Engineering on the Rocks Nancy KinnerFOCUS July 2000 1 The Departments asdfghjk The Departments FOCUS COLLEGE OF ENGINEERING

  13. FEMP/NTDP Technology Focus New Technology

    E-Print Network [OSTI]

    FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

  14. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  15. area northern part: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Water Conservation Florida, University of 6 Structural core analysis from the Gullfaks area, northern North Sea J. Hesthammera,*, H. Fossenb Geosciences Websites Summary:...

  16. Western Area Power Administration, Desert Southwest Region Parker...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    areas, and other water sources that are vital in a region); and X (vii) Tundra, coral reefs, or rain forests.; or X (5) Involve genetically engineered organisms, synthetic...

  17. Focusing particle concentrator with application to ultrafine particles

    DOE Patents [OSTI]

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11T23:59:59.000Z

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  18. Laser focus compensating sensing and imaging device

    DOE Patents [OSTI]

    Vann, C.S.

    1993-08-31T23:59:59.000Z

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  19. Focused shock spark discharge drill using multiple electrodes

    DOE Patents [OSTI]

    Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  20. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  1. Superfund record of decision (EPA Region 2): Federal Aviation Administration Technical Center (Area 29 - Fire Training and Area K - storage area near area 29), Altantic County, Atlantic City International Airport, NJ, September 20, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This decision document presents the selected remedial action for Area 29, the Fire Training Area and Area K, a former drum and tank storage area located adjacent to Area 29 at the FAA Technical Center, Atlantic City International Airport, New Jersey. The selected remedy for Areas 29 and K address the principal threat by controlling the migration of and treating dissolved chemicals in ground water. Contaminated soils will be excavated and disposed of offsite.

  2. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24T23:59:59.000Z

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  3. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01T23:59:59.000Z

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  4. 2002 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of...

  5. 2001 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of...

  6. Sandia National Laboratories: Water, Energy, and Natural Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, and Natural Resource Systems Water, Energy, and Natural Resource Systems irrigationsiphontubes-usdasm Agricultural water use competes with urban-area...

  7. Army Energy and Water Reporting System Assessment

    SciTech Connect (OSTI)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01T23:59:59.000Z

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

  8. Micro free-flow isoelectric focusing

    E-Print Network [OSTI]

    Albrecht, Jacob William

    2008-01-01T23:59:59.000Z

    To unravel the complexity of cellular systems, protein prefractionation tools can be used to reduce cell lysate complexity and increase assay sensitivity. Rapid free flow isoelectric focusing (FF-IEF) is achieved in a ...

  9. |Research Focus Statistical decision theory and evolution

    E-Print Network [OSTI]

    Maloney, Laurence T.

    |Research Focus Statistical decision theory and evolution Laurence T. Maloney Department recent articles by Geisler and Diehl use Bayesian statistical decision theory to model the co, an advantage that ultimately translates into `reproductive success'. The balance between predator and prey

  10. special focus Women war survivors Leadership training

    E-Print Network [OSTI]

    Low, Robert

    special focus Women war survivors Leadership training for the West Midlands Police Improving WEEE- owned low-carbon vehicles 30 Q&a Packing up wEEE has been made more efficient 16 managing editor Karen

  11. Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility 

    E-Print Network [OSTI]

    Rogers, Callie Sue

    2009-05-15T23:59:59.000Z

    Conventional water treatment facilities are the norm for producing potable water for U.S. metropolitan areas. Rapidly-growing urban populations, competing demands for water, imperfect water markets, and uncertainty of future water supplies...

  12. Two-axis sagittal focusing monochromator

    DOE Patents [OSTI]

    Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong

    2014-05-13T23:59:59.000Z

    An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.

  13. FOCUS January 2001 1asdfghjk ENGINEERING

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    a mouse sick." UV disinfection involves the generation of photons of light energy in the "germi- cidal purification on large scale. grade its water treatment to meet the new EPA regulations, would save literally been used in Europe for about 75 years, UV treatment of drinking water was intro- duced in this country

  14. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area...

  15. 2007-8 Alphabetical Listing of CLE Courses Area Course Information

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Listing of CLE Courses CLE Area Course Information 7 BIOL 2204 Plants and Civilization 7 BSE 4394 Water

  16. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

  17. Product Delivery Expectations: Hanford LAW Product Performance and Acceptance Tanks Focus Area Task

    SciTech Connect (OSTI)

    Holtzscheiter, E.W.

    1999-04-29T23:59:59.000Z

    This task has several facets all aimed at providing technical products that will support the immobilization of Hanford's Low Activity Waste. Since this task breaks new ground in developing predictive capability, a review process external to the technical team is critical for acceptance by the technical community and is key to Hanford's Performance Assessment review process.

  18. Hanford immobilized LAW product acceptance: Initial Tanks Focus Area testing data package

    SciTech Connect (OSTI)

    JD Vienna; A Jiricka; BP McGrail; BM Jorgensen; DE Smith; BR Allen; JC Marra; DK Peeler; KG Brown; IA Reamer; WL Ebert

    2000-03-08T23:59:59.000Z

    The Hanford Site's mission has been to produce nuclear materials for the US Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during plutonium production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The total volume of LAW requiring immobilization will include the LAW separated from the tank waste, as well as new wastes generated by the retrieval, pretreatment, and immobilization processes. Per the Tri-Party Agreement (1994), both the LAW and HLW will be vitrified. It has been estimated that vitrification of the LAW waste will result in over 500,000 metric tons or 200,000 m{sup 3} of immobilized LAW (ILAW) glass. The ILAW glass is to be disposed of onsite in a near-surface burial facility. It must be demonstrated that the disposal system will adequately retain the radionuclides and prevent contamination of the surrounding environment. This report describes a study of the impacts of systematic glass-composition variation on the responses from accelerated laboratory corrosion tests of representative LAW glasses. A combination of two tests, the product consistency test and vapor-hydration test, is being used to give indictations of the relative rate at which a glass could be expected to corrode in the burial scenario.

  19. SEATTLE UNIVERSITY SCHOOL OF THEOLOGY AND MINISTRY What Skills are Developed and/or Focus Areas

    E-Print Network [OSTI]

    Carter, John

    'overlapwithMDiv MDiv · HistoricalTheology · Hermeneutics of SacredText · Religious Education · God, Creation &Trinity

  20. Focused evaluation of selected remedial alternatives for the underground test area

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Nevada Test Site (NTS), located in Nye County in southern Nevada, was the location of 928 nuclear tests conducted between 1951 and 1992. Of the total tests, 824 were nuclear tests performed underground. This report describes the approach taken to determine whether any specific, proven, cost-effective technologies currently exist to aid in the removal of the radioactive contaminants from the groundwater, in the stabilization of these contaminants, and in the removal of the source of the contaminants.

  1. SCIENCE PLAN AND PROGRESS REPORT FOR THE TERRESTRIAL ECOSYSTEM SCIENCE --SCIENTIFIC FOCUS AREA

    E-Print Network [OSTI]

    and Earth system models. Integration of biophysical, biochemical, physiological, and ecological processes

  2. Laboratory Scientific Focus Area Guidance | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I

  3. Summary Report from Theory Focus Session on Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theory Focus Session on Hydrogen Storage Materials Summary Report from Theory Focus Session on Hydrogen Storage Materials This report provides information about the Theory Focus...

  4. INEEL Source Water Assessment

    SciTech Connect (OSTI)

    Sehlke, Gerald

    2003-03-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL’s public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

  5. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  6. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Number C-04 Start Date 07/01/1997 End Date 06/30/1999 Research Category Water Quality Focus Category #1 Methods Focus Category #2 Water Quality Focus Category #3 Toxic Substances Lead Institution University column), and the blood plasma surrogate (growth media) maintained on the basolateral side (facing blood

  7. Addressing Nitrate in California's Drinking Water California Nitrate Project,

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Control Board Report to the Legislature With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Addressing Nitrate in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley: Addressing Nitrate in California's Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley

  8. Remote lensless focusing of a light beam

    E-Print Network [OSTI]

    Petrov, Nikolai I

    2015-01-01T23:59:59.000Z

    Remote focusing of light in a graded-index medium via mode interference is demonstrated using exact analytical solutions of the wave equation. Strong focusing of light occurs at extremely long distances and it revivals periodically with distance due to mode interference. High efficiency transfer of a strongly focused subwavelength spot through optical waveguide over large distances takes place with a period of revival. Super-oscillatory hot-spots with the sizes which are beyond the conventional Abbe diffraction limit can be observed at large distances from the source. This can provide the possibility to detect optical super-resolution information in the far-field without any evanescent waves. Far-field super-resolution imaging capabilities of a graded-index waveguide are also analyzed.

  9. Remote adjustable focus Raman spectroscopy probe

    DOE Patents [OSTI]

    Schmucker, John E. (Hurt, VA); Blasi, Raymond J. (Harrison City, PA); Archer, William B. (Bethel Park, PA)

    1999-01-01T23:59:59.000Z

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  10. Innovative Water Reuse

    E-Print Network [OSTI]

    Jaber, F. H.

    2011-01-01T23:59:59.000Z

    Concern? Urban BMPs ? Rain garden- bioretention areas ? Porous pavements ? Green roofs ? Rainwater harvesting Home Rain Garden Rain Garden in Parking Lot Types of Permeable Pavement Paver blocks Porous asphalt Porous concrete Turf Paver... management 1.Rain gardens 2.Porous pavement 3.Green roofs Hydrologic Cycle ISSUES ? Water Conservation ? Is there enough? ? Can conservation make a difference? ? Water Quality ? Contamination/pollution due to runoff Eagle...

  11. White phosphorus pits focused feasibility study final July 2007.

    SciTech Connect (OSTI)

    Davis, B.; Martino, L.

    2007-08-21T23:59:59.000Z

    The White Phosphorus Burning Pits (WPP) Area of Concern (AOC) is a site of about 5.5 acres (2.2 ha) located in the J-Field Study Area, in the Edgewood Area of Aberdeen Proving Ground (APG), Maryland (Figure 1.1). Considerable information about the WPP exists as a result of efforts to characterize the hazards associated with J-Field. Contamination in the J-Field Study Area was first detected during an environmental survey of the APG Edgewood Area conducted in 1977 and 1978 (Nemeth et al. 1983) by the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA; predecessor to the U.S. Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field (three of them at the WPP) (Nemeth 1989). Contamination was also detected in 1983 during a munitions disposal survey conducted by Princeton Aqua Science (1984). The Princeton Aqua Science investigation involved installing and sampling nine wells (four at the WPP) and collecting and analyzing surficial and deep composite soil samples (including samples from the WPP area). In 1986, the U.S. Environmental Protection Agency (EPA) issued a Resource Conservation and Recovery Act (RCRA) Permit (MD3-21-002-1355) requiring a post-wide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field. In 1987, the U.S. Geological Survey (USGS) began a two-phase hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil-gas investigations were conducted, several well clusters were installed (four at the WPP), a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today. The results of the USGS study were published by Hughes (1993).

  12. NEW YORK STATE WATER RESOURCES INSTITUTE

    E-Print Network [OSTI]

    Wang, Z. Jane

    ://wri.eas.cornell.edu Email: nyswri@cornell.edu Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling of Marcellus Shale gas development on drinking water supplies. It is intended for landowners and private

  13. Removal of water from a shallow bath under laser pulse irradiation

    SciTech Connect (OSTI)

    Antonova, L I; Gladush, G G; Glova, A F; Drobyazko, S V; Krasyukov, A G; Mainashev, V S; Rerikh, V L; Taran, M D [State Research Center of Russian Federation 'Troitsk Institute for Innovation and Fusion Research', Troitsk, Moscow Region (Russian Federation)

    2011-05-31T23:59:59.000Z

    An experimental investigation was made of water removal from a shallow bath under the action of a CO{sub 2}-laser radiation pulse focused to a spot of size substantially smaller than the bath length. We showed that the specific expenditure of energy is determined by the intensity of laser radiation at the water surface for different values of the focal spot area and pulse duration. The removal dynamics was studied by single-frame photography technique. It was determined that the water is removed layerwise only from the walls of the cavern, which expands in the horizontal direction upon cessation of the radiation pulse. Two-dimensional numerical simulations were made of the water removal, and a mechanism was proposed to explain the experimentally observed removal pattern. (interaction of laser radiation with matter)

  14. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  15. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  16. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30T23:59:59.000Z

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  17. Course Focus HORT 225: Landscape Graphics I

    E-Print Network [OSTI]

    Dyer, Bill

    Course Focus HORT 225: Landscape Graphics I By Rebekah VanWieren The last words I include unique graphic representation styles. The course begins by looking at the diversity of work of the course is spent learning and exploring the various graphic communication tools used to visualize

  18. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  19. Regional Focus on GM Crop Regulation

    E-Print Network [OSTI]

    Church, George M.

    Regional Focus on GM Crop Regulation THE RECENT MEDIA COVERAGE OF THE DEVEL- opments in Brazil for com- mercial genetically modified (GM) crops in both the scientific and regulatory arena. The release of GM crops in these coun- tries might result in the unintentional entry of GM seeds into neighboring

  20. Pressure perturbations from geologic carbon sequestration: Area-of-review boundaries and borehole leakage driving forces

    SciTech Connect (OSTI)

    Nicot, J.-P.; Oldenburg, C.M.; Bryant, S.L.; Hovorka, S.D.

    2009-07-01T23:59:59.000Z

    We investigate the possibility that brine could be displaced upward into potable water through wells. Because of the large volumes of CO2 to be injected, the influence of the zone of elevated pressure on potential conduits such as well boreholes could extend many kilometers from the injection site-farther than the CO2 plume itself. The traditional approach to address potential brine leakage related to fluid injection is to set an area of fixed radius around the injection well/zone and to examine wells and other potentially open pathways located in the ''Area-of-Review'' (AoR). This suggests that the AoR eeds to be defined in terms of the potential for a given pressure perturbation to drive upward fluid flow in any given system rather than on some arbitrary pressure rise. We present an analysis that focuses on the changes in density/salinity of the fluids in the potentially leaking wellbore.

  1. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    : The submersible laser bathymetric (LBath) optical system is capable of simultaneously providing visual images- dynamical wing. This underwater package is pulled through the water by a single towed cable with fiber optic special high energy density optical fibers. A remote Pentium based PC also at the surface is used

  2. Addressing Nitrate in California's Drinking Water Report for the State Water Resources Control Board Report to the Legislature

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report Tulare Lake Basin and Salinas Valley Pilot Studies Prepared for: California State Water Resources Control

  3. ADVANCED MATERIALS Membranes for Clean Water

    E-Print Network [OSTI]

    ADVANCED MATERIALS Membranes for Clean Water Objective This project provides measurement solutions that probe the surface and internal structure of polymer membranes used in water purification, and correlate that structure to the transport of water and other species through the membrane. Our methods are focused

  4. Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Sciences Focus Category: Wetlands, Management and Planning, Water Quality Descriptors: wetlands, wetland-soil managed wetlands by comparison with nearby non-managed systems. Proceedings of the 32nd Mississippi Water Audubon Society to evaluate effects of moist-soil habitat management practices on water quality

  5. Water Intoxication

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01T23:59:59.000Z

    2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

  6. Hardness of water.

    E-Print Network [OSTI]

    Rahul Oza

    This project is helpful to those people who live in the coastal based and they are suffering every year with problem of safe drinking water and not available throughout the year. It has given ideas, technology and economical way of solution for water crisis and it’s also solving problem of scare by use of different methods to development evelopment new water source in water scare area of Saurashtra and Kutch in Gujarat. Saurashtra land is containing of different types of minerals specially bauxite, calcite, fluoride so many mineral based industries are developed here and those who continuous nuous need this as raw materials and they used many mines and processes units. These minerals are creating problem to polluted ground water some are melting and increasing TDS more than 6000 mg/l and

  7. The Texas Water Plan and its Institutional Problems

    E-Print Network [OSTI]

    Jensen, C. W.; Trock, W. L.

    wide array of institutional problems that will extend to such areas as the interstate diversion and interbasin transfers of water, doctrines or water rights and legislated water use-priorities, acreage restrictions established in federal reclamation law...

  8. University of Wisconsin Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    modeling studies and applications designed to preserve or improve groundwater quality. ChargedUniversity of Wisconsin Water Resources Institute Annual Technical Report FY 2001 Introduction into the following four thematic areas: groundwater, surface water, groundwater/surface water interactions

  9. Editorial Focus Fish Smell. Focus on "Odorant Specificity of Single Olfactory Bulb Neurons

    E-Print Network [OSTI]

    Stephens, Jacqueline

    Editorial Focus Fish Smell. Focus on "Odorant Specificity of Single Olfactory Bulb Neurons to Amino bulb, or antennal lobe. The precise nature of these odor features is yet to be determined for the most of this type in the fish, precise subclasses of olfactory bulb neurons for coding biologically significant

  10. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of desalination research. The primary technological method of generating additional water supplies is through desalination and enhanced water reuse and recycling technologies....

  11. Water Efficiency

    Energy Savers [EERE]

    Water Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group...

  12. Understanding the Hydrologic Characteristics and Absorption Capacity of Bioretention Areas Kathryn Shepard

    E-Print Network [OSTI]

    Arnold, Jonathan

    of storm water best management practices. Available at http://cfpub.epa.gov/npdes storm events. REFERENCES Atlanta Regional Commission. 2001. Georgia storm water management manual Building, Room 2401 Historically, stormwater management has focused primarily on flood control

  13. Effects of dynamic vegetation and topography on hydrological processes in semi-arid areas

    E-Print Network [OSTI]

    Ivanov, Valeri Yuryevich, 1974-

    2006-01-01T23:59:59.000Z

    Ecosystems of dry climates represent a particularly interesting object for ecohydrological studies, as water is generally considered to be the key limiting resource. This work focuses on vegetation-water-energy dynamics ...

  14. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27T23:59:59.000Z

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  15. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29T23:59:59.000Z

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  16. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

    2013-11-05T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

  17. Permanent magnet focused X-band photoinjector

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Rosenzweig, James (Los Angeles, CA)

    2002-09-10T23:59:59.000Z

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  18. The plasma focus as a thruster

    E-Print Network [OSTI]

    Hardy, Richard Lee

    2005-02-17T23:59:59.000Z

    for the degree of MASTER OF SCIENCE Approved as to style and content by: _____________________ Bruce Freeman (Chair of Committee) _____________________ Wayne Saslow (Member) _____________________ James Rock (Member... of the coaxial geometry is the outer electrode counteracts the magnetic field produced by the center electrode, resulting in minimal magnetic field outside the electrode system. Figure 2.1 shows a simplified schematic of the plasma focus, and Figure 2.2 is a...

  19. Focus group discussions of daylighting practices

    SciTech Connect (OSTI)

    Roberson, B.F.; Harkreader, S.A.

    1988-11-01T23:59:59.000Z

    This research was sponsored by the US Department of Energy (DOE) Office of Buildings and Community systems and conducted by Pacific Northwest Laboratory (PNL) as part of an ongoing effort to enhance the commercial use of federally developed technologies. One such technology is the use of daylighting practices in the design of nonresidential buildings. This document is a report of the findings from meetings of focus groups conducted to gain insight into building designers' perceptions and attitudes about daylighting systems.

  20. South Asia transboundary water quality monitoring workshop summary report.

    SciTech Connect (OSTI)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01T23:59:59.000Z

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification of sites within the region at which water quality data are to be collected; (4) instituting a data and information collection and sharing process; and, (5) training of partners in the use of water quality monitoring equipment.

  1. Focusing DIRC Design for Super B

    SciTech Connect (OSTI)

    Va'Vra, J.; /SLAC

    2009-12-17T23:59:59.000Z

    In this paper we present a new design of the Focusing DIRC for the Barrel PID to be used at the proposed Super-B factory. The new imaging optics is made of a solid Fused Silica block with a double folded optics using two mirrors, one cylindrical and one flat, focusing photons on a detector plane conveniently accessible for the detector access. The design assumes that the BaBar bar boxes are re-used without any modification, including the wedges and windows. Each bar box will have its own focusing block, which will contain 40 H-9500 (or H-8500) MaPMTs according to present thinking. There are 12 bar boxes in the entire detector, so the entire SuperB FDIRC system would have 480 MaPMTs. The design is very compact and therefore reduces sensitivity to the background. The chosen MaPMTs are fast enough to be able both to reject the background and to perform the chromatic correction. The 3D optics simulation is coded with the Mathematica program. The work in this paper was a basis of the LDRD proposal made to SLAC in 2009 [1].

  2. FOCUS Presentation (10-15 minutes)

    E-Print Network [OSTI]

    Clarke, Keith

    of alternative operating scenarios. § Hardware/Software needed: UNIX or Lynyx on a PC, (NT within a few months and Risk Assessment. § Does better runoff is influenced by snow-melt-runoff. § Basin size isn't an issue component is the module library that contains a variety of modules for simulating water, energy, chemical

  3. african urban area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Riccardo; Giovannini, Luca 2009-01-01 100 Green Solution for the Current Energy Crisis in the Urban Areas of Bangladesh CiteSeer Summary: Abstract This work is focused on...

  4. First Generation Final Focusing Solenoid For NDCX-I

    SciTech Connect (OSTI)

    Seidl, P. A.; Waldron, W.

    2011-11-09T23:59:59.000Z

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) was exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.

  5. Time-reversal focusing of therapeutic ultrasound on targeted microbubbles Olivier Couture,1,2,a

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    was re-emitted and shown to focus back in the region where the bound microbubbles were present therapy can treat various pathologies such as solid tumors, arteriosclerosis, and hemorrhage.1 Absorption on bound microbubbles Fig. 1 . Gelatin 5% and biotin 1% were mixed into water and poured in plastic Petri

  6. Nonlinear Stochastic Response of Offshore Structures: With Focus on Spectral Analysis

    E-Print Network [OSTI]

    Nřrvĺg, Kjetil

    Nonlinear Stochastic Response of Offshore Structures: With Focus on Spectral Analysis CESOS · Damping (viscous) · Soil & Soil-structure interaction · Coupling among loads (wind & waves) 5 #12;Quasi for shallow-water wind turbines) Time-domain CFD Time-domain 6 Industrial design often uses Linear random

  7. Research on RJ has recently focused on the physiological functions of its individual

    E-Print Network [OSTI]

    Boyer, Edmond

    Research on RJ has recently focused on the physiological functions of its individual proteins, particularly those of the most abun- dant protein, named MRJP1 (Major Royal Jelly Protein). It represents 48% of the water- soluble proteins of RJ, while appearing as a single protein on Sodium Dodecyl Sulphate Polyacryl

  8. Wetland Preservation Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    A wetland owner can apply to the host county for designation of a wetland preservation area. Once designated, the area remains designated until the owner initiates expiration, except where a state...

  9. Acid mine drainage prevention, control and treatment technology development for the Stockett/Sand Coulee area. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Brown, T.

    1996-12-31T23:59:59.000Z

    The project was initiated to assist the State of Montana to develop a methodology to ameliorate acid mine drainage problems associated with the abandoned mines located in the Stockett/Sand Coulee area near Great Falls, Montana. Extremely acidic water is continuously discharging from abandoned coal mines in the Stockett/Sand Coulee area at an estimated rate of greater than 600 acre-feet per year (about 350 to 400 gallons per minute). Due to its extreme acidity, the water is unusable and is contaminating other water supplies. Most of the local alluvial aquifers have been contaminated, and nearly 5% of the private wells that were tested in the area during the mid-1980`s showed some degree of contamination. Significant government money has been spent replacing water supplies due to the magnitude of this problem. In addition, millions of dollars have been spent trying to remediate acid mine drainage occurring in this coal field. To date, the techniques used have focused on the management and containment of mine waters, rather than designing technologies that would prevent the formation of acid mine drainage.

  10. Focused-ion-beam thinning of frozen-

    E-Print Network [OSTI]

    Cai, Long

    in a convenient and essentially artifact-free way. Cryo-transmission electron microscopy (cryo-TEM) has become, of milled region (to right of step indicated by arrow). Irregularities in film edge, cut by razor blade of same specimen. Selected cells from left and right areas boxed in a (b,c). Arrowhead in b indicates

  11. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  12. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  13. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    · Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas · Natural preservation · Research · No · No #12;II. National Parks · Ecosystem protection

  14. Service Entry Delivery Area

    E-Print Network [OSTI]

    New South Wales, University of

    Catheter Lab Boiler House Main Entry Short Street ChapelStreet Vehicle Exit 23. Gray Street Car ParkingService Entry Waste Handling Area Delivery Area Admissions Entrance Inquiries Desk Cafeteria Coffee in July 2000 Vehicle Entry Emergency Main Entrance TOKOGARAHRAILWAYSTATION LEGEND Areas under construction

  15. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    of acoustic Doppler current profiler data to estimate sediment and total phosphorus loads to Lake Champlain Quality Focus Category: Nutrients, Non Point Pollution, Water Quality Descriptors: None Principal

  16. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  17. Los Alamos Lab: MST: Focus on Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking down theElectrodynamics,Focus on

  18. Fermilab | Employee Advisory Group | Focus Group Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of

  19. Economic Essays on Water Resources Management of the Texas Lower Rio Grande Valley 

    E-Print Network [OSTI]

    Leidner, Andrew

    2012-07-16T23:59:59.000Z

    The study area for this dissertation is the Texas Lower Rio Grande Valley (Valley). The overarching theme is water and includes regional water management, water management institutions, and water supply decision-making as it relates to community...

  20. Design of water-splitting photocatalysts by first principles computations

    E-Print Network [OSTI]

    Wu, Yabi

    2014-01-01T23:59:59.000Z

    This thesis focuses on the design of novel inorganic water-splitting photocatalysts for solar applications using first principles computations. Water-splitting photocatalysts are materials that can photo-catalyze the ...

  1. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

  2. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 4:30PM EST This free webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water...

  3. Y-12 National Security Complex Water Assessment

    SciTech Connect (OSTI)

    Elam, Shana E.; Bassett, P.; McMordie Stoughton, Kate

    2010-11-01T23:59:59.000Z

    The Department of Energy's Federal Energy Management Program (FEMP) sponsored a water assessment at the Y 12 National Security Complex (Y 12) located in Oak Ridge, Tennessee. Driven by mandated water reduction goals of Executive Orders 13423 and 13514, the objective of the water assessment is to develop a comprehensive understanding of the current water-consuming applications and equipment at Y 12 and to identify key areas for water efficiency improvements that could be applied not only at Y-12 but at other Federal facilities as well. FEMP selected Pacific Northwest National Laboratory to coordinate and manage the water assessment. PNNL contracted Water Savers, LLC to lead the technical aspects of the water assessment. Water Savers provided key technical expertise in water auditing, metering, and cooling systems. This is the report of that effort, which concluded that the Y-12 facility could realize considerable water savings by implementing the recommended water efficiency opportunities.

  4. Project focus: Complete design of an interactive solar panel system to be situated on

    E-Print Network [OSTI]

    Project focus: · Complete design of an interactive solar panel system to be situated on top the effective area · Two types of solar cells: · 3 panel configurations: · Real-time power output data Si panels with 30.0o tilt c) 10 CdTe panels; 38.5o tilt · Solar insolation recorder, thermometer

  5. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  6. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Mark R. Cole

    2013-12-01T23:59:59.000Z

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  7. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. Abstract: True nanoscale optical spectroscopy requires the...

  8. Independent Oversight Focused Review, Kansas City Plant, Summary...

    Office of Environmental Management (EM)

    Review, Kansas City Plant, Summary Report - December 2001 Independent Oversight Focused Review, Kansas City Plant, Summary Report - December 2001 December 2001 Focused Review of...

  9. Energy Department to Launch New Energy Innovation Hub Focused...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy Storage Energy Department to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy...

  10. Delivering Renewable Hydrogen: A Focus on Near-Term Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications Agenda for the Delvering Renewable Hydrogen...

  11. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in Seattle -- Final Report DOE Commercial Building Energy Asset Rating Program Focus Groups...

  12. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rating Program Focus Groups with Primary Stakeholders in Seattle -- Final Report DOE Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in...

  13. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on...

  14. Summary Report from DOE Theory Focus Session on Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Theory Focus Session on Hydrogen Storage Materials Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials This report provides a summary of feedback from...

  15. Design report on the test system used to assess treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Kent, T.E.; Taylor, P.A.

    1992-09-01T23:59:59.000Z

    New liquid waste streams will be generated as a consequence of closure activities at Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). It is proposed that these waste streams be treated for removal of contaminants by adding them to the ORNL wastewater treatment facilities. Previous bench-scale treatability studies indicate that ORNL treatment operations will adequately remove the contaminants, although additional study is required to characterize the secondary waste materials produced as a result of the treatment. A larger scale treatment system was constructed to produce secondary wastes in the quantities necessary for characterization and US Environmental protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system is designed to simulate the operation of the ORNL process waste treatment facilities and to treat a mixture of ORNL process wastewater and WAG 6 wastewater at a combined flow rate of 0.5 L/min. The system is designed to produce the necessary quantities of waste sludges and spent carbon for characterization studies and TCLP testing.

  16. Ultra-high pressure water jet: Baseline report

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  17. The value of recycling on water conservation.

    SciTech Connect (OSTI)

    Ludi-Herrera, Katlyn D.

    2013-07-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  18. Klystron having electrostatic quadrupole focusing arrangement

    DOE Patents [OSTI]

    Maschke, A.W.

    1983-08-30T23:59:59.000Z

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  19. GTL technologies focus on lowering costs

    SciTech Connect (OSTI)

    Corke, M.J. [Purvin and Gertz Inc., London (United Kingdom)

    1998-09-21T23:59:59.000Z

    Difficulties in the development of major natural-gas production projects and the limitations imposed by saturated markets for LNG or pipeline gas have focused attention on alternative gas utilization approaches. At the same time, technology improvements have transformed the Fischer-Tropsch (F-T) conversion of natural gas-to-liquid (GTL) hydrocarbons from a technically interesting but uneconomic option into an option worthy of serious consideration. This two-part series reviews GTL technology developments which have led to today`s situation (Part 1) and examines the economics of GTL conversion (Part 2). The economic viability of GTL projects mainly depends on feed-gas pricing, investment costs, and the potential to produce liquids with natural-gas production.

  20. Focus on the Physics of Cancer

    E-Print Network [OSTI]

    Risler, Thomas

    2015-01-01T23:59:59.000Z

    Despite the spectacular achievements of molecular biology in the second half of the twentieth century and the crucial advances it permitted in cancer research, the fight against cancer has brought some disillusions. It is nowadays more and more apparent that getting a global picture of the very diverse and interlinked aspects of cancer development necessitates, in synergy with these achievements, other perspectives and investigating tools. In this undertaking, multidisciplinary approaches that include quantitative sciences in general and physics in particular play a crucial role. This `focus on' collection contains 19 articles representative of the diversity and state-of-the-art of the contributions that physics can bring to the field of cancer research.

  1. Digital reverse propagation in focusing Kerr media

    SciTech Connect (OSTI)

    Goy, Alexandre; Psaltis, Demetri [Laboratoire d'Optique, School of Engineering, Ecole Polytechnique Federale de Lausanne (Switzerland)

    2011-03-15T23:59:59.000Z

    Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The reverse propagation method used in digital holography to form images from recorded holograms works even in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics 3, 211 (2009).]. Here, we report experimental results in focusing media.

  2. Feedbacks from Focus Group Meeting on Training and Implementation of Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Lin , Haiyan; Song, Bo; Halverson, Mark A.; Evans, Meredydd; Zhu, Xiaojiao

    2011-01-01T23:59:59.000Z

    A focus group meeting is a very effective quality research approach to collect information on a specific project. Through focus group meetings at both Changchun and Ningbo in August 2010, the project team gained a more complete understandings of key stakeholders (such as their education level), their training needs and expectations, key factors influencing their decision making, and incurred implementation difficulties. In addition, the meeting helped the project team (especially PNNL) improve its understanding of the implementation status of building energy codes in other regions (such as small cities and counties neighboring to urban areas, small townships and rural areas distant from urban areas). The collected feedbacks will serve as important input not only for better design of training materials and the development of an on-line training website, but also for development of follow-up projects to promote building energy codes in China.

  3. Focus On Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area(Sasada, 1988) |FluorEnergy Jump

  4. Riparian Area. . . . . . . . . . . . . . . . . . . . Management Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    ..............................................................................................................19 Bruce Hoagland, Oklahoma Biological Survey and the University of Oklahoma Forest Management Riparian Area. . . . . . . . . . . . . . . . . . . . Management Handbook E-952 Oklahoma Cooperative . . . . . . . . . . . . . Oklahoma Conservation Commission Management Handbook #12

  5. Marketing water 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 16 W ith rapid population growth and the memory of the worst drought in 50 years, cities and groups are promoting programs that educate their constituents about water quality, water conservation, and landscape management. Many... ] Many cities are promoting landscape management and water conservation practices with their citizens. This garden demonstrates the EARTH- KIND principles of environmentally tolerant, low water use ornamentals. tx H2O | pg. 18 and no adverse runoff...

  6. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand Focus AreaGeothermal Area Jump

  7. Ohio Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    in the area of physical,chemical, and biological treatment processes for water and wastewater. The mission on water and wastewater treatment processes. The Center continues to be administered through the College, chemical engineering, environmental science, biology and other water related fields were supported

  8. Environmental Health & Safety, UC Irvine TITLE: CLEAN AREAS IN RESEARCH LABS (Non-Clinical)

    E-Print Network [OSTI]

    George, Steven C.

    . Relocate all hazardous materials use and storage from the Clean Area and maintain separation distance an adequate separation of the Clean Area from hazardous operations is not possible, splash is focused upon the adequacy of separation of the proposed Clean Area from areas in which hazardous materials

  9. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Zone Mesozoic granite granodiorite Aurora Geothermal Area Aurora Geothermal Area Walker Lane Transition Zone Geothermal Region MW Beowawe Hot Springs Geothermal Area Beowawe Hot...

  10. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01T23:59:59.000Z

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

  11. Method of and device for detecting oil pollutions on water surfaces

    DOE Patents [OSTI]

    Belov, Michael Leonidovich (Moscow, RU); Gorodnichev, Victor Aleksandrovich (Moscow, RU); Kozintsev, Valentin Ivanovich (Moscow, RU); Smimova, Olga Alekseevna (Moscow, RU); Fedotov, Yurii Victorovich (Moscow, RU); Khroustaleva, Anastasiva Michailovnan (Moscow, RU)

    2008-08-26T23:59:59.000Z

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  12. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  13. 300 Area signal cable study

    SciTech Connect (OSTI)

    Whattam, J.W.

    1994-09-15T23:59:59.000Z

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  14. Arco chimie focuses on PA at FOS

    SciTech Connect (OSTI)

    Jackson, D.

    1992-12-02T23:59:59.000Z

    Arco Chimie France (Fos-sur-Mer), at a recent meeting at its southern France manufacturing site, emphasized that future strategy is strongly focused on its propylene oxide (PO) and derivatives activities. The F2.5 billion ($466 million)-Fe billion/year operation manufactures 200,000 m.t./year of PO, about 70% for captive use and the balance for the merchant market; 550,000 m.t./year of methyl tert butyl ether (MTBE); 97,000 m.t./year of polyols; and 70,000 m.t./year of propylene glycols. There has been talk of Arco modifying its Fos MTBE plant to make it flexible for ethyl tert-butyl ether (ETBE) output; the parent company already operates an MTBE/ETBE pilot unit at Corpus Christi, TX. But Arco Chimie notes there is insufficient bioethanol feedstock availability to convert all production to ETBE. The company would also require investment in new storage capacity for ethanol and ETBE. However, France's biofuels program is not yet clearly defined, and it is politically sensitive because it depends heavily on government subsidies offered to farmers. That, says Arco, makes it impossible to have an accurate idea of how much ethanol will be available.

  15. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, Aaron S. (Broomall, PA)

    1985-01-01T23:59:59.000Z

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  16. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, A.S.

    1983-12-08T23:59:59.000Z

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  17. A process for risk-focused maintenance

    SciTech Connect (OSTI)

    Lofgren, E.V.; Cooper, S.E.; Kurth, R.E.; Phillips, L.B. (Science Applications International Corp., McLean, VA (USA))

    1991-03-01T23:59:59.000Z

    This report presents a process for focusing maintenance resources on components that enable nuclear plant systems to perform their essential functions and on components whose failure may initiate challenges to safety systems, so as to have the greatest impact in decreasing risk. The process provides criteria, based on risk, for deciding which components are critical to risk and determining what maintenance activities are required to ensure reliable operation of those risk-critical components. Two approaches are provided for selection of risk-critical components. One approach uses the results of a Probabilistic Risk Assessment (PRA); the other is based on the methodology developed for this report, which has a basis in PRA although it does not use the results of a PRA study. Following identification of risk-critical components, both approaches use a single methodology for determining what maintenance activities are required to ensure reliable operation of the identified components. The report also provides demonstrations of application of the two approaches to selection of risk-critical components and demonstrations of application of the methodology for determining what maintenance activities are required to an active standby safety system, a normally operating system, and passive components. 5 refs., 11 figs., 1 tab.

  18. Water Conservation and Water Use Efficiency (Wisconsin)

    Broader source: Energy.gov [DOE]

    Wisconsin has several statutes that promote water conservation and controlled water use, and this legislation establishes mandatory and voluntary programs in water conservation and water use...

  19. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

  20. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  1. Program Areas Nutrient Management

    E-Print Network [OSTI]

    Grant University System. For example: · Stream Restoration Training and Demonstration-on experience to plan, design, construct, and evaluate stream restoration projects to improve water quality and Restoration Watershed Assessment and Modeling The Project promotes regional collaboration, enhances delivery

  2. Addressing Nitrate in California's Drinking Water California Nitrate Project,

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Control Board Report to the Legislature With a Focus on Tulare Lake Basin and Salinas Valley Groundwater and Salinas Valley Groundwater Report for the State Water Resources Control Board Report to the Legislature in California's Drinking Water with A Focus on Tulare Lake Basin and Salinas Valley Groundwater. Report

  3. Addressing Nitrate in California's Drinking Water California Nitrate Project,

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Control Board Report to the Legislature With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report 6 Addressing Nitrate in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature

  4. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16T23:59:59.000Z

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  5. Evolution and Evaluation of the Active Management Area Management Plans

    E-Print Network [OSTI]

    Fay, Noah

    Evolution and Evaluation of the Active Management Area Management Plans FINAL January 2008 Sharon B with a grant from the Arizona Water Institute and by the Arizona Department of Water Resources #12;Evolution 1 Methodology 2 Management Plan Purpose and Intent 4 Evolution and Evaluation of the Management Plan

  6. What can I do with this major? AREAS EMPLOYERS

    E-Print Network [OSTI]

    New Hampshire, University of

    STRATEGIES What can I do with this major? AREAS EMPLOYERS ENVIRONMENTALSTUDIES/SCIENCE SOLID WASTE/EnvironmentalEngineering HydrogeologyandHydrology Drinking Water Supply and Treatment Waste Water Treatment GroundwaterProtection Surface, state, and local government Private waste management firms Consulting firms Nonprofit organizations

  7. 300 AREA URANIUM CONTAMINATION

    SciTech Connect (OSTI)

    BORGHESE JV

    2009-07-02T23:59:59.000Z

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  8. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  9. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrust Areas Physics Thrust Areas

  10. Computerized Waters

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    - ing 2002?2005 and documented in TWRI?s Technical Report 284 released in January 2006, include: ? Capabilities for short-term reliability analyses based on current storage conditions (Or what is the likelihood of meeting water needs in the near... System Reference Manual. TWRI Technical Report 255, Second Edition, April 2005. ? Water Rights Analysis Package Modeling System Users Manual. TWRI Technical Report 256, Second Edition, April 2005. ? Fundamentals of Water Availability Modeling...

  11. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

  12. The QUEST Large Area CCD Camera

    E-Print Network [OSTI]

    Charlie Baltay; David Rabinowitz; Peter Andrews; Anne Bauer; Nancy Ellman; William Emmet; Rebecca Hudson; Thomas Hurteau; Jonathan Jerke; Rochelle Lauer; Julia Silge; Andrew Szymkowiak; Brice Adams; Mark Gebhard; James Musser; Michael Doyle; Harold Petrie; Roger Smith; Robert Thicksten; John Geary

    2007-02-21T23:59:59.000Z

    We have designed, constructed and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back illuminated devices with 13 um x 13 um pixels. The camera covers an area of 4.6 deg x 3.6 deg on the sky with an active area of 9.6 square degrees. This camera has been installed at the prime focus of the telescope, commissioned, and scientific quality observations on the Palomar-QUEST Variability Sky Survey were started in September of 2003. The design considerations, construction features, and performance parameters of this camera are described in this paper.

  13. Economic development in Northern New Mexico focus of new podcast...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in NNM focus of new podcast from Los Alamos Lab Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory Podcast part of Lab's new...

  14. Control of emulsion drop production in flow focusing microfluidics 

    E-Print Network [OSTI]

    Kim, Haejune

    2009-05-15T23:59:59.000Z

    Generating droplets using flow-focusing microfluidics in multiphase flows has reached its limit that it cannot generate submicrometer droplets in size. Flow focusing geometry together with an electric field has been used to make smaller droplets...

  15. Energy Department creates Jobs Strategy Council to Focus on Job...

    Energy Savers [EERE]

    creates Jobs Strategy Council to Focus on Job Growth in Energy Economy Energy Department creates Jobs Strategy Council to Focus on Job Growth in Energy Economy January 23, 2015 -...

  16. Aug. 27 Webinar Will Focus on Financing Facility- and Community...

    Office of Environmental Management (EM)

    Aug. 27 Webinar Will Focus on Financing Facility- and Community-Scale Tribal Renewable Energy Projects Aug. 27 Webinar Will Focus on Financing Facility- and Community-Scale Tribal...

  17. Wiggler plane focusing in a linear free electron laser

    DOE Patents [OSTI]

    Scharlemann, Ernst T. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  18. Control of emulsion drop production in flow focusing microfluidics

    E-Print Network [OSTI]

    Kim, Haejune

    2009-05-15T23:59:59.000Z

    Generating droplets using flow-focusing microfluidics in multiphase flows has reached its limit that it cannot generate submicrometer droplets in size. Flow focusing geometry together with an electric field has been used to make smaller droplets...

  19. Water Data Report: An Annotated Bibliography

    SciTech Connect (OSTI)

    Dunham Whitehead, Camilla; Melody, Moya

    2007-05-01T23:59:59.000Z

    This report and its accompanying Microsoft Excel workbooksummarize water data we found to support efforts of the EnvironmentalProtection Agency s WaterSense program. WaterSense aims to extend theoperating life of water and wastewater treatment facilities and prolongthe availability of water resourcesby reducing residential andcommercial water consumption through the voluntary replacement ofinefficient water-using products with more efficient ones. WaterSense hasan immediate need for water consumption data categorized by sector and,for the residential sector, per capita data available by region. Thisinformation will assist policy makers, water and wastewater utilityplanners, and others in defining and refining program possibilities.Future data needs concern water supply, wastewater flow volumes, waterquality, and watersheds. This report focuses primarily on the immediateneed for data regarding water consumption and product end-use. We found avariety of data on water consumption at the national, state, andmunicipal levels. We also found several databases related towater-consuming products. Most of the data are available in electronicform on the Web pages of the data-collecting organizations. In addition,we found national, state, and local data on water supply, wastewater,water quality, and watersheds.

  20. Focusing-to-defocusing crossover in nonlinear periodic structures

    E-Print Network [OSTI]

    Focusing-to-defocusing crossover in nonlinear periodic structures Francis H. Bennet,* Inés A. Amuli

  1. An ultra miniature pinch-focus discharge Leopoldo Soto1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra optimized plasma foci. It is interesting note that plasma parameters practically constant in plasma focusAn ultra miniature pinch-focus discharge Leopoldo Soto1 , Cristian Pavez1, 2 , Mario Barbaglia3

  2. Apparatus and method for performing electrodynamic focusing on a microchip

    DOE Patents [OSTI]

    Ramsey, John Michael (Knoxville, TN); Jacobson, Stephen C. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment.

  3. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  4. Modeling the water consumption of Singapore using system dynamics

    E-Print Network [OSTI]

    Welling, Karen Noiva

    2011-01-01T23:59:59.000Z

    Water resources are essential to life, and in urban areas, the high demand density and finite local resources often engender conditions of relative water scarcity. To overcome this scarcity, governments intensify infrastructure ...

  5. artificial sea water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ieft, thc area of formation, even a very small c...:ent, as well as naturally cccuring ice and water frcm the Arctic Ocean. An artificial sea-water was also used in the hope. "....

  6. 2007 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  7. Alternate Solutions to Water Resource Development -- A Case Study 

    E-Print Network [OSTI]

    Basco, D. R.; Rahman, K. M. A.

    1974-01-01T23:59:59.000Z

    . Selected solutions for water resources development problems in the Navasota River watershed were analyzed. The cost of water supply by desalination in the service area of the proposed Millican reservoir was computed following the procedure recommended...

  8. 2006 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable nergy technologies at federal facilities.

  9. 2005 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  10. 2010 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  11. 2008 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  12. 2009 Federal Energy and Water Management Award Winners

    Broader source: Energy.gov [DOE]

    The Federal Energy and Water Management Awards recognize individuals, groups, and agencies for their outstanding contributions in the areas of energy efficiency, water conservation, and the use of advanced and renewable energy technologies at federal facilities.

  13. Introduction Approximately 40% of rural Ethiopia (WaterAid, 2010)

    E-Print Network [OSTI]

    Walter, M.Todd

    Introduction Approximately 40% of rural Ethiopia (WaterAid, 2010) lacks access to clean water for water pumping is one alternative in the rural areas of Ethiopia since most of the population has technologies for water pumping in Ethiopia and especially in Amhara Region is limited. The promotion

  14. POLLUTION OF WATER Blank page retained for pagination

    E-Print Network [OSTI]

    CHAPTER XX POLLUTION OF WATER #12;Blank page retained for pagination #12;ASPECTS OF WATER POLLUTION IN THE COASTAL AREA OF THE GULF OF MEXICOl Prepared in the DIVISION of WATER POLLUTION CONTROL and SHELLFISH, and Welfare Principal natural resources of the Gulf that ap- pear susceptible to damages from water pollution

  15. Impact of Syrian Refugees on Jordan's Water Management Research Questions

    E-Print Network [OSTI]

    . Refugee Camps in Jordan should not be located in areas experiencing severe water shortage or groundwaterImpact of Syrian Refugees on Jordan's Water Management Research Questions: What impact has the influx of 590,000 refugees had on water resources? How can Jordan improve refugee and water management

  16. Geophysical logs from water wells in the Yakima area, Washington

    SciTech Connect (OSTI)

    Biggane, J.H.

    1983-01-01T23:59:59.000Z

    The logs include: natural gamma, gamma gamma, neutron neutron, neutron gamma, caliper, fluid temperature, fluid resistivity, wall resistivity, spontaneous potential, and flow meter.

  17. 400 area secondary cooling water sampling and analysis plan

    SciTech Connect (OSTI)

    Penn, L.L.

    1996-10-29T23:59:59.000Z

    This is a total rewrite of the Sampling and Analysis Plan in response to, and to ensure compliance with, the State Waste Discharge Permit ST 4501 issued on July 31, 1996. This revision describes changes in facility status and implements requirements of the permit.

  18. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  19. Water Sampling At Heber Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,

  20. Water Sampling At International Geothermal Area, Philippines (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen Energy InformationOpen Energy

  1. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMtInformationOpen

  2. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpenInformation Henkle,EnergyOpen

  3. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25T23:59:59.000Z

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  4. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermalInner Area Principles The Inner Area

  5. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  6. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  7. R-Area Reactor 1993 annual groundwater monitoring report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells in the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50{mu}g/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells.

  8. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    SciTech Connect (OSTI)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-14T23:59:59.000Z

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  9. Use of compost filter bermsfor sediment trapping: primary focus on water quality and structural stability

    E-Print Network [OSTI]

    Raut Desai, Aditya Babu

    2004-11-15T23:59:59.000Z

    metals, automobile fluids, car exhausts (which settle with the rain), pesticides, fertilizers, and other debris. Compost has been used effectively as a valuable soil amendment to aid plant growth. Berms (mounds) of compost placed at the top or bottom...

  10. PROTECTED AREAS AMENDMENTS AND.

    E-Print Network [OSTI]

    as critical fish and wildlife habitat. The "protected areas" amendment is a major step in the Council's efforts to rebuild fish and wildlife populations that have been damaged by hydroelectric development. Low also imposed significant costs. The Northwest's fish and wildlife have suffered extensive losses

  11. MSL ENTERANCE REFERENCE AREA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

  12. High temperature hot water distribution system study, Directorate of Public Works, Fort Drum, New York; executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA01-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: (1) Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. (2) Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  13. aquatic plants water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within the metropolitan area of Oklahoma City US Army Corps of Engineers 114 North City Water Reclamation Plant Energy Storage, Conversion and Utilization Websites Summary:...

  14. Iowa State Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    , prioritize water quality improvement need, and establish total maximum daily loads or TMDLs for such impaired Congressional District: Iowa 3rd Research Category: Not Applicable Focus Category: Water Quality, Models, Law, Institutions, and Policy Descriptors: TMDL, water quality, GIS, modeling, environmental policy Principal

  15. Basis for Interim Operation (BIO) for the Rework Unit (RW), Du Pont Water (DW) Plant, Moderator Processing Facility (MPF), and Technical Purification Facility (TPF)

    SciTech Connect (OSTI)

    Horne, R.E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-01-01T23:59:59.000Z

    The mission of the Heavy Water portion of D Area (or 400 Area) at SRS is to purify the site inventory of heavy water for storage in the Reactor Areas for future DOE missions.

  16. Water Resources Policy & Economics

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Water Resources Policy & Economics FOR 4984 Selected Course Topics · Appropriative and riparian water institutions · Incentives for conservation · Water rights for in-stream environmental use · Surface water-groundwater management · Water quality regulations · Water markets · Economic and policy

  17. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  18. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 11:12am Addthis...

  19. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    could prove that water shortages exist at Mount Laguna, itto fire, and risk of water shortage. In particular, issues72,73 Rural areas with water shortage problems tend to

  20. Water Privatisation 

    E-Print Network [OSTI]

    Zölls, Elisa

    2011-08-17T23:59:59.000Z

    This dissertation deals with the policy issues of large-scale, urban water privatisation projects in the face of uncertainty and variability. The main objective is to evaluate whether a single policy approach, namely privatisation associated...